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Abstract—An assessment of radio network coverage, usually
in the form of a measurement campaign,is essential formulti-
base-station (multi-BS) network deployment and maintenance.
It can be conducted by a network operator or its served
consumers. However, the number of measurement points and
their locations may not be known in advance for an efficient
and accurate evaluation. The main goal of this study is to
propose a new methodology for understanding the selection of
measurement points during coverage and signal quality assess-
ment. It is particularly tailored to multi-BS low-power wide-
area network (LPWAN) deployments without explicit knowledge
of BS locations. To this aim, we first conduct a large-scale
measurement campaign for three popular LPWAN technologies,
namely, NB-IoT, Sigfox, and LoRaWAN. Utilizing this baseline
data, we develop a procedure for identifying the minimum set
of measurement points for the coverage assessment with a given
accuracy as well as study which interpolation algorithms produce
the lowest approximation error. Our results demonstrate that a
random choice of measurement points is on par with their deter-
ministic selection. Out of the candidate interpolation algorithms,
Kriging method offers attractive performance in terms of the
absolute error for NB-IoT deployments. By contrast, for Sigfox
and LoRaWAN infrastructures, less complex techniques, such
as Natural-neighbor, Linear interpolation, or Inverse-Distance
Weighting, can achieve comparable (and occasionally even better)
accuracy levels.

I. I NTRODUCTION

A. Background and Rationale

The recent progress in miniaturization and automation has
created a large application domain known as the Internet
of Things (IoT) that has to be supported by a specific
connectivity feature, named massive machine-type commu-
nication (mMTC). In response to these needs, a variety of
low-power wide-area network (LPWAN) technologies, includ-
ing LoRaWAN, Sigfox, and the third generation partnership
project (3GPP)-ratified Narrowband IoT (NB-IoT), have been
proposed. From the perspective of licensing, Sigfox represents
a proprietary solution, while NB-IoT and LoRaWAN are open
standards supported by the 3GPPinitiative and LoRaWAN
Alliance, respectively [1]–[3]. These systems are characterized
by multi-kilometer communication rangesachieved over a
relatively sparse deployment of base stations (BS)s. As the

range of applications includes smart home scenarios as well
as industry-driven services for remote metering and sensing,
radio connectivity has to be enabled in outdoor as well as deep
indoor environments [4], [5].

Nonetheless, before deploying LPWAN communication
technologies (which should be valid for any wireless system),
radio network planning is employed to produce an initial
estimate on coverage and signal quality.However, this is a
complex process affected by various factors and constraints
including non-technological aspects, such as types of urban
layout, legal issues, and selection of locations where the BS
can be deployed. In practice, a decision on the BS placement
is made based on the propagation modeling that uses three-
dimensional city maps.Such a processmay involve multiple
iterations, where radio measurements are used to adjust the
locations of the installation points. Even after the deployment,
network operators conduct regular inspections to understand
whether changes in the propagation environment have affected
the coverage characteristics and the performance of their
networks [6]–[8].

Our previous works [9], [10] also confirm the presence
of dynamic fluctuations over extended periods of time. Two
measurement campaigns conducted during several months-
long intervals revealed that the fluctuations can be as high
as 40 dB in terms of the signal strength even for static deploy-
ments. These changes are not entirely random, but they are
represented by a slow variation of samples oscillating around
the mean value. On the other hand, micro-scale variations in
the signal strength such as fast fading are smoothed using the
“averaged” propagation models.

As a result, to maintain a relevant coverage map, the said
process has to be applied periodically. The rationale is that
LPWAN network operators may perform upgrades of their
infrastructuresor reconfigurations of the network parameters
while the environmental conditions may also change with
time due to, e.g.,new constructionin the considered areaor
seasonal changes. We also note that the duration of time when
the propagation environment remains relatively unchanged
depends on many factors and is, in general, site-specific; thus,



beyond the scope of this work. Also, the coverage map update
period is a valid research consideration on its own, which we
leave for further studies.

On top of that,conducting a measurement campaign on
the city scale is a time-consuming process.Preferably, the
operators are willing to assess the network coverage and
signal quality in all the available locations. One of the crucial
issues in evaluating the network coverage is that the number
of measurement points required for an accurate coverage
and signal quality reconstruction is not straightforward to
determine. In practice, it is affected by the city deployment
features, selected technology, carrier frequency, etc. This prob-
lem becomes even more complex when the exact locations of
the BSs are not known in advance. The latter might be the case
for third-party companies aiming to purchase a service from
the LPWAN operators and performing their own coverage and
signal quality assessments.

The recently proposed fully-automated coverage assessment
techniques, such as those utilizing unmanned aerial vehicles
(UAVs) [11]–[15], may be constrained either due to the weight
of the measurement equipment or with respect to allowable
altitudes above the ground, and may thus produce inaccurate
or limited results at the evaluated points.On top of this, in
some regions, the use of UAVs for such measurements may
be prohibited or hampered by the legal regulations.

B. Key Contributions

In this paper, we propose a new methodology for assessing
the coverage and the signal quality ofmulti-BS LPWAN
technologies. Specifically, based on the results of our extensive
measurement campaign, we address the problem of signal
quality estimationat the feasible points within a certain area
of interest.We then quantify how the number of measure-
ment locations affects the accuracy of estimation and how
well different interpolation and thinning algorithms perform.
Notably, in our study, we consider all three popular LPWAN
technologies dominating the market today, namely, NB-IoT,
Sigfox, and LoRaWAN. This allows us to understand how the
technology features affect the coverage and the signal quality
assessment procedure in city-wide LPWAN layouts.

In the first phase of this study,our joint effort with Voda-
fone Czech Republic1 delivers (i) an extensive measurement
campaign for three leading LPWAN technologies publicly
available today(wherein the research activities with Vodafone
allowed us to adjust the network configuration as well as
obtain detailed information while performing the measurement
campaign), across the city of Brno located in the Czech
Republic [16]–[19].Using these measurements and utilizing
the knowledge of the BS locations for all the technologies
in question, (ii) we construct the baseline coverage mapand
derive a reference model used further on to characterize the
prediction accuracy of the propagation models as an alternative
to the interpolation methods.

1Research cooperation between Vodafone Czech Republic and the Depart-
ment of Telecommunications at Brno University of Technology has started in
2017, see: Deployment of the NB-IoT technology in Czech Republic.

In the second phase of our work, we consider exclusively
the results of our practical measurements and proceed by
gradually reducing the number of points taken into account
randomly or deterministically, while at the same time applying
appropriate interpolation techniques to (iii) create reduced
coverage maps. Considering the proportion of the area covered
with at least a certain signal level (x dBm) and employing the
weighted average metric, (iv) we compare the performance
of the reference model against the coverage maps produced
by the interpolation algorithms. Finally, (v) we assess the
performance of the reference model and the interpolation
methods under thinning against the measurement results.

With the proposed methodology, one may identify the
number of measurement points required to produce a coverage
assessment with the desired accuracy for a city environment
similar to the one of Brno, and can also deduce useful insights
for other environments. In a nutshell, the main contributions
of our study are:

• we propose a methodologyfor identifying the number
of measurement points and their locations to conduct a
coverage assessment of LPWAN technologies at city scale
with a given approximation error;

• we show that out of a large set of the considered
interpolation techniques, Kriging provides the best per-
formance for the NB-IoT deployments, whileNatural-
neighbor interpolation can become a viable alternative
for the LoRaWAN and Sigfox deployments;

• we establish that the number of measurement points
required to achieve a certain coverage and signal quality
assessment error increases with the density of the BSs
and also depends on the communication range of the
considered radio technology;

• we demonstrate that a random choice of measurement
points produces a similar approximation accuracy as their
deterministic selection.

The rest of this paper is organized as follows. In Section II,
we overview the related work. Further, in Section III, the
measurement campaign and the obtained results are described.
Our proposed methodology for identifying the minimum sets
of measurement points for an accurate characterization of the
radio coverage is introduced in Section IV. The key numerical
findings are summarized and discussed in Section V. Finally,
the conclusions are drawn inSection VI.

II. RELATED WORK

Accurate network coverage assessment is one of the most
challenging operations that precede a deployment of the
end devices (ED)s, whichrely on wireless communications
technology [20]. Field measurements provide a method of
coverage characterization, but conducting these is a costly and
time-consuming process. Therefore, by limiting the required
number of measurement points needed to obtain accurate
coverage and signal quality results, major technology adopters
can save a significant amount of resources in terms of time
and money.

https://www.vodafone.cz/en/about-vodafone/press-releases/message-detail/vodafone-letos-rozsviti-celonarodni-sit-pro-nb-iot/


Today, the assessment of radio coverage is even more
important as many industrial companies were waiting for the
3GPP cellular IoT (CIoT) technologies to hit the market.
Therefore, the key players are now preparing their first large-
scale LPWAN trials and challenge the operators to delivera re-
liable network infrastructure capable of managing the massive
numbers of connected devices. To the best of our knowledge,
the research question of assessing large-scale deployments
of multi-BS LPWAN technologies without the knowledge of
BS locations has not been sufficiently investigated in the
literature as of yet. In the following subsections, (i) we first
summarize past studies related to coverage assessment; (ii) we
then overview the state-of-the-art interpolation methodsused
for coverage estimation; and (iii) we finally summarize the
standard coverage assessment metrics.

A. Coverage and Signal Quality Assessment

Coverage and signal quality assessment of LPWAN tech-
nologies with explicit knowledge of BS locations was ad-
dressed in several research works. Most of these studies,
however, are limited to a single channel quality indicator,
i.e., reference signal received power (RSRP), received signal
strength indicator (RSSI), or signal-to-interference plus noise
ratio (SINR), thus making a comparison between different
works cumbersome. Below, we report on the recent measure-
ment setups over city-scale deployments.

In [21], the authors carried out an extensive measurement
campaign, wherein coverage assessment data acquired for
LoRaWAN and Sigfox served as an input set for the proposed
localization framework. The study was conducted in the city
of Antwerp, Belgium. With 84 BSs distributed over the area
of 52.97 km2, Sigfox slightly exceeds LoRaWAN in terms
of the number of gateways (GW)s. For Sigfox, the authors
also conducted a coverage assessment in rural environment
between the cities of Antwerp and Ghent. This measurement
campaign covered the total area of 1068 km2 featuring 137
BSs. Unfortunately, there is no publicly available NB-IoT
measurement trial focusing on coverage and signal quality
assessmentat such a large scale.

In [22], researchers characterized the distribution of long-
term evolution (LTE) BSs in the city of Xian, China based
on real-world measurements. The results of the conducted
measurement campaign can offer first-order insights into the
density of NB-IoT BSs. In this urban scenario, 13 BSs
cover the area of 3 km2. The density of LTE BSs in [22] is
comparable with the measurement results of our work.

Someother research worksemployed computer simulations
to estimate coverage in LPWAN systems. In [23], the authors
used existing Telenor’s cellular deployment structure to model
the coverage performance of NB-IoT, LoRaWAN, and Sigfox.
The structure of the network suggested that the density of
urban cells is five times higher as compared to rural areas.
Further, simulation results confirmed that the outages overNB-
IoT and Sigfox do not exceed 1 %, followed by LoRaWAN
with a 2 % chance of message loss.

It is essential to highlight the fact that all the aforementioned
studies presume full knowledge of the BS locations. Hence,
these results can be used by the operators to assess and
improve their deployments. However, this approach is not
suitable for third parties, which cannot directly access the BS
location data.

B. Interpolation Methods

One of the crucial steps in assessing large-scale deployments
is the use of prediction mechanisms to interpolate the signal
quality at those points where no measurement data is readily
available. Several studies followed this approach. Particularly,
in [24], the authors utilized IDW interpolation to predict LTE
signal quality at locations with no measurement data.However,
the authors of that publication did not propose any assessment
metric. Hence, the accuracy of the results cannot be verified,
and the predicted value is considered as “ground truth”.

The coverage assessment in [25] employed fixed rank Krig-
ing (FRK) to predict the signal level in the region covered bya
single macro-cell.The results indicated reasonable accuracy of
that approach with the root-mean-square error (RMSE) rang-
ing between 3 and 5 dB.Further, the study in [22] proposed a
new method of coverage map construction based on multi-
criteria triangulation-induced interpolation (MTI).However,
that work focused only on the covered area prediction without
closer specification of the expected signal levels.

Finally, in [26], the authors utilized Linear, Nearest-
neighbor, and IDW interpolation schemes together with Min-
imum, Mean, Gradient, IDW, and Nearest-neighbor extrapo-
lation algorithms to construct their received signal strength
(RSS)-based localization framework.Among all of the con-
sidered interpolation methods, Linear and IDW indicated the
lowest mean error ranging from 4.3 to 8 dB. However, it
should be noted that all the above research works concentrated
on the signal coverage prediction incorporating a single BS.
Therefore, those results are not directly comparable to the
results of our study, since interpolating a multi-BS coverage
map is a challenging and complex task.

C. Coverage Assessment Metrics

When conducting a coverage assessment of radio network
deployments, one needs to define a coverage metric. Generally,
coverage quality indicators can be separated into two main
groups, namely, averaged and cumulative parameters. As an
example in the first group, the authors in [22] utilized the
ratio between misclassified regions and the total area as their
performance indicator.Even though this parameter allows for
simple comparison of the results via a single variable, it does
not provide any measure for comparing the predicted signal
level accuracy. Instead, it rather focuses on the borderline
values denoting the covered area.

In [26], the target metric was defined as cumulative prob-
ability of the RSS error.On top of that, the mean error
as a function of the removed fingerprints was used for an
initial verification of the predicted values. This metric is
similar to that utilized in our work but it does not consider



positive and negative deviations by using modulus.Finally,
in [25], the authors defined their parameter of interest as
cumulative density function (CDF) of empirical errors between
the modeled and the predicted values.Such a metric offers
useful information about the distribution of error. However, it
does not allow for simple comparison of deviations as a single
variable.

In our work, we combine the two approaches employed
in research works [25] and [26]. However, in contrast to
the metric given by [25], we utilize the part of the area
covered with a signal level of at leastx dBm. Aside from
the predicted values, it also includes the results given by the
reference model. To provide an assessment metric permitting
for a single-number comparison of the coverage accuracy, we
further incorporate the parameter inspired by [26]. In contrast
to the formula in [26], our performance indicator includes a
modulus operation to account for positive as well as negative
deviations.

III. O UR MEASUREMENTCAMPAIGN

To obtain the essential input data, we carried out a wide-
scale measurement campaign in the city of Brno, the second-
largest city of the Czech Republic. The measurement results
were collected during the eight-month period between Febru-
ary and September 2019. Thesubjectcampaign covered over
300 unique measurement locations next to the stop stations of
public transport lines (i.e., buses, trams, and trolleybuses)2.
The locations of the measurement points were selected to
reflect one of the potential use cases of LPWANtechnologies,
which is localization services in Smart City applications [27].

In what follows, we offer a brief description of the selected
LPWAN technologies, the measurement equipment, and the
operatingenvironment.

A. LPWAN Technologies

For our measurement campaign, we selected the three major
LPWAN technologies (Sigfox, LoRaWAN, and NB-IoT) that
are publicly available to the end-customers in the Czech
Republic. The first two representatives, Sigfox and LoRaWAN,
belong to a large group of solutions operating in the license-
exempt industrial, scientific, and medical (ISM) band, see
Tab. I. Conversely, NB-IoT is one of the CIoT technologies op-
erating in the licensed LTE band.The government regulates the
utilization of both frequency ranges (in the Czech Republic,
Czech Telecommunication Office is the regulator). However,
the ISM conditions are much more stringent as compared with
the licensed case.

1) Sigfox: This ultra-narrowband technologyis considered
to be the first publicly available LPWAN solution with com-
mercial roll-outs in 2012. The network infrastructure consists
of end devices(EDs), gateways(GWs), and the cloud core.
The data is transferred wirelessly to the GW and then conveyed
to the cloud system via the Internet connection. The transmis-
sion of data is always initiated by the ED and can commence

2The map of the measurement points in question is accessible online via
Google Maps.

TABLE I: Key parameters of LPWAN technologies.

LoRaWAN Sigfox NB-IoT
Coverage (MCL) 157 dB 162 dB 164 dB

Technology
PHY – Proprietary

MAC – Open
Proprietary Open LTE

Spectrum Unlicensed Unlicensed Licensed

Duty cycle limitation Yes Yes No

Max. EIRP
16 dBm
(40 mW)

16 dBm
(40 mW)

23 dBm
(200 mW)

Modulation
Lora (CSS),

FSK
D-BPSK (UL),

GFSK (DL)
π/2-BPSK,π/4-QPSK,
QPSK (DL + multi-tone)

Data rate in DL
0.25-11 kbps (LoRa)

50 kbps (FSK)
0.6 kbps 0.5-27.2 kbps1

Data rate in UL
0.25-11 kbps (LoRa)

50 kbps (FSK)
0.1 kbps 0.3-62.5 kbps1, 2

Max. UL payload 242 B 12 B 1600 B1

Max. DL payload 242 B 8 B 1600 B1

TX current 45 mA 55 mA 220 mA

Sleep current <2 uA <2 uA <3 uA

Battery life 10+ years 10+ years 10+ years

Module cost 6 $ 2 $ 8 $

Security
Medium
AES-128

Low3

AES-128
Very high

3GPP (128-256 bit)

1 The value is release-dependent (Rel. 13).
2 Valid for multi-tone transmission.
3 By default, encryption is not active.

at any time. However, the devices cannot violate the limitation
on the radio channel utilization imposed by the respective
authorities. With that in mind, the uplink transmission is
constrained to 140 messages per day, with the maximum size
of 12 bytes. Limitations in the downlink channel are even more
strict with only 4 messages per day having the payload of 8
bytes.

The uplink transmission is modulated with differential bi-
nary phase-shift keying (D-BPSK) having the rate of 100 bps
(this value is valid for radio configuration (RC) 1 in EU, and
may differ in other regions). The carrier frequency is selected
randomly, typically within the 200 kHz band. Center frequency
in RC 1 is set to 868.13 MHz with the maximumeffective
isotropic radiated power (EIRP) of 16dBm. The reliability of
data transfer is ensured by two mechanisms: (i) repetition and
(ii) spatial diversity.Message transmission is repeated three
times, each one employing random carrier frequency selection.
Further, ED is not attached to a particular BS, but its data
is instead received and forwarded by any of the reachable
GWs [1].

2) LoRaWAN: The second well-known representative of
the LPWAN family operating in the ISM band is LoRaWAN.
Its standard network structure is similar to that of Sigfox by
comprising EDs, at least one GW, and a network server (NS).
In addition, the system may feature a specialized network
join (NJ) server to handle roaming between networks. In
most cases, a transmission is initiated by the ED using an
Aloha-like channel access mechanism [28]. It allows the ED
to initiate communication at any time by not violating the
operational restrictions on the selected radio channel. Within
the EU region, the ED selects one of up to sixteen available
channels in the frequency range from 863 to 870 MHz with the
bandwidth of 125 or 250 kHz. The first three channels (868.1,
868.3, and 868.5 MHz) must be supported by every ED and
cannot be changed.

https://drive.google.com/open?id=1_m9OAu4IKJqdzjAyo0AD1bnRBPrbbJrZ&usp=sharing


The ISM frequency band of 868 MHz imposes the limitation
of 1 % duty cycle with the maximumEIRP of 16dBm. At
the physical layer, the data is transferred with a proprietary
long-range (LoRa)modulation based on the spread spectrum
technique named chirp spread spectrum (CSS). This mech-
anism permits LoRaWAN to operate below the noise floor.
The LoRa modulation rate can be adjusted by the spreading
factor (SF) parameter,which can vary from 7 to 12.The
SF value controls the modulation robustness, thus directly
affecting radio coverage. The achievable bitrate in the 125kHz
channel therefore varies from 250 (SF 12) to 5470 (SF 7) bps,
which results in the maximum payload size of 51 (SF 12) up
to 242 (SF 7) bytes. Due to power efficiency considerations,
the staticEDs are commonly configured to use the lowest SF
that allows for reliable communication [2].

3) NB-IoT: Unlike the two LPWAN options described
above, NB-IoT relates to the cellular technology operatingin
the licensed bands. It was introduced in 2016 as part of the
3GPP Rel. 13 with the first commercial roll-outs in the fol-
lowing year [29]. The system is composed of user equipment
(UE), evolved Node B (eNodeB), evolved packet core (EPC),
and application servers. As the terminology suggests, NB-IoT
reuses a significant fraction of the existing LTE infrastructure.
In most cases, the LTE system can be upgraded to support
the latest specifications via a software update [29], [30]. As
compared to LTE, the bandwidth of the NB-IoT system is
reduced to 180 kHz; thus, it can be deployed within a single
physical resource block (PRB). On top of that, NB-IoT can
operate in a stand-alone mode (single global system for mobile
communications (GSM) carrier) or in a guard band of the LTE
system [30].

In contrast to LoRaWAN and Sigfox, NB-IoT uplink opera-
tion is not based on pure Aloha but utilizes its slotted version
for channel access and then resorts to using the time-frequency
resources allocated by an evolved NodeB(eNodeB) [28].
Since NB-IoT uses licensed frequency bands (predominantly,
sub-GHz spectrum), there are no duty-cycle restrictions. The
maximum uplink payload at the physical layer is 1000 bits
(up to 2536 bits in Rel. 14) due to limitations on the trans-
port block size (TBS). Further, the packet data convergence
protocol (PDCP) layer permits the protocol data units (PDUs)
with the size of up to 1600 bytes. The transmit power of the
UE can be as high as 23 dBm (there is additional support for
20 dBm and 14 dBm power classes). In the case of a single
tone uplink transmission, NB-IoT supports 15 and 3.75 kHz
subcarrier spacing with the single carrier-frequency division
multiple access (SC-FDMA).

The uplink data is modulated by utilizing binary-phase shift
keying (π/2-BPSK) or quadrature phase-shift keying (π/4-
QPSK) with the continuous phase to reduce peak-to-average
power ratio (PAPR). However, the highest bitrate can only
be achieved with multi-tone transmissions utilizing QPSK
modulation. If all the twelve tones are used, the theoretical
throughput can be as high as 62.5 kbps (up to 159 kbps in Rel.
14). In the downlink, NB-IoT supports only 15 kHz subcarrier
spacing with orthogonal frequency division multiple access

(OFDMA). Further, the modulation scheme is limited to QPSK
with the maximum TBS of 680 bits (up to 2536 bits in Rel. 14),
which results in the maximum data rate of 27.2 kbps (up to
127 kbps in Rel. 14) [30], [3]. The extended coverage (+20 dB
w.r.t. LTE) is achieved primarily via repetitions. The random
access channel procedure and all uplink transmissions may
benefit from up to 128 repetitions [30].

B. Measurement Equipment and Setup

During our Sigfox and LoRaWAN measurements, we uti-
lized field testers by the company Adenuis. Specifically, we
used ARF8121AA for Sigfox and ARF8123AA for LoRWAN.
Both devices are equipped with integrated 0 dBi omnidirec-
tional antenna and offer the theoretical communication range
of 15 km. The effective radiated power (ERP) in both cases
was set to 14 dBm (25 mW). When configured with SF 12 and
the coding rate of 4/5, this allows to achieve the sensitivity of
-137 dBm for the LoRaWAN technology. The utilized coding
rate does not offer the longest communication range, but it was
selected due to the requirement imposed by the LoRaWAN
regional specifications [31].For Sigfox, the standard BS SBS-
T3 provides the sensitivity of up to -146 dBm [32].

In the case of NB-IoT measurements, we employed our own
testing device developed at Brno University of Technology
(BUT). The measurement unit is equipped with SARA N210
NB-IoT module by the company uBlox. The selected module
implements the NB-IoT specifications according to Rel. 13
with the maximum transmit power of 23 dBm (200 mW), thus
providing the sensitivity of up to -135 dBm.The said module
incorporates only one frequency band, i.e., B20 (800 MHz, up-
link (832 - 862 MHz), downlink (791 - 821 MHz)), which is uti-
lized by the Vodafone’s NB-IoT network in the Czech Repub-
lic as the main frequency band [33].On top of that, radio wave
propagation is facilitated by the omnidirectional half-wave
antenna with 2 dBi gain. Specifically, it is a pentaband antenna
by RF Solutions that is designated as ANT-PCB8121-FL [34].

Fig. 1: Network architecture of selected LPWAN standards.

For all the measurement points, the test devices were
deployed at a selected location and positioned approximately
one meter above the ground level away from buildings and
other obstacles. Then, thetesting unitswere powered up to
make them transmit ten messages with the period of 30 s. To



avoid interference between the LPWAN technologies, the mea-
surement equipment was utilized sequentially. The illustrative
path of a datagram for each technology is depicted in Fig. 1.
The message size was set to 12 bytes for all the considered
radio technologies, to remain in-line with the limitationsof
the Sigfox operation, see Section III-A1. The time frames and
the locations of each measurement point were recorded for
further statistical analysis. The preliminary positions of the
measurement points were acquired from the map and verified
by Adenuis testers having a built-in global navigation satellite
system (GNSS) receiver.

Once the field measurements were completed, all of the
available data were collected from the appropriate web man-
agement interfaces. At the time of conducting the measure-
ments and processing the data, only the locations of the
LoRaWAN GWs were available publicly and accessible via
the management interface. To acquire the locations of Sigfox
and NB-IoT BSs, we had to contact the network operators
Simplecell (Sigfox) and Vodafone Czech Republic (NB-IoT).
In accordance with the effective agreements,the precise lo-
cations of the BSs are known to the authors and have been
employed in our analysis, but they cannot be revealed publicly.

C. Data Pre-processing

Since the NB-IoT module is always connected to a single
BS, the respective data processing was a straightforward
procedure. All the signal quality indicators received froma
certain test location were averaged to obtain a single RSRP
value, which served as an input to the subsequent interpolation
methods. In the cases of Sigfox and LoRaWAN, the situation
was different. The devicesoperating underthese two technolo-
gies are not connected to a specific GW, and their messages
are receivedby eachavailable BS within the communication
range.

In the extreme case, we observed a single packet being
received by 15 LoRaWAN GWs.To acquire a single value,
we selected the GW with the best average RSSI and used this
result for the following interpolation methods.The points in
outage were excluded from the consideration.In the last step,
we used the haversine formula to obtain the distances between
each measurement point and the corresponding BS/GW.

D. Measurement Environment and Network Configurations

Our measurement campaigns were executed around the city
of Brno at 303 unique locations spanning over 12 km north to
south and 24 km east to west. The results of these coverage
measurements for each of the three LPWAN technologies are
depicted in Fig. 2. As an indicator of the coverage quality
at a certain location, we utilized the RSSI values for Sigfox
and LoRaWAN.Conversely, for NB-IoT, RSRP served as the
primary signal quality indicator. It provides a more accurate
assessment of radio channel conditions by measuring only the
R0 (also R1, if available) reference signal, thus excluding
the interference from other antenna sectors and unrelated
channels [30]. Furthermore, RSRP is not technically available
for LoRaWAN and Sigfox as these much simpler technologies

do not utilize multi-sector antennas and reserved reference
signal channels. For these reasons, the signal strength metric
is limited only to RSSI, which derives the received power over
the entire bandwidth.

Summarizing the processed data, all three technologies of-
fered relatively reliable service, with only a few measurement
points being in outage. The most robust connectivity was
provided by the NB-IoT network – with only three unserved
points – followed by Sigfox and LoRaWAN with ten and six-
teen outage cases, respectively. However, these differences are
marginal for the scale in question. More significant differences
become visible when the signal levels are examined. For NB-
IoT, the average value of RSRP was -76 dBm, whereas the
mean signal levels for Sigfox and LoRaWAN were close to
-100 dBm. More specifically, the values were -112 dBm for
Sigfox and -98 dBm for LoRaWAN.

These differences are attributed to the features of the tech-
nologies and the densities of the BSs. With respect to the
latter, the numbers of NB-IoT BSs in our test area greatly
exceeded those for the two counterpart solutions. Specifically,
NB-IoT is in the first place with 78 dedicated BSs having more
than a quadruple volume of GWs belonging to other LPWAN
solutions. In contrast, Sigfox and LoRaWAN networks only
feature 13 and 19 GWs, respectively. The actual BS density
also impacts the distances between the measurement points
and their closest GW/BS. For NB-IoT, the average distance to
the nearest BS did not exceed 0.52 km, whereas for Sigfox it
was 3.45 km and 1.86 km in the case of LoRaWAN.

IV. PROPOSEDMETHODOLOGY

In this section, we first outline the proposed methodology
for identifying the minimum set of measurement points. Then,
we proceed by specifying the reference model employed by
our study as well as the considered interpolation and thinning
algorithms.

A. Procedure and Metrics of Interest

The proposed procedure for identifying the minimum set
of measurement points to assess the network coverage can be
divided into several steps, as depicted in Fig. 3. In the firstone,
we utilize the knowledge of the BS locations across the area of
interest, and combine it with standardized propagation models
to construct a reference model for each LPWAN technology.

At the second stage, we build a model without explicit
knowledge of the BS locations by employing interpolation
techniques to infer the RSRP (or RSSI for LoRaWAN and
Sigfox) values at each point inside the considered area. To
identify the minimum set of measurement points required for
accurate coverage assessment, we apply and study two funda-
mentally different reducing techniques, which are probabilistic
and deterministic thinning.

We expect that these algorithms will significantly impact the
quality of hypothesis since random selection of measurement
points should provide inferior accuracy as compared to more
complex deterministic selection.Hence, we consider a range
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Fig. 2: Coverage of LPWAN technologies in the city of Brno.
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Fig. 3: Main steps of our assessment process.

of parameters for these thinning approaches.In Section V, we
also identify which one demonstrates the best performance.

For both thinning algorithms, we consecutively reduce the
number of retained points. Further, we apply the metrics de-
fined below to quantitatively characterize the distance between
the data set produced by the reference model(derived with
the knowledge of BS locations)and the one with the reduced
number of measurement points(created without the knowl-
edge of BS locations). Finally, we compare the prediction
accuracy of the reference model and the interpolation methods
against the measured values.Based on these results, we make
conclusions on the minimum number of measurement points
needed to provide the coverage quality assessment with a given
maximum deviation from themeasuredvalues.

As a coverage assessment parameter, we employ the proba-

bility that a certain fraction of area is covered with the signal
level of at leastx dBm. In the sequel, we estimate this metric
for both the reference model and the interpolated data by using
the following approach. A regular grid with the uniform step
is applied to the area of interest. The coverage quality is then
estimated by using the sample values of RSRP/RSSI at each
of those points. As one may observe, this parameter can be
interpreted as an inverse CDF of the RSRP/RSSI values.

Note that the introduced metric allows for a convenient
visual comparison between the reference model and the
proposed option. However, it does not permit to quantify
the distance between the two given models. To facilitate a
quantitative comparison between the models, we propose the
use of themean absolute error (MAE)metric that specifies
the cumulative deviation between any two models under
consideration. We define this parameter as follows

Q =
1

N

N
∑

i=1

∣

∣

∣
R

(1)
i −R

(2)
i

∣

∣

∣
, (1)

whereR(1)
i andR(2)

i are the sample values of the two models
at the same point andN is the total number of points on
the interpolation grid. Note that the modulus is used here
to account for positive and negative deviations. Each point
i represents one cell of the regular grid with the resolution of
50 m outlined by the area of the test locations as depicted
in Fig. 2. These cells serve as an output data set of the
interpolation algorithm, which estimates the RSRP/RSSI value
for each pointi.

As one may observe, the averaged integral metric specified
in (1) is independent of the number of pointsN where
the coverage metric is evaluated and produces the absolute
deviation from the actual coverage averaged over the total
number of interpolated pointsN .

B. Reference Model

We proceed by defining the baseline reference models for
each of the considered LPWAN technologies. A reference
model is intended to compare the widely used radio propa-
gation models with the interpolation methods in terms of the
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Fig. 4: Fitting of propagation model to measurement data.

prediction accuracy. Each reference model assumes that the
exact BS locations are available.

1) Reference Path Loss Model:At the first step of our
modeling, we employ the measuredsignal levels at each
location to derive the respective path loss (PL) value as

PL = |PRX |+ SNR+ PTX +G; PRX ≤ 0, (2)

where|PRX | denotes the absolute value of the received signal
power in dBm (RSRP in the case of NB-IoT; RSSI for
Sigfox and LoRaWAN),SNR is the signal-to-noise ratio,PTX

represents the transmitter’s effective radiated power, and G
stands for the sum of antenna gains.

To derive the continuous path loss curve from the discrete
measurement samples,we utilize a non-linear regression toob-
tain the expected coefficients of the log-distance PL model [15]
as defined by

PL = PL(d0) + 10γ log10

(

d

d0

)

. (3)

In the above,PL(d0) represents the PL at the reference
distanced0 = 0.1 km, γ is the PL exponent, andd denotes
the distance between the end device and the BS. The floating
intercept valuePL(d0) is calculated from the free-space path
loss formula with an additional 10 dB attenuation capturingthe
propagation losses in urban environment. The resulting fitted
models together with the measured data are depicted in Fig. 4.

These empirical models derived from the measurements
data characterize the city of Brno, but their accuracy may
be questionable for other locations and thus needs to be
validated.Therefore, at the second step, we select a validated
PL model representing the closest match to our empirical
model. During our analysis [35] of the propagation models
available for LPWAN technologies, e.g., Okumura-Hata, Er-
icsson 9999, Stanford University Interim, and COST (Euro-
pean Cooperation in Science and Technology) 231 Walfisch-
Ikegami, we found out that none of them provide sufficient
accuracy. Notably, the selected models in their basic form
significantly overestimate the path loss values for all the
considered LPWAN technologies.

Therefore, we decided to utilize the propagation models
from our previous work, representing the aforementioned
options fine-tuned for particular communication technologies.
For our approximation, we assumed 1.2 m ED height with
the BS antenna 15 m above the rooftop level of 30 m and the
carrier frequency of 861.7 MHz. The latter value is valid for
uplink NB-IoT operation in the guard-band mode within band
20 (800 MHz), which is utilized by Vodafone’s network in the
Czech Republic. For other LPWAN technologies, weimply
the frequencyof 868.1 MHz. This value is close to the center
uplink frequency used by Sigfox and corresponds to the first
channel of LoRaWAN.

The subject fine-tuned models were cross-validated with
the measurement data in two cities. Hence, it is expected
that their accuracy will be sufficient in the case of a typical
midsize European town. As it is depicted in Fig. 4, both NB-
IoT and LoRaWAN are most accurately represented by the
Ericsson Urban model, whereas 3GPP Urban captures Sigfox
the best. The parameters of each propagation model are given
in Table II.

TABLE II: Propagation model parameters [35].

Technology Model PL(d0) γ

NB-IoT Ericsson Urban 111.21 3.04

Sigfox 3GPP Urban 118.04 3.76

LoRaWAN Ericsson Urban 104.82 3.04

Both models are best suited for urban and suburban envi-
ronments outside the high-rise core, where the buildings have
a near-uniform height. This description characterizes thecity
of Brno well, as its urban layout primarily comprises of mid-
rise buildings. More precisely, the Ericsson Urban model is
applicable for frequencies up to 1900 MHz, BS heights ranging
from 20 to 200 m, ED heights between 1 and 5 m, with BS-
ED separation distances up to 100 km. The 3GPP Urban model
can be used for frequencies of up to 2600 MHz, with a cell
radius less than 8 km and BS antenna height of up to 50 m
above the average rooftop level [36].

2) Voronoi Tessellation:The next step of the reference
model derivation concerns the Voronoi tessellation. Its primary



purpose is to divide the area covered by the BSs into the
corresponding regions that consist of all the points on the
plane closer to the seed (BS) than to any other. In other words,
Voronoi tessellation dissects the area into polygons with the
BS located inside representing the closest BS for all the points
in that polygon. The outcome of the Voronoi tessellation
process for NB-IoT technology is depicted in Fig. 5. A similar
tessellation procedure is repeated for Sigfox and LoRaWAN
BS locations.

Finally, the radio propagation models derived in the previous
step are applied to the tessellated area to specify the expected
signal level at each point of interest.These pointsare defined
by a regular grid with 50 m resolution, thus creating the
baseline coverage models. In what follows, these constructs
are named the “reference” models.It is worth noting that
these reference models have been derived with the exact
knowledge of BS locations and then compared against the
models generated using the interpolation methods, which were
constructed using only the measurement data.

At this point, it is crucial to highlight that the reference
model was not used to exclusively quantify the accuracy of
the results. We do not consider the constructed reference
model to be the so-called “ground truth” for a comparison
with the proposed interpolations-based approach. Therefore,
the presented results should be considered as a comparison of
the two models rather than a comparison of the “ground truth”
with the results of the proposed methodology.

Fig. 5: Voronoi tessellation of NB-IoT deployment.

C. Interpolation Algorithms

Fig. 2 indicates that our measurement data does not spread
densely across the entire area. Therefore, to predict the service
quality at all the points of the regular grid, one may resort
to the use of interpolation methods. Since the measurement
locations are not spread evenly, we exclusively consider the
interpolation methods for scattered data. In our work, we
select five most common representatives that can interpolate
the arbitrarily spaced data. The chosen algorithms cover
the entire spectrum of complexity from simpler and more
straightforward, such as (i) Nearest-neighbor interpolation,
to the schemes with intermediate complexity, including (ii)

Linear, (iii) Natural-neighbor, and (iv) IDW approaches,to
more computationally demanding, e.g., (v) Kriging algorithm.

1) Nearest-neighbor:This method is a simple approach to
data interpolation. The initial step is Delaunay triangulation of
known pointsx. Then, the vertices are lifted by the magnitude
of V into the dimension orthogonal tox. The same lifting
procedure is also conducted for the requested pointxq. In
general, this involves traversing the triangulation data structure
to find the triangle enclosing the requested point. Once that
position is established, the closest known point value is reused
in the requested pointxq [37], [38].

The main advantage of this method is its simplicity and
low computational cost. On the other hand, the resultant
interpolation does not create new values for the requested
points but rather duplicates the existing ones. This leads to
formation of sharp transitions at the edges of the neighboring
cells [38].

2) Linear: The main idea of Linear interpolation is equiv-
alent to that of the Nearest-neighbor method [37]. The area
defined by the measurement points is tessellated with Delau-
nay triangulation, and the vertices are lifted orthogonally to the
known pointsx by the magnitude ofV . However, the value
of the requested pointxq is not duplicated from the closest
known point but is rather calculated as the weighted sum of the
magnitudes of the three vertices that constitute the enclosing
triangle.

Linear interpolation utilizes the Barycentric coordinatesys-
tem [39] to overcome the problem of value prediction where
the points lie directly on the connecting lines of vertices.If
the requested pointxq is placed inside the triangle and is
connected to each vertex, the resulting diagram consists of
three separate triangles with the areas ofA1, A2, andA3. If
A denotes the area of the original triangle, one can calculate
the Barycentric coordinatesα, β, andγ [40] as

α =
A1

A
, β =

A2

A
, γ =

A3

A
. (4)

The sum of these coordinates is always equal to one;
therefore, it is possible to calculate the third coordinateby
subtracting the sum of the first two from unity. The resulting
value of the interpolated pointxq is produced as

xq = αVA + βVB + γVC , (5)

whereVA, VB , andVC represent the vertices of the triangle.
The main benefit of this interpolation method is its speed

(considerably slower than Nearest-neighbor though) and ease
of implementation. However, Linear interpolation only pro-
videsC0 smoothness [38].

3) Natural-neighbor: The essence of Natural-neighbor in-
terpolation is aVoronoi diagram structure. In the initial step,
known points are used to tessellate the covered area. Each
cell of such a diagram contains one generating sample point
that defines the value for the entire cell. Voronoi tessellation
is discontinuous by its nature, but it has useful characteristics
that Natural-neighbor interpolation utilizes. Here, eachedge
represents a link between two generating sample points. This



property is used to select the corresponding neighbors for the
interpolation [41].

The next step in the interpolation process is point insertion.
The requested pointxq is inserted into the Voronoi diagram,
and a new polygon generated by the requested pointxq is
added to the structure. Consequently, part of the area from
the neighboring cells is transferred to thus inserted polygon,
and some edges covered by the new cell are subsumed. The
main goal of the next step is to identify the weights of the
neighboring samples and combine them with the sample values
to obtain an estimate of the requested pointxq. Hence, each
of the neighboring cells contributes a certain fraction of its
area to the new cell.

Further, the value of the requested pointxq is computed
as the weighted average of the surrounding sample polygons.
This approach is similar to that in Linear interpolation butthe
mean is not limited to three vertices of the enclosing triangle.
The fractional contribution of each polygonλi can be written
as

λi =
Ai

A
, (6)

whereAi is the area of the contributing celli andA is the
total area of the inserted polygon. The sum of these weights
is always one. Finally, the interpolated value is calculated as

xq =

N
∑

i=0

λi · zi, (7)

whereN is the number of neighbors surrounding the inserted
polygon,λi is the weight of each element, see (6), andzi is
the value of the sample point [42].

The key advantages of this interpolation method lie in its
relative simplicity, speed, and resilience to biases introduced
by how the samples may cluster. One of the drawbacks
though is the slope discontinuity; therefore, it cannot offer
C1 continuity over the entire surface [41], [42].

4) IDW: The main premise of IDW interpolation isin that
the values of more proximate points are related closer than for
the farther away ones. In other words, the interpolated values
are calculated by using a linearly weighted combination of the
sample point sets. The weight is defined as an inverse function
of distance. The value of the requested pointxq is calculated
as

xq =

n
∑

i=o

di
−p · zi

n
∑

i=0

di
−p

, (8)

wherezi is the value of the sample point,di is the distance
between the requested and the sample points, andp is the
power parameter [43]. The latter controls the significance of
the known pointx for the interpolated value based on its
distance to the requested pointxq.

Hence, the closest points have the most significance for the
resulting value of the requested point. The power value is not
defined strictly and does not have connection to the real-world

process. The typical convention here is to use the power of
two, which we also employed in this work. Finally, the value of
n determines the number of samples for interpolation and may
be up to the total number of points in the data set (typically
three or more though).

The selection of input sample points significantly impacts
the behavior of the interpolated surface. Along these lines,
IDW offers immense variability as it can use, e.g., a fixed
search radius where the requested value is calculated from the
points at the pre-set maximum distance. Further, the shape
of the search window does not have to be a circle. Another
option is variable radius where the search window is defined
by the number of neighboring points used for calculation. In
this work, we follow the latter approach, where the requested
valuexq is derived from the five closest points [44].

IDW is an intuitive, easy to understand, and computationally
efficient interpolation method. However, its accuracy decreases
if the sample points are not distributed evenly. Also, the
resulting surface does not provideC1 smoothness. Moreover,
the selection of input parameters is entirely arbitrary butit
influences the resulting interpolation surface drastically [43].

5) Kriging: This interpolation algorithm belongs to the
class of geostatistical methods based on statistical models
that incorporate autocorrelation (in the sense of mathematical
relationship between the measured points). Hence, geostatis-
tical techniques have the capability of producing a prediction
surface, and also offer an assessment of the interpolation ac-
curacy. Kriging accuracy is the highest when there is spatially
correlated distance or directional bias in the input data [45].

Producing interpolated values is similar to how it is done by
Natural-neighbor or IDW according to (7). However, the pro-
cess of weight derivation differs drastically. Kriging weights
are based not only on the distance to the sample point but
also on the overall spatial arrangement of the measurement
points. To achieve this, Kriging followsa two-step process as
it (i) creates a covariogram and covariance functions, as well
as (ii) predicts unknown values.

The initial step of the Kriging procedure is in designing an
experimental semi-variogram [46], which is given as

γ(h) =
1

2N(h)

N(h)
∑

i=1

[z(xi)− z(xi + h)]2, (9)

whereN(h) is the number of pairs that are separated by the
distance ofh and z(xi) is the value of the input point. The
experimental semi-variogram is then fitted to the empirical
semi-variogram. This step is needed because the experimental
semi-variogram is not a continuous function but is rather
represented by a set of points. For our work, we employ
Spherical semi-variogram, which is defined as

γ(h) =

{

co + c1

[

3h
2a − 1

2

(

h
a

)3
]

for 0 < h < a

co + c1 for h ≥ a
, (10)

wherea is the range,c0 is the nugget variance, andc0 + c1
is the sill. Selection of semi-variogram impacts prediction of
unknown values. Therefore, it is necessary to choose a model



that fits sample data the best. The last step of the Kriging
process is prediction of the requested points. In our work,
we use Ordinary Kriging but there are other variants of the
prediction process [47]. For Ordinary Kriging, the system is
produced as
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whereµ is the Lagrange parameter andC1n is the covariance
between the locations of sample pointsx1 andxn. The latter
is computed as

C1n = Cov(x1 − xn) = C(0)− γ(x1 − xn), (12)

whereC(0) is the sill of the semi-variogram model andγ
is the value generated by the semi-variogram model for the
vector joining the pointsx1 andxn. The weightsλn are then
used to predict the value of the requested pointxq according
to (7).

The key strength of Kriging over other deterministic meth-
ods is in that the information about spatial relationships is
readily included into the weight calculation. On the other hand,
Ordinary Kriging is computationally demanding; particularly,
the calculation of sample weights is a time-consuming process.

D. Thinning Algorithms

The minimum set of measurement points providing the
quality assessment with a given accuracy theoretically depends
on the way how these points are chosen. In our study, we thus
consider two fundamentally different techniques.

1) Probabilistic Thinning:Probabilistic thinning is a simple
approach, which has an important feature that it straightfor-
wardly translates into the choice of the measurement points
when planning a measurement campaign. In probabilistic
thinning, the choice of the points to be removed is made
randomly and independently of each other.

2) Deterministic Thinning:An alternative coverage assess-
ment is provided when the measurement points are spread
densely and equally over the entire area. Hence, deterministic
thinning ensures that for a given number of retained measure-
ment locations, these reside as far from each other as possible.
To determine the structure of the measurement points from
a random field, we use the following approach: (i) define
M × M grid that specifies squares on the coverage map,
(ii) estimate the number of points in each resulting square
and sort them in the descending order, (iii) determine how
many points need to be removed, e.g.,10%, (iv) remove
the measurement points from the square having the highest
number of points, such that the number of points therein
equals the number of points in the cluster having the second-
highest number of points, (v) keep removing points from the
two clusters having the highest numbers of points until when
the numbers of points in those equals the number of points
in the cluster having the third-highest number of points, and

(vi) continue until the required number of points has been
removed.

For all the considered interpolation techniques, we employ
a similar procedure to identify the set of measurement points
that characterize the coverage quality with a certain deviation.
Particularly, at each step, we remove10% of points and
then estimate the coverage-related metrics.Note that the latter
approach is deterministic only on theM × M grid level.
The points in each cluster are removed randomly; therefore,
the nature of removing points from the individual clusters is
probabilistic.

By contrast, the former method is inherently random.It is
worth mentioning that the thinning is also connected with the
addition of an artificial point to each corner of the interpolated
area. Without this step, an extrapolation procedure have tobe
applied, which we aim to avoid. To this end, the value is set to
the minimum sensitivity of each LPWAN technology (signal
level of around -140 dBm). However, to reduce the impact of
the artificial points on the interpolation procedure, we limit
their use as much as possible. These points are currently
inserted into the input dataset only when the area bounded
by the measurement points cannot be fully interpolated (i.e.,
interpolation returns undefined values). This approach has
proven to be reliable when the interpolation is influenced only
in the extreme cases of removed points (more than 97 %).

V. NUMERICAL RESULTS

In this section, we provide the numerical results and evaluate
the considered coverage assessment strategies.Recall that our
goal is to assess the accuracy of the proposed algorithm for
different densities of measurement points in the environment
where the BS locations remain unknown, thus reflecting the
precision vs. time consumption trade-off.To this aim, we
start by constructing the reference coverage and the signal
quality assessment models described in subsection IV-B.We
then proceed with selecting the appropriate interpolationtools
out of those introduced in subsection IV-C.

Further, we compare the performance of thinning algorithms
specified in subsection IV-D. The presented results should be
treated as a comparison of the two models rather than a com-
parison of the reference model with the results of the proposed
methodology. Then, we report on the coverage assessment
accuracy with respect to the MAE metric defined in subsection
IV-A. We continue by summarizing our insights in the form of
a lower bound on the number of measurement points required
to deliver accurate coverage assessment. Finally, the section
concludes with an accuracy assessment of the proposed models
with the measured results, i.e., the correlation between the
reference model (“ground truth” data), the predicted values,
and the measured data.

A. Comparison of Interpolation Methods

Before assessing radio coverage and signal quality with a
limited number of measurement points as well as compar-
ing the performance of thinning algorithms, we analyze the
considered interpolation methods with the goal of selecting
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Fig. 6: Comparing interpolation methods with reference model.

the algorithms offeringthe bestperformance. To this end, we
apply the candidate interpolation methods for the scattered
input data set to estimate the signal values on a regularly
spaced grid. The performance of the interpolation methods
is directly compared against the reference model by using
the metrics defined in subsection IV-A, i.e., inverse CDF and
integral MAE parameter (1).

Concerning the CDF values,Fig. 6 offers a visual com-
parison between the considered interpolation methods and the
reference models for all three LPWAN technologies, i.e., NB-
IoT, Sigfox, and LoRaWAN,by relying on the cumulative
percentage of the area featuring the RSRP/RSSI level of at
leastx dBm as the parameter of interest. As one may observe,
none of the considered interpolation tools provide a perfect
fit. However, some methods are significantly better than the
other. Notably, the Nearest-neighbor algorithm demonstrates
the largest deviation from the reference modelout of all the
selected interpolation techniques; it is characterized bya sharp
decline in the regions of small and high values of RSRP/RSSI.

On the contrary, in the case of NB-IoT, the IDW algorithm
offers the worst approximation in the area around the median
of the data. It has to also be noted that for NB-IoT, the
individual interpolation methods differ from each other most
significantly. Two primary facts cause this phenomenon. First,
the BS density in the NB-IoT deployment is considerably
higher than that for the Sigfox and LoRaWAN layouts, thus
influencing the reference model as well as the CDF curve’s
steepness. Second, the majority of the measurement points
oscillate on a short-range scale around the RSRP value of
-75 dBm. Hence, the remaining values need to be interpolated
from a lower number of samples. For Sigfox and LoRaWAN,
the rest of the algorithms display similar outputs.

To numerically quantify the performance of the considered
interpolation algorithms, Fig. 7 delivers a comparison with
the reference models by using the integral coverage metric
defined in (1). Recall that this parameter can be interpretedas
a deviation of the coverage metric (RSRP/RSSI) averaged over
the set of selected interpolated points. As one may observe,
the above conclusions are confirmed numerically. Particularly,
the Nearest-neighbor algorithm is characterized by the worst

performance out of all the considered interpolation methods.

Fig. 7: Mean deviation for interpolation methods.

Even though the IDW option is the second-worst for NB-
IoT, its results exhibit the lowest deviation in the cases ofSig-
fox and LoRaWAN technologies. Contrarily, the Kriging algo-
rithm performs as the second-worst for Sigfox and LoRaWAN,
whereas in the case of NB-IoT, it is the most reliable op-
tion. The remaining Linear and Natural interpolation methods
provide satisfactory results for all three considered LPWAN
technologies, with Natural interpolation providing a slightly
smaller deviation. Surprisingly, all the subject algorithms
display comparable results even though their approaches to
the interpolated values derivation differ significantly.

Another important observation is that the quality of the
resultant approximation heavily depends on the BS deploy-
ment density. Analyzing the data presented in Fig. 7, we
note that the highest MAE deviation is observed for the NB-
IoT technology. At the same time, the output for Sigfox
and LoRaWAN is noticeably better – this behavior confirms
the visual observation gained from Fig. 6. In the considered
case, NB-IoT is associated with the densest deployment, while
Sigfox relies upon the smallest number of BSs located within
the area of interest. We finally note that the averaged deviation
as per (1) for the reference model is around 8.5 dB for NB-
IoT and approximately 7.4 dB for Sigfox and LoRaWAN.
Hence, one may conclude that the quality of the approximation
degrades as the BS deployment density grows.
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Fig. 8: Performance comparison of interpolation methods and thinning algorithms for NB-IoT.

B. Comparison of Models under Thinning

In our approach, we target dynamic environments with
locations having diverse propagation conditions, where even
the use of a precisely fine-tuned model may deliver inaccu-
rate output data. Therefore, the presented results should be
considered as a comparison of the two models rather than
a performance comparison of the so-called “ground truth”
(reference model) with the results of our proposed method-
ology. To do so, we proceed with contrasting the interpolation
algorithms for the thinned data set with a certain fraction
of points removed according to the algorithms outlined in
subsection IV-D. We aim to assess whether the performance
of selected interpolation algorithms degrades, and if so, how
rapidly this occurs under different percentages of excluded
measurement points as the interpolation mechanisms should
reflect the changes more precisely.

To this aim, Fig. 8 illustrates the coverage proportion witha
given RSRP threshold as a function of the thinning algorithm
in use, the type of the employed interpolation, and the number
of the removed measurement points. Based on visual analysis,
we focus on the NB-IoT technology, as it indicates the
highest divergence among all the interpolation methods and
reference models. For the sake of clarity, we also select only
the two best-performing interpolation methods, i.e., Natural-
neighbor and Kriging algorithms. Each subfigure contains the
outcomes of 30 subsequent runs combining different thinning
and interpolation algorithms. The resulting lines represent the
median value based on all the repetitions while the translucent
areas denote the 5th and 95th percentiles from left and right,
respectively.

One of the essential observations based on the presented
data is that the difference in the median values between the
thinning algorithms is almost negligible for low numbers of
the removed points, i.e., 10 % (30 out of 300) and 30 % (90
out of 300). However, probabilistic thinning is characterized
by increased variance, thus resulting in a wider translucent
area around the median curve. The difference is even more
notable for higher numbers of the removed points, e.g., 70 %
(210 out of 300). Even though both thinning algorithms
display significantly increased variance, the fluctuation for the
deterministic algorithm remains two times smaller.

Surprisingly, the median value disparity between the thin-
ning algorithms is lower for Natural-neighbor interpolation,
whereas Kriging method shows significant differences, es-
pecially for the RSRP values between -90 and -75 dBm.
The Kriging variogram range most probably causes this fact,
as it limits the sampling point impact on the interpolated
value. Hence, with a more considerable distance between the
sampling points, the Kriging option tends to produce bounded
areas around the sampling points and settle on the average
values in the rest of the plane. In practice, this implies that
having a regular structure (such as a grid) for arranging an
accurate assessment of the network coverage allows us to
significantly decrease the resultant variance, especiallyfor low
numbers of the sampling points. Note that similar trends were
observed for Sigfox and LoRaWAN deployments.

Further, we report on the behavior of theMAE metric
defined in (1), which captures the deviation from the reference
models under probabilistic and deterministic thinning of the
measurement points for all the considered LPWAN technolo-
gies and interpolation methods as illustrated in Fig. 9 and
Fig. 10, respectively.As in the previous cases, the results
summarize the output of 30 procedure runs, with the barplot
head representing the median value and the error bars denoting
the 5th and 95th percentiles. Based on the presented results,
we may conclude that for the NB-IoT technology, the Kriging
algorithm provides the closest approximation of the reference
model under both probabilistic and deterministic thinning. Fur-
ther analysis reveals that the median values for both thinning
algorithms are almost identical. In several cases, probabilistic
thinning provides even better results, albeit by a narrow margin
(in the order of tenths of percents).

If we concentrate on the prediction variance, deterministic
thinning provides more coherent results. Logically, this differ-
ence increases with higher number of the removed points. On
average, probabilistic thinning variance is two times higher
regardless of the interpolation algorithm. Hence, by selecting
the deterministic algorithm, one can expect more predictable
results, which can be slightly biased by the selection of the
sampling point locations. This finding is most visible for
the IDW interpolation with more than 50 % of the removed
points. In this case, probabilistic thinning provides a superior
result over the deterministic algorithm. Since IDW predicts



(a) NB-IoT (b) Sigfox (c) LoRaWAN

Fig. 9: Reference model comparison with interpolated data under deterministic thinning.

(a) NB-IoT (b) Sigfox (c) LoRaWAN

Fig. 10: Reference model comparison with interpolated data under probabilistic thinning.

the values from the five closest neighboring points, there is
a higher chance of clustering by nearby points when random
thinning is applied. On the other hand, deterministic thinning
tends to spread the sampling points more evenly; thus, the
interpolation must select more distant neighbors with weaker
mutual coherence.

Surprisingly, one can observe that IDW interpolation for
Sigfox and LoRaWAN technologies under both thinning pro-
cedures leads to smaller differences between the considered
models. For up to 40 % of the removed points, IDW provides
the closest approximation of the reference model for both
LPWAN technologies and the considered thinning methods.
In the case of Sigfox, for more than 50 % of the removed
points, the Natural-neighbor interpolation leads to the best
approximation. For LoRaWAN, the Kriging method offers the
best approximation of the reference model for 40 % and more
points removed. This claim is valid for both deterministic and
probabilistic thinning. Another conclusion from the coverage
assessment accuracy is that the thinning method selection is
not a crucial factor for sparse deployments. With six times
sparser deployment of the Sigfox infrastructure as compared
to the NB-IoT case, the 5th and 95th percentile variation under
deterministic and probabilistic thinning is almost negligible.
On the other hand, for the NB-IoT option, the deviation for

probabilistic thinning is two times higher.
In summary, one can state these shared characteristics

among the results depicted in Fig. 9 and Fig. 10. Clearly,
decreasing the number of the measurement points leads to
a significantly higher variance in the MAE deviation, thus
reducing statistical confidence in the obtained results. The
mean deviation is higher for denser deployments represented
by the NB-IoT technology. Further, infrastructure densityalso
influences the performance of thinning algorithms. For sparse
deployments, the selected thinning method has a marginal
impact on the resulting median and variation. The results
also suggest that for sparse deployments, such as the ones in
Sigfox and LoRaWAN networks, the IDW method provides
the best approximation of the reference model for up to
40 % of the removed points (1.2 points per km2). On the
other hand, for dense cells (e.g., NB-IoT), it is the Kriging
algorithm that shows the best approximation capabilities for
all the cases of the removed points and thinning algorithms.
For the downsides of the methods in question, simple Nearest-
neighbor interpolation provides the worst approximation of the
reference model in all situations. Finally, we note that the
MAE deviation metric does not display any sharp increase
across the entire range of the removed points from 10 % (1.8
points per km2) to 70 % (0.6 points per km2).



(a) NB-IoT (b) Sigfox (c) LoRaWAN

Fig. 11:Reference model comparison with interpolated data on lowerbound of measurement points with deterministic thinning.

(a) NB-IoT (b) Sigfox (c) LoRaWAN

Fig. 12: Reference model comparison with interpolated data on lowerbound of measurement points with random thinning.

C. Lower Bound on Number of Measurements

Since the previous experiments did not identify any partic-
ular point where the MAE deviation from the reference model
starts to vary significantly, we aimed to relaunch the procedure
runs with 95 % (0.1 points per km2) up to 99 % (0.02 points per
km2) of the removed points with the goal of producing a lower
bound on the number of required measurements.To this end,
Fig. 11 and Fig. 12 display the integral metric characterizing
the absolute deviation for all the considered interpolation and
thinning options.

For the NB-IoT technology, we can see similar charac-
teristics of the thinning algorithms as in the case of Fig. 9
and Fig. 10. Deterministic thinning provides more consistent
results than the probabilistic algorithm. Conversely, with the
excessive number of removed points, the IDW method under
deterministic thinning offers a better approximation of the
reference model than the random case. For deterministic
thinning, the IDW algorithm further represents the second best
approximation, after the Kriging option. However, Linear and
Natural-neighbor interpolations indicate more than two times
higher mean deviation from the reference model as compared
to the initial value (0 % of the removed points).

Based on the above, the most promising findings are
connected with the Nearest-neighbor and Kriging algorithm.
These methods display only a marginal increase in the mean

deviation, even for 98 % of the removed points. For the
Nearest-neighbor case, this means that the Voronoi diagram
with a constant value in each polygon provides a better
approximation of the reference model than for the Linear
interpolation or the weighted average (Natural-neighbor). In
the case of Kriging, the interpolation is solely influenced by
the variogram range. If the points are separated by a distance
larger than the variogram range, the Kriging method slowly
settles to the median value of the samples.

A similar conclusion can be drawn for the LoRaWAN
technology. In that case, the Linear and Natural-neighbor
interpolations demonstrate the highest mean deviation from
the reference model out of all the methods. Also, the Nearest-
neighbor algorithm provides surprisingly consistent results. As
in the previous cases, Sigfox features the most even resultsout
of all the considered technologies. This further confirms that
the deployment density significantly impacts the prediction
accuracy. Finally, deeper analysis of the results shows that
the mean deviation peaks drastically for 98 % or 99 % of the
removed points. However, that increase is due to the artificial
sample points, which then begin to severely influence the
interpolation accuracy.

D. Accuracy Comparison with Measurement Data

At the last stage of our numerical evaluation, we com-
pare the accuracy of the values predicted by both the refer-



(a) NB-IoT (b) Sigfox (c) LoRaWAN

Fig. 13: Coverage accuracy assessment for interpolated data with deterministic thinning.

(a) NB-IoT (b) Sigfox (c) LoRaWAN

Fig. 14: Coverage accuracy assessment for interpolated data with probabilistic thinning.

ence model and the interpolation methods against the actual
measurement results. This approach allows us to provide a
convenient way of comparing the ground truth data with the
predicted values. In summary, with each step of the thinning
procedure, the levels of the retracted points are compared
to the values predicted by the interpolation algorithms and
the reference model. This comparison uses the MAE metric
defined in (1). Notably, only a comparison with the removed
points is considered since the interpolation methods tend to
retain the values of the generating points even for the predicted
values. Hence, this would represent an unfair advantage for
the interpolation methods if all the measurement points were
considered.

A comparison of MAE for both thinning procedures, which
is depicted in Fig. 13 and Fig. 14, confirms our earlier as-
sumption that the deployment density influences the prediction
accuracy. The NB-IoT technology with the highest BS density
out of all the considered options features the increased MAE
values by 2–3 dB on average. These findings are valid for
both deterministic and probabilistic thinning. However, the
most surprising outcome is related to the performance of the
reference model. In most cases, the interpolation methods
display notably better results than the fine-tuned propagation
model. The two interpolation options that predict values less
accurately are the simplest Nearest-neighbor and the IDW.

Further, the only exception is the Sigfox technology, wherein
the IDW performs satisfactorily, especially for deterministic
thinning.

Conversely, the most versatile interpolation method is the
Kriging algorithm, as it provides more accurate results in-
dependently of the selected technology, thinning procedure,
or the number of retracted measurement points. Our results
further indicate that the influence of the thinning methods
is negligible. In contrast to the previous comparison with
the reference model, the MAE is nearly identical for both
deterministic and probabilistic thinning. Even the dispersion
of the results is comparable for both approaches. The only
exception from this rule is the LoRaWAN technology under
deterministic thinning. In that case, MAE linearly increases
with the number of retracted points. Notably, the MAE value
is nearly constant for the remaining occasions from 10 % (1.8
points per km2) to 70 % (0.6 points per km2) of the removed
points.

E. Lower Bound on Number of Measurements Points

The previous experiments did not reveal any particular
point wherein MAE starts to deviate dramatically. Therefore,
we here consider the extreme cases of retracting from 95 %
(0.1 points per km2) up to 99 % (0.02 points per km2) of
points. To this end, our main goal is to discover a lower



(a) NB-IoT (b) Sigfox (c) LoRaWAN

Fig. 15: Coverage accuracy assessment on lower bound of measurementpoints with deterministic thinning.

(a) NB-IoT (b) Sigfox (c) LoRaWAN

Fig. 16: Coverage accuracy assessment on lower bound of measurementpoints with probabilistic thinning.

bound on the required number of the measurement points,
which ensures accurate predictions. The results for the integral
metric characterizing the absolute deviation for deterministic
and probabilistic thinning methods are depicted in Fig. 15
and Fig. 16, respectively. These results reveal tremendous
differences in the prediction accuracy for different LPWA
technologies.

The outcomes for high-density NB-IoT deployments show
almost two times higher MAE values in comparison to both
Sigfox and LoRaWAN cases. Notably, this holds for both de-
terministic and probabilistic thinning. It is also evidentthat the
Kriging method still holds the first place as the most accurate
interpolation option even if compared to the reference model.
Surprisingly, for NB-IoT and LoRaWAN, the Linear and
Natural-neighbor interpolations display a noticeably increased
prediction inaccuracy. For the extreme numbers of the removed
points (98 % and 99 %), the presence of artificial “corner”
points most probably causes this growth. However, for the
lower numbers of the retracted points, the nature of these
algorithms is responsible for that effect. In other words, the
Linear and Natural-neighbor cases cannot adequately capture
the geographical relations between far-away points. On the
contrary, the Kriging method, which is specifically designed
for this type of correlation, demonstrates its superiority.

VI. CONCLUSIONS

In this work, we approached the problem of coverage as-
sessment in LPWAN deployments without explicit knowledge
of the BS locations. This challenge may be typical for the
potential customers who are willing to conduct an access
network audit without direct involvement of the network
provider. Also, as another example, the operators themselves
can be willing to audit the performance of their network to
update the layout or configuration. In our study, we primarily
concentrated on the three most popular LPWAN technologies,
for which the target consideration is particularly essential
but the proposed methodology can also be applied to other
wireless systems.

We systematically applied various interpolation algorithms
to construct the key coverage assessment indicators without
the knowledgeof BS locations.As an alternative approach,
the acquired measurement data can be used to infer the BS lo-
cations. This can be done by employing the conventional clus-
terization mechanisms, e.g., K-means, certain multilateration
approaches, or more advanced algorithms based on machine
learning.Additionally, we compared these results against the
reference model produced byutilizing the experimental results
with full BS location knowledge,see Section V for in-depth
discussion.



Using the developed models, we demonstrated that the
Kriging interpolation algorithm outperforms its counterparts
for NB-IoT deployments with significantly higher BS density.
However, for sparser LoRaWAN and Sigfox infrastructures,
the performance of simpler interpolation methods, including
Linear and Natural-neighbor schemes, is comparable with that
of the Kriging algorithm. The IDW technique issignificantly
more sensitive to the number of measurement points and does
not produce accurate approximations in all of the cases. The
accuracy of a signal quality assessment heavily depends on the
coverage range of the considered radio technology, i.e., the re-
quired density of the BS locations.For the considered LPWAN
technologies, we can conclude the averaged deviation for the
reference model ranges around 8.5 dB in the case of NB-IoT
and oscillates around 7.4 dB for Sigfox and LoRaWAN.

Notably, the higher is the density, the more significant is
the deviation of the interpolation methods from the reference
model. Further, we concluded that random selection of the
measurement points is as good as deterministic grid measure-
ments. In practice, this implies that the choice of locations
wherein measurements are to be made is not critical as long
as they essentially cover the entire area of interest. Impor-
tantly, there is a limit on the number of measurement points
where providing additional volumes of the spatial RSRP/RSSI
data does not considerably improve the coverage assessment
quality.

Going further, we report on the MAE deviation from the
reference models under probabilistic and deterministic thin-
ning, i.e., the behavior of the defined integral metric. For the
NB-IoT technology, the Kriging method displays the lowest
deviation from the reference model in the case of both thinning
procedures. However, if the focus is set on the prediction
variance, deterministic thinning comes into play as it provides
more coherent results. For Sigfox and LoRaWAN, one may
observe dramatically lower MAE values when the IDW option
is in use – it is a preferred choice in the scenario with up to
40% of the removed points. Most importantly, we highlight
that the mean deviation metric does not demonstrate any sharp
increase across the entire set of the removed points, ranging
from 10 % (1.8 points per km2) to 70 % (0.6 points per km2).

Hence, we relaunch the procedure runs with 95 % (0.1
points per km2) up to 99 % (0.02 points per km2) of the
removed points since the previous experiments (see subsection
V-A and subsection V-B) did not identify any specific evidence
where the mean deviation starts to diverge significantly. While
analyzing the provided results, one can see that the mean
deviation increases for 98 % or 99 % of the removed points.
This behavior is connected with the presence of artificial
sample points, which at that time influence the interpolation
precision.

Finally, we compare the accuracy of the generated models
(reference and interpolated options with the measurement data
representing the “ground truth”). The output suggests thatthe
accuracy of the results is even less impacted by the selected
thinning approach than in the previous cases. It is also evident
that most of the employed interpolation methods perform

better than the reference model. Particularly, the Kriging
algorithm represents the most versatile option among all the
interpolation methods, see Section V-D and Section V-E. In the
case of NB-IoT, the results indicate the highest MAE across
all the selected LPWAN technologies, almost two times higher
for more than 96 % of the retracted points. These results verify
our assumptions related to the fact that the deployment density
influences the interpolation performance.

More generally, the telecommunication operators occasion-
ally resort to optimistic coverage maps, which tend to present
a better situationthan what it actually is in the real-world
conditions.Therefore, the end-customers often opt for their
own field measurements to understand the current network
performance. This approach becomes especially relevant with
the development of automated measurement methodologies
(e.g., drone-based) and crowd-sourcing concepts (which can
also be applied to machines).In these cases, there are essential
benefits from the knowledge of the number of points required
for an accurate signal and coverage assessment, which is
delivered by the present research.
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