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Abstract—With the increasing diversity in the requirement of
wireless services with guaranteed quality of service(QoS), radio
access network(RAN) slicing becomes an important aspect in
implementation of next generation wireless systems(5G). RAN
slicing involves division of network resources into many logical
segments where each segment has specific QoS and can serve
users of mobile virtual network operator(MVNO) with these
requirements. This allows the Network Operator(NO) to provide
service to multiple MVNOs each with different service require-
ments. Efficient allocation of the available resources to slices
becomes vital in determining number of users and therefore,
number of MVNOs that a NO can support. In this work, we study
the problem of Modulation and Coding Scheme(MCS) aware
RAN slicing(MaRS) in the context of a wireless system having
MVNOs which have users with minimum data rate requirement.
Channel Quality Indicator(CQI) report sent from each user in the
network determines the MCS selected, which in turn determines
the achievable data rate. But the channel conditions might not
remain the same for the entire duration of user being served. For
this reason, we consider the channel conditions to be dynamic
where the choice of MCS level varies at each time instant.
We model the MaRS problem as a Non-Linear Programming
problem and show that it is NP-Hard. Next, we propose a solution
based on greedy algorithm paradigm. We then develop an upper
performance bound for this problem and finally evaluate the
performance of proposed solution by comparing against the
upper bound under various channel and network configurations.

Index Terms—SG and Beyond Networks, RAN Slicing, Dy-
namic Channel Conditions, Performance Bound

I. INTRODUCTION

With the advent of Internet of Things (IoT), number of
devices accessing the internet has been increasing exponen-
tially. Ericsson has estimated that about 5 billion IoT devices
will be connected to the internet and about 2.6 billion 5G
subscriptions by the end of 2025 [1]]. Efficient utilization of
available spectrum resources becomes vital to accommodate
this growth. Adding to this requirement, is the complexity of
users having varied QoS requirements.

To address this complexity, Radio Access Network (RAN)
slicing technology has been widely adopted by several in-
dustrial communities [2f], [3]. With the help of RAN slicing,
operators can perform service customization, isolation and
multi-tenancy support on a common physical network infras-
tructure by enabling logical as well as physical separation
of network resources [4]. This multi-tenancy support enables
network operators (NO) to support multiple mobile virtual
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network operators (MVNOs) in the form of a slice. The
Third-Generation Partnership Project (3GPP) has identified
network slicing as one of the key technologies to achieve
varied performance requirements — such as high throughput,
low high security goals in 5G networks [3].

One of the key features of RAN slicing is that - MVNOs
are assigned slices that are independent from one another [6].
That is, the allocation of the radio resources is up to the NO
who can allocate them at will, based on the QoS requirement
while ensuring complete isolation between slices. The NO we
consider is based on Software Defined - Radio Access Net-
work (SD-RAN) controller architecture comprising of a Slice
Manager and MVNO specific scheduler. The NO architecture
is formally introduced in Section [[II

Once the QoS requirements for each MVNO is collected
by NO, the core problem lies in allocation of scarce spectrum
resources such that each MVNO’s QoS requirement is met
for all its users. We consider spectrum resources as resource
blocks (RB). This is a difficult problem because over provi-
sioning of RB for a user, will result in wastage and under
provisioning might not meet the QoS requirements. Therefore
the design of efficient slicing algorithm to meet each MVNO
user’s requirement is key for optimal usage of RB. Also, from
a business standpoint, optimal usage of RB which will result
in increased number of users served in a time slot and thereby
increased number of MVNOs supported by fixed number of
RB is of great interest.

One of the factors which influence the slicing decision, is
the channel condition experienced by the RB during its path
towards the users. In order to convey the channel information,
each user in the network sends a CQI report back to the
NO. Often in real world scenarios, the channel conditions
do not remain the same. They keep varying with respect to
time and frequency. In order to take into account of this
dynamic channel condition, the users send the CQI report in
regular intervals with its periodicity determined by the NO and
in between this interval, the channel conditions are assumed
to remain same [7[]. In order to remain close to reality, we
consider dynamic channel conditions in our work.

We illustrate the problem of RAN Slicing under dynamic
channel conditions by considering minimum data rate per time
slot for each user as a specification by MVNOs. Calculation
of data rate for a user at a given time depends on MCS level
chosen for the user by the NO at that time. Choice of MCS
level in turn depends on the CQI report sent from the users of
MVNO. Now, the problem we are addressing in this paper is,



how do we create a channel conditions aware slice for each
MVNO such that, maximum number of MVNO user’s minimum
data rate requirement is met.

Even though RAN resource allocation issue has been stud-
ied extensively in the recent past [8], [6], [9], the problem of
resource allocation to MVNOs under dynamic channel condi-
tions is relatively new. This is discussed more in Section
Design of efficient resource allocation/slicing enforcement
algorithm is not trivial and is met with unique challenges:

« Users maximization: Meeting the minimum data rate
requirement for maximum number of MVNO users in
the slice time slot. This can be achieved by choosing the
optimal number of RB and the MCS level for each user.

e Orthogonality: Each RB should be allocated to only
one user across all MVNOs at a given time slot to avoid
interference [10], [[11]], [12].

o Support advanced 5G technologies: The RB allocation
should also facilitate in implementation of advanced 5G
technologies such as CoMP and MIMO [9]].

The aim of this work is to design, analyze and validate
MCS aware RAN Slicing(MaRS) algorithm that take into
consideration the challenges mentioned above. To summarize,
this work makes the following contributions:

o We formulate the MCS aware RAN Slicing (MaRS) prob-
lem as a Non-Linear Programming Optimization problem
in Section|[V]using the model developed in Section [[TI] We
will also prove the NP-Hardness of the MaRS problem.

o We propose a solution for this problem using the greedy
algorithm paradigm in Section

« We develop an upper performance bound for the MaRS
algorithm in Section

e We provide an implementation of the proposed solution
and carry out an exhaustive evaluation in Section

II. RELATED WORKS

There has been significant work to address the problem of
RAN slicing, especially in the recent past. There have been
many excellent surveys on this topic [4]], [10], [[12|-[/14]]. The
authors in these surveys provide a comprehensive information
regarding the work being done on this topic. Additionally,
a book has been published on the topic of RAN Slicing
where many slicing algorithms have been proposed [15].
Specifically [13]] covers the advancements in RAN slicing
which is based on the SDN architecture. The architecture
considered in our work loosely follows the work covered
in [13].

In the recent works, the RAN slicing problem [[16[]—[18]
has been dealt by designing solutions using various theoretical
means optimization [19], [20], game theory [21]]. There has
also been many advancements where several machine learning
approaches have been used to address the RAN Slicing prob-
lem — {Reinforcement Learning [22], Deep Learning [23]-
[25]}. These machine learning approaches are not suitable for
deployment due to their huge data requirements for training
and the time it requires to do so. Moreover accurate predictions
of the channel conditions are required to make the slicing
algorithm effective.

One of the key limitation of these works is that it does
not show the actual deployment of RAN slices on top of
a physical network. Although the authors in the paper [9]]
discuss RAN slicing policies and enforcement problem by
considering fine grained control of resources, it falls short
when we bring in dynamic channel conditions. Moreover, the
problem formulation considers slice as allocation of certain
percentage of resource blocks from a given pool without
considering the underlying requirement for these slices.

One of the work which closely focuses on addressing
RB allocation problem is [I11]. The authors propose a RB
partitioning algorithm which focuses on allocating RB to
every MVNO by simultaneously maximizing the percentage
of satisfied MVNOs while allocating the minimum amount of
RB. However, the problem in [11]] does not take into account
the dynamic channel conditions.

Our work can be closely compared to [8]. The authors
of [8] address the problem of RAN slicing by considering
dynamic channel conditions in a SD-RAN based architecture.
One of the key architectural differences between our work
and [8] is the flexibility offered to the MVNO in the SD-
RAN architecture. In [[8]], the authors consider individual slice
managers for each slice but a common scheduler for all the
users. This provides very less flexibility for MVNOs. In our
work, we consider independent scheduler for all MVNOs. This
allows MVNO, the option of choosing its users for scheduling
at each time interval. Section III discusses this in detail.

In [26], the authors address the RAN Slicing problem
for multiplexing eMBB and URLLC slices. Although the
paper [26], considers the MCS selection in the design of the
slicing algorithm, it again falls short in providing MVNO
the flexibility in scheduling as the architecture considered in
completely different.

The papers [27], [28] present a framework for LTE virtual-
ization. The authors propose an architecture for virtualizing the
LTE base stations (called eNodeB in LTE architecture) with
the objective of having different operators sharing the same
physical resources. The solution is based on a hypervisor (as
in CPU virtualization), which hosts different virtual nodes, al-
locates the resources and is responsible of the spectrum sharing
and data multiplexing. In [29]], the framework from [27], [28]]
is used to present a algorithm for scheduling physical RB for
the virtual nodes. The main idea of this algorithm is that if a
eNodeB is overloaded and a neighbor eNodeB has available
resources, a user is selected to be migrated to the unloaded
eNodeB. Although the concept of centralized control is similar
to our work, the problem statement is completely different. In
our work, we are addressing the problem of RAN slicing in a
multi-MVNO environment as opposed to resource sharing.

In summary, our work addresses the shortcomings of these
papers by providing more flexibility to the MVNOs, develop-
ing efficient slicing algorithm with dynamic channel conditions
and carrying out a thorough validation.

III. SYSTEM MODEL

We consider a NO administering a single 5G RAN base
station B and set of M = {1,2.... M} MVNOs as depicted in



Fig. [[JThe NO serves the MVNOs by creating virtual RAN
slices built on top of underlying physical network B. We split
NO functionally into Slice Manager and MVNO scheduler.
This architecture lies inline with SG RAN concepts, where the
management and orchestration is implemented as a Software
Defined Network (SDN). We adopt the architecture principle
similar to [8]], [30], and include additional features to aid the
proposed slicing procedure.

Once the NO collects the minimum data rate slice request
from all MVNOs, it creates an instance of MVNO scheduler
for each MVNO in the network.We define A’ as the minimum
data rate requirement for each user ¢ of MVNO Vi € m, m €
M,¥m. MVNO Scheduler for all m € M provides a
scheduling order of users belonging to m, U,,, to the Slice
Manager. The Slice Manager, which has the CQI information
for each user in the network, dynamically assigns the resources
on B to each MVNO slice based on this scheduling order sent
by the MVNO. Advantage of this architecture is that it leaves
the choice of scheduler implementation, up to the MVNO.
Each MVNO may employ unique scheduling algorithm.

Since the BS follows 5G cellular technology, spectrum
resources are organized as grids of RB, that span across both
time and frequency domains [31]]. Each RB represents the
minimum spatio-temporal scheduling unit. Considering Ngrp
and T as the number of available subcarriers and temporal slot
respectively, the set of available RB is |Ry| = Npp x T in
the physical RAN network for a certain bandwidth.

Implication of time slot T. Theoretically, the time slot T’
can range from 1 TTI(¢) to 1000’s of TTIs, depending upon
how dynamically the slice manager wishes to operate resource
slicing policy. Under realistic consideration and in lieu with
next-generation O-RAN architecture [32], it is expected that
the slicing manager will either reside in non-real-time Ran
Intelligent Controller(RIC) or near-real-time RIC, which are
respectively, in order of > 1s and (10 — 1000 ms) time
scales [33]]. Thus, in our work, we consider that 7" will be
a large value, in range of several milliseconds. Further, we
consider the user’s minimum data rate requirement is defined
per time slot 7.

Dynamic Channel Conditions. We consider the channel
conditions to be dynamic in nature and may vary in frequency
and time, but remain consistent within the time slot 7". This
is similar to aperiodic csi reporting [[7]. Depending upon the
channel condition obtained from CQI reports for users of
the MVNOs being served, the Slice Manager determines a
suitable MCS for transmission depending on each MVNO
user’s minimum data rate requirement, out of 29 MCS levels
as per 5G 3GPP specification [31]. Let C denote the set of
available MCS, i.e., C = {0,1,...,28}. The MCS determines
how much information (in bits) is modulated and coded in
each RB by the BS. The higher the MCS is, the higher the
modulation and coding rate is. That means, the maximum
amount of information that can be transmitted on one RB also
depends on the channel conditions. If the channel condition
is poor and the NO uses a high MCS, then the information
carried in the RB will not be successfully received and
decoded. Therefore, the achievable data rate by an RB depends
on both MCS level chosen by the NO as well as the channel
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Fig. 1: The SD-RAN slicing architecture.

condition for this RB.
Let qZ’f denotes the maximum MCS that can be used for

a certain RB 7 to serve a user u’, € U, such that the
information carried in RB can be successfully received by the
user at TTI ¢t € T
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Finally, the NO also imposes a restriction on maximum
throughput allowed per MVNO slice, namely A,,, depending
on channel conditions or business requirements. This restric-
tion prevents any individual MVNO slice from overloading
the network. An intuitive way of selecting A%, may be from
pure business perspective, i.e, whichever MVNO pays the most
will get higher throughput. However, in general the choice
of maximum throughput in a multi-MVNO, limited resources
environment introduces a new problem that is out of the scope

for this work.

IV. SD-RAN WORKFLOW

Before we proceed with designing of the Slicing Algorithm,
it is important to understand how different components in the
SD-RAN architecture interact with each other to serve users
of MVNO. In this section, we present the workflow for our
SD-RAN architecture in Fig [T}

The NO communicates with several components before it
assigns resources to a specific user of a MVNO. After a
MVNO requests services from a NO, the task of allocating
resources can be broadly divided into 4 steps.
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Fig. 2: SD-RAN slicing architecture workflow diagram.

a) Step 1: Acquiring RAN information: After a MVNO
submits a request for a service to the Slice Manager of the
NO, the Slice Manager acquires the RAN information. This
RAN information contains the number of users in the network
for the MVNO, the channel conditions experienced by each
user and the available resources in terms of RB in the network
to serve the MVNO. In Fig. 2] the base station and the users
in the network is represented by a single RAN block.

b) Step 2: Acquiring scheduling information: An in-
stance of the scheduler is created in the NO for each MVNO
that requests a service. It is up to the MVNO on how the
scheduling algorithm is implemented. For example, a partic-
ular MVNO may use round robin and other MVNO might
opt for priority scheduling. Its one of the novelty in our work
where we provide the MVNO, the flexibility of choosing the
scheduling algorithm. In order to make a slicing decision,
the Slice Manager interacts with the instance of the MVNO
scheduler to acquire the scheduling list which is a list of users
and its unique minimum data rate requirement that is generated
through MVNO specific scheduling algorithm.

c) Step 3: Making Slicing Decision: After Step 2, the
Slice Manager has all the required information to make a
slicing decision. It has the list of users that it needs to
serve with its minimum data rate requirement, their channel
conditions and the available resources in the network to serve
them. Now, the Slice Manager limits the number of users that
can be served for a MVNO by imposing a upper bound of
maximum throughput allowed per slice. Using the MCS-aware
Ran Slicing Algorithm, the slice manager makes a Slicing
Decision by assigning resources to the users of the multiple
MVNOs across time 7.

d) Step 4: Enforcing Slicing decision: After the Slice
Manager makes the Slicing Decision for time slot T, it is
conveyed to the MVNO scheduler and enforced on RAN. The
MVNO scheduler can use this Slicing Decision as an input to
generate the scheduling list for the next time slot 7.

V. PROBLEM FORMULATION

In this section, we formulate the MCS-aware RAN Slicing
(MaRS) problem as a Non Linear Optimization problem. The
problem aims at determining the optimal set of resource blocks
to be allocated to each MVNO m € M in time slot T,
such that maximum number of users can be served across

MVNOs in T, by considering — (1) MVNO’s minimum bit
rate requirement is met for each of its user, (2) Each MVNO
scheduler’s unique user scheduling order is ensured, and (3)
The total throughput per slice does not exceed the maximum
allowable throughput set by the NO for that MVNO slice.

Notation. Let set Uy, = {ul,,...ui,, ... ul’"} denote the
scheduling order of all users belonging to MVNO m € M.

Decision variables. Let u!, denotes whether a user i
belonging to MVNO m can be served by the Slice Manager.
Let 270t denote the whether a certain RB r € R is allocated
to any user u!, in MVNO m at TTI ¢t € T Let yffn denote
whether a MCS level ¢ is chosen by a user u!, at TTI t.
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The maximization problem given in (2 targets to accom-
modate maximum number of users to satisfy the constraints.
Constraint (3) indicates that a resource block can be allocated
to one UE at any given time. Equation (@) indicates that MCS
chosen for a user cannot be greater than maximum MCS sup-
ported by any resource block r at that time. Moreover, equation
(3), ensures that a single MCS level is chosen for a user at
time ¢. Constraint (6) ensures that scheduling order determined
by MVNO scheduler is maintained in allocating resources.
Equation (7) meets the minimum data rate requirement for
each user belonging to a MVNO. Equation (8) indicated
the maximum data rate achieved by the resources allocated
to MVNO is under the maximum allowable throughput for
MVNO.

Theorem 1. The MaRS problem is NP-Hard.

Proof. In order to prove the NP Hardness, consider the opti-
mization problem defined in Equation (2)) for a single MVNO
and for a single time slot ¢t € T'. Therefore, we drop the m
and t notation. Further, we consider channel condition is the
same across all base stations (and RBs), then the MCS level
for all the RBs will be same, ¢ € C. This affects Equations
and (B). Therefore, we can rewrite the optimization problem
and the constraints as follow,



TABLE I: Notation Table

Symbol Definition
M A set of MVNOs requesting slices from NO.
A%, Minimum data rate req. for user ¢ in MVNO m € M.

Am Maximum allowable throughput for a slice m € M.
Um Scheduling List for MVNO m € M
C A set of possible MCS values as per 3GPP specifications.
ul, Represents a UE ¢ belonging to MVNO m € M.
vt The modulation and coding rate for an RB
under MCS c € C at time t € T'.

q:;’f The maximum MCS that can be used for a certain RB r

" to user belonging to MVNO m € M at time t € T'.
dry ** " The maximum achievable data rate by RB r

" for a UE u?, under MCS c € C at time t € T
embt Maximum mcs that can be selected for a RB r

for user 7 at time t € T.
LT Slicing List - List of users to be scheduled across MVNOs

at time T'.
Cmaz Maximum MCS that can be selected for a user at any
TTIt € T.
ht Maximum achievable data rate for a user at each tti t.
c MCS used to achieve maximum data rate at each TTI ht.
At List to hold maximum data rate for each user for
every TTIt € T.
Riot Total available RB in the network.
R RB that have been already allocated in 7.
R RB that contribute to achieve maximum data rate h? at each
TTIt e T.
c MCS value for R’ that achieve the maximum data rate ht.
Rx Total RBs used to meet data rate requirements all the users

in time slot 7.
Cx MCS used for all the RB in Rx.

U Users served in time slot 7'.
P2:max y u' (10)
v uteU
Z ">yt (11)
reR
Z <A, (12)
réR
™ ut € {0,1} (13)

Notice that P2 is a maximum coverage problem, which is a
classic NP-Hard problem [34]]. Since MaRS problem can be
modeled as a maximum coverage problem, MaRS problem is
also a NP-Hard problem. O

VI. MCS AWARE RAN SLICING ALGORITHM

In this section, we develop the MCS aware RAN slicing
algorithm based on a greedy paradigm.

A. Key Intuitions behind the Proposed Algorithm

The design of the MaRS algorithm is based on the following
key intuitions.

Intuition 1. From MaRS problem objective function (See
Eq. |Z|) it is obvious that we need to maximize the number of
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Station
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Fig. 3: An example for MCS selection.

users that can be served in T for each MVNO m € M. We
consider the minimum data rate requirement to be per time slot
T and we say that a user u’, is served only if it is allocated
sufficient resource blocks such that its minimum data rate A?,
is met in 7T'. Based on this observation, we should minimize
the number of resource blocks utilized to serve each user.

Intuition 2. We sort the users across MVNOs in increasing
order based on their minimum data rate requirement A, . We
call it as Slicing List £7. Even though, each user can have
its own minimum data rate requirement, we must follow the
scheduling order defined by the MVNO (equation (6)). That
is, for some MVNO m if the scheduling order is uin, u?n, we
must always allocate resources to u), first even if AL > A2,.
This ensures that in a case of insufficient resource blocks to
support all users in 7, the user which is first in the scheduling
order gets higher priority than other users. However, we do not
maintain any scheduling order across MVNOs. That is, for any
MVNOs m, n, the Slicing List can be £T = {AL A2 AL}
if A2, < AL,

Intuition 3. To incorporate the channel conditions in the
slicing decision, we must consider the effect of MCS selection
on RB. In Fig. 3] we use an example to show the dependency
between MCS selection and number of RB. Suppose a user
is requesting a data rate of 8 from a Base Station which has
9 RB. The channel conditions for each of the resource block
is denoted in their respective grid position. If the BS chooses
MCS 3 for transmission, 3 RB are required to meet the user’s
data rate requirement as 3 x 3 = 9. If BS choose MCS 4 for
transmission, the user’s data rate requirement can be met by
just 2 RB as 2 x 4 = 8. Therefore, choosing the higher MCS
reduces the RB utilization to meet the data rate requirement.
From the previous ideas, we know that we must use least
amount of resources to serve users to maximize the number
of users served. This implies, we must choose the maximum
MCS for each user at any given time.

Intuition 4. The slicing decision is an iterative approach
where in, we allocate the subset of unallocated resource blocks
based on its MCS level to a user of MVNO at each iteration.
The slicing decision is controlled by two main factors, the
minimum data rate requirement for each user A!, and the
maximum allowable throughput decided by the NO for each



MVNO, A,,. Eventually, the algorithm exits when all the users
have been served or when all RB are allocated.

B. Algorithm Details

In this section, we discuss on how we utilize the MCS levels
on the RB in making the slicing decisions.
Recall that the first step in our algorithm is the generation
of the slicing list £T. This depends on:
o the minimum data rate requirement for each user
AL Vul m.
« the scheduling list sent by each MVNO U,,,, Vm.

Using these information, the Slice Manager develops £T
which is valid for time slot 7" by two-stage sorting, as shown

in Alg.
Algorithm 1 Slicing List

1: Collect scheduling order and minimum data rate requirement A;,,
for each user.

2: Generate a tuple for each user which contains MVNO id,
scheduling order, minimum data rate < m, 4, Ay, >, Vi, m.

: Add all users to the list LY = [<m,i, AL, >], Vi, m.

: Sort £T based on Af,.

: Sort £7 based on 3.

. return £7

A AW

With the Slicing List £ as the input, we present the MCS-
aware RAN Slicing algorithm in Alg. 2] The algorithm outputs
the least number of resource blocks and their MCS level
in the time slot 7" such that each user’s minimum data rate
requirement is met.

As discussed in the previous section, the algorithm uses an
iterative approach wherein at each iteration, it serves a user
according to £7. This algorithm consists of two key steps.

(i) Step 1. Finding the optimal number of resource blocks
and their MCS level which maximizes the achievable data rate
at each TTI t € T' - This is addressed by iterating over the
MCS values that a user can support, followed by iterating over
each TTI. Remember, the achievable data rate at each TTI,
is directly related to the MCS level chosen for its resource
blocks. Therefore, in our algorithm, we iterate over each TTI,
starting with the maximum MCS C,,,,,., first to calculate the
data rate. We keep track of the maximum achievable data rate
by updating h? after each iteration of MCS é.

(i1) Step 2. Greedily allocate the resource blocks for each
user such that their requirement is met. Once we have the
list containing the maximum achievable data rate and the
corresponding resource blocks with the MCS value for each
TTI A?, we now allocate the resources to the user in 7. Our
key idea is to minimize the number of resource blocks for
each user which will subsequently help us in maximizing
served users in T'. As discussed in previous section, in order
to minimize the RB utilization, we need to choose the higher
MCS. Following this idea, we follow a greedy approach where
in we choose the resource blocks with maximum MCS first in
A to meet the minimum data rate requirement for each user.
This enables us to choose the least amount of resource blocks
and corresponding MCS at each TTI ¢t € T, such that each
user’s requirement A is met for time 7.

Algorithm 2 MCS-aware RAN Slicing Algorithm

Input: Slicing list £7, A%, minimum bit rate requirement for each
user belonging to mvno m, v° achievable bit rate with MCS level
¢ € C, maximum allowable throughput for a MVNO A, Vm, the
mafximum mcs that can be supported by a resource block at TTI ¢,
qT‘, L .

Output: Set of allocated RBs R* and MCS level C*, for each user
in £7.

1: Initialize R* = ¢ and C* = ¢

2: Initialize already allocated RBs, R = ¢

3: Total RBs, Rtot

4: for each user, u?, in LT do )

5 current data rate for each user, d;,, = ¢
6: current data rate for each MVNO, d,, = ¢
7
8

if d,, > A\, then

: break

9: for each MCS, ¢ = Cnag,---,1 do

10: list to hold each TTI information, At =¢
11: imeRtot = r,‘bthen

12: return “No solution”

13: fort=0,...,7 do

14: maximum data rate at tti t hY = ¢

15: for ¢ = Crag, ..., c do

16: candidate RB for MCS ¢, Rean = ¢
17: for r € Ryt do

18: if N R = ¢ and ¢"" > ¢ then
19: Rcan - Rcan Ur
20: if Regn X v > h' then
21: ht = Rean X v°

22: R = Rean,cd =¢
23: add tuple 6! =< ¢/, R’, h? > to the list A
24: sort A’ based on decreasing order of ¢’
25: for each tuple §¢ in A* do
26: hy = hy + 6L[RY]

27: R, = R, USR]
28: Cu = Cu U‘(ﬂ-5 [c]

20: if hy, > A, then .

30: R*=R*"UR,, R=RUR"

31: C*=C"Ucy

32: U=U+1

33: break

34: return U, R* and C*

C. Time Complexity

We will now discuss the complexity of MaRS algorithm.
To compute the maximum data rate for a user at each TTI,
the time complexity is O(|C/||Rit|). We need to compute
this for the each TTI t € 7. Therefore, the total time
complexity to compute maximum data rate for a user in time
T is, O(|T||C||Rtot]). After that, we sort maximum data rate
achieved across TTIs. The sorting operation in represented
in Line 24 which has the complexity of O(|T'||logT|). Now,
we iterate over each element in the sorted list to meet the
data rate requirement, O(|T|). Then MaRS algorithm allo-
cates the optimal resources R, and chooses its MCS ¢,
for each user across TTI if possible for the current MCS
c. Therefore the total complexity for each iteration of ¢ is
O(T||C||Rict]) + O( T liogT1) + O(IT]) = O(T||C|| Rrct]).
Since there are |C| possible values of ¢, the complexity is
O(|T||C)?| Riot|). Now MaRS algorithm calculates this for
every user in |LT|. Therefore, the total time complexity of
MaRS algorithm is O(|LT||T||C|?| Riot|)-




Theorem 2. If there exists a feasible solution for any given
user in LT, Algorithm 2| will find it.

Proof. As discussed in the previous section, for each user,
Algorithm [2} calculates the maximum achievable data rate for
each TTI ¢ € T. The algorithm goes over every possible
combination of the resource blocks and MCS to determine
this data rate. Once the algorithm generates A’, the maximum
achievable data rate for a user at each TTI, it proceeds with
RB allocation. Now, as long as the sum of the data rates
in A% is greater than minimum user data rate requirement,
the algorithm provides a solution. That is, given a finite set
of unallocated RB and a user u, with minimum data rate
requirement of A? ,

DL =

vste At

(14)

the algorithm will find sub set of RB and corresponding MCS
across T which meet A, as long as equation is met. [J

VII. PERFORMANCE BOUND

As proven in Theorem|[I] the MaRS problem is NP-hard and
it is not feasible to find a polynomial-time optimal solution.
Therefore, it is vital to develop an upper bound for the
objective function defined in Exp. (Z). This upper bound can
be used as a benchmark to measure the performance of the
scheduling algorithm that we presented in section V.

When R, the maximum number of resource blocks in time
T is given, our problem aims to find a subset of R for each
user. Choice of this subset depends on ¢, the MCS selected for
them. Note that, if we want to maximize Exp. , we need to
find a subset which contains least amount of RBs.

Since we want to find an upper bound for objective function
in Exp. , let us consider a fictitious scenario of excellent
channel condition for every user in time 7. Therefore, every
resource block 7 € R, can support the maximum MCS value
that a user can support during its allocation. That is,

max
q'u}m

r,t
= L 1
max Gy, (15)
We further consider that the MVNO scheduler always uses the
maximum MCS for each user. That is,
et ax
Ay = gt

5 (16)

We then proceed with the allocation of the resource blocks
for each user following the slicing list, £!. In this fictitious
scenario, the data rate achievable for each user in time 7', is di-
rectly proportional to the number of resource blocks allocated
to it at time T'. Therefore, we can re-write constraints ,

as,

Z Z it x dZ; >l Al Nmyi (17)
teT reR
DY D aptxdytt <Ay,vm (18)

teTreRui, €Uy,

We can see that, the criterion to meet each user’s minimum
data rate requirement completely depends on number of re-
source blocks allocated to it. Since we assume the maximum

MCS level for each resource block, any allocation of the
resource block with MCS dZ’f’t, for a user to meet A?, would
use least amount of resource blocks. Therefore, if we use the
least amount of resource blocks for every user, we can find
the maximum users that can be supported by the given set of
resource blocks R for time slot 7.

In this section, we developed a very intuitive based upper
performance bound for the MaRS algorithm. In the following
section, we perform simulations of this upper bound and
compare the performance of MaRS algorithm with it.

VIII. PERFORMANCE EVALUATION

In this section, we assess the performance of the MaRS
algorithm proposed in Section VI. We evaluate MaRS algo-
rithm in terms of its ability to achieve our objective function
of maximizing the users served by varying various 5G network
parameters. We use the upper bound developed in section VII
as the benchmark for this purpose.

a) Network Setting: We simulate an 5G NR base station
deployed in a certain environment serving A number of
users. This BS and user deployment can be modeled using
any standard approaches such as hexagonal, square lattice or
stochastic geometry based Poisson Point process [35]. We
consider this BS to be operating as frequency division duplex-
ing(FDD) system with a channel bandwidth of 20MHz, which
is divided into 1200 subcarriers organized into R;,; =100 RB.
while considering sub-carrier spacing of 15Khz. Each PRB
represents the minimum scheduling unit and consists of 12
subcarriers and 14 symbols.

For each user in the network, the expected channel condition
(in terms of MCS) is randomly chosen. For each MCS c, the
modulation and the coding rate v“! is obtained from [36].

Configurable Parameters. There are many configurable
system parameters such as the time slot 7', number of MVNO
M, users of each MVNO uﬁn, minimum data rate for each
user \! , the maximum throughput allocated per MVNO slice
by NO A,,,. We evaluate the performance of MaRS algorithm
under various combination of these settings.

The number of users served in the time slot 7" would be the
sole performance metric for all our simulation settings.

b) Results: In this section, we evaluate the proposed
algorithm against the upper bound against varying parameters.

Varying Channel Propagation. We first evaluate the per-
formance of MaRS algorithm under channels with varying
LOS signal strength. We assume Rician fading channel with
no frequency and time correlation.

Fig. |4 compares the performance of MaRS algorithm against
the upper bound for different Rician factor K. The configura-
tion used for the experiments is listed in Table. [[I]

Time Slot, T 5
Number of MVNOs, M 2
Number of users per MVNO, u?, 10

50 Mb/Slot
500 Mb/slot

Minimum Throughput required per user, A%,

Maximum allowed throughput per MVNO slice, A,

TABLE II: Simulation Parameters - varying channel propaga-
tion.

Under this configuration, we can see that MaRS algorithm
can achieve near-optimal performance. In particular, when the
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Fig. 4: MaRS algorithm Performance under different Rician
factors.

Rician factor K = 0 (i,e. Rayleigh fading), 4 and 8, the
number of users served by the MaRS algorithm is within 10%
of the respective upper bound. For K = 8, the performance
of MaRS algorithm is as good as the upper bound. This can
be attributed towards the higher availability of resources that
can be allocated to fewer number of users.

Varying Time Slot 7. We now evaluate MaRS algorithm
by varying the slice time slot. Increasing the time slot 7,
increases the available resources to meet slice requirements per
T'. Therefore, for this experiment, we increase the minimum
data rate requirement for each user while also increasing the
maximum available throughput. We consider Rayleigh fading
to model the channel and generate MCS values for each user.

T 20,50,100
M 2

ul, 10

A% || 100 Mb/Slot
Am 5 Gbl/slot

TABLE III: Simulation Parameters - varying slice slot time 7.
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Number of
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Fig. 5: MaRS algorithm performance under different Time Slot
T.

Fig. |5| shows the performance of the MaRS algorithm in
comparison with the upper bound. Clearly increasing the
number of available resources, increases the performance of
the MaRS algorithm. This is evident in Fig [5| for 7 = 100
TTIs, where MaRS algorithm catches up with the upper bound
in terms of number of users served across MVNOs.

Varying other simulation parameters. We now vary other
system parameters to evaluate MaRS algorithm performance.
We understand the behaviour of MaRS algorithm by consid-
ering three scenarios of the network configurations as shown

in Table [[V] for our simulations. We assume Rayleigh fading

channels for all the simulations.

Scenario 1 Scenario 2 Scenario 3
T 50 50 50
M 3 2 3
uy, 15 10 5
AL, 100 Mb/Slot | 100 Mb/Slot | 50 Mb/Slot
Am 5 Gb/slot 5 Gb/slot 5 Gb/slot

TABLE IV: Simulation Parameters - 3 network scenarios.

W Upper Bound
m MaRS Algorithm

Number of users
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Scenario 1 Scenario 2 Scenario 3

Fig. 6: MaRS algorithm performance comparison for 3 sce-
narios.

In Fig. |6l Scenario 1 represents a network scenario where
there are many users with high minimum data rate requirement
and few resources to allocate them. Here, we can see that
MaRS algorithm is within 5% of the upper bound. In Scenario
2, we decrease the load on the base station by reducing the
number of MVNOs and users. Even in this case, we can see
MaRS algorithm achieves near-optimal performance. Finally
in Scenario 3, where the number of resource blocks are plenty,
we see that MaRS algorithm performs as well as the upper
bound. Further, we also tried varying the data rate requirement
for each user in the network under these 3 scenarios(Fig[7). We
choose a random data rate for each user between 10 Mb/Slot
to 150 Mb/slot, the results obtained is similar to the previous
case where the data rate is fixed.

Fast changing channel. Until now, we have considered time
correlation for each user in the network where the channel
conditions remains constant for each user in time slot 7. We
now consider a network scenario where the channel conditions
for each user changes at each TTI. We still assume Rayleigh
fading channels with no frequency correlation. Table [V] shows
the settings used for this evaluation.

45

. Upper Bound
s MaRS Algorithm

Number of users

Scenario 1 Scenario 2 Scenario 3

Fig. 7: MaRS algorithm performance comparison for 3 sce-
narios with random data rate for each user.
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TABLE V: Simulation Parameters - fast changing channel.
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Fig. 8: MaRS algorithm performance for fast changing chan-
nels.

Fig 8] represents the obtained results. We can see that MaRS
algorithm performance is with in 5% of the upper bound. As
mentioned in the earlier section, we have developed the MaRS
algorithm and evaluated its performance for near real-time and
non-real-time configuration of the Ran Intelligent Controller
(RIC) in O-RAN architecture. By demonstrating that MaRS
algorithm’s performance is near optimal, we can say MaRS
algorithm is a viable option for deployment for non-real-time
and near-real-time RIC.

RB Utilization. Finally, we evaluate the performance of
MaRS algorithm in terms of number of RB utilized to serve
the users across all MVNOs in the networks. We say a user
is served when its minimum data rate is met at time slot
T. We measure the number of RB utilized to serve users in
3 scenarios presented earlier under different MCS selection
criterion. MCS selection criterion:

o Maximum MCS: We assume that each RB in T for a
user can support the maximum MCS.

o Average MCS: We calculate the average MCS level for
a user across 7' and assume that each RB in 7" supports
this average value.

o Lowest MCS: We calculate the lowest MCS level for a
user across 1 and assume that each RB in 7' can only
support the lowest value.

Fig O] shows the obtained results. It is evident that the
Maximum MCS selection criteria uses the least amount of
resource blocks to serve users. This is understandable as we
assume the best channel conditions for all RBs. But, there may
be significant re-transmissions which would increase latency.
However, The performance of MaRS algorithm out performs
Average MCS and Lowest MCS selection criteria. There is a
significant decrease in the number of resource blocks used to
serve the users using MaRS algorithm when compared to these
criteria. Therefore, using MaRS algorithm we can serve more
users in a time slot 7' than using Lowest MCS and Average
MCS static algorithms.

. . Maximum MCS
Wl Average MCS
mmm MaRS Algorithm
[ Lowest MCS

Number of RB)utiIizved

Scenario 1 Scenario 2 Scenario 3

Fig. 9: Comparison of MaRS algorithm against static alloca-
tion algorithms for RB utilization.

IX. CONCLUSIONS

In this paper, we investigated the problem of RAN slicing in
multi-MVNO environment with varied users having minimum
data rate requirement as a specification for the users. First,
we discussed the SD-RAN architecture and discussed its
operation flow. Then, we formulated the MCS-aware RAN
Slicing (MaRSP) problem as optimization problem with an
objective function to increase the number of supported users
at each time slot 7. We proved that MaRSP problem is NP-
Hard. Next, we developed the novel MCS-aware RAN Slicing
(MaRS) algorithm where we maximize the data rate for each
user at each TTI and assign resources to it based on a greedy
paradigm. We also showed that the MaRS algorithm has a
polynomial time complexity. Following that, we developed
a upper performance bound for the MaRS algorithm by
considering no frequency and time correlation. Finally, we
carry out thorough evaluation of the MaRS algorithm under
various network and channel scenarios. Results conclude that
the proposed slicing algorithm achieves near-optimal perfor-
mance when compared with the upper bound. Through various
simulation settings, we have also shown that MaRS algorithm
is easily scalable. In compliance with the O-RAN architecture,
we have seen through results that MaRS algorithm can be
applied to non-real-time and near-real-time RIC deployments.
Using RB utilization as a metric, we have compared the
performance of MaRS algorithm with other static allocation
algorithms. We see that MaRS algorithm outperforms many
static allocation algorithms by using least amount of resource
blocks to serve minimum data rate requirement for each user.
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