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Abstract—The growth of 5G and edge computing has enabled
the emergence of Internet of Vehicles. It supports different types
of services with different resource and service requirements.
However, limited resources at the edge, high mobility of vehicles,
increasing demand, and dynamicity in service request-types have
made service placement a challenging task. A typical static
placement solution is not effective as it does not consider the
traffic mobility and service dynamics. Handling dynamics in
IoV for service placement is an important and challenging
problem which is the primary focus of our work in this paper.
We propose a Deep Reinforcement Learning-based Dynamic
Service Placement (DRLD-SP) framework with the objective of
minimizing the maximum edge resource usage and service delay
while considering the vehicle’s mobility, varying demand, and
dynamics in the requests for different types of services. We use
SUMO and MATLAB to carry out simulation experiments. The
experimental results show that the proposed DRLD-SP approach
is effective and outperforms other static and dynamic placement
approaches.

Index Terms—Internet of Vehicles, dynamic service placement,
deep reinforcement learning.

I. INTRODUCTION

T
HE evolution of fifth-generation network (5G) brings

enormous benefits in Internet of Vehicle (IoV) networks.

It contributes to intelligent and sustainable vehicular networks

with advanced safety, reliability, transportation efficiency, low

latency, and wider network coverage [1]. 5G networks are

end-to-end programmable networks that provide quality per-

formance while meeting the requirements of multiple services.

The next-generation mobile network (NGMN) association has

proposed the concept of network slicing [2], where network

slices are virtual network functions over a common phys-

ical network to satisfy different service-requirements. The

International Telecommunications Union (ITU) has classified

different 5G services into three major application scenarios,

namely, enhanced Mobile Broadband (eMBB), ultra-Reliable

and Low Latency Communications (URLLC), and massive

Machine Type Communications (mMTC) [3]. These applica-

tions provide high data rates, high reliability, low latency, and

high connection density. To support parallel functioning of

multiple applications, several computational operations need to

be performed within a network. The European Telecommuni-

cations Standards Institute (ETSI) introduces the use of mobile

edge computing (MEC) with IoV networks which extends
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storage and compute resources of cloud bringing them closer

to the end user [4]. It provides better coverage for vehicles and

fulfills various service requirements including, high reliability,

low latency, security, and so on [5].

Fig. 1 shows a framework of a three-layer IoV network

where vehicles communicate with the infrastructure for ser-

vices like media downloading, cooperative awareness mes-

sage (CAM), decentralized environmental notification mes-

sages (DENM) and so on, to avail coordination in remote

driving, parking space discovery, navigation, road safety, and

many other applications. Multiple services can be deployed

at the edge servers making use of compute, network and

storage resources. One of the primary challenges in IoVs

is service placement. Service placement is the problem of

mapping services to the edge servers in IoVs to satisfy the

requirements for the requested services while using the edge

resources efficiently. From the user perspective, it is important

to minimize the delay perceived by a vehicle. From the service

provider’s perspective, edge resource usage is an important

metric that should be minimized while keeping the resource

load across the servers as balanced as possible. This will

enable servers to scale up the resources for varying future

demands and efficiently handle the events of congestion and

failures.

Fig. 1: The framework of three-layer IoV Network

The growing complexity of traffic patterns and dynamics in

the requests for different types of services has made service

placement more challenging. It is necessary to adopt continual

learning of the environment for providing better services.

Embedding intelligence using machine learning (ML) has

drawn research interests recently. Different ML techniques

http://arxiv.org/abs/2106.06291v2
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have received significant attention and reinforcement learning

(RL) is an attractive approach for various problems in the

area of vehicular communications [6]. Considering the mobile

and changing environment of IoVs, the reinforcement learning

algorithm has the capability to train models online as the

system operates without prior knowledge. Q-learning and

deep reinforcement learning (DRL) are promising in many

edge-enabled IoV applications such as motion planning [7],

resource sharing/caching schemes [8]–[10], offloading [11],

[12], scheduling [13], [14], navigation [15] and so on. A rein-

forcement learning framework contains an agent that interacts

with the environment to observe the state, take an action,

and in response receives a reward/punishment to enhance the

performance of the network for future actions. The objective

is to learn a policy which maximizes the reward or minimizes

the punishment, respectively. The actor-critic approaches of

DRL have been widely explored in the literature to deal with

continuous control problems [6]. In our work, we extend the

traditional actor-critic framework along with integer linear

programming (ILP) formulation to solve the service placement

problem. Specifically, the DRL agent uses actor network as

policy function and critic network as value-function to design

deep reinforcement learning-based dynamic service placement

(DRLD-SP) framework. Our DRLD-SP framework leverages

the ILP-based optimization formulation as an actor network to

yield much faster learning for service placement. On the other

hand, the critic network uses a deep neural network (DNN) to

train its network to quickly specify quality values for decisions

taken by policy function (actor network).

In our previous work in [16], we addressed the problem

of service placement in vehicular networks using delay or

edge resource usage as the objective function. We proposed

a reinforcement learning-based (Q-learning) dynamic service

placement framework to find the optimal placement of services

at the edge servers while considering the vehicle’s mobility

and dynamics in the requests for different types of services.

Our work in [16] doesn’t consider the increasing demand

from vehicles and only performs one-to-one placement (i.e

placement of only one service at one edge node). In addition, it

maintains a look-up table (Q-table) to keep a record of quality

decisions. Different from [16], in this work, we propose deep

reinforcement learning based on-demand DRLD-SP system of

many-to-one placement where the number of service instances

varies based on the requirement from vehicles. It has the

ability to scale up or scale down the usage of resources at

the edge with changing service demands. This helps to keep

a balance of resources (from a service provider perspective)

to efficiently handle the events of congestion, failures, and

varying traffic conditions while satisfying the adequate delay

from the perspective of vehicles. Considering this, we propose

a single objective function that minimizes the maximum of

both edge resource usage and service delay, and controls the

relative importance of resource usage vs. service delay by

using a parameter U. Moreover, our DRLD-SP framework

proposes a new solution approach to evaluate decision quality

value by using a neural network. Q-learning is not efficient for

growing and complex IoV networks to store all quality values

in one table. It is also time-consuming to perform a frequent

query in a large table. Therefore, in this work, we adopt

deep reinforcement learning to overcome the limitation of Q-

learning in terms of value-function approximation ability. We

use SUMO and MATLAB to carry out simulation experiments.

The main contributions of our DRLD-SP framework are as

follows:

• We consider a three-layer edge-enabled IoV network and

formulate the dynamic service placement problem with

the goal of minimizing the maximum edge resource usage

(from the service provider’s perspective) and service

delay (from a user perspective).

• We propose DRLD-SP agent which consists of policy

function (actor network) and value-function (critic net-

work). The actor network uses an ILP formulation to

make service placement decisions, whereas the critic net-

work uses DNN to evaluate the performance of decisions

taken by the actor network in terms of delay observed by

vehicles.

• Performance evaluation is carried out on realistic IoV

traces created virtually using SUMO simulator. The re-

sults show that DRLD-SP outperforms the exisitng static

and dynamic placement schemes.

The rest of the paper is organized as follows. Section II

provides an overview of the related work in the literature.

Section III describes the system architecture, network and ser-

vice request model, computing model, placement problem and

proposed approach. Section IV describes the proposed method.

Section V discusses the experimental setup, simulation metrics

and results. Section VI makes concluding remarks.

II. RELATED WORK

The problem of service placement in IoV networks is not

widely explored in the literature. Some recent works [17]–

[19] study the static service placement problem and develop

solutions to produce a fixed mapping of services to edge

servers for a problem scenario. In a recent work [17], the

authors consider the problem of vehicle-to-everything (V2X)

service placement. They propose an ILP model for minimizing

the average service delay. The scope of the experiments is

limited to highway environments where the speed of vehicles

is constant with a fixed distance between vehicles, and the

movement of vehicles in one direction. The delay obtained

for V2X communication is also on randomly assigned values

from a given set of ranges. This work does not study the

changing traffic patterns and time-varying nature of vehicular

environment while making service placement decision. In [18],

the authors consider a highway environment for V2X service

placement. They propose a binary ILP model for minimization

of communication and download link delay for five different

V2X applications. In [19], the authors present cost-focused

delay-aware V2X service placement. It also considers one-

time service placement and doesn’t encounter the changing

environment of vehicles. Moreover, for the physical environ-

ment, the authors consider a highway scenario of 2 lanes

with the delay observed by vehicles is estimated using the

uniform distribution for a given range of values. Some work

on V2X applications is carried out in the context of cloud
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computing and fog-computing [20]–[22]. One common aspect

in most of the previous works is the static placement (i.e.

one-time placement) and consideration of latency or delay as

the objective. In few works, the service-type priority [22] and

cost [19]–[21] are used as an additional factors for service

migration.

In the literature, dynamic algorithms are proposed which

address the mobility features of users [23]–[26]. In a recent

work [23], Mada et al. propose service migration scheme for

5G mobile systems. This work proposes an ILP formulation

with the objective of minimizing resource allocation while

migrating services across centralized cloud and edge cloud.

To cope with the varying mobility patterns of users, this work

proposes to always reoptimize during an epoch without any

prior knowledge on the need for service migration. Here, the

user requests and delay observed are randomly chosen from

a given range of values. This work does not consider the

real mobility patterns of vehicles. The migration cost is also

not taken into consideration in this work, which is generally

high for such "always migration" schemes. The works in [25],

[26] propose to use threshold-based migrations in wireless

networks. Here, the state transition conditions are specified

and whenever the parameter (such as distance, number of

hops or RSSI value) exceeds the threshold value, the service

migration scheme is automatically triggered. In such a scheme,

the selection of a threshold value is complex and requires

careful consideration and complicated theoretical analysis. The

use of a fixed threshold for vehicular networks is not a good

choice where service requirement parameters widely differ

between safety applications and value-added applications (e.g.

infotainment). A recent work in [24] proposes DRL-based ser-

vice migration in vehicular networks. Different from our work,

the focus of this work is on migration and migration frequency,

and triggers service migration decisions by considering the

velocity of vehicles. However, this work may not satisfy delay

requirements for the requests which is an important require-

ment for many vehicular services. In addition, the dynamicity

in vehicular networks is not only due to the mobility of

vehicles. The above works fail to consider the dynamicity in

terms of service requests and increasing/decreasing demands

from users. We propose to use DRL to address the varying

traffic patterns as well as dynamicity of service requests. We

choose to use reinforcement learning because it’s scalable,

considers infinite state space, has the ability to interact with

environment and address the changing conditions to make

dynamic decisions.

The solutions have been developed in literature using DRL

for many other problem statements. Liang et al. in [27]

propose a Q-learning based dynamic resource allocation mech-

anism for services. The objective of this work is to maximize

the system’s computation revenue and minimize the service

rejection rate. This work performs priority-based allocation for

services. Here, the arrival rates are randomly chosen and do

not encounter the real-time mobility of vehicles. Wang et al. in

[8] propose a DRL-based resource allocation mechanism for

edge nodes in vehicular networks. This work focuses on the

resource sharing scheme for edge nodes where nodes cooper-

ate for optimizing resources for different tasks. Their design

doesn’t evaluate realistic traffic scenarios. The incoming traffic

and delays are modeled with queuing theory using the proba-

bility distribution function. The use of DRL is also observed

in the area of content caching and content sharing. Qiao et al.

in [9] propose a framework for cooperative content caching

between vehicles and RSUs. The authors use cost (i.e. price

per resource unit) as their objective and satisfying delivery

latency as the constraint. Using travel history as an input to a

DRL framework, the authors present an algorithm to perform

a joint-caching decision. Another DRL-based work on cost-

efficient joint optimal caching is carried out in [10]. This work

uses deep Q-learning to estimate the set of possible connecting

RSUs and vehicles for caching placement. Different from the

problem we focus in this paper, in the above works, vehicles

generate contents about road status, driving patterns, sensing

information, and so on, and offload to other vehicles and

infrastructure for further processing and sharing. Such contents

have different data sizes and computation demands, depending

on the vehicles generating them.

Recently, some researchers have studied the use of DRL

in computation offloading and scheduling for vehicular ap-

plications [11]–[13]. Wang et al. in use DRL for scheduling

and decision making regarding the charging and relocation

recommendation system of e-taxis. It uses a non-cooperative

DRL framework in vehicle’s ride-hailing platform to decide

on charging their batteries or serving order first. It helps

vehicles to avoid the situation of battery running out of the

charge. In [13], Zhan et al. propose a DRL-based computation

offloading scheduling scheme where vehicles traveling on

the expressway schedules the waiting tasks in the queue

to minimize latency and energy consumption. Another work

on computation offloading [11] presents an optimal solution

for calculating offloading proportion. This work considers a

single-user scenario and assumes that the task can be decom-

posed into several subtasks, which can be executed in parallel

across multiple nodes. Ning et al. [12] present a supervised

learning-based computation offloading and content-caching

algorithm. It trains a binary classifier using SVM based on

the data collected and decisions made from the proposed

formulation, to choose the best node for offloading. Different

from our work, in computation offloading, the vehicle is the

initiator to upload tasks or part of a task (after decomposing

a task into several subtasks) to other vehicles or edge nodes

for availing computation resources. Not limited to DRL, the

use of graph theory is also recently explored for scheduling

applications because of its small scale inputs in terms of the

number of tasks [28]. However, it may not be a good choice

for service placement applications where input is of large scale

(i.e vehicle dynamics).

Our work considers the dynamic service placement problem

and develops a DRLD-SP framework to handle the dynamicity

of vehicles considering dynamic user demands and vehicle

mobility. We use edge resource usage (from service provider

perspective) and service delay (from user perspective) as

important metrics to optimize. The number of deployed service

instances also varies (increases or decreases) based on the

varying demand from vehicles to maintain efficient usage of

limited edge resources.
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III. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

This section provides an overview of the hierarchical ar-

chitecture of the IoV system. Then, the network and service

request model, and computing model are discussed. Finally,

we describe the service placement problem and our proposed

approach.

A. System Architecture

Fig. 2: Hierarchical IoV architecture for our proposed service

placement approach

The hierarchical architecture of our proposed IoV system is

depicted in Fig. 2. It consists of three layers that include data

layer, MEC layer, and cloud layer. Here, MEC extends the

capabilities (storage and compute) of cloud and brings them

closer to the end user. At the data layer, we assume a city road

environment with multiple lanes and movement of vehicles

in different directions. The vehicles are randomly choosing a

source, destination, and speed to start and end their journey

at different times. The speed limit regulations and vehicle

arrival rates specified in the SUMO simulator, for the type

of vehicle and environment are followed. The service request

is generated from the data layer with a uniformly distributed

arrival rate _B for the type of service B. We assume the IoV

network environment is under 5G coverage using evolved

NodeB (eNB) stations for which inter-site distance (ISD) is

500m (urban-macro 5G regulations) [29]. It is also assumed

that there are multiple eNBs equipped with MEC hosts to form

the network edge with limited capacity servers. The available

resource capacity at edge �4 which includes compute, network

and storage resources, are calculated as �4 =
∑#

==1
'4 (=).

Here, '4 denotes a virtual resource unit and # denotes the

total number of resource units at the edge. Additionally, the

network edge connects to large capacity cloud servers (at

the cloud layer) via a backbone network. The resources at

cloud �2 =
∑"

<=1 '2 (<) are larger where " >>> # . Here,

'2 denotes a virtual resource unit and " denotes the total

number of resource units at the cloud. Due to MEC capacity

limitations, the placement of services at the edge only takes

place when there is a demand for that service. In case of no

demand, the edge node will remove the instance of service

B from its resources and transfer it back to the cloud to

keep MEC nodes less loaded and give better performance for

new service demands. We do not consider the communication

channel characteristics, and we assume adequate links between

different layers, nodes, and servers are available to enable

communication among them.

B. Network and Service Request Model

We use � to denote a set of edge servers with 4 ∈

� as an edge node. For each edge node 4, the residual

resource capacity (available resources) is denoted by �4. Let

+ and ( denote a set of vehicles and service types (services),

respectively. A vehicle E ∈ + requires a service B ∈ ( which

is to be hosted at a MEC node. The number of vehicles

requesting service B is denoted as _B , and the number of

vehicles one instance of service B can handle (or provide

parallel connection) at a time is denoted by C. Further, a

service request model is defined as a 4-tuple structure (a, ;>2,

C, B). We assume each vehicle a is equipped with a clock and

GPS, which enable it to specify time C and location ;>2 in

its service request message. Associated with each service B,

the amount of resources consumed by deploying it at edge

node � is denoted by 'B, and the delay/latency requirement

threshold is denoted as �B . In response to the request, the

location of optimal MEC nodes/servers will be calculated to

deploy services. The notations are summarized in Table. I.

TABLE I: Summary of Notations

Notation Description

� Set of MEC nodes

( Set of services

+ Set of vehicles

'B Resources consumed by service B
�4 Available resources at edge node 4
GB
4

Assignment of service B at the edge node 4
�B Delay threshold or maximum allowed delay for service B
_B Number of vehicles requesting service B
C Number of vehicles a service instance can handle at a time

IB Number of instances required for service B
i4 The edge resource usage

3B
4

The average time delay experienced by vehicles when service B
is deployed at node 4

C. Computing Model

We model the MEC computation system as M/D/1 queue,

where arrival occurs with _B according to Markov stochastic

model and service processing rate is deterministic (serving at

rate C). The total service delay observed by vehicles while

requesting for service B from edge node 4 refers to the total

time from when a vehicle sends a service request B to when

the corresponding response is received from an edge node. In

our proposed computation model, it consists of propagation

delay and queuing delay: 3B4 = 3B?A>? + 3B@D4D4. We assume

that there is no waiting queue if _B ≤ C. In such cases, the

queuing delay will become zero i.e. 3B@D4D4 = 0. However, if

_B > C, a queue will be created for vehicles more than C and

the average waiting time for service B over the MEC node will

be calculated as [30]:

3B@D4D4 =
_̀B

2C(C − _̀B)
(1)
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Here, _̀B = _B−C. As a rule of thumb, the average propagation

delay is computed as the ratio between the distance and the

propagation speed over the medium:

3B?A>? =
1

|+ |

∑

E∈+

38BC(E, B)

2
(2)

Here, 38BC(E, B) is the euclidean distance between vehicle E

and the node where service B is deployed, and 2 is the prop-

agation speed of the signal through communication medium.

Thus, the total service time can be obtained by:

3B4 =
1

|+ |

∑

E∈+

38BC(E, B)

2
+

_̀B

2C(C − _̀B)
(3)

For analyzing the load over a MEC node, we calculate the edge

resource usage which is denoted by i4. It is a ratio between

the resources that IB instances of service B will consume and

the available resources at the edge node. We can calculate it

as:

i4 =

∑

IB
'B

�4

,∀4 ∈ �,∀B ∈ (, (4)

The calculation of IB is based on C and given by:

IB =

⌈

_B

C

⌉

,∀B ∈ ( (5)

We extract the features of service requests and use deep

reinforcement learning to solve the service placement problem

in an on-demand dynamic manner.

D. Service Placement Problem and Proposed Approach

We consider service placement problem in IoV networks

with MEC nodes having limited resources. Given a set of

services with their resource and delay requirements, the prob-

lem is to find the optimal placement of services at the edge

servers while considering the vehicle’s mobility and dynamics

in the requests for different types of services. The number of

vehicles requesting service B and their distance from different

edge servers are dynamic. A static solution (SSP) which fixes

servers for hosting services is not effective for a mobile and

dynamic scenario of an IoV network. It is therefore imperative

that the real-time environment be taken into consideration

while mapping a service to an edge server.

With this goal, we proposed an RL-based dynamic service

placement approach in [16]. The work in [16] uses a classic

model-free Q-learning algorithm that optimizes a certain ob-

jective such as minimizing resource usage or minimizing the

delay. In this work, we proposed a single objective function

that minimizes the maximum of both edge resource usage

and service delay, and controls the relative importance of

resource usage vs. service delay by using a parameter U.

In [16], we considered a one-to-one placement with a fixed

number of services and availability of a single instance for

each service. However, deployment of one instance for one

service can only provide service to a limited number of

vehicles. In case of an increase in demand for any particular

service, there will be a need for multiple instances for each

service. In this work, we propose an on-demand system of

many-to-one placement where the number of service instances

varies based on the requirement from vehicles. It has the

ability to scale up or scale down the usage of resources at

the edge with changing service demands. This helps to keep

a balance of resources (from service provider perspective)

to efficiently handle the events of congestion, failures, and

varying traffic conditions while satisfying the adequate delay

from the perspective of vehicles. Different from our work in

[16], we propose a DRLD-SP framework in this work. Q-

learning used in [16] has scalability problem with large tables

for complex IoV networks. Therefore, a deep learning model

will help to provide a quick solution (remapping of services)

by estimating the quality of performance metrics which will

mitigate the poor performance at any particular communication

link or channel between the vehicle and server.

IV. DRLD-SP: DEEP REINFORCEMENT LEARNING-BASED

DYNAMIC SERVICE PLACEMENT

In this section, we present the proposed DRLD-SP frame-

work, for the problem described above. We exploit the actor-

critic DRL model with an ILP formulation to solve the service

placement problem in a mobile scenario of IoV networks.

The block diagram of the actor-critic DRLD-SP agent is

shown in Fig. 3. The DRLD-SP agent learns and updates the

actor-critic networks by interacting with the time-varying IoV

environment. An actor generates action and a critic estimates

a value-function needed to keep the performance of an actor

updated. We leverage the actor-critic with our ILP formulation

to perform optimal service placement in a dynamic manner.

Fig. 3: Structure of the DRLD-SP Agent

First, we briefly explain the design of state space, action

space, policy and reward function used in our DRLD-SP

framework.

A. State Space l

At a given time instant C, the state space set describes

the network environment. The DRLD-SP agent observes an

environment to constitute the following set of data l from the

service request model:

l = {[E1, ;>21, B], [E2, ;>22, B], ..., [E=, ;>2=, B]}C (6)

where B ∈ (, E1, E2, ..., E= is the set of vehicles IDs, and

;>21, ;>22, ..., ;>2= is the set of locations of vehicles requesting

for service B at time unit C.
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Fig. 4: The proposed DRLD-SP approach

B. Action Space a

The action space describes the action taken by the policy

module for placement of service B on edge node 4, as shown

in Fig. 4. Let a denote the action space. The action at time

unit C is defined as:

a = c(l) = GB4,∀4 ∈ �,∀B ∈ (, (7)

where c is the policy (defined in the next section) required to

generate an action over the observation set of l at time unit

C, and GB4 gives the matrix indicating the placement of service

B on edge node 4.

C. Policy Function c

The policy c is a function performed by an actor network to

map state-space to an action-space c : l → a. For DRLD-SP,

the actor network performs a policy to optimize the objective

function subject to different constraints, as shown in Fig. 4. We

use a single objective function in the framework of our study.

The objective is to minimize the maximum edge resource

usage and service delay, and control the relative importance

of resource usage vs. service delay by using a parameter U.

The rationale for using resource usage is to efficiently utilize

the limited edge resources and decrease the possibility of

congestion so that the MEC node has enough room for service

instance scale-up in case of increased future demands. From

the perspective of a user, minimizing the maximum delay will

help to satisfy adequate delay requirements and make service

availability faster for the vehicles. The policy function c is

formulated as:

c = <8=<0G
B∈(,4∈�

(

U
∑

4∈�

i4 + (1 − U)3B4G
B
4

)

(8)

The objective of the problem is to minimize the maximum

edge resource usage and total service delay observed by

vehicles. The edge resource usage i4 is determined as the

ratio between the resources that IB instances of service B will

consume and available resources at edge node 4, as described

in Section III-C. Whereas the service delay 3B4 consists of

propagation delay and queuing delay observed by a set of

vehicles while requesting for service B from edge node 4.

The queuing delay is obtained through approximating edge

computation system as M/D/1 system, as described in Section

III-C. Note that the service delay is normalized in the range

[0,1] by diving it to the maximum possible service delay. We

introduce a parameter, U, to control the relative importance of

resource usage vs. service delay. The placement of service B

at edge node 4 is given by GB4, where GB4 is a binary variable. If

edge node 4 deploys service B, GB4 is 1. Otherwise, it is 0. The

placement of service is subjective to the following constraints:

Mapping Constraint: This constraint guarantees each edge

server node hosts a service or a set of services, and the

decision variable GB4 is a binary integer decision variable.

∑

Bn (

GB4 ≥ 1;∀4 ∈ � (9)

where,

GB4 ∈ {0, 1};∀B ∈ (,∀8 ∈ �

Delay Contraint: This constraint ensures that the service

delay experienced by vehicles requesting service B should

be less than the service’s maximum delay threshold �B.

∑

B∈(

GB43
B
4 ≤ �B ;∀4 ∈ � (10)

Resource Constraint: This constraint ensures that the avail-

able resources at the edge node are not exhausted while

deploying IB instances of service B, where IB ≥ 1.

∑

4∈�

GB4IB'B ≤ �4;∀B ∈ ( (11)
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D. Reward R(l, a)

At each time unit C, in the response of the action taken by an

actor network of the DRLD-SP agent, the system receives an

immediate reward R(l, a) from the environment. Generally,

the DRL agent aims to maximize the reward. However, the

objective of our service placement problem is to minimize

the service delay observed from vehicles in accessing service

B from the associated edge server 4. Therefore, the reward

function is calculated as:

R(l, a) = E
[

3B4 (C)
]

(12)

where 3B4(C) =
1
|+ |

∑

E∈+
38BC (E,B)

2
+ _̀B

2C(C−_̀B )
, is the average

service delay observed by a set of vehicles at time unit C.

E. DRLD-SP Agent

Fig. 4 depicts the framework of the DRLD-SP algorithm

which consists of environment, policy function (actor), value

function (critic), and replay memory M. The grey shaded area

represents the computations or functions performed by DRLD-

SP agent over the MEC node. The actor network and critic

network are the agent’s primary functions to perform action

and evaluate decision quality value. The DRLD-SP agent has

direct interaction with the environment.

From environment, the request for service B is initiated by

vehicle E following the service request model, as discussed in

Section III-B. In return, considering the demand for service B

at time C and location ;>2 of vehicles requesting for service

B, the policy function module selects the edge servers for the

services for placement based on the action selection strategy c,

as discussed in Section IV-C. The task of the value function

module is to critic the performance of the actor network based

on the action taken and rewards received. It is responsible for

calculating the quality value &(l, a) of the decision taken

by the actor network of the policy module. A high &(l, a)

means a high-quality decision. Therefore, an actor has to select

actions with the maximum quality value, a = arg max &(l, a).

In our proposed design, the critic network is a neural network.

The input of the neural network is a state, action, and reward.

The reward is a response, an agent receives by the environment

for the corresponding action, as discussed in Section IV-D. The

critic network updates its parameters \ to minimize the mean

square loss function L&. The loss function is computed as:

L& (\) =
1

N

N
∑

8=1

[

(HC8 −&8 (l, a; \))2
]

(13)

Here, HC is a target value which is calculated as:

HC =

{

f(�B ,R(l, a)) R(l, a) < �B

0 else
(14)

Where f(�B ,R(l, a)) is the standard deviation between delay

threshold and reward. The higher the deviation is, the better

the model in terms of delay. DRLD-SP agent further uses

a replay memory M. It is used to store the experience

for training the critic network. The transition information

contains [l, a,R(l, a))], required to train a network. The

critic network uses replay memory to fetch experience after a

random period of time ) and optimizes the network parameters

for better performance.

We present the proposed DRLD-SP agent framework in

Algorithm 1 and Algorithm 2. In Algorithm 1, we present the

network optimization and training procedure. In this algorithm,

U is the total number of episodes required to train critic DNN,

and ) is the time step for updating network parameters. In

lines 2-9, the DRLD-SP agent performs data acquisition to

train DNN for each episode. It observes the network state (line

3) and calculates the number of instances required to handle

the traffic (line 4). In line 5, the actor network calculates GB4
using policy defined in Section IV-C. Then, according to the

current policy and state, the action a is performed (line 7) to

obtain a reward (line 8). A transition of collected information

is stored in replay memory M(line 9). Later, the DRLD-SP

agent randomly samples a batch of size N to update the critic

network parameters using the loss function (line 10-12). Once

the network is trained, the procedure for decision making gets

simple and efficient as explained in Algorithm 2. Here, by

making use of a trained critic network, the DRLD-SP agent

observes the state (Line 1) and performs an action for which

quality value is maximum (Line 3). Later, it obtains a reward

(Line 4) and observes a new state (Line 5) to facilitate traffic

for the next time unit and so on.

Algorithm 1: DRLD-SP Network Optimization

Input: Initialize the critic neural network &(l, a) with

parameters \ and replay memory buffer M

Input: Service profile, edge profile

1 for episode=1,2,3,...., U do

2 for t =1 to T do

3 Observe the state l using (6)

4 Calculate IB for all B ∈ ( using (5)

5 Calculate GB4 using actor network (policy

function module)

6 Set a = GB4
7 Perform action a

8 Obtain reward R(l, a) using (12)

9 Store transition [l, a,R(l, a)] in replay

memory buffer M

10 Sample a batch of N samples from M

11 Set HC with (14)

12 Update critic network parameter by minimizing the

loss (13)

Return: The parameters of trained critic DNN

Algorithm 2: DRLD-SP Decision Making Process

Input: Trained critic network with parameters \

Input: Service profile, edge profile

1 Initialize the state lt

2 for t=1,2,3,...., do

3 Perform action a = arg max &(lt, at; \)

4 Obtain reward R(lt, at)

5 Update lt → lt+1
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V. PERFORMANCE EVALUATION

In this section, we present performance evaluation results

obtained from the extensive simulation of the proposed DRLD-

SP algorithm over an IoV network. We start by describing the

simulation scenarios for the edge-enabled IoV environment

and parameters used to train the optimization model and neural

network.

A. Simulation Setup

We use SUMO and MATLAB to set up the simulation

environment. SUMO is an open-source simulator, used to

simulate a virtual traffic scenario of a realistic vehicular

network. In this work, we extract the area of 3:<2 using Open-

streetmaps [31]. Fig. 5 shows the geographic region and eNBs

nodes equipped with MEC servers to provide coverage to the

vehicles. The choice of the area is significant as it is present

in the center of the city with high traffic densities (Urban

environment). Furthermore, the randomTrip application of the

SUMO package is used to automatically generate the trips for

the vehicles with mobility over the given area of the map. We

collect traces of data which helps to generate a 4-tuple service

request message dynamically for our algorithm. Table II lists

the parameter values used in the simulation. Different sets of

values are chosen for performing multiple experiments. We

assume delay critical services and a small threshold is chosen

to enforce strict delay constraints. Whereas, the selection of

resource unit for 'B and �4 is random. Experiments are

performed for different sets (by choosing the lowest values

as well as the highest values) of 'B and similar performance

trends are observed.

Fig. 5: The simulation scenario illustrating quality-coverage

of edge nodes

The implementation of the DRLD-SP agent is carried out

using MATLAB. For the neural network design, we con-

ducted a comprehensive experimental study to find the best

hyperparameters. We use 3-layer fully-connected feedforward

critic network. The size of the input layer is the same as

the dimension of the network input states. It has 3 hidden

layers, each with 256, 64, and 32 neurons respectively. We use

hyperbolic tangent sigmoid for activation of hidden layers. The

output layer is a single neuron that expresses the Q-value. We

use the linear transfer function for the activation of the output

layer. To avoid overfitting, the learning rate of 0.01 is used

to train a network. We set up the size of a batch as 100. The

maximum number of episodes performed to train a network is

5000 with each episode having a maximum of 20 iterations.

The parameters of the critic network are updated every 5 time

slots. It achieves accuracy of 90%+ in 4.6min. All experiments

are evaluated on a system with Intel Corei5 2GHz and 8GB

RAM.

TABLE II: Simulation Parameters

Parameters Value

( 8
+ 200
� 6
'B (*=8C) [10 15 20 25 30 35 40 45]
�4 (*=8C) [60 70 80 90 100 100]
�B (<B) [10 10 10 10 12 12 12 12]
U [0.2 0.4 0.6 0.8 1]
C 15
N 100
t 1 to 600

B. Performance Metrics

To verify the performance of our proposed DRLD-SP mech-

anism, we use the following metrics.

• Average Service Delay: It is the average delay experi-

enced for different services by the vehicles.

• Edge Resource Usage: It is the ratio between the re-

sources that IB instances of service B will consume after

placement and the available resources at the edge node.

This metric focuses on the minimum usage of limited

edge resources.

• Fairness: The fairness of server utilization is a represen-

tation of fair and efficient resource consumption. It also

determines the level of load balancing among different

edge nodes. We use Jain’s index as a fairness measure in

this work [32]. The edge server utilization is fairer when

Jain′s index is closer to 1.

• Service Instance Utilization: We define a utility function

for service instance utilization as:

UB =
1

)

)
∑

C=0

(

_B (C)

IBC

)

(15)

Where IB is the total number of instances deployed for

service B. We use this metric to show the efficiency of

placement algorithm in terms of utilizing the deployed

service instances at the edge.

• Service Satisfaction: We define a utility function for

service satisfaction as:

ZB (C) =

{

1 _B ≤ C
C

_B

_B > C
(16)

where _B is the number of vehicles requesting for service

B at time C and C is the number of vehicles handled by an

instance of service per unit time. The service satisfaction

shows how efficient service placement decision is, and

helps to be aware of the proportion of traffic able to

get service from the edge without service congestion and

waiting delay.
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(a) Trial 01 (b) Trial 02 (c) Trial 03 (d) Trial 04 (e) Trial 05

Fig. 6: Number of vehicles requesting for a service at a time (min-to-max bar)

(a) U = 0.2 (b) U = 0.4 (c) U = 0.6 (d) U = 0.8 (e) U = 1

Fig. 7: Average service delay

• Average Instances Installed: This metric represents the

average of instances deployed for each service. It helps

to measure the performance of the placement algorithm

in terms of the average of instances installed throughout

the period while facilitating the IoV traffic.

• Re-placement Cost: This metric gives the number of

times the algorithm re-optimizes within the total duration

of the experiment. The higher value of re-placement

cost (or migration cost) means more optimizations and

re-placements implying more service interruptions and

network performance degradation.

C. Baseline Algorithms for Comparison

We evaluate the performance of our proposed dynamic ser-

vice placement DRLD-SP algorithm against existing one-time

placement static algorithm [17] and mobility-aware dynamic

schemes [23], [25]. We suitably modify these schemes (keep-

ing the underlying approach unaffected) to suit our problem

context for a fair comparison with our algorithm.

A static solution is a baseline technique that fixes servers

for hosting services by performing a one-time ILP placement

solution. Earlier works that provide ILP-based static solutions

for service placement and edge resource allocation were briefly

discussed in Section II. As a baseline, we use the static

placement scheme developed in [17]. To evaluate the efficiency

of handling the varying demand for services from vehicles we

compare our algorithm with two versions of static placement;

one is a static placement where it deploys 1 instance for each

service, and another is to deploy 2 instances for each service

to handle the maximum traffic. We plot the simulation input

data in Fig. 6 to show variation in the request for services

by vehicles (min to max). Considering this, the number of

instances required to handle the maximum load is 2. Since 1

instance can handle 15 vehicles at a time (i.e. C = 15, shown in

Table II), 2 instances can handle a maximum of 30 vehicles

at a time. We formally call two different versions of static

service placement as, YYVmin (i.e. IB=1 for all services), and

YYVmax (i.e. IB=2 for all services). Here, SSP stands for static

service placement.

Fig. 8: Average service delay vs. U

We noted that our proposed DRLD-SP algorithm considers

the traffic mobility along with service dynamics while making

a decision on the number of instances for a service. There-

fore, we also compare our DRLD-SP with existing dynamic

schemes which are termed as always-reoptimize (AR) [23] and

threshold-based reoptimization (TBR) [25] in this work. The

performance of AR and TBR is also compared in terms of min

(i.e. IB=1) and max (i.e. IB=2) service instance case. We call

them accordingly as GXmin, GXmax , ZHXmin and ZHXmax .

These works were briefly discussed in Section II. For TBR

comparison, we use a threshold of 9 to satisfy and keep the

delay below the minimum threshold (�B) requirement.

We carry out experiments (trials) five times with different

random seeds and for each trial, we vary U from 0.2 to 1

(as shown in Table II) to study the relative importance of

minimizing the maximum of resource usage versus service
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(a) U = 0.2 (b) U = 0.4 (c) U = 0.6 (d) U = 0.8 (e) U = 1

Fig. 9: Edge resource usage

delay. We present the average of five trials. We use error

bars within plots to show minimum-to-maximum variations

observed around the average value by performing five trials.

D. Results

1) Performance of proposed DRLD-SP framework: In this

section, we briefly discuss the performance of our proposed

DRLD-SP framework against two versions of SSP using

different evaluation metrics. In the first place, Fig. 7 illustrates

the average delay experienced for different services by the ve-

hicles. We compare the average service delay of our proposed

DRLD-SP framework against two versions of static service

placement (((%<8= and ((%<0G), as discussed in Section V-C.

It can be observed that most of the time the average delay

observed by vehicles for ((%<8= is the highest of all. This is

because a limited portion of service requests can be handled by

one instance of service, as more requests arrive, the queuing

delay increases. However, the ((%<0G has the ability to handle

the maximum load but the delay observed in ((%<0G is also

greater than our proposed DRLD-SP framework. This is due

to the fact that the vehicular environment is not stationary.

The high mobility of nodes and constantly changing topology

requires continual learning of the environment (as in DRLD-

SP) to provide a better average delay for each service. Another

observation from Fig. 7 is that both SSP deployments are

not able to satisfy the delay threshold requirement for some

services. In contrast, the delay for DRLD-SP is always well

below its threshold for all trials.

We evaluate the performance in terms of average delay for

all services and all trails against U (i.e. relative importance

of edge resource vs delay), in Fig. 8. Higher the value of U,

the lesser the importance of delay. It can be observed that

the trend for delay vs. U is linear in DRLD-SP, from the fact

of decreasing importance for the delay. However, in SSP for

minimum as well as maximum load handling capability, the

trend is erratic. The delay for U = 0.2 is lesser, compared

to U = 1, but it is not linear. This will make it difficult

for the service provider on deciding hyper parameters of SSP

deployment because of unpredictable performance. With this,

we show the effectiveness of adopting a learning method by

the dynamic approach.

Fig. 9 shows the average edge resources consumed by three

different types of placement methods. In SPP, to accommodate

max load (i.e. ((%<0G), the usage of resources is very high.

On the contrary, the ((%<8= consumes resources lower to a

small degree than DRLD-SP but adds-up waiting delays and

service request congestions. Our proposed DRLD-SP intends

to utilize edge-server resources more effectively accommodat-

ing the same demand (as carried out by ((%<0G), but with

low usage of edge resources.

Further, we compare the balanced spread of service re-

sources against changing values of U. We plot average fair-

ness calculated from five trials in Fig. 10 to represent the

load balance among the edge nodes. The balanced spread of

service resources among edge servers should increase with the

increasing U and help to prevent the saturation/congestion at

any single server given the limited resources at the servers.

With SPP, the ((%<8= is exhibiting better performance only

for higher values of U. In ((%<0G, the fairness is slightly lower

than DRLD-SP but considering the fact that the resources

of all servers in ((%<0G are always highly-consumed so its

difficult to evaluate the performance of fairness. In the case

of our proposed DRLD-SP, the spread of service resources

exhibits substantially higher fairness for all values of U, and

mitigates the load imbalance and resource wastage problem

across the edge nodes, while satisfying the delay requirements.

As a matter of fact, the inefficient usage of resources not

only results in wastage but also forces future service demands

to be accessed from the network core that will incur higher

delay leading to lower performance. This demonstrates the

effectiveness of the proposed DRLD-SP in edge resource

usage and service delay for the proposed IoV network with

limited edge resources.

Fig. 10: Fairness

We further study the performance of DRLD-SP in terms

of service instance utilization and service satisfaction against

maximal and minimal resource-consuming frameworks, re-

spectively. We plot service instance utilization comparing our
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Fig. 11: Service instance utilization

Fig. 12: Service satisfaction for ((%<8=, �'<8= and )�'<8=

method with ((%<0G, �'<0G and )�'<0G in Fig. 11. The

performance for ((%<0G, �'<0G and )�'<0G is similar

because all the maximum-utilization scenarios use two service

instances for each type of service. The resources available at

the edge are limited and significant for latency-sensitive IoV

networks. Once the resources are used while placing a service,

it’s important to utilize it the utmost to avoid any wastage of

resources. As depicted in Fig. 11, the average service instance

utilization by ((%<0G, �'<0G and )�'<0G is low. On the

other hand, our proposed DRLD-SP utilizes service instances

more efficiently.

On the contrary, if minimum resource usage is considered,

the wastage of resources can be minimized but it has the

drawback of low service satisfaction. Fig. 12 depicts the results

for service satisfaction for ((%<8=, �'<8=, and )�'<8= . The

service satisfaction is degraded when demand increases for

any particular service. We plot the average for each service

in Fig. 12 and the error bar shows max-to-min variation in

service satisfaction value for five experimental trials. This is

because a smaller portion of service requests can be addressed

by one instance of service. In the case of DRLD-SP, the service

satisfaction is always 1 because of its dynamic nature where

the placement decision accommodates the varying demand of

vehicles. The results imply that DRLD-SP uses a good policy

to place services over the edge without giving any downsides

to the user or service provider.

Fig. 13: Average instances installed

In Fig. 13, we compare the average instances installed

by different types of service placement methods. As can be

observed from the figure, our proposed DRLD-SP placement

intends to utilize edge resources more effectively accommo-

dating the same demand (as carried out by ((%<0G, �'<0G

and )�'<0G), but with lower number of instances. Moreover,

for ((%<8=, �'<8=, and )�'<8=, the number of instances for

all services is always 1 but it leads to congestions and queuing

delays and hence unable to fulfill delay threshold requirements.

2) Impact of abrupt changes to the environment: In the

previous set of experiments, we considered a smooth traffic

scenario in which vehicular density changes gradually with

the increase in the number of vehicles from 1 to 200th

time unit and then decrease in the number of vehicles from

400th to 600th time unit. In this section, we evaluate the

performance of DRLD-SP performance by making abrupt

changes to the environment. For every 100th time unit, we

reduce the vehicular density to 50%. After 25 time units, it will

abruptly change back to the initial pattern. In Fig. 14 and Fig.

15, we validate the impact of abrupt changes and the effect

on network performance in terms of delay observed by the

vehicles and fair deployment of edge resources, respectively.

The results show that even with abrupt changes our proposed

DRLD-SP framework is effective due to its ability of recording

experiences in the replay memory module (Fig. 4) which helps

to retrain the critic network parameters for better performance

in accordance with the changes in the environment.

3) Comparison with baseline dynamic frameworks: We

further compare the performance of our proposed DRLD-

SP algorithm with the baseline mobility-aware dynamic al-

gorithms AR and TBR (for min and max service instance

scenarios). Fig. 16 and Fig. 17 compare the average service

delay and re-placement cost for different values of U, the

parameter denoting the relative importance of resource usage

vs. delay, respectively. Fig. 16 shows that DRLD-SP achieves

lowest service delay outperforming the static and dynamic

schemes. This is because, �'<8= and �'<0G in reality doesn’t

check for the need and dynamicity of the network. It simply

finds new optimal solutions in every iteration which affects

its performance. Whereas, using a fixed threshold value (in

)�'<8= or )�'<0G) to trigger reoptimization based on pre-
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Fig. 14: Average service delay

Fig. 15: Fairness

vious values of delay, may not work well always as the delay

requirements could vary over a wide range. In addition, AR

and TBR are mobility-aware dynamic mechanisms that do

not consider the dynamicity in terms of service requests and

varying (increasing/decreasing) user demands resulting in poor

performance. This also degrades service satisfaction for �'<8=

and )�'<8=, as observed in Fig. 12. On the other hand, using

two instances results in resource wastage as observed in Fig.

11.

Fig. 16: Average service delay

Fig. 17 depicts re-placement cost (migration cost) for dif-

ferent values of U. As observed from the figure, the AR and

TBR schemes incur higher re-placement cost compared to the

proposed DRLD-SP scheme. In )�'<0G , the re-placement

cost is higher when compared to )�'<8= as the latter has

not much choices for migration due to resource scarcity.

More re-placements of services mean more disconnections

and reconnections among vehicles and edge nodes. These

frequent service interruptions will affect network performance

with additional overheads. In addition, when the value of U

is low or high, one of the factors- resource usage or delay-

becomes more significant and the re-placement cost becomes

high. When the value of U is around 0.5, the delay and resource

usage are balanced and the replacement cost is low.

Fig. 17: Re-placement Cost

VI. CONCLUSION

In this paper, we addressed the problem of dynamic service

placement in IoV networks. We developed a deep reinforce-

ment learning-based framework for continual learning of the

environment to capture the dynamicity of vehicles, increasing

service demands and varying request-types. We formulated the

optimization problem to minimize the maximum edge resource

usage and service delay. For the decision making, the DRLD-

SP agent uses an optimization problem as the actor network

and a value-function to critic the quality of the decision

taken by the actor network. We evaluated our framework by

simulating a virtual traffic scenario of a realistic IoV network

using SUMO. We carried out an extensive set of experiments

to demonstrate the superiority of our DRLD-SP framework

over other static and dynamic placement methods in terms

of several important metrics such as delay, resource usage,

fairness, and migration cost.
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