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Abstract—An assessment of radio network coverageusually range of applications includes smart home scenarios as well
in the form of a measurement campaign,is essential formulti-  as industry-driven services for remote metering and sgnsin

base-station (multi-BS) network deployment and maintenance. a4ig connectivity has to be enabled in outdoor as well ap dee
It can be conducted by a network operator or its served . .
indoor environments[[4],[[5].

consumers. However, the number of measurement points and . o
their locations may not be known in advance for an efficient ~ Nonetheless, before deploying LPWAN communication

and accurate evaluation. The main goal of this study is to technologies (which should be valid for any wireless syjtem
propose a new methodology for understanding the selection of radio network planning is employed to produce an initial
measurement points during coverage and signal quality assess-agtimate on coverage and signal qualljowever, this is a

ment. It is particularly tailored to multi-BS low-power wide- | ffected b - fact d Sraint
area network (LPWAN) deployments without explicit knowledge COMPIEX Process aliecled Dy various 1actors and conssain

of BS locations. To this aim, we first conduct a large-scale including non-technological aspects, such as types ofrurba
measurement campaign for three popular LPWAN technologies, layout, legal issues, and selection of locations where t8e B
namely, NB-loT, Sigfox, and LoRaWAN. Utilizing this baseline can be deployed. In practice, a decision on the BS placement
data, we develop a procedure for identifying the minimum set is made based on the propagation modeling that uses three-
of measurement points for the coverage assessment with a given . . . . -
accuracy as well as study which interpolation algorithms produce _dlme_nsmnal city map§uch a procesmay involve mqup_Ie

the lowestapproximation error. Our results demonstrate that a  iterations, where radio measurements are used to adjust the
random choice of measurement points is on par with their deter- locations of the installation points. Even after the deplewnt,
ministic selection. Out of the candidate interpolation algorithms, network operators conduct regu|ar inspections to undadsta
Kriging method offers attractive performance in terms of the whether changes in the propagation environment have affect

absolute error for NB-1oT deployments. By contrast, for Sigfox . .
and LoRaWAN infrastructures, less complex techniques, such the coverage characteristics and the performance of their

as Natural-neighbor, Linear interpolation, or Inverse-Distance networks [[6]-]8].
Weighting, can achieve comparable (and occasionally even better) Our previous works[[9],[[10] also confirm the presence

accuracy levels. of dynamic fluctuations over extended periods of time. Two
measurement campaigns conducted during several months-
) long intervals revealed that the fluctuations can be as high
A. Background and Rationale as 40dB in terms of the signal strength even for static deploy
The recent progress in miniaturization and automation hamnts. These changes are not entirely random, but they are
created a large application domain known as the Intermefpresented by a slow variation of samples oscillating radou
of Things (loT) that has to be supported by a specifihe mean value. On the other hand, micro-scale variations in
connectivity feature, named massive machine-type comnthe signal strength such as fast fading are smoothed using th
nication (MMTC). In response to these needs, a variety daveraged” propagation models.
low-power wide-area network (LPWAN) technologies, includ As a result, to maintain a relevant coverage map, the said
ing LoRaWAN, Sigfox, and the third generation partnershiprocess has to be applied periodically. The rationale is tha
project (3GPP)-ratified Narrowband IoT (NB-10T), have beehPWAN network operators may perform upgrades of their
proposed. From the perspective of licensing, Sigfox repress infrastructuresor reconfigurations of the network parameters
a proprietary solution, while NB-loT and LoRaWAN are opemwhile the environmental conditions may also change with
standards supported by the 3GRittiative and LoRaWAN time due to, e.g.new constructiorin the considered arear
Alliance, respectively [1]+[3]. These systems are chammted seasonal change¥/e also note that the duration of time when
by multi-kilometer communication rangeschieved over a the propagation environment remains relatively unchanged
relatively sparse deployment of base stations (BS)s. As ttepends on many factors and is, in general, site-specifis; th

I. INTRODUCTION



beyond the scope of this work. Also, the coverage map updatdn the second phase of our work, we consider exclusively
period is a valid research consideration on its own, which wile results of our practical measurements and proceed by
leave for further studies. gradually reducing the number of points taken into account
On top of that,conducting a measurement campaign orandomly or deterministically, while at the same time apply
the city scale is a time-consuming proce8seferably the appropriate interpolation techniques to (iii) create il
operators are willing to assess the network coverage armlerage maps. Considering the proportion of the area edver
signal quality in all the available locations. One of theaiall with at least a certain signal levet (Bm) and employing the
issues in evaluating the network coverage is that the numbegighted average metric, (iv) we compare the performance
of measurement points required for an accurate coveragfethe reference model against the coverage maps produced
and signal quality reconstruction is not straightforwaod tby the interpolation algorithms. Finally, (v) we assess the
determine. In practice, it is affected by the city deploymemerformance of the reference model and the interpolation
features, selected technology, carrier frequency, etis. fiflob- methods under thinning against the measurement results.
lem becomes even more complex when the exact locations oWvith the proposed methodology, one may identify the
the BSs are not known in advance. The latter might be the casember of measurement points required to produce a coverage
for third-party companies aiming to purchase a service froassessment with the desired accuracy for a city environment
the LPWAN operators and performing their own coverage amihilar to the one of Brno, and can also deduce useful insight
signal quality assessments. for other environments. In a nutshell, the main contritngio
The recently proposed fully-automated coverage asse$smefnour study are:
techniques, such as those utilizi_ng un_manned aerial \Es_ﬂcl « we propose a methodologipr identifying the number
(UAVs) [11]-{15], may be constrained either due to the weight ¢ measurement points and their locations to conduct a

of the measurement equipment or with respect to allowable coverage assessment of LPWAN technologies at city scale
altitudes above the ground, and may thus produce inaccurate ith a given approximation error:

or limited results at the evaluated poin@®n top of this, in . we show that out of a large set of the considered
some regions, the use of UAVs for such measurements may jnterpolation techniques, Kriging provides the best per-
be prohibited or hampered by the legal regulations. formance for the NB-loT deployments, whildatural-

B. Key Contributions neighbor interpolation can become a viable alternative

In this paper, we propose a new methodology for assessing for the LoRaWAN and Sigfox deployments; .
the coverage and the signal quality ofulti-BS LPWAN . we gstabhsh that the ”“mber of measurement pomts
technologies. Specifically, based on the results of oumsite required to achieve a certain coverage and signal quality
measurement campaign, we address the problem of signal assessment error increases with th_e d?’”s'ty of the BSs
guality estimationat the feasible points within a certain area iggs%I(i?e(;jerggigdtsecohnnctlr;e cfommunlcanon range of the
of interest. We then quantify how the number of measure- we demonstrate that a ragr?/éom choice of measurement
ment locations affects the accuracy of estimation and how® - - L .
well different interpolation and thinning algorithms pamf. points pr(_)d_uces a s_|m|lar approximation accuracy as their
Notably, in our study, we consider all three popular LPWAN determ|n|st|.c select@n. ]
technologies dominating the market today, namely, NB-loT, The rest of this paper is organized as follows. In Sedbn Il,
Sigfox, and LoRaWAN. This allows us to understand how thé€ overview the related work. Further, in Section I, the
technology features affect the coverage and the signaltguaMeasurement campaign and the obtained results are describe
assessment procedure in city-wide LPWAN layouts. Our proposed methodology for identifying the minimum sets

In the first phase of this studgur joint effort with Voda- Of measurement points for an accurate characterizatioheof t
fone Czech Republlcdelivers (i) an extensive measuremenfiadio coverage is introduced in Sectod IV. The key numérica
campaign for three leading LPWAN technologies publicifindings are summarized and discussed in Segfion V. Finally,
available todaywherein the research activities with Vodafondh€ conclusions are drawn Bection[Vl
allowed us to adjust the network configuration as well as
obtain detailed information while performing the measuzam

campaign), across the city of Brno located in the Czech accurate network coverage assessment is one of the most

Republic [16]-[19].Using these measurements and utilizinghallenging operations that precede a deployment of the

the knowledge of the BS locations for all the technologiq&nd devices (ED)S, Wh|cre|y on wireless communications

in question, (ii) we construct the baseline coverage mag technology [[20]. Field measurements provide a method of

derive a reference model used further on to characterize ¥ierage characterization, but conducting these is aycast

prediction accuracy of the propagation models as an atigena time-consuming process. Therefore, by limiting the reeplir

to the interpolation methods. number of measurement points needed to obtain accurate
1Research cooperation between Vodafone Czech RepublichenDepart- coverage and.sgr.\al quahty results, major technology tm‘sp_

ment of Telecommunications at Brno University of Technology serted in can save a Slgnlflcant amount of resources in terms of time

2017, see: Deployment of the NB-IoT technology in Czech Répub and money.

IIl. RELATED WORK


https://www.vodafone.cz/en/about-vodafone/press-releases/message-detail/vodafone-letos-rozsviti-celonarodni-sit-pro-nb-iot/

Today, the assessment of radio coverage is even mordt is essential to highlight the fact that all the aforemenéd
important as many industrial companies were waiting for thetudies presume full knowledge of the BS locations. Hence,
3GPP cellular 10T (CloT) technologies to hit the markethese results can be used by the operators to assess and
Therefore, the key players are now preparing their firstdargimprove their deployments. However, this approach is not
scale LPWAN trials and challenge the operators to delves- suitable for third parties, which cannot directly access BS
liable network infrastructure capable of managing the imasslocation data.
numbers of connected deviceRo the best of our knowledge, _
the research question of assessing large-scale deplaymé&ht Intérpolation Methods
of multi-BS LPWAN technologies without the knowledge of One of the crucial steps in assessing large-scale depldgmen
BS locations has not been sufficiently investigated in thie the use of prediction mechanisms to interpolate the kigna
literature as of yet. In the following subsections, (i) wesffir quality at those points where no measurement data is readily
summarize past studies related to coverage assessmewe (ii available. Several studies followed this approach. Rasity,
then overview the state-of-the-art interpolation methaded in [24], the authors utilized IDW interpolation to predicTE
for coverage estimation; and (iii) we finally summarize theignal quality at locations with no measurement deiawever,

standard coverage assessment metrics. the authors of that publication did not propose any assegsme
metric. Hence, the accuracy of the results cannot be verified
A. Coverage and Signal Quality Assessment and the predicted value is considered as “ground truth”.

The coverage assessmentlinl[25] employed fixed rank Krig-

Coverage and signal quality assessment of LPWAN tecly (FRK) to predict the signal level in the region coveredaby
nologies with explicit knowledge of BS locations was adsingle macro-cellThe results indicated reasonable accuracy of
dressed in several research works. Most of these studigmt approach with the root-mean-square error (RMSE) rang-
however, are limited to a single channel quality indicatormg between 3 and 5 dB=urther, the study i [22] proposed a
i.e., reference signal received power (RSRP), receivegasigneyw method of coverage map construction based on multi-
strength indicator (RSSI), or signal-to-interferencespfivise  criteria triangulation-induced interpolation (MTIHowever,
ratio (SINR), thus making a comparison between differefjjat work focused only on the covered area prediction withou
works cumbersome. Below, we report on the recent measuggsser specification of the expected signal levels.
ment setups over city-scale deployments. Finally, in [26], the authors utilized Linear, Nearest-

In [21], the authors carried out an extensive measuremedighbor, and IDW interpolation schemes together with Min-
campaign, wherein coverage assessment data acquiredif@im, Mean, Gradient, IDW, and Nearest-neighbor extrapo-
LoRaWAN and Sigfox served as an input set for the proposestion algorithms to construct their received signal sjtén
localization framework. The study was conducted in the CifRSS)-based localization frameworRmong all of the con-
of Antwerp, Belgium. With 84 BSs distributed over the aregidered interpolation methods, Linear and IDW indicates th
of 52.97kn%, Sigfox slightly exceeds LoRaWAN in termsjowest mean error ranging from 4.3 to 8dB. However, it
of the number of gateways (GW)s. For Sigfox, the authokhould be noted that all the above research works concedtrat
also conducted a coverage assessment in rural environmgiitthe signal coverage prediction incorporating a single BS
between the cities of Antwerp and Ghent. This measuremerierefore, those results are not directly comparable to the

campaign covered the total area of 1068kfeaturing 137 results of our study, since interpolating a multi-BS cogera
BSs. Unfortunately there is no publicly available NB-10T map is a challenging and complex task.

measurement trial focusing on coverage and signal quality
assessmerdt such a large scale. C. Coverage Assessment Metrics
In [22], researchers characterized the distribution ofjlon When conducting a coverage assessment of radio network
term evolution (LTE) BSs in the city of Xian, China basedieployments, one needs to define a coverage metric. Generall
on real-world measurements. The results of the conductesierage quality indicators can be separated into two main
measurement campaign can offer first-order insights inéo throups, namely, averaged and cumulative parameters. As an
density of NB-loT BSs. In this urban scenario, 13 BSexample in the first group, the authors [nJ[22] utilized the
cover the area of 3kfn The density of LTE BSs in[[22] is ratio between misclassified regions and the total area as the
comparable with the measurement results of our work.  performance indicatoEven though this parameter allows for
Someother research worksmployed computer simulationssimple comparison of the results via a single variable, ésdo
to estimate coverage in LPWAN systems. [Inl[23], the authom®t provide any measure for comparing the predicted signal
used existing Telenor’s cellular deployment structure tmlet level accuracy. Instead, it rather focuses on the borderlin
the coverage performance of NB-loT, LoRaWAN, and Sigfoxalues denoting the covered area.
The structure of the network suggested that the density ofln [26], the target metric was defined as cumulative prob-
urban cells is five times higher as compared to rural areadility of the RSS error.On top of that, the mean error
Further, simulation results confirmed that the outages N er as a function of the removed fingerprints was used for an
loT and Sigfox do not exceed 1%, followed by LoRaWANNitial verification of the predicted values. This metric is
with a 2% chance of message loss. similar to that utilized in our work but it does not consider



positive and negative deviations by using modultmally, TABLE |: Key parameters of LPWAN technologies.
in [25], the authors defined their parameter of interest as

. . . L. LoRaWAN Sigfox NB-loT
cumulative density function (CDF) of empirical errors bee&m  coverage (vcr) 157 dB 162 dB 164 4B
the mo_deled a_nd the predicte_d \_/alu_émch a metric offgrs Technology PHI\:AEZ P_“’g’;ij;a” Proprietary Open LTE
useful information a_bout the d|str_|but|on of error. HOWEVIE. Specium Unicensed Uniicensed Cconsed
does not allow for simple comparison of deviations as a 8ingl duty cycle limitation Yes Yes No
1 16 dBm 16 dBm 23 dBm
variable. ) Max EIRP (40 mw) (40 mw) (200 mw)
In our work, we combine the two approaches employ - Tora (CSS), D-BPSK (UL), | =/2-BPSK, x/4-QPSK,
in research works[[25] and_[26]. However, in contrast t FSK GFSK (DL) | QPSK (DL + multi-tone)
. . e . 0.25-11 kb LoR
the metric given by[[25], we utilize the part of the area Data rate in DL oo kope (rory | 0.6 Kops 05-27.2 kbps
covered 'Wlth a S|gna! level .of at leastdBm. AS|d_e from | D rate in oL 0.255[-)1k1bkt;psF éL;Ra) 0.1 kbps 0.3-62.5 kbpb 2
the predicted values, it also includes the results givenhey t—— Sayioad zfzé ) 55 ST
reference model. To provide an assessment metric perquittinvax. o payload 2428 8B 1600 B
for a single-number comparison of the coverage accuracy, we current 45 mA 55 mA 220 mA
f h . t th t . . d b 26 | caxtt Sleep current <2 UA <2 UuA <3 UuA
urther incorporate the parameter inspired by [ ]._ n Battery fife 10+ years 10+ years 10+ years
to the formula in [[26], our performance indicator includes @wodule cost 63 2 8s$
; g : ] Medium Low? Very high
(rjnodutl.us operation to account for positive as well as negatiy security Abo. 108 AEeas SGPP (128.256 bi)
eviations.

1 The value is release-dependent (Rel. 13).
2 valid for multi-tone transmission.

[1l. OUR MEASUREMENT CAMPAIGN 3 By default, encryption is not active.

To obtain the essential input data, we carried out a wide-
scale measurement campaign in the city of Brno, the secorg-any time. However, the devices cannot violate the liraitat
largest city of the Czech Republic. The measurement resul$ the radio channel utilization imposed by the respective
were collected during the eight-month period between Febrauythorities. With that in mind, the uplink transmission is
ary and September 2019. Thabjectcampaign covered over constrained to 140 messages per day, with the maximum size
300 unique measurement locations next to the stop stationsp12 bytes. Limitations in the downlink channel are evenenor
public transport lines (i.e., buses, trams, and trollegbfls ~strict with only 4 messages per day having the payload of 8
The locations of the measurement points were selectedbiges.
reflect one of the potential use cases of LPWelshnologies  The uplink transmission is modulated with differential bi-
which is localization services in Smart City applicatio23]. nary phase-shift keying (D-BPSK) having the rate of 100 bps
In what follows, we offer a brief description of the selectegthis value is valid for radio configuration (RC)1 in EU, and
LPWAN technologies, the measurement equipment, and thgy differ in other regions). The carrier frequency is seldc
operatingenvironment. randomly, typically within the 200 kHz band. Center freqogn
A. LPWAN Technologies ?n RC_l is s_et to 868.13 MHz with the maximu.efffa.ctive
isotropic radiated power (EIRP) of tm. The reliability of

For our measurement campaign, we selected the three majgf, yransfer is ensured by two mechanisms: (i) repetitich a
LPWAN technologies (Sigfox, LoRaWAN, and NB-loT) that(ii) spatial diversity.Message transmission is repeated three

are publicly available to the end-customers in the Czegioq each one employing random carrier frequency sefecti
Republic. The first two representatives, Sigfox and LORAWAN iher, ED is not attached to a particular BS, but its data

belong to a large group of solutions operating in the licensg jngtead received and forwarded by any of the reachable
exempt industrial, scientific, and medical (ISM) band, SEB\Ws 1.

Tab/[l. Conversely, NB-loT is one of the CloT technologies op 2) LoRaWAN: The second well-known representative of

erating in the licensed LTE ban@lhe government regulates thethe LPWAN family operating in the 1SM band is LoRaWAN.
utilization of both frequency ranges (in the Czech Republiﬁs standard network structure is similar to that of Sigfox b
Czech Telecommunication Office is the regulator). Howeve(,romprising EDs, at least one GW, and a network server (NS).
the ISM conditions are much more stringent as compared wjfh addition, the’ system may fea;ture a specialized network

thi“?n?eq 10_‘::.36' it band technolog idered join (NJ) server to handle roaming between networks. In
) Sigfox: This ultra-narrowband technolog considere most cases, a transmission is initiated by the ED using an

to be_ the first pu_blicly available LPWAN solution With_com'AIoha—Iike channel access mechanism|[28]. It allows the ED
rr}erujl drO”fOUtSE'S 2012. The ngnxork mf(rjasrt]ructlure doetss to initiate communication at any time by not violating the
o' en gwces( S), gat.eways( s), and the cloud core. operational restrictions on the selected radio channethiwi
The data is transferred wirelessly to the GW and then corui/eyﬂe]e EU region, the ED selects one of up to sixteen available

to the cloud system via the Internet connection. The traﬂsm&hannels in the frequency range from 863 to 870 MHz with the

sion of data is always initiated by the ED and can COMMENKE ndwidth of 125 or 250 kHz. The first three channels (868.1,

2The map of the measurement points in question is accessibleeovik 868.3, and 868.5 MHZ) must be supported by every ED and
Google Maps. cannot be changed.


https://drive.google.com/open?id=1_m9OAu4IKJqdzjAyo0AD1bnRBPrbbJrZ&usp=sharing

The ISM frequency band of 868 MHz imposes the limitatiofOFDMA). Further, the modulation scheme is limited to QPSK
of 1% duty cycle with the maximunEIRP of 16dBm. At with the maximum TBS of 680 bits (up to 2536 bits in Rel. 14),
the physical layer, the data is transferred with a proprjetawhich results in the maximum data rate of 27.2kbps (up to
long-range (LoRa)nodulation based on the spread spectrud®?7 kbps in Rel. 14) [30]/[3]. The extended coverage (+20 dB
technique named chirp spread spectrum (CSS). This meghrt. LTE) is achieved primarily via repetitions. The ramal
anism permits LoRaWAN to operate below the noise flooaccess channel procedure and all uplink transmissions may
The LoRa modulation rate can be adjusted by the spreadimgnefit from up to 128 repetitions [30].
factor (SF) parametenvhich can vary from 7 to 12The
SF value controls the modulation robustness, thus direclly Measurement Equipment and Setup

aﬂ:ecting radio coverage. The achievable bitrate in theki2b During our S|gf0x and LoRaWAN measurementS, we uti-
channel therefore varies from 250 (SF 12) to 5470 (SF 7) bised field testers by the company Adenuis. Specifically, we
which results in the maximum payload size of 51 (SF 12) upsed ARF8121AA for Sigfox and ARF8123AA for LORWAN.
to 242 (SF 7) bytes. Due to power efficiency considerationgoth devices are equipped with integrated 0dBi omnidirec-
the staticEDs are commonly configured to use the lowest Sfpnal antenna and offer the theoretical communicatioryean
that allows for reliable communication![2]. of 15km. The effective radiated power (ERP) in both cases

3) NB-loT: Unlike the two LPWAN options describedyas set to 14 dBm (25 mW). When configured with SF 12 and
above, NB-IoT relates to the cellular technology operatmg the coding rate of 4/5, this allows to achieve the sensjtioft
the licensed bands. It was introduced in 2016 as part of the37 dBm for the LoRaWAN technology. The utilized coding
3GPP Rel. 13 with the first commercial roll-outs in the fOl'rate does not offer the |ongest communication range, budst w
lowing year [29]. The system is composed of user equipmegélected due to the requirement imposed by the LoRaWAN
(UE), evolved Node B (eNodeBJvolved packet core (EPC),regional specifications [31For Sigfox, the standard BS SBS-
and application servers. As the terminology suggests, ®B-I T3 provides the sensitivity of up to -146 dBm [32].
reuses a significant fraction of the existing LTE infrastue. In the case of NB-loT measurements, we employed our own
In most cases, the LTE system can be upgraded to suppglting device developed at Brno University of Technology
the latest specifications via a software updateé [29]] [3%. ABUT). The measurement unit is equipped with SARA N210
compared to LTE, the bandwidth of the NB-IoT system i§B-loT module by the company uBlox. The selected module
reduced to 180kHz; thus, it can be deployed within a singigyplements the NB-loT specifications according to Rel. 13
physical resource block (PRB). On top of that, NB-IoT cagith the maximum transmit power of 23 dBm (200 mW), thus
operate in a stand-alone mode (single global system forIElr‘Ot&lroviding the sensitivity of up to -135 dBniThe said module
communications (GSM) carrier) or in a guard band of the LTlzcorporates only one frequency band, i.e., B20 (800 MHz, up
system[[30]. link (832 - 862 MHz), downlink (791 - 821 MHz)), which is uti-

In contrast to LoRaWAN and Sigfox, NB-10T uplink operaijzed by the Vodafone's NB-loT network in the Czech Repub-
tion is not based on pure Aloha but utilizes its slotted \@Si |jc a5 the main frequency barid [38)n top of that, radio wave
for channel access and then resorts to using the time-freguepopagation is facilitated by the omnidirectional halfvea
resources allocated by an evolved NodeBNodeB) [28]. antenna with 2 dBi gain. Specifically, it is a pentaband amen

Since NB-loT uses licensed frequency bands (predominaniyy RF Solutions that is designated as ANT-PCB8121{FL. [34].
sub-GHz spectrum), there are no duty-cycle restrictioe T

maximum uplink payload at the physical layer is 1000 bits

Join Server
(up to 2536 bits in Rel. 14) due to limitations on the trans- é (R) . f— A
port block size (TBS). Further, the packet data convergence @ Y WHWH@
protocol (PDCP) layer permits the protocol data units (PPUs A @ Yy @ Sener e S
with the size of up to 1600 bytes. The transmit power of the @ M“"A ...... L L MME - ScEE
UE can be as high as 23dBm (there is additional support for 25 @ . -, ]
20dBm and 14 dBm power classes). In the case of a singl @ e i) R B
tone uplink transmission, NB-loT supports 15 and 3.75kHz 4 sd(‘;(), st rom
subcarrier spacing with the single carrier-frequency gilivi "-'."(ZK) ________ wemet 1 —
multiple access (SC-FDMA). sigon Cowd T

Customer IT

The uplink data is modulated by utilizing binary-phase tshif
keying (r/2-BPSK) or quadrature phase-shift keying/{-
QPSK) with the continuous phase to reduce peak-to-averaggy. 1: Network architecture of selected LPWAN standards.
power ratio (PAPR). However, the highest bitrate can only
be achieved with multi-tone transmissions utilizing QPSK For all the measurement points, the test devices were
modulation. If all the twelve tones are used, the theorkticdeployed at a selected location and positioned approxiyate
throughput can be as high as 62.5kbps (up to 159 kbps in Ramte meter above the ground level away from buildings and
14). In the downlink, NB-1oT supports only 15 kHz subcarrieother obstacles. Then, thesting unitswere powered up to
spacing with orthogonal frequency division multiple accesnake them transmit ten messages with the period of 30s. To

((A» NB-IoT BS ((;\)) Sigfox BS ((;\)) LoRaWAN GW



avoid interference between the LPWAN technologies, theemea#o not utilize multi-sector antennas and reserved referenc
surement equipment was utilized sequentially. The ilatate signal channels. For these reasons, the signal strengtit met
path of a datagram for each technology is depicted in[Fig.i.limited only to RSSI, which derives the received powerrove
The message size was set to 12 bytes for all the considetiee entire bandwidth.
radio technologies, to remain in-line with the limitation Summarizing the processed data, all three technologies of-
the Sigfox operation, see Section T-A1. The time framed arfered relatively reliable service, with only a few measueain
the locations of each measurement point were recorded fwints being in outage. The most robust connectivity was
further statistical analysis. The preliminary positiorfstile provided by the NB-loT network — with only three unserved
measurement points were acquired from the map and verifigoints — followed by Sigfox and LoRaWAN with ten and six-
by Adenuis testers having a built-in global navigation kiéée teen outage cases, respectively. However, these diffeseare
system (GNSS) receiver. marginal for the scale in question. More significant differes
Once the field measurements were completed, all of tbecome visible when the signal levels are examined. For NB-
available data were collected from the appropriate web maoT, the average value of RSRP was -76 dBm, whereas the
agement interfaces. At the time of conducting the measuraean signal levels for Sigfox and LoRaWAN were close to
ments and processing the data, only the locations of tHE00dBm. More specifically, the values were -112 dBm for
LoRaWAN GWs were available publicly and accessible vig8igfox and -98 dBm for LoRaWAN.
the management interface. To acquire the locations of $igfo These differences are attributed to the features of the tech
and NB-loT BSs, we had to contact the network operator®logies and the densities of the BSs. With respect to the
Simplecell (Sigfox) and Vodafone Czech Republic (NB-loT)atter, the numbers of NB-loT BSs in our test area greatly
In accordance with the effective agreemerttss precise lo- exceeded those for the two counterpart solutions. Spdbjfica
cations of the BSs are known to the authors and have b@eB-loT is in the first place with 78 dedicated BSs having more
employed in our analysis, but they cannot be revealed gyblicthan a quadruple volume of GWs belonging to other LPWAN
solutions. In contrast, Sigfox and LoRaWAN networks only
feature 13 and 19 GWs, respectively. The actual BS density
Since the NB-loT module is always connected to a singilso impacts the distances between the measurement points
BS, the respective data processing was a straightforwaiiad their closest GW/BS. For NB-1oT, the average distance to
procedure. All the signal quality indicators received fr@m the nearest BS did not exceed 0.52 km, whereas for Sigfox it
certain test location were averaged to obtain a single RSREs 3.45km and 1.86 km in the case of LoRaWAN.
value, which served as an input to the subsequent interpolat
methods. In the cases of Sigfox and LoRaWAN, the situation IV. PROPOSEDMETHODOLOGY
was different. The devicesperating undethese two technolo- . . . .
gies are not connected to a specific GW, and their messa%ag] this section, we first outline the proposed methodology

are receiveddy eachavailable BS within the communication r identifying the minimum set of measurement points. Then
range. we proceed by specifying the reference model employed by

In the extreme case, we observed a single packet belg] r study as well as the considered interpolation and thani

received by 15 LoRaWAN GWsTo acquire a single value, orithms.
we selected the GW with the best average RSSI and used Wis
result for the following interpolation method$he points in
outage were excluded from the considerationthe last step, The proposed procedure for identifying the minimum set
we used the haversine formula to obtain the distances batw@é measurement points to assess the network coverage can be
each measurement point and the corresponding BS/GW. divided into several steps, as depicted in Elg. 3. In the dinst,
we utilize the knowledge of the BS locations across the afea o

D. Measurement Environment and Network Configurationsinterest, and combine it with standardized propagationetsod

Our measurement campaigns were executed around the titgonstruct a reference model for each LPWAN technology.
of Brno at 303 unique locations spanning over 12km north to At the second stage, we build a model without explicit
south and 24km east to west. The results of these cover&gewledge of the BS locations by employing interpolation
measurements for each of the three LPWAN technologies &ehniques to infer the RSRP (or RSSI for LoRaWAN and
depicted in Fig[R. As an indicator of the coverage qualitgigfox) values at each point inside the considered area. To
at a certain location, we utilized the RSSI values for Sigfaxientify the minimum set of measurement points required for
and LoRaWAN.Conversely, for NB-IoT, RSRP served as th@ccurate coverage assessment, we apply and study two funda-
primary signal quality indicator. It provides a more acdara mentally different reducing techniques, which are prolistiz
assessment of radio channel conditions by measuring oaly #nd deterministic thinning.
RO (also R1, if available) reference signal, thus excluding We expect that these algorithms will significantly impaat th
the interference from other antenna sectors and unrelatpgality of hypothesis since random selection of measurémen
channels[[30]. Furthermore, RSRP is not technically akikla points should provide inferior accuracy as compared to more
for LoORaWAN and Sigfox as these much simpler technologie®mplex deterministic selectioflence, we consider a range

C. Data Pre-processing

Procedure and Metrics of Interest
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Fig. 2: Coverage of LPWAN technologies in the city of Brno.
Reference model Estimation bility that a certain fraction of area is covered with thersib

level of at leastc dBm. In the sequel, we estimate this metric
for both the reference model and the interpolated data mgusi
Pre-processing of the following approach. A regular grid with the uniform step
expenmengzlltgneasureme bois applied to the area of interest. The coverage qualityas th
v estimated by using the sample values of RSRP/RSSI at each
of those points. As one may observe, this parameter can be
o interpreted as an inverse CDF of the RSRP/RSSI values.
tﬁﬁ%‘;ﬁg‘ggo‘:{tﬂﬂﬁ t%efgttgi Note that the introduced metric allows for a convenient
the required number of visual comparison between the reference model and the
SR (RIS proposed option. However, it does not permit to quantify
the distance between the two given models. To facilitate a
guantitative comparison between the models, we propose the
use of themean absolute error (MAENetric that specifies
the cumulative deviation between any two models under

Experimental measurements

v
~ SectorllVEL

Derivation of the reference
propagation model based ¢
empirical measurements

 semm

\Voronoi tessellation of the

=)

Application of interpolation
methods to obtain

area based on BS locatio estimations for missing X ) ) ’
T points consideration. We define this parameter as follows
v L
B 1 2
Sectior VA Q=+ Y|RY - R, (1)
Estimation of signal levels Quantitative comparison i=1
based on the reference between reference model, 1 5
model and distance to th interpolation methods, and whereR§ ) andR§ ) are the sample values of the two models
AEEIEE! 2 EEEUEE ERA at the same point and is the total number of points on

to account for positive and negative deviations. Each point
1 represents one cell of the regular grid with the resolutibn o
of parameters for these thinning approachesSectior[ ¥, we 50m outlined by the area of the test locations as depicted
also identify which one demonstrates the best performancen Fig. [2. These cells serve as an output data set of the
For both thinning algorithms, we consecutively reduce thisterpolation algorithm, which estimates the RSRP/RSS8leva
number of retained points. Further, we apply the metrics digr each point.
fined below to quantitatively characterize the distancevben As one may observe, the averaged integral metric specified
the data set produced by the reference mddetived with in () is independent of the number of poinf§ where
the knowledge of BS locationg)nd the one with the reducedthe coverage metric is evaluated and produces the absolute
number of measurement poinfsreated without the knowl- deviation from the actual coverage averaged over the total
edge of BS locations)Finally, we compare the predictionnumber of interpolated point&'.
accuracy of the reference model and the interpolation naistho
against the measured valu@sed on these results, we mak®- Reference Model
conclusions on the minimum number of measurement pointsWe proceed by defining the baseline reference models for
needed to provide the coverage quality assessment witlea gieach of the considered LPWAN technologies. A reference
maximum deviation from theneasured/alues. model is intended to compare the widely used radio propa-
As a coverage assessment parameter, we employ the prajaion models with the interpolation methods in terms of the
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Fig. 4: Fitting of propagation model to measurement data.

prediction accuracy. Each reference model assumes that th&herefore, we decided to utilize the propagation models
exact BS locations are available. from our previous work, representing the aforementioned
1) Reference Path Loss Modelt the first step of our options fine-tuned for particular communication technieg
modeling, we employ the measuresignal levels at each For our approximation, we assumed 1.2m ED height with
location to derive the respective path loss (PL) value as the BS antenna 15m above the rooftop level of 30 m and the
@ carrier frequency of 861.7 MHz. The latter value is valid for

PL = |Ppx|+SNR+ Prx +G; Prx <0, uplink NB-1oT operation in the guard-band mode within band
. .20 (800 MHz), which is utilized by Vodafone’s network in the
where\ERX| denotes the _absolute value of the received signalq . Republic. For other LPWAN technologies, ueply
p‘?"¥er |nddBm (RSRP in Fheh case Olf NB',IOT; RSSI fo'Ehe frequencyof 868.1 MHz. This value is close to the center
Sigfox and LORaWAN)SNR is the signal-to-noise rati®irx pjink frequency used by Sigfox and corresponds to the first
represents the transmitter's effective radiated poveed G -l of LoRAWAN

stands fqr the sum O.f antenna gains . The subject fine-tuned models were cross-validated with
To derive the contmuou_s_ path Ioss_curve from the d'scre{ﬁe measurement data in two cities. Hence, it is expected
mgasurement sample@e. utilize non-llne.-ar regression ¢b- that their accuracy will be sufficient in the case of a typical
tamthg expected coefficients of the log-distance PL madel Hﬁﬂidsize European town. As it is depicted in Fig. 4, both NB-
as defined by IoT and LoRaWAN are most accurately represented by the
Ericsson Urban model, whereas 3GPP Urban captures Sigfox
the best. The parameters of each propagation model are given
in Table[Tl.
In the above,PL(dy) represents the PL at the reference
distanced, = 0.1km, ~ is the PL exponent, and denotes

— d
PL = PL(dy) + 107 log,, (d>. ©)
0

TABLE II: Propagation model parameters|[35].

the distance between the end device and the BS. The floating Technology Model PL(do) | ~

intercept valuePL(d,) is calculated from the free-space path NB-loT Ericsson Urban| 111.21 | 3.04
loss formula with an additional 10 dB attenuation captutng Sigfox 3GPP Urban | 118.04 | 3.76
propagation losses in urban environment. The resultingdfitt LoRaWAN | Ericsson Urban| 104.82 | 3.04

models together with the measured data are depicted iflFig. 4
These empirical models derived from the measurementsBoth models are best suited for urban and suburban envi-
data characterize the city of Brno, but their accuracy magnments outside the high-rise core, where the buildinge ha
be questionable for other locations and thus needs to @eéear-uniform height. This description characterizescihe
validated.Therefore, at the second step, we select a validatetiBrno well, as its urban layout primarily comprises of mid-
PL model representing the closest match to our empiriodse buildings. More precisely, the Ericsson Urban model is
model. During our analysis[[35] of the propagation modelgpplicable for frequencies up to 1900 MHz, BS heights raggin
available for LPWAN technologies, e.g., Okumura-Hata, Efrom 20 to 200m, ED heights between 1 and 5m, with BS-
icsson 9999, Stanford University Interim, and COST (Eurd=D separation distances up to 100 km. The 3GPP Urban model
pean Cooperation in Science and Technology) 231 Walfisgtan be used for frequencies of up to 2600 MHz, with a cell
Ikegami, we found out that none of them provide sufficieriadius less than 8km and BS antenna height of up to 50m
accuracy. Notably, the selected models in their basic foralpove the average rooftop level [36].
significantly overestimate the path loss values for all the 2) Voronoi Tessellation:The next step of the reference
considered LPWAN technologies. model derivation concerns the Voronoi tessellation. lispry



purpose is to divide the area covered by the BSs into th&ear, (iii) Natural-neighbor, and (iv) IDW approaches,
corresponding regions that consist of all the points on tmeore computationally demanding.g, (v) Kriging algorithm.
plane closer to the seed (BS) than to any other. In other words1) Nearest-neighborThis method is a simple approach to
Voronoi tessellation dissects the area into polygons with tdata interpolation. The initial step is Delaunay triangjola of
BS located inside representing the closest BS for all thatpoi known pointsz. Then, the vertices are lifted by the magnitude
in that polygon. The outcome of the Voronoi tessellatioof V' into the dimension orthogonal te. The same lifting
process for NB-loT technology is depicted in Hig). 5. A similaprocedure is also conducted for the requested peijntin
tessellation procedure is repeated for Sigfox and LoRaWA@€neral, this involves traversing the triangulation datacsure
BS locations. to find the triangle enclosing the requested point. Once that
Finally, the radio propagation models derived in the presgio position is established, the closest known point valueused
step are applied to the tessellated area to specify the ®cedn the requested point, [37], [38].
signal level at each point of intere§these pointare defined  The main advantage of this method is its simplicity and
by a regular grid with 50m resolution, thus creating thisw computational cost. On the other hand, the resultant
baseline coverage models. In what follows, these construaiterpolation does not create new values for the requested
are named the “reference” models.is worth noting that points but rather duplicates the existing ones. This leads t
these reference models have been derived with the exBmination of sharp transitions at the edges of the neighlgori
knowledge of BS locations and then compared against tbells [38].
models generated using the interpolation methods, whick we 2) Linear: The main idea of Linear interpolation is equiv-
constructed using only the measurement data. alent to that of the Nearest-neighbor methbd| [37]. The area
At this point, it is crucial to highlight that the referencedefined by the measurement points is tessellated with Delau-
model was not used to exclusively quantify the accuracy ofy triangulation, and the vertices are lifted orthogontalthe
the results. We do not consider the constructed refererggown pointsz by the magnitude of#/. However, the value
model to be the so-called “ground truth” for a comparisoaf the requested point, is not duplicated from the closest
with the proposed interpolations-based approach. Thexefoknown point but is rather calculated as the weighted sumeof th
the presented results should be considered as a compafisomagnitudes of the three vertices that constitute the eimgjos
the two models rather than a comparison of the “ground trutkriangle.
with the results of the proposed methodology. Linear interpolation utilizes the Barycentric coordinates-
tem [39] to overcome the problem of value prediction where
the points lie directly on the connecting lines of verticHs.

49.26

the requested point, is placed inside the triangle and is
49.24 ) . X

connected to each vertex, the resulting diagram consists of

549.22 three separate triangles with the areasdef A,, and As. If

5 A denotes the area of the original triangle, one can calculate

3 92 the Barycentric coordinates, 3, and~ [40] as

v

Y 49.18 Ay A As

S49.16

The sum of these coordinates is always equal to one;
therefore, it is possible to calculate the third coordinbye
subtracting the sum of the first two from unity. The resulting

1645 165 1655 166 1665 167 1675 i int i
Longitude [degrees] value of the interpolated point, is produced as
Fig. 5: Voronoi tessellation of NB-1oT deployment. zq=aVa+ Ve +Ve, (5)
lati lorith whereVy,, Vg, and Ve represent the vertices of the triangle.
C. Interpolation Algorithms The main benefit of this interpolation method is its speed

Fig.[d indicates that our measurement data does not spréezmhsiderably slower than Nearest-neighbor though) asé ea
densely across the entire area. Therefore, to predict thiese of implementation. However, Linear interpolation only pro
quality at all the points of the regular grid, one may resoxiides C° smoothnes< [38].
to the use of interpolation methods. Since the measuremen8) Natural-neighbor: The essence of Natural-neighbor in-
locations are not spread evenly, we exclusively consider tterpolation is avoronoi diagram structure. In the initial step,
interpolation methods for scattered data. In our work, waown points are used to tessellate the covered area. Each
select five most common representatives that can integolaell of such a diagram contains one generating sample point
the arbitrarily spaced data. The chosen algorithms coubiat defines the value for the entire cell. Voronoi tesseltat
the entire spectrum of complexity from simpler and moris discontinuous by its nature, but it has useful charasties
straightforward, such as (i) Nearest-neighbor interpmtat that Natural-neighbor interpolation utilizes. Here, eaxtlge
to the schemes with intermediate complexity, including (irepresents a link between two generating sample points. Thi



property is used to select the corresponding neighborshfor forocess. The typical convention here is to use the power of
interpolation [41]. two, which we also employed in this work. Finally, the valde o
The next step in the interpolation process is point insertion determines the number of samples for interpolation and may
The requested point, is inserted into the Voronoi diagram,be up to the total number of points in the data set (typically
and a new polygon generated by the requested pajnis three or more though).
added to the structure. Consequently, part of the area fronirhe selection of input sample points significantly impacts
the neighboring cells is transferred to thus inserted pmiyg the behavior of the interpolated surface. Along these Jines
and some edges covered by the new cell are subsumed. TD/ offers immense variability as it can use.g, a fixed
main goal of the next step is to identify the weights of theearch radius where the requested value is calculated frem t
neighboring samples and combine them with the sample valymsnts at the pre-set maximum distance. Further, the shape
to obtain an estimate of the requested paipt Hence, each of the search window does not have to be a circle. Another
of the neighboring cells contributes a certain fraction tsf ioption is variable radius where the search window is defined
area to the new cell. by the number of neighboring points used for calculation. In
Further, the value of the requested point is computed this work, we follow the latter approach, where the requeste
as the weighted average of the surrounding sample polygovalue z, is derived from the five closest poinis_[44].
This approach is similar to that in Linear interpolation bug IDW is an intuitive, easy to understand, and computatignall
mean is not limited to three vertices of the enclosing triang efficient interpolation method. However, its accuracy éases
The fractional contribution of each polygon can be written if the sample points are not distributed evenly. Also, the

as resulting surface does not provide€ smoothness. Moreover,
A, the selection of input parameters is entirely arbitrary ibut
Ai = —, (6) influences the resulting interpolation surface drastciiB].
A

5) Kriging: This interpolation algorithm belongs to the

where A; is the area of the contributing celland A is the o 2
. . class of geostatistical methods based on statistical reodel
total area of the inserted polygon. The sum of these we|gr%|t,|s

. . . ; at incorporate autocorrelation (in the sense of mathieaiat
is always one. Finally, the interpolated value is calculads . ) ; ;
relationship between the measured points). Hence, gemnstat

N tical techniques have the capability of producing a préafict
Tg = Z Ai - Zi, (7)  surface, and also offer an assessment of the interpolation a
=0 curacy. Kriging accuracy is the highest when there is sihatia
where N is the number of neighbors surrounding the insertezbrrelated distance or directional bias in the input daj.[4
polygon, ); is the weight of each element, séé (6), ands Producing interpolated values is similar to how it is done by
the value of the sample poirit [42]. Natural-neighbor or IDW according tb1(7). However, the pro-
The key advantages of this interpolation method lie in igess of weight derivation differs drastically. Kriging \ghts
relative simplicity, speed, and resilience to biases thioed are based not only on the distance to the sample point but
by how the samples may cluster. One of the drawbacktso on the overall spatial arrangement of the measurement
though is the slope discontinuity; therefore, it cannoteoff points. To achieve this, Kriging followa two-step process as
C! continuity over the entire surface [41], [42]. it (i) creates a covariogram and covariance functions, ds we
4) IDW: The main premise of IDW interpolation is that as (ii) predicts unknown values.
the values of more proximate points are related closer than f The initial step of the Kriging procedure is in designing an
the farther away ones. In other words, the interpolatedegluexperimental semi-variograrh [46], which is given as

are calculated by using a linearly weighted combinatiorhef t ) N(h)

sample point sets. The weight is defined as an inverse functio — 2(x;) — 2(2; + h)]? 9
of distance. The value of the requested paiptis calculated (k) 2N(h) ;[ (2] = 2 " ©
as

where N (h) is the number of pairs that are separated by the
Zn: d;7? 2 distance ofh and z(z;) is the value of the input point. The
i=o : @8) experimental semi-variogram is then fitted to the empirical
semi-variogram. This step is needed because the expedment
semi-variogram is not a continuous function but is rather
represented by a set of points. For our work, we employ
Spherical semi-variogram, which is defined as

Iq:

> di™”
=0

where z; is the value of the sample poini; is the distance
between the requested and the sample points, yaigl the
power parameter [43]. The latter controls the significante o {@ _1(h 3}
the known pointz for the interpolated value based on its V() :{ otz —3(e)] for O<h<a , (10)
distance to the requested poirj.

Hence, the closest points have the most significance for tveerea is the rangec, is the nugget variance, ang + ¢;
resulting value of the requested point. The power value s rie the sill. Selection of semi-variogram impacts predictiuf

defined strictly and does not have connection to the realdwounknown values. Therefore, it is necessary to choose a model

Co +C1 for h>a



that fits sample data the best. The last step of the Krigifg) continue until the required number of points has been
process is prediction of the requested points. In our wonlemoved.
we use Ordinary Kriging but there are other variants of the For all the considered interpolation techniques, we employ
prediction process [47]. For Ordinary Kriging, the systesn ia similar procedure to identify the set of measurement point
produced as that characterize the coverage quality with a certain dievia
_1 Particularly, at each step, we remou® % of points and
A1 Cii - Cin 1 Cio then estimate the coverage-related metidste that the latter
P N : : : (11) approach is deterministic only on th&/ x M grid level.

,\'n Cphi ++ Cpn 1 Cool’ The points in each cluster are removed randomly; therefore,
L 1 ... 1 0 1 the nature of removing points from the individual clustess i
probabilistic.

wherey is the Lagrange parameter a64,, is the covariance
between the locations of sample pointsandx,,. The latter
is computed as

By contrast, the former method is inherently randdtris
worth mentioning that the thinning is also connected with th
addition of an artificial point to each corner of the inteigted

Chn = Cov(zy — 2n) = C(0) — (21 — z), (12) @area. Without this step, an extrapola’;ion procedure ha_ukmto
applied, which we aim to avoid. To this end, the value is set to
where C(0) is the sill of the semi-variogram model and the minimum sensitivity of each LPWAN technology (signal
is the value generated by the semi-variogram model for thesel of around -140 dBm). However, to reduce the impact of
vector joining the pointsr; andx,,. The weights\,, are then the artificial points on the interpolation procedure, weitim
used to predict the value of the requested peiptaccording their use as much as possible. These points are currently
to (7). inserted into the input dataset only when the area bounded

The key strength of Kriging over other deterministic methby the measurement points cannot be fully interpolated, (i.e
ods is in that the information about spatial relationships interpolation returns undefined values). This approach has
readily included into the weight calculation. On the othandi, proven to be reliable when the interpolation is influencely on
Ordinary Kriging is computationally demanding; partialja in the extreme cases of removed points (more than 97 %).

the calculation of sample weights is a time-consuming @ece
V. NUMERICAL RESULTS

D. Thinning Algorithms In this section, we provide the numerical results and evalua

The minimum set of measurement points providing thghe considered coverage assessment strateg@esll that our
quality assessment with a given accuracy theoreticallgddp goal is to assess the accuracy of the proposed algorithm for
on the way how these points are chosen. In our study, we thiifferent densities of measurement points in the envirartme
consider two fundamentally different techniques. where the BS locations remain unknown, thus reflecting the

1) Probabilistic Thinning:Probabilistic thinning is a simple precision vs. time consumption trade-offo this aim, we
approach, which has an important feature that it straightfastart by constructing the reference coverage and the signal
wardly translates into the choice of the measurement poimjsality assessment models described in subseCiion 4.
when planning a measurement campaign. In probabilisttten proceed with selecting the appropriate interpolatiats
thinning, the choice of the points to be removed is madait of those introduced in subsection TV-C.
randomly and independently of each other. Further, we compare the performance of thinning algorithms

2) Deterministic Thinning:An alternative coverage assessspecified in subsectidn IVAD. The presented results shoeld b
ment is provided when the measurement points are spresghted as a comparison of the two models rather than a com-
densely and equally over the entire area. Hence, detemiminiparison of the reference model with the results of the pregos
thinning ensures that for a given number of retained measumeethodology. Then, we report on the coverage assessment
ment locations, these reside as far from each other as pmssiaccuracy with respect to the MAE metric defined in subsection
To determine the structure of the measurement points fr@®A] We continue by summarizing our insights in the form of
a random field, we use the following approach: (i) defina lower bound on the number of measurement points required
M x M grid that specifies squares on the coverage map, deliver accurate coverage assessment. Finally, théosect
(i) estimate the number of points in each resulting squacencludes with an accuracy assessment of the proposedsnodel
and sort them in the descending order, (iii) determine howith the measured results, i.e., the correlation between th
many points need to be removed, e.0,%, (iv) remove reference model (“ground truth” data), the predicted vglue
the measurement points from the square having the highastl the measured data.
number of points, such that the number of points therein ) )
equals the number of points in the cluster having the secorft- COmparison of Interpolation Methods
highest number of points, (v) keep removing points from the Before assessing radio coverage and signal quality with a
two clusters having the highest numbers of points until whdimited number of measurement points as well as compar-
the numbers of points in those equals the number of poiritgy the performance of thinning algorithms, we analyze the
in the cluster having the third-highest number of points] arconsidered interpolation methods with the goal of selectin
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Fig. 6: Comparing interpolation methods with reference etod

the algorithms offeringhe bestperformance. To this end, weperformance out of all the considered interpolation meshod
apply the candidate interpolation methods for the scattere
input data set to estimate the signal values on a regularly 12

spaced grid. The performance of the interpolation methods § 1l S paress MM Linecr M Natura! WM Kriging RIDW
is directly compared against the reference model by using = _
the metrics defined in subsectibn T¥-Ae., inverse CDF and S 10!
integral MAE parametei{1). Lg
Concerning the CDF valuesig. [ offers a visual com- = ?
parison between the considered interpolation methodstand t § 8l |
reference models for all three LPWAN technologies., NB- S
IoT, Sigfox, and LoRaWAN,by relying on the cumulative § 7T H HHI HH[
percentage of the area featuring the RSRP/RSSI level of at 6 ‘ ‘ ‘

leastz dBm as the parameter of interest. As one may observe, NB-IoT Sigfox LoRaWAN
none of the considered interpolation tools provide a peérfec
fit. However, some methods are significantly better than the
other. Notably, the Nearest-neighbor algorithm demotetra Even though the IDW option is the second-worst for NB-
the largest deviation from the reference modat of all the |oT, its results exhibit the lowest deviation in the caseSigf
selected interpolation techniques; it is characterized bjarp fox and LoRaWAN technologies. Contrarily, the Kriging algo
decline in the regions of small and high values of RSRP/RS$ithm performs as the second-worst for Sigfox and LoRaWAN,
On the contrary, in the case of NB-IoT, the IDW algorithnwhereas in the case of NB-IoT, it is the most reliable op-
offers the worst approximation in the area around the meditian. The remaining Linear and Natural interpolation meiho
of the data. It has to also be noted that for NB-loT, thprovide satisfactory results for all three considered LRWA
individual interpolation methods differ from each other sho technologies, with Natural interpolation providing a bliy
significantly. Two primary facts cause this phenomenorstFir smaller deviation. Surprisingly, all the subject alganith
the BS density in the NB-lIoT deployment is considerablglisplay comparable results even though their approaches to
higher than that for the Sigfox and LoRaWAN layouts, thuthe interpolated values derivation differ significantly.
influencing the reference model as well as the CDF curve’sAnother important observation is that the quality of the
steepness. Second, the majority of the measurement poigisultant approximation heavily depends on the BS deploy-
oscillate on a short-range scale around the RSRP valuen@ént density. Analyzing the data presented in Fiy. 7, we
-75dBm. Hence, the remaining values need to be interpolatggte that the highest MAE deviation is observed for the NB-
from a lower number of samples. For Sigfox and LoORaWANoT technology. At the same time, the output for Sigfox
the rest of the algorithms display similar outputs. and LoRaWAN is noticeably better — this behavior confirms
To numerically quantify the performance of the considerdtie visual observation gained from F[d. 6. In the considered
interpolation algorithms, Fid.17 delivers a comparisonhwitcase, NB-10T is associated with the densest deploymentewhi
the reference models by using the integral coverage metBigfox relies upon the smallest number of BSs located within
defined in[(1). Recall that this parameter can be interpratedthe area of interest. We finally note that the averaged demiat
a deviation of the coverage metric (RSRP/RSSI) averaged oes per[(1) for the reference model is around 8.5dB for NB-
the set of selected interpolated points. As one may obserl@l and approximately 7.4dB for Sigfox and LoRaWAN.
the above conclusions are confirmed numerically. Partilyila Hence, one may conclude that the quality of the approximatio
the Nearest-neighbor algorithm is characterized by thesivodegrades as the BS deployment density grows.

Fig. 7: Mean deviation for interpolation methods.
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Fig. 8: Performance comparison of interpolation methods and ihgnalgorithms for NB-IoT.

B. Comparison of Models under Thinning Surprisingly, the median value disparity between the thin-
ning algorithms is lower for Natural-neighbor interpotat;

In our approach, we target dynamic environments Wiljhereas Kriging method shows significant differences, es-
locations having diverse propagation conditions, whenmevpecia"y for the RSRP values between -90 and -75dBm.
the use of a precisely fine-tuned model may deliver inacctthe Kriging variogram range most probably causes this fact,
rate output data. Therefore, the presented results shaldZg it |imits the sampling point impact on the interpolated
considered as a comparison of the two models rather thgflye. Hence, with a more considerable distance between the
a performance comparison of the so-called “ground trutRampling points, the Kriging option tends to produce boande
(reference model) with the results of our proposed methogreas around the sampling points and settle on the average
ology. To do so, we proceed with contrasting the interpoteti yajues in the rest of the plane. In practice, this implieg tha
algorithms for the thinned data set with a certain fractionavmg a regular structure (such as a grid) for arranging an
of points removed according to the algorithms outlined igccurate assessment of the network coverage allows us to
subsectio IV-D. We aim to assess whether the performanggnificantly decrease the resultant variance, espediailipw
of selected interpolation algorithms degrades, and if 8w h nympers of the sampling points. Note that similar trendsewer
rapidly this occurs under different percentages of exaudgpserved for Sigfox and LoRaWAN deployments.
measurement points as the interpolation mechanisms shoulgtyther, we report on the behavior of tHdAE metric

reflect the changes more precisely. defined in[(1), which captures the deviation from the refeeen

To this aim, Fig[8 illustrates the coverage proportion vaith models under probabilistic and deterministic thinning loé t
given RSRP threshold as a function of the thinning algorithmeasurement points for all the considered LPWAN technolo-
in use, the type of the employed interpolation, and the numhgies and interpolation methods as illustrated in Fig. 9 and
of the removed measurement points. Based on visual analysigy. [T0, respectivelyAs in the previous cases, the results
we focus on the NB-loT technology, as it indicates theummarize the output of 30 procedure runs, with the barplot
highest divergence among all the interpolation methods aRdad representing the median value and the error bars dgnoti
reference models. For the sake of clarity, we also selegt ofthe 3" and 99" percentiles. Based on the presented results,
the two best-performing interpolation methods, i.e., Matu we may conclude that for the NB-1oT technology, the Kriging
neighbor and Kriging algorithms. Each subfigure contairs tlalgorithm provides the closest approximation of the refeee
outcomes of 30 subsequent runs combining different thinnimodel under both probabilistic and deterministic thinniRgr-
and interpolation algorithms. The resulting lines repnegbe ther analysis reveals that the median values for both thinni
median value based on all the repetitions while the traesiuc algorithms are almost identical. In several cases, prdibtbi
areas denote the"sand 93" percentiles from left and right, thinning provides even better results, albeit by a narrowgina
respectively. (in the order of tenths of percents).

One of the essential observations based on the presented we concentrate on the prediction variance, deterministi
data is that the difference in the median values between tihénning provides more coherent results. Logically, thfted
thinning algorithms is almost negligible for low numbers oénce increases with higher number of the removed points. On
the removed points, i.e., 10% (30 out of 300) and 30% (Yerage, probabilistic thinning variance is two times kigh
out of 300). However, probabilistic thinning is characted regardless of the interpolation algorithm. Hence, by s&lgc
by increased variance, thus resulting in a wider translucehe deterministic algorithm, one can expect more predietab
area around the median curve. The difference is even meoesults, which can be slightly biased by the selection of the
notable for higher numbers of the removed points, e.g., 708ampling point locations. This finding is most visible for
(210 out of 300). Even though both thinning algorithmghe IDW interpolation with more than 50 % of the removed
display significantly increased variance, the fluctuationthe points. In this case, probabilistic thinning provides aesigr
deterministic algorithm remains two times smaller. result over the deterministic algorithm. Since IDW preslict



T T T T T T T T 13— T T T T T T T 13 — T T T T T T T
[ Nearest Linear ™0 Natural B Kriging Wl IDW [ Nearest Linear ™0 Natural B Kriging Wl IDW [ Nearest Linear ™0 Natural BB Kriging WEIDW
95th Percentile 95th Percentile 95th Percentile
12+ }Medmn 1 12+ {Medinn 1 12+ {Median
5th Percentile Sth Percentile Sth Percentile
~ ~ ~
8 nyp gy g}
~ ~ ~
5 i1 { 5 5
= = =
g 10 3 3
2 2 2
SN { { [ ] E
) S S
;.: i I 5 5
s gl 3 s
3 ) S
N N N
7 H
6 U | | | | | | |
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Removed points [%] Removed points [ %] Removed points [ %]
(@) NB-loT (b) Sigfox (c) LoraWAN

Fig. 9: Reference model comparison with interpolated data underméistic thinning.

T T T T T T T T 15 T T T T T T T T 15 T T T T T T T T
[EWNearest Linear " INatural B Kriging IEIDW [ Nearest || Linear "0 Natural BB Kriging I IDW [ Nearest | |Linear 0 Natural BB Kriging Il IDW
14+ 95th Percentile i 14+ 95th Percentile i 14+ 95th Percentile
} Median { Median { Median
Sth Percentile Sth Percentile 5th Percentile

= 13+ 1 = 13+ 1 = 13+

S S S

E E 12+ E 12+

N N N

5] & 11F S

L X X
= = 3

S S S
< < kS

< < <

§ § g

U o U

= = =

0 10 20 30 40 S0 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Removed points [ %] Removed points [ %] Removed points [ %]
(a) NB-loT (b) Sigfox (c) LoRaWAN

Fig. 10: Reference model comparison with interpolated data undavgtilistic thinning.

the values from the five closest neighboring points, there fgsobabilistic thinning is two times higher.
a higher chance of clustering by nearby points when randomin summary, one can state these shared characteristics
thinning is applied. On the other hand, deterministic tingn among the results depicted in Fig. 9 and Higl 10. Clearly,
tends to spread the sampling points more evenly; thus, thecreasing the number of the measurement points leads to
interpolation must select more distant neighbors with veeaka significantly higher variance in the MAE deviation, thus
mutual coherence. reducing statistical confidence in the obtained resulte Th
Surprisingly, one can observe that IDW interpolation fomean deviation is higher for denser deployments repregente
Sigfox and LoRaWAN technologies under both thinning prdsy the NB-IoT technology. Further, infrastructure densiltyo
cedures leads to smaller differences between the condiderdgluences the performance of thinning algorithms. For spar
models. For up to 40 % of the removed points, IDW providedeployments, the selected thinning method has a marginal
the closest approximation of the reference model for botimpact on the resulting median and variation. The results
LPWAN technologies and the considered thinning methodslso suggest that for sparse deployments, such as the ones in
In the case of Sigfox, for more than 50% of the removefligfox and LoRaWAN networks, the IDW method provides
points, the Natural-neighbor interpolation leads to thatbehe best approximation of the reference model for up to
approximation. For LoRaWAN, the Kriging method offers th&0% of the removed points (1.2 points per MOnN the
best approximation of the reference model for 40 % and moo¢her hand, for dense cells (e.g., NB-1oT), it is the Kriging
points removed. This claim is valid for both deterministicda algorithm that shows the best approximation capabiliti@s f
probabilistic thinning. Another conclusion from the coage all the cases of the removed points and thinning algorithms.
assessment accuracy is that the thinning method seledtiorror the downsides of the methods in question, simple Nearest
not a crucial factor for sparse deployments. With six timaseighbor interpolation provides the worst approximatibthe
sparser deployment of the Sigfox infrastructure as contbaneference model in all situations. Finally, we note that the
to the NB-10T case, the"sand 99" percentile variation under MAE deviation metric does not display any sharp increase
deterministic and probabilistic thinning is almost neiillg. across the entire range of the removed points from 10% (1.8
On the other hand, for the NB-loT option, the deviation fopoints per km) to 70% (0.6 points per kf).
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C. Lower Bound on Number of Measurements deviation, even for 98% of the removed points. For the

Si th . . s did not ident t_Neares:t—neighbor case, this means that the Voronoi diagram
ince the previous experiments did not identify any parti vith a constant value in each polygon provides a better

ular point where the MAE deviation from the reference mOd%pproximation of the reference model than for the Linear

starts to vary significantly, we aimed to relaunch the praced inter ; - .
: . ! polation or the weighted average (Natural-neighbbr)
runs with 95 9% (0.1 points per Kijup to 99 % (0.02 points per the case of Kriging, the interpolation is solely influenced b

2 . . .
km?) of the removed points with the goal of producing a Iowe[rhe variogram range. If the points are separated by a distanc

't:)pur[%lon Ejh(la:.nlg]\;%r_ Ofl reqtlkJ‘lre.dtmealsure:n'emithls t?[nd.,. larger than the variogram range, the Kriging method slowly
'9. and F1g ISpiay the integral metrnc charactigzl go g to the median value of the samples.

the absolute deviation for all the considered interporatod A similar conclusion can be drawn for the LoRaWAN

thinning options. o technology. In that case, the Linear and Natural-neighbor
For the NB-IoT technology, we can see similar charaGsterpolations demonstrate the highest mean deviatiom fro

teristics of the thinning algorithms as in the case of Eig. §i¢ reference model out of all the methods. Also, the Nearest
and Fig.[10. Deterministic thinning provides more consiste,qiqhhor algorithm provides surprisingly consistent HesAs

results_than the probabilistic algo.rithm. Conversely,hwtihe in the previous cases, Sigfox features the most even resutits
excessive number of removed points, the IDW method un all the considered technologies. This further confirmet th

deterministic thinning offers a better approximation of; t,hthe deployment density significantly impacts the predictio
reference model than the random case. For determmls‘,yg

o . curacy. Finally, deeper analysis of the results shows tha
thinning, the IDW algorithm further represents the secoestb o mean deviation peaks drastically for 98 % or 99 % of the
approximation, after the Kriging option. However, Lineaida

) . . L 2 removed points. However, that increase is due to the adlfifici
Natural-neighbor interpolations indicate more than twoets

! o sample points, which then begin to severely influence the
higher mean deviation from the reference model as Compariﬁ%rpolation accuracy.

to the initial value (0% of the removed points). i )

Based on the above, the most promising findings ale Accuracy Comparison with Measurement Data
connected with the Nearest-neighbor and Kriging algorithm At the last stage of our numerical evaluation, we com-
These methods display only a marginal increase in the mgaare the accuracy of the values predicted by both the refer-
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Fig. 14: Coverage accuracy assessment for interpolated data vatrapilistic thinning.

ence model and the interpolation methods against the actBatther, the only exception is the Sigfox technology, where

measurement results. This approach allows us to providghe IDW performs satisfactorily, especially for deterrstig

convenient way of comparing the ground truth data with th&inning.

predicted values. In summary, with each step of the thinningConversely, the most versatile interpolation method is the

procedure, the levels of the retracted points are comparn€dging algorithm, as it provides more accurate results in-

to the values predicted by the interpolation algorithms antépendently of the selected technology, thinning proasdur

the reference model. This comparison uses the MAE metie the number of retracted measurement points. Our results

defined in [(1). Notably, only a comparison with the removefilirther indicate that the influence of the thinning methods

points is considered since the interpolation methods tendi¢ negligible. In contrast to the previous comparison with

retain the values of the generating points even for the predi the reference model, the MAE is nearly identical for both

values. Hence, this would represent an unfair advantage faterministic and probabilistic thinning. Even the dispen

the interpolation methods if all the measurement pointsewenf the results is comparable for both approaches. The only

considered. exception from this rule is the LoRaWAN technology under
A comparison of MAE for both thinning procedures, whictfieterministic thinning. In that case, MAE linearly increas

is depicted in Fig[ll3 and Fig. 114, confirms our earlier ayith the number of retracted points. Notably, the MAE value

sumption that the deployment density influences the priedict is nearly constant for the remaining occasions from 10 % (1.8

accuracy. The NB-loT technology with the highest BS densi§oints per ki) to 70% (0.6 points per k@) of the removed

out of all the considered options features the increased MARINts.

values by 2-3 dB on average. These findings are valid for

both deterministic and probabilistic thinning. Howevengt E- Lower Bound on Number of Measurements Points

most surprising outcome is related to the performance of theThe previous experiments did not reveal any particular

reference model. In most cases, the interpolation methqgasint wherein MAE starts to deviate dramatically. Therefor

display notably better results than the fine-tuned propaigat we here consider the extreme cases of retracting from 95%

model. The two interpolation options that predict valuessle (0.1 points per krf) up to 99% (0.02 points per ki of

accurately are the simplest Nearest-neighbor and the IDpvints. To this end, our main goal is to discover a lower
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bound on the required number of the measurement points, VI. CONCLUSIONS
which ensures accurate predictions. The results for tiegiat
metric characterizing the absolute deviation for deteistim
and probabilistic thinning methods are depicted in Figl 1§
and Fig.[I6, respectively. These results reveal tremend
differences in the prediction accuracy for different LPW
technologies.

In this work, we approached the problem of coverage as-
ssment in LPWAN deployments without explicit knowledge
the BS locations. This challenge may be typical for the
tential customers who are willing to conduct an access
etwork audit without direct involvement of the network
provider. Also, as another example, the operators themselv
The outcomes for high-density NB-loT deployments shosan be willing to audit the performance of their network to
almost two times higher MAE values in comparison to bothipdate the layout or configuration. In our study, we prinyaril
Sigfox and LoRaWAN cases. Notably, this holds for both de&soncentrated on the three most popular LPWAN technologies
terministic and probabilistic thinning. It is also evidehat the for which the target consideration is particularly essanti
Kriging method still holds the first place as the most acaurabut the proposed methodology can also be applied to other
interpolation option even if compared to the reference rhodwvireless systems.
Surprisingly, for NB-loT and LoRaWAN, the Linear and We systematically applied various interpolation algorith
Natural-neighbor interpolations display a noticeablyr@ased to construct the key coverage assessment indicators withou
prediction inaccuracy. For the extreme numbers of the remhovthe knowledgeof BS locations.As an alternative approach,
points (98 % and 99 %), the presence of artificial “cornethe acquired measurement data can be used to infer the BS lo-
points most probably causes this growth. However, for tleations. This can be done by employing the conventional clus
lower numbers of the retracted points, the nature of thetization mechanisms, e.g., K-means, certain multieien
algorithms is responsible for that effect. In other words t approaches, or more advanced algorithms based on machine
Linear and Natural-neighbor cases cannot adequately reaptiearning. Additionally, we compared these results against the
the geographical relations between far-away points. On treference model produced Iogilizing the experimental results
contrary, the Kriging method, which is specifically designewith full BS location knowledgesee SectiofiV for in-depth
for this type of correlation, demonstrates its superiority discussion



Using the developed models, we demonstrated that thetter than the reference model. Particularly, the Kriging
Kriging interpolation algorithm outperforms its countarfs algorithm represents the most versatile option among all th
for NB-loT deployments with significantly higher BS densityinterpolation methods, see Section V-D and Sedfiord V-Ehén t
However, for sparser LoRaWAN and Sigfox infrastructuregase of NB-loT, the results indicate the highest MAE across
the performance of simpler interpolation methods, inaigdi all the selected LPWAN technologies, almost two times highe
Linear and Natural-neighbor schemes, is comparable with thior more than 96 % of the retracted points. These result§yveri
of the Kriging algorithm. The IDW technique ®gnificantly our assumptions related to the fact that the deploymenttgens
more sensitive to the number of measurement points and dagkiences the interpolation performance.
not produce accurate approximations in all of the cases. TheMore generally, the telecommunication operators occasion
accuracy of a signal quality assessment heavily dependseondily resort to optimistic coverage maps, which tend to prese
coverage range of the considered radio technology, iereh a better situatiorthan what it actually is in the real-world
quired density of the BS locationBor the considered LPWAN conditions. Therefore, the end-customers often opt for their
technologies, we can conclude the averaged deviation &r twn field measurements to understand the current network
reference model ranges around 8.5dB in the case of NB-Ip&rformance. This approach becomes especially relevaht wi
and oscillates around 7.4 dB for Sigfox and LoRaWAN.  the development of automated measurement methodologies

Notably, the higher is the density, the more significant i&.g., drone-based) and crowd-sourcing concepts (which ca
the deviation of the interpolation methods from the refeeenalso be applied to machinesi. these cases, there are essential
model. Further, we concluded that random selection of thgenefits from the knowledge of the number of points required
measurement points is as good as deterministic grid measdeg an accurate signal and coverage assessment, which is
ments. In practice, this implies that the choice of locatiordelivered by the present research.
wherein measurements are to be made is not critical as long
as they essentially cover the entire area of interest. lmpor ACKNOWLEDGMENT
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