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Abstract—LoRa wireless networks are considered as a key
enabling technology for next generation internet of things (IoT)
systems. New IoT deployments (e.g., smart city scenarios) can
have thousands of devices per square kilometer leading to huge
amount of power consumption to provide connectivity. In this
paper, we investigate green LoRa wireless networks powered by
a hybrid of the grid and renewable energy sources, which can
benefit from harvested energy while dealing with the intermittent
supply. This paper proposes resource management schemes of
the limited number of channels and spreading factors (SFs) with
the objective of improving the LoRa gateway energy efficiency.
First, the problem of grid power consumption minimization while
satisfying the system’s quality of service demands is formulated.
Specifically, both scenarios the uncorrelated and time-correlated
channels are investigated. The optimal resource management
problem is solved by decoupling the formulated problem into
two sub-problems: channel and SF assignment problem and
energy management problem. Since the optimal solution is
obtained with high complexity, online resource management
heuristic algorithms that minimize the grid energy consumption
are proposed. Finally, taking into account the channel and energy
correlation, adaptable resource management schemes based on
Reinforcement Learning (RL), are developed. Simulations results
show that the proposed resource management schemes offer
efficient use of renewable energy in LoRa wireless networks.

Index Terms—LoRa, energy harvesting, resource management,
reinforcement learning.

I. INTRODUCTION

LoRa wireless networks are considered as a key technol-
ogy for next generation of internet of things (IoT) wireless
networks [1]. These systems are based on the deployment
of a large number of low-powered connected devices. In-
deed, innovative wireless network, such as LoRa, enables
the exponential growth connected devices, robust operations,
wider coverage, and higher energy efficiency [1]. Hence, LoRa
may provide sustainable connectivity to low-powered devices
distributed over very large geographical areas [2], [3]. LoRa
which operates in the unlicensed bands [4] provides also
adaptive transmission rates and coverage for low-powered
devices. LoRa enables long range transfer of information
with a low transfer rate. [6]. The chirp spreading modula-
tion (CSM) was adopted as the modulation technique for
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LoRa transmission [7]. This scheme is based on coding the
information in the frequency shift at the beginning of the
symbol. The chirp is assumed to be as a kind of carrier
and the modulated signal is a chirp waveform which its
behaviour depends on the SF. LoRa signals with different
SFs are quasi-orthogonal [7]. However, LoRa signals with the
same SF exhibit cross-correlation properties that could make
them vulnerable to interference. The performance of CSM was
theoretically investigated in [7]. The performance analysis of
this modulation scheme was extended by considering various
fading channels in [8] and by considering interference in [9].
The scalability of LoRa networks was investigated in [10]
by proposing a stochastic geometry framework. This frame-
work supports the exponential growth of connected devices.
Furthermore, adequate and intelligent resource management
strategies may be adopted in LoRa networks to enhance the
system performance.

RL approaches have become increasingly popular, par-
ticularly for systems with complex and dynamic problem
spaces [12]–[14]. These approaches are apt to act under un-
foreseen environments by making decisions, receiving rewards
and penalties, and learning policies based on the system
conditions. Unlike supervised learning, RL pursues the optimal
solution by interacting with the environment parameters (e.g.,
the total required energy, and the current energy price). In
particular, the RL approach adopts a trial-and-error search
method to discover the network environment and learn the
resource management policy without labeling the data at
each time step. Learning the statistical distributions of the
environment parameters produces the most effective action
policy that adapts to changes over time and leads to the
maximum reward. Hence, RL is powerful tool that can be
applied in the resource management problem in LoRa wireless
networks.

For greening and improving energy efficiency of LoRa
networks, the devices may be powered by renewable energy
sources [15], [16]. Energy harvesting allows wireless systems
to continually acquire energy from nature or man-made phe-
nomena (solar, wind, electromagnetic, ...). It provides wireless
devices self-sustainability and virtually perpetual operation.
Indeed, it allows reducing the use of conventional energy and
accompanying carbon footprint. Hence, we propose to inves-
tigate in this work a resource management problem in hybrid
energy LoRa wireless networks. We propose various resource
management schemes considering both scenarios uncorrelated
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and time-correlated channels. An optimal resource manage-
ment solution with high complexity is proposed as benchmark.
Low complexity heuristic resource management schemes are
proposed for the case of real-time application. Moreover, smart
and adaptable resource management approaches based on RL
were developed. Hence, the key contributions are summarized
as follows:
• We formulated the problem of grid energy cost minimiza-

tion in LoRa wireless networks while the LoRa gateway
(LG) is powered by both an energy harvesting source and
the grid.

• We solved the optimal offline resource management prob-
lem by decoupling the formulated problem into two sub-
problems. The first one is a channel and SF assignment
problem and the second one is an energy management
problem.

• We developed an optimal SF assignment scheme that
minimizes the grid energy cost.

• We investigated the online resource management problem
by proposing efficient heuristic channel, SF assignment,
and energy management algorithms for both scenarios
uncorrelated and time-correlated channels.

• We proposed an efficient heuristic channel, SF assign-
ment, and energy management algorithm for hybrid en-
ergy powered LoRa networks considering time-correlated
channels.

• We developed our resource management algorithm using
deep reinforcement learning to reduce the complexity
of the NP-hard optimization and implement an adaptive
online energy assignment.

• We performed extensive evaluation of the proposed re-
source management schemes under different scenarios to
illustrate the system performance in terms of grid energy
cost.

The remainder of the paper is organized as follows: The
system model is presented in Section II. The related works are
discussed in Section III. The resource management problem in
hybrid energy LoRa networks is formulated in Section IV. The
optimal offline resource management problem is investigated
in Section V. The online resource management algorithms are
developed in Section VI. The evaluation results are presented
and discussed in Section VII. Finally, conclusions are provided
in Section VIII.

II. RELATED WORK

Various works tackled the resource management problem
under different LoRa network architectures and assumptions.
Specifically, SF assignment, sub-band selection, user schedul-
ing, and power allocation in LoRa networks were the focus
of [17]–[42]. An efficient SF assignment scheme was devel-
oped in [17] based on instantaneous channel realizations to en-
hance the symbol error rate. Also, the authors of [18] proposed
a novel SF allocation strategy based on matching theory to
optimize the LoRa network throughput. Moreover, the number
of connected devices was optimized in [19] by proposing an
efficient SF assignment scheme. A power allocation and SF
assignment solution was proposed in [20] to reduce energy
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Fig. 1: Hybrid energy powered LoRa wireless networks.

consumption in LoRa networks with imperfect SF orthog-
onality. An energy-efficient user scheduling, SF assignment,
and power allocation scheme was proposed in [21]. In [22],
[23], the authors proposed efficient SF assignment schemes to
maximize the packet success probability. The authors of [24]
proposed an efficient interference-aware SF assignment. An
adequate SF allocation strategy was proposed in [25] to reduce
the convergence period in LoRa networks with an adaptive
data rate mechanism. In [26], a multi hop LoRa system was
investigated in order to enable energy-efficient connectivity
in smart city applications and the system performance was
evaluated based on a experimental case study. This system
was investigated further in [27] by proposing an efficient
clustering algorithm. A capacity maximization problem in
LoRa networks was studied in [28]. User scheduling was in-
corporated to a multi channel LoRa network in [29] to improve
the synchronization packet length. The average number of
decoded LoRa frames was investigated in [30] by taking into
account physical layer and medium access control. In [32],
the devices are powered by energy harvesting sources for
uplink transmission considering only one channel. The optimal
energy management and SF assignment algorithm was devised.
In [31], the authors proposed a low complexity energy-efficient
rate control scheme for LoRa uplink transmission based on
Markov chain. In [33], the authors investigated the perfor-
mance of LoRa networks in term of latency by proposing
a sub-band selection scheme. The authors of [34] provided
a theoretical analysis of the achievable LoRa throughput in
uplink considering imperfect SF orthogonality. In [35], the
trade-off relation between the waiting time and the energy
consumption in LoRa networks was optimized by deriving the
optimal number of ping slots. In [36], the authors proposed
an appropriate radio configuration scheme based on integer
linear programming, which takes into account the scalability
of the network in order to enhance the reliability of the LDs.
A dynamic LoRa transmission control system was proposed
in [37] to improve the energy efficiency. In [38], the LoRa
capacity was enhanced by proposing an interleaved chirp
spreading scheme. Moreover, the LoRa goodput was improved
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in [39] by controlling the receiver window size. In [40],
the coverage in hybrid LoRa networks was enhanced by
developing an optimal planning scheme. The energy efficiency
of LoRa networks was improved in [41] by proposing a tree
network adopted for LoRa to mitigate the energy consumption
constraints. In [42], the authors proposed a novel fair and
scalable relay control scheme for LoRa wireless networks to
improve the success probability.
Different from the existing works, we proposed in this paper to
investigate a novel system model for LoRa wireless networks
powered by both an energy harvesting source and the grid,
which can benefit from harvested energy while dealing with
the intermittent supply. The design of energy-efficient LoRa
networks is challenging due to the intermittency of renewable
energy sources. Since most of the existing works are dealing
with the coverage and the throughput, we formulated in this
paper a novel challenging optimization problem with the
objective of improving the LoRa gateway energy efficiency.
Furthermore, we developed smart and adaptive resource man-
agement schemes for green wireless networks based on deep
reinforcement learning.

III. SYSTEM MODEL

A. Channel and Signal Model

In this work, we consider a typical downlink LoRa wireless
network (as shown in Fig. 1) that includes a LG serving
K arbitrarily distributed LoRa devices (LDs) through M
channels. Let Bm denote the bandwidth of channel m.
A given time interval is partitioned into L frames with
duration Tout. The channel coefficients between the gateway
and LD k through channel m at frame i is given by
gk,m(i) = βk(i)hk,m(i), where βk(i) represents the path
loss and hk,m(i) represents the small-scale fading channel
coefficient. The important notations are summarized in Table I.

The LoRa modulation known as CSM is introduced
in [7], where the modulated signal is a chirp waveform
and the frequency increases linearly with the time index.
The LG sends a symbol sk(i) to LD k at frame i with
duration 2αk(i)T , where αk(i) is the SF taking values in
Γ = {7, 8, 9, 10, 11, 12} and T = Tout

212 is the duration
of a sample transmission [6]. The LG sends αk(i) bits
to device k at frame i. The symbol sk(i) takes values in{

0, 1, 2, . . . , 2αk(i) − 1
}

[6]. The LDs adopt different SF
for transmission in order to ensure orthogonality and enable
multi user transmission [7]. Hence, the transmitted waveform
vector for device k at frame i is given by:

xk(i) =


[

1√
2αk(i)

e
2π

[
(sk(i)+f)

mod 2αk(i)

]
f

2αk(i)

]
f=0..2αk(i)−1

0
212−2αk(i)


(1)

A zero padding with length 212 − 2αk(i) is added for each
vector in order to ensure the same vector length for all devices.
The possible waveforms of CSM modulation are shown to
be orthogonal [8]. Hence, the inner product receiver may be

applied [7]. It consists of projecting the received vector y(i)
onto the different signals given by:

c|sk(i) =

g∗k,m(i)
1√

2αk(i)
e
2π

[(
sk(i)+f

)
mod 2αk(i)

]
f

2αk(i)


T

f=0..2αk(i)−1

(2)
and choosing the one with maximal square modulus projection.
Hence, the best estimate of the transmitted signal ŝk(i) by
device k at frame i is given by:

ŝk(i) = argmax
0..2αk(i)−1

|〈y(i), c|sk(i)〉|2. (3)

It is worth mentioning that only 6 LDs can be served simul-
taneously in one channel, since there are six available SFs
range from 7 to 12 [6]. Also, each LD can access at most one
channel. Let χk,m(i) be a Boolean parameter that is set to 1 if
LD k at frame i is assigned to channel m and to 0 otherwise.
Let ψm(i) denote the set of devices assigned to channel m at
frame i. The vector of received signals through channel m at
frame i is expressed as:

ym(i) =

K∑
k=1

χk,m(i)pk(i)gk,m(i)xk(i) + wm(i), (4)

where pk(i) is the power allocated for LD k at frame i
and wm(i) is assumed to be additive white Gaussian noise
(AWGN) with zero mean and variance σ2

m. Hence, the down-
link signal-to-noise ratio (SNR) of LD k through channel m
at frame i is expressed as:

γk,m(i) =
χk,m(i)pk(i) | gk,m(i) |2

σ2
m

. (5)

The rate for LD k through channel m at frame i is given by:

Rk,m(i) = Bm log2

(
1 +

χk,m(i)pk(i) | gk,m(i) |2

σ2
m

)
. (6)

An LD k is scheduled at frame i, if it is assigned to one of
the channels

∑M
m=1 χk,m(i) = 1, otherwise it is not scheduled

and
∑M
m=1 χk,m(i) = 0.

B. Energy Model

The LG is powered by both an energy harvesting source
and the grid. The grid energy source compensates for the
randomness and intermittency of the harvested energy. The
harvested energy E(i) is first stored in a battery with maximal
capacity Bmax. It is modeled as a correlated time process
following a discrete-time Markov model as in [44], [45],
E(i) ∈ Ω , {ω1, ω2, ..., ωM} where Ω is the set of possible
amount of harvested energy and Q(ωm, ωj) = Pr(E(i+1) =
ωm | E(i) = ωj) is the state transition probability. Let
B(i) denote the battery level at frame i. The required energy
consumed at frame i is given by:

X(i) = Xh(i) +Xg(i)

= Ec +

K∑
k=1

pk(i)2αk(i)T,
(7)

where Ec is a fixed energy consumed by the circuit which
includes the amounts of power consumed by digital to analog



4

TABLE I: Summary of Important Notations.

Symbol Description Symbol Description
K Number of LDs pk(i) Power allocated for LD k

Bm Bandwidth of channel m σ2
m Noise variance

L Number of frames γk,m(i)
SNR of LD k through channel m at
frame i

Tout Duration of a frame Bmax Capacity of the battery

gk,m(i)
Channel coefficient of LD k
through channel m E(i) Amount of harvested energy at frame i

βk(i) Path loss B(i) Battery level at frame i

hk,m(i)
Small-scale fading channel
coefficient Ec Fixed energy consumed by the circuit

αk(i) Spreading factor Wi Grid’s weight
Γ Set of SFs Xg(i) Energy drawn from the power grid

T
Duration of a sample
transmission γth Minimum received SNR

χk,m(i) Channel assignment index ψm(i) Set of devices assigned to channel m
S Set of states A Set of possible actions
R Immediate reward P State transition probability
γ Discount factor θ Neural network weights
Π RL policy D Experience memory
λ Adjusting factor of PPO ε Cliprange of PPO
ρ Soft update of DDPG Ns Noise process of DDPG
α Learning rate of the DNN

converters (DACs), mixers and filters, and Xh(i) and Xg(i)
denote the energy drawn from the energy harvesting source
and the power grid respectively. The consumed energy from
the energy harvesting source cannot exceed the battery level.
Hence, the energy causality constraint is given by:

Xh(i) ≤ B(i). (8)

The battery level update is expressed as:

B(i+ 1) = min
(
Bmax, B(i)−Xh(i) + E(i)

)
. (9)

We consider that the consumed grid energy at frame i is
weighted by a factor Wi [46]. Hence, the grid energy cost
which is considered in this paper as an objective function, is
expressed as:

∆ =

L∑
i=1

WiX
g(i). (10)

In Fig. 2, we illustrate the proposed hybrid energy LoRa
framework.

IV. PROBLEM FORMULATION

The objective is to minimize the grid energy cost while
using the available harvested energy. Each device requires
a minimum received SNR to be satisfied. The energy man-
agement should take advantage of the grid’s power weight
variations by consuming more grid power when the associated
weight is low while storing the renewable energy for future

System model:
Hybrid energy LoRa 

wireless network

Energy model:
Grid + energy 

harvesting

Channel model

Uncorrelated 
channel:

Rayleigh model

Time-correlated 
channel:

Elliot model

Problem formulation:
Grid energy cost 

minimization

NP-hard

Resource 
management:

1. Device scheduling
2. Energy management
3. SF assignment
4. Channel assignment

Heuristic

Reinforcement 
learning

Optimal:
Problem 

decomposition

Comparison 
between optimal, RL, 

heuristic, random, and 
round-robin

Optimal SF 
assignment:
Theorem 1

HCRMAHURMA

Fig. 2: Illustration of research design and different steps of the
work.

use, and by consuming less grid power when its weight
is high. Moreover, the channels and SFs may be optimally
assigned to the devices. Only 6 LDs per channel can be served
simultaneously at each frame. The aim will be to schedule the
devices with the minimal grid energy cost while making use of
the available harvested energy and ensuring a minimum SNR
to each scheduled LD. The main problem can be formulated
as:
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min
{χk,m(i),αk(i),pk(i)}

k=1,...,K,m=1,...,M,i=1,...,L

L∑
i=1

WiX
g(i)

subject to
(11.a) : γk,m(i) ≥ χk,m(i)γth, ∀k = 1, . . . ,K, i = 1, . . . , L,

(11.b) :

l∑
i=1

Xh(i) ≤
l∑
i=1

E(i), ∀l = 1, . . . , L

(11.c) :

l∑
i=1

E(i)−
l−1∑
i=1

Xh(i) ≤ Bmax, ∀l = 2, . . . , L,

(11)

(11.d) : Xg(i) +Xh(i) = Ec +

K∑
k=1

pk(i)2αk(i)T,

∀i =, . . . , L,

(11.e) :

M∑
m=1

χk,m(i) ≤ 1, ∀k = 1, . . . ,K, i = 1 . . . L,

(11.f) :

K∑
k=1

χk,m(i) = 6, ∀m = 1, . . . ,M, i = 1 . . . L,

(11.g) : αk(i) 6= αp(i), ∀k, p ∈ ψm(i), k 6= p,

m = 1, . . . ,M, , i = 1, . . . , L,

(11.h) : pk(i) ≥ 0, ∀k = 1, . . . ,K, i = 1, . . . , L,

(11.i) : αk(i) ∈ Γ, ∀k = 1, . . . ,K, i = 1, . . . , L

(11.j) : χk,m(i) ∈ {0, 1}, ∀k = 1, . . . ,K,m = 1, . . . ,M,

i = 1, . . . , L.

Constraint (11.a) ensures a minimum received SNR, denoted
γth, to each LD. Constraint (11.b) is related to the energy
causality, i.e. the consumed harvested energy cannot exceed
the available energy at the battery. Additionally, constraint
(11.c) implies that the harvested energy at the current frame
cannot exceed the maximum battery capacity. Constraint
(11.d) specifies that the required consumed energy is drawn
from the grid and the energy harvesting source. Constraint
(11.e) imposes that only one channel at most can be assigned
to each LD. Constraint (11.f) specifies the maximal number
of LDs within same channel, which cannot exceed the number
of SFs. Constraint (11.g) imposes that the LDs within same
channel should be assigned different SFs. Constraint (11.h)
ensures the non-negativity of the allocated amounts of power.
Constraint (11.i) specifies the set of available SFs. Finally,
constraint (11.j) specifies the channel assignment index.

V. OPTIMAL OFFLINE RESOURCE MANAGEMENT

In this section, the optimal channel and SF assignment, as
well as the energy management are investigated. The main
formulated problem (11) is a mixed integer non-linear program
because of its combinatorial nature and the non-linearity of
the constraints. Meanwhile, to solve (11), the problem may be
decoupled into two sub-problems. Since the goal is to mini-
mize the total consumed energy at each frame, the channels
and SFs may be optimally assigned among the LDs at each
frame. Hence, the optimal total required consumed energy for

network operation at each frame could be determined. Next,
the optimal energy drawn from the energy harvesting source
over time may be optimally derived based on the grid’s wight.
First, the required transmit power to meet the SNR constraint
of LD k using channel m at frame i following (5) is given by:

pk(i) = χk,m(i)
γthσ

2
m

| gk,m(i) |2
. (12)

Hence, the required consumed energy at frame i is given by:

X(i) = Ec +

K∑
k=1

(
M∑
m=1

γthσ
2
m

| gk,m(i) |2
χk,m(i)

)
2αk(i)T. (13)

Hence, replacing pk(i) and X(i) by their expression in (12)
and (13), the channel and SF assignment problem at frame i
can be formulated as:

min
{χk,m(i),αk(i)}
k=1,...,K,m=1,...,M

K∑
k=1

(
M∑
m=1

γthσ
2
m

| gk,m(i) |2
χk,m(i)

)
2αk(i)

subject to

(14.a) :

M∑
m=1

χk,m(i) ≤ 1, ∀k = 1, . . . ,K,

(14.b) :

K∑
k=1

χk,m(i) = 6, ∀m = 1, . . . ,M,

(14.c) : αk(i) 6= αp(i), ∀k, p ∈ ψm(i), k 6= p,m = 1, . . . ,M,

(14.d) : αk(i) ∈ Γ, ∀k = 1, . . . ,K,

(14.e) : χk,m(i) ∈ {0, 1}, ∀k = 1, . . . ,K,m = 1, . . . ,M.
(14)

The problem (14) is combinatorial and non-linear; and thus
is a non-linear integer problem. Consequently, the problem is
NP-hard [47] and could be solved by brute-force search with
exponential complexity growth.
The required consumed energy for the network operation could
be determined at each frame after deriving the optimal channel
and SF assignment. Since the goal is to minimize the grid
energy cost, the energy drawn from the energy harvesting
source may be optimally managed over time. Hence, the
energy management problem can be formulated as:

min
{Xh(i)}
i=1,...,L

−
L∑
i=1

WiX
h(i)

subject to

(15.a) :

l∑
i=1

Xh(i) ≤
l∑
i=1

E(i), ∀l = 1, . . . , L,

(15.b) :

l∑
i=1

E(i)−
l−1∑
i=1

Xh(i) ≤ Bmax, ∀l = 2, . . . , L,

(15)
(15.c) : Xh(i) ≤ X(i), ∀i = 1, . . . , L,

(15.d) : Xh(i) ≥ 0, ∀i = 1, . . . , L.

The objective function and the constraints of problem (15)
are clearly linear. Hence, the optimal energy management
is obtained by solving a linear program using interior-point
method implemented in numerical tools such as CVX [48].
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VI. ONLINE RESOURCE MANAGEMENT

In this section, online resource management is investigated
for both scenarios uncorrelated and time-correlated channels
by proposing low complexity heuristic algorithms. The LG is
assumed to know the channel coefficients, the harvested energy
and the grid’s weight only at the current frame i.

A. Heuristic Approach

1) Optimal SF Assignment: The optimal SF assignment
can be derived using the following theorem:
Theorem 1. Let consider K LDs, where their coefficients
vk verify v1 < v2 < . . . < vK . The optimal SF assignment
that minimizes the objective function

∑K
k=1 vk2αk is given

by assigning the lowest SF αmin to the LD with biggest
coefficient vk until assigning the biggest SF αmax to the LD
with lowest coefficient vk.

Proof. Let consider two LDs with v1 < v2. We have

v127 + v228 − (v128 + v227) = −v127 + v227

= 27(v2 − v1) > 0.
(16)

Hence, the optimal SF assignment is given by assigning 8 to
LD 1 and 7 to LD 2. This relation can be extended recursively
to the case of K LDs.

2) Uncorrelated Channel: Let consider a quasi-static Gaus-
sian independent and identically distributed (i.i.d.) slow fading
channel. A heuristic low complexity algorithm is proposed to
solve channel and SF assignment, and energy management
problem in LoRa network powered by energy harvesting. Only
NM LDs can be scheduled at each frame. The proposed
algorithm starts by scheduling the LDs one by one based on
their channel coefficient. The best channel is assigned to the
LD with the highest channel coefficient modulus in order to
save the required consumed energy. This procedure is repeated
until all the channels become full.
Next, the SF assignment are performed following Theorem 1
by assigning the lowest SF αmin to the user with biggest
coefficient pk until assigning the biggest SF αmax to the LD
with lowest coefficient pk. Finally, after assigning the channels
and SFs, the required consumed energy could be computed.
The proposed algorithm uses the maximum available harvested
energy at the battery at each frame. The proposed Heuristic
Uncorrelated Resource Management Algorithm (HURMA) is
described in Algorithm 1.
The computational complexity of HURMA is derived as
follows. For the SF assignment, an array with N elements
is sorted M times in the for loop with a complexity order
O(MN log(N)). The channel assignment in the while loop
has a complexity order equal to O(MN log(MN)) because
it is similar to sort an array with MN elements. Hence, the
computational complexity of HURMA is given by:

CHURMA = O(MN log(N) +MN log(MN))

= O(MN log(MN)).
(17)

Hence, the proposed low complexity algorithm can be exe-
cuted in polynomial time.

Algorithm 1 Heuristic Uncorrelated Resource Management
Algorithm (HURMA)

B(1)← E(1), // battery initialization
for i = 1 : L do

χk,m(i)← 0, // initialization
c ← 0K×1, // initialize the vector that contains the

channel index for each LD
cf ← 0M×1, // initialize the vector that indicates the

number of scheduled LD for each channel
V is a matrix that contains the modulus of the channels

coefficients for all LDs
while

∑M
m=1 cf [m] 6= MN do

(kmax,mmax) ← argmaxV , // select the LD with
higher channel coefficient

if cf [mmax] < N then
c[kmax]← mmax, // assign channel mmax to LD

kmax

cf [mmax]← cf [mmax] + 1
χkmax,mmax(i)← 1, // LD selection
V [kmax, :]← 01×M

else
V [:,mmax]← 0K×1

end if
end while
for m = 1 : M do

dm ← indices of LDs assigned to m
vn ← σ2

m

|gdm(n),m(i)|2 , n = 1, . . . , N

sm ← dm sorted in ascending order based on pn
αsm(n)(i)← 13−n, n = 1, . . . , N , // SF assignment

end for
X(i)← Ec+

∑K
k=1

(∑M
m=1

γthσ
2
m

|gk,m(i)|2χk,m(i)
)

2αk(i)T ,
// compute the required consumed energy

if X(i) ≤ B(i) then
Xh(i)← X(i)
Xg(i)← 0

else
Xh(i)← B(i)
Xg(i)← X(i)−Xh(i)

end if
B(i) ← min

(
Bmax, B(i)−Xh(i) + E(i)

)
, // battery

update
end for

3) Time-correlated Channel: Let us consider a time-
correlated channel which is modeled by Gilbert Elliot channel
model [43]. The state of the channel at frame i is modeled
as a one-dimensional Markov chain with two states: a good
state denoted by G, and a bad state denoted by B. Channel
transitions occur at the beginning of each frame. The transition
probabilities are given by:

P [hk,m(i) = G | hk,m(i− 1) = G] = λ1, (18)

and
P [hk,m(i) = G | hk,m(i− 1) = B] = λ0. (19)
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A second heuristic resource management algorithm is pro-
posed taking into account the channel correlation. The channel
assignment is performed as follows. First, the NM LDs with
highest path loss coefficient are selected. Then, the proposed
algorithm starts by assigning the channels to the LDs one
by one based on their path loss coefficient starting from the
most distant LD. The corresponding LD chooses the best
available channel, i.e., the one with highest channel coefficient
modulus. We start by the most distant LD by assigning it the
best channel in order to compensate their SNR and save the
required consumed energy. This procedure is repeated until all
the channels become full. Next, the SF assignment and energy
management are performed similar to the algorithm HURMA.
The proposed Heuristic Correlated Resource Management
Algorithm (HCRMA) is described in Algorithm 2.
The computational complexity of HCRMA is derived as fol-
lows. The SF assignment for HCRMA is similar to HURMA
and is done with a complexity order O(MN log(N)). The
channel assignment in the for loop has a complexity in the
order O(M2N). The sort of the array w is done with a com-
plexity O(K log(K)). Hence, the computational complexity
of HCRMA is given by:

CHCRMA = O(MN log(N) +M2N +K log(K)). (20)

The proposed low complexity algorithm can be executed in
polynomial time.

Algorithm 2 Heuristic Correlated Resource Management Al-
gorithm (HCRMA)

B(1)← E(1), // battery initialization
for i = 1 : L do

χk,m(i)← 0, // initialization
c ← 0K×1, // initialize the vector that contains the

channel index for each LD
cf ← 0M×1, // initialize the vector that indicates the

number of scheduled LD for each channel
w contains the ascending sort of the indices of the LDs

based on path loss
for k = K −MN + 1 : K do

kmax ← w[k]
mmax ← the index of the channel with highest

coefficient for LD kmax

B. Reinforcement Learning Approach

The problem in (11) is NP-hard, which makes deriving
the optimal solution extremely complex and time consuming.
Moreover, in the optimization, we suppose that we have a
full overview about the future harvested energy, which is not
realistic. On the other hand, the online heuristic presents a low-
complexity solution. However, allocation decisions are taken
greedily, without any insight about the harvested energy in
the next frames. Recently, reinforcement learning techniques
have become highly adopted for applications characterised
by dynamic and complex problem spaces. More specifically,
RL is considered as one of the important paradigms of
machine learning, in addition to supervised and unsupervised

Algorithm 2 Heuristic Correlated Resource Management Al-
gorithm (HCRMA)

c[kmax] ← mmax, // assign channel mmax to LD
kmax

χkmax,mmax
(i)← 1, // LD selection

cf [mmax]← cf [mmax] + 1
if cf [mmax] = N then

remove channel mmax from the set of available
channels

end if
end for
for m = 1 : M do

dm ← indices of LDs assigned to m
vn ← σ2

m

|gdm(n),m(i)|2 , n = 1, . . . , N

sm ← dm sorted in ascending order based on pn
αsm(n)(i)← 13−n, n = 1, . . . , N , // SF assignment

end for
X(i)← Ec+

∑K
k=1

(∑M
m=1

γthσ
2
m

|gk,m(i)|2χk,m(i)
)

2αk(i)T ,
// compute the required consumed energy

if X(i) ≤ B(i) then
Xh(i)← X(i)
Xg(i)← 0

else
Xh(i)← B(i)
Xg(i)← X(i)−Xh(i)

end if
B(i) ← min

(
Bmax, B(i)−Xh(i) + E(i)

)
, // battery

update
end for

learning [11], [13]. The advantage of this technique is that
it approaches the optimal solution by interacting with the
environment parameters (e.g., the harvested energy and the
energy prices), learning the statistical distributions of these
features, and determining the most efficient policy that takes
the actions based on the current status of the system and the
learned insights about the future. Therefore, the reinforcement
learning can be the most adequate solution to reduce the
complexity of the NP-hard problem, while taking sub-optimal
decisions owing to the knowledge learned about the system.

On these bases, we propose to investigate an online resource
management solution based on RL. In the previous section, we
decomposed the optimal solution (11) into two sub-problems,
namely channel assignment and energy management problems.
Accordingly, we design two RL systems, responsible to solve
the above-mentioned sub-problems. In particular, in each time
step of the resource management process, the RL agents
should make a decision on the channels to allocate, the
assigned SFs, and the optimal amount of energy to draw from
the energy harvesting source. The agents ultimately aim to
minimize the grid energy cost, while respecting the battery
capacity and the constraints on the available resources. During
the learning process, the energy harvesting system receives
rewards and experiences penalties for each allocation decision
it makes until it reaches the convergence to the optimal policy.
The defined sub-problems can be abstracted as two Markov
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Fig. 3: Episode design of uncorrelated and time-correlated channel assignments.

Decision Process (MDP) frameworks; each one is presented by
the five-tuple (S,A, P,R, γ) [11]. S presents the set of states
for each framework, A denotes the set of potential actions, P is
the state transition probability, R is defined as the immediate
reward gained for each action, and γ denotes the discount
factor. These elements are discussed for both sub-problems,
in the following sub-sections.

1) Channel assignment problem:
• MDP environment design: In our paper context, the MDP

environment represents the LoRa wireless network with
which the agent interacts. We design this environment to
receive the action At generated by the agent at a step t,
assign a reward Rt, and introduce the next state St+1. The
finite sequence of such steps is called an episode. By expe-
riencing various episodes, the agent is trained to learn from
historical actions and their associated rewards. Therefore, in
the first RL framework, we define each step as the channel
and spreading factor allocation to one of the LoRa devices,
as illustrated in the sub-problem (14). We underline that
different episodes of experiences are independent, which
means that at the beginning of each episode, the cumulative
reward is initiated to 0. Therefore, since the channels can be
time-correlated or totally uncorrelated, the episode is defined
for each network configuration differently. More specifically,
if channels are uncorrelated among different L frames, we
define each episode as one frame i where channels and SFs
are assigned to the existing LDs. This way, the episode
length is equal to the number of devices K. In case the
channels are correlated, the resource management of all
frames should be accomplished in one episode, implying
that the episode length is equal to K × L. The illustration
of both episode designs is presented in Fig. 3. It is worth
mentioning that the agent does not have an overview of the

environment design. Instead, the optimal policy Π : S → A
is built by observing the surrounding environment, selecting
actions, and gaining rewards.

• States and actions: The set of states S is composed of
all possible environment circumstances and conditions at
each step. We set S = {assignedSF (i), gt(i)}, where
assignedSF (i) is an M × 6 matrix of assigned SFs in the
frame i. assignedSF (i)m,j is equal to 1, if the spreading
factor j of the channel m is assigned to one of the LDs,
0 otherwise. assignedSF (i) is initiated to a null matrix at
each new frame. gt is the matrix of the channels’ coefficients
between the gateway and the LD related to the current step
t and frame i. Depending on the system state and based
on the policy Π, the agent takes an action At. This action
includes selecting the appropriate channel m and the related
spreading factor αk. Thus, the action can be expressed as
At = [m,αk]. Note that m ∈ {0..M} and αk ∈ Γ, as
indicated by the constraints (14.d) and (14.e). We note that
m equal to 0 means that the LD will not be assigned a
channel. The constraint (14.a) is respected by design as we
assign at most one channel m to each LD at each step. Once
the decision is made, the LD related to the current step is
served through the chosen resources. After each step, the
assignedSF matrix is updated according to the predicted
action. Subsequently, the new matrix is fed as an input to
the next step as illustrated in Fig. 3.

• Reward function: The reward function is formulated to
match the high-level objective of the optimization problem
(14), aiming at minimizing the required energy at each
frame, while respecting the availability of channels and
spreading factors. To ensure respecting such constraints,
rewards and penalties are assigned. Specifically, when a state
St is received, a decision At should be taken while meeting
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the following requirements:{
C1:

∑t
j=(i.K+1)(Aj(1) == At(1)) ≤ 6 constraint (14. b)

C2: assignedSFAt(1),At(2)(i) = 0 constraint (14. c)
(21)

C1 indicates that the maximal number of LDs within the
chosen channel cannot exceed the number of SFs, which
matches the constraint (14.b). C2 shows that the chosen
spreading factor associated to the allocated channel is not
assigned to another LD, which is equivalent to the constraint
(14.c). We note that i denotes the current frame, which is
equal to

⌊
t−1
K

⌋
. To this end, we define the immediate reward

as follows:

Rt = C1 ∗ C2 −
γthσ

2
At(1)

| gt,At(1)(i) |2
2At(2). (22)

If one of the constraints C1 or C2 is not respected (C1 = 0
or C2 = 0), invalid situations can occur. Hence, we attribute
0 as a reward. The maximum direct reward is only received,
when all requirements are met. In this way, the RL system
tries to meet the scenarios that respect the constraints, in
order to maximize the received bonuses and avoid null
rewards. Additionally to the reward assigned for respecting
the constraints of the LoRa system, the RL agent is charged
for inaccurate resource allocation. Since the performance
of the network is quantified by minimizing the required
energy at each frame i, we use this indicator to define
the penalty added to the reward function, as shown in Eq.
(22). Accordingly, the RL agent selects optimal allocations

by maximizing the cumulative rewards and minimizing the
penalties.

• Agent design: The goal of the agent is to learn how to
minimize the required energy throughout different episodes.
To achieve this goal in the long run, the agent needs
to build an optimal policy Π that maximizes the future
expected reward approximated by the action-value function
QΠ expressed by the classical Bellman equation:

QΠ(s, a) = E[

T∑
k=0

γkRt+k|Π, St = s,At = a], (23)

where 0 ≤ γ ≤ 1 denotes the discount parameter, that
reflects the importance of the direct reward compared to
long-term reward received at the end of the episode. Setting
γ to be small implies that the agent is designed to be
shortsighted, and only the step rewards are considered. A
bigger γ indicates that the agent is farseeing and gives higher
weights to future rewards. The Q-value Q(St, At) serves to
assess the accuracy of the decision At for a given state St.
After determining the optimal policy, the agent selects its
actions as follows:

Π∗(s) = argmaxaQ
Π(s, a). (24)

Since our LoRa system is dynamic and the action space is
dimensional and depends on the number of channels and
spreading factors, it is challenging to save all Q-values in a
Q-table and use traditional RL methods [12]. Consequently,
we propose to adopt Deep Reinforcement Learning (DRL)
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using DNNs to approximate the action-value function. DRL
approaches can be classified into two categories: the value-
based and policy-based methods. Particularly, the value-
based method adopts deep learning to estimate the value
function (e.g., DQN [13]), whereas the policy-based DRL
uses DNNs for approximating the parameterized policy (e.g.,
REINFORCE [14]). We opt for the latter approach as it
achieves better performance for stochastic policies. This
approach works by computing an estimator of the policy
gradient:

∇L(θ) = E[∇θlogΠ(St|At, θ)Êst ], (25)

where Π is the parametrized policy, θ represents the weight
of the DNN, and Êst is the function estimator at the step t.
Êst is calculated as follows:

Êst =

∞∑
i=0

(γλ)iδst+i, (26)

δst = Rt + γV (St+1, θ)− V (St, θ), (27)

where λ is used to adjust the bias–variance trade-off and
V (St, θ) is the state-value defined as the expected return
when being in state St and parametrized by θ.
To enhance the exploration ability of the policy-based ap-
proaches, model-free and on-policy learning is introduced,
where the learning is based on historical actions and the cur-
rent policy, without any knowledge about the environment.
One of the most known on-policy algorithms proposed by
OpenAI is Proximal Policy Optimization (PPO) [49]. The
objective function of PPO is presented by:

LCLIP (θ) = E[(pt(θ)Êst , clip(pt(θ), 1− ε, 1 + ε)Êst )],
(28)

where the policy probability ratio pt(θ) is defined as:

pt(θ) =
Π(At|St, θ)

Π(At|St, θold)
. (29)

The clip function is responsible to constraint pt between
(1− ε) and (1+ ε), which prevents the system from moving
outside this interval. In this way, the PPO objective is limited
to the lower bound of the unclipped part. Owing to these
advantages, we adopt the PPO method to design our channel
assignment RL system.

• DRL algorithm: To stabilize the training and ensure the
convergence of the learning process, multiple steps must
be followed, which we illustrate in Algorithm 3. First, two
networks are initialized with the same weights, from which
two PPO policies are established. The training process starts
by generating samples from the policy with fixed parameters
θold, for different episodes. These samples are saved in a
replay memory D (lines 16-18). More specifically, the agent
receives the set of observations from the environment and
takes an action using the policy Πθold aiming at being highly
rewarded (lines 11-15). After each episode, the estimator
is computed and a random mini-batch from D is sampled.
Next, the main policy Πθ is updated by calculating the
gradient of θ for each sample of the batch (lines 21-25). This
mechanism, known as experience replay, is very important

to learn from past experience and to reach the convergence
and stabilization of the learning. In the end, we synchronize
both policies by replacing θold with θ (line 29).

Algorithm 3 Channel assignment RL system

1: Initialization:
2: - Randomly set the parameters θ of the DNN to get Πθ.
3: - Set the sampling policy Πθold with θold ← θ.
4: if channel is uncorrelated then
5: F=1
6: else F=L
7: end if
8: DRL Learning:
9: for each episode e do

10: i = 0
11: for each frame f = 1..F do
12: assignedSF (f) = zeros(M, 6)
13: for each step t = i+ 1..i+K do
14: St = {assignedSF (f), gt}
15: Select At based on Πθold

16: Rt = C1 ∗ C2 −
γthσ

2
At(1)

|gt,At(1)(i)|2
2At(2)

17: Update assignedSF (f)
18: Observe Rt and the next state St+1.
19: Save (St, At, Rt, St+1) in the experience
20: memory D.
21: end for
22: i = i+K
23: end for
24: - Compute the estimator Êst according to (26).
25: - Sample a mini-batch of (Sj , Aj , Rj , Sj+1)
26: from the memory D.
27: - Update θ by maximizing the objective
28: function (28) and using the sampled data.
29: - Update the old policy: θold ← θ
30: end for

2) Energy management problem:
• MDP environment design: Similarly to the first problem,

the second RL agent responsible for the energy management
interacts with the LoRa wireless network. However, in this
problem, an episode denotes the management of energy
among L frames, while each step throughout the episode
denotes the allocation of the energy Xh at a frame t.
Therefore, the episode length will be equal to L.

• States and actions: At each time step t, the set of states
received by the agent comprises the following components:
E(t) which is the amount of harvested energy, X(t) which
denotes the required energy at the frame t, and Wt pre-
senting the energy cost. We remind that X(t) is derived
from the decision of the first RL agent, as depicted in
Fig. 4. The system state St is, therefore, a vector defined
as: St = {E(t), X(t),Wt}. Next, by observing the state,
the agent decides the amount of energy Xh(t) ≥ 0 to be
harvested from the energy source. Finally, after each step,
the set of states St+1 is generated.

• Reward function: The reward function in the second RL
system should match the objective of the optimization
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problem (15) aiming to minimize the grid energy cost, which
is equivalent to maximizing WtXh. In addition, this function
should guarantee that the action At = Xh(t) is taken while
meeting the following requirements:

C3:
∑t
i=1Ai ≤

∑t
i=1E(i) constraint (15.a)

C4:
∑t−1
i=1 E(i)−

∑t
i=1Ai ≤ Bmax constraint (15.b)

C5: At ≤ X(t) constraint (15.c)
(30)

The constraints C3, C4, and C5 in (30) are set to match the
equations (14a), (14b), and (14c), respectively. Accordingly,
the immediate reward is defined as follows:

Rt = C3 ∗ C4 ∗ C5 + (Wt ∗At) ∗ 1(C3∗C4∗C5=1) (31)

As in the first RL model, the non-respect of one of the
constraints (set to C3 ∗C4 ∗C5 = −1 in this section) incurs
invalid scenarios. This means that maximizing the rewards
involves respecting the constraints to avoid the negative
penalties. Moreover, in the second model, the high-level
goal is to maximize the harvested energy. Thus, the weight
of energy Wt ∗ At is added to the reward function, if all
constraints are respected. In this way, maximizing the cumu-
lative rewards throughout the episodes implies maximizing
the amount of harvested energy and consequently reducing
the usage of grid energy.

• Agent design: The energy management RL model is char-
acterized by a dynamic state space and a non-discrete action
space. Based on these factors, we select a Deep Determin-
istic Policy Gradient (DDPG)-based method to optimize the
decision-making policy. DDPG is an actor-critic, off-policy,
and model-free algorithm known for its high performance
on continuous action and state spaces [50]. The actor-critic
algorithms are generally composed of a policy and an action-
value functions, where the policy function plays the role
of the actor that takes decisions and interacts with the
environment, whereas the action-value function is called a
critic that is responsible to evaluate the performance of the
actor.

• DRL algorithm: Two deep neural networks are adopted to
build the approximation functions of the DDPG algorithm.
The first DNN is used to train the actor and it is defined by
the policy function µ(s|θµ) and the weights θµ. The second
network, which corresponds to the critic, is described by the
action-value function Q(s, a|θQ) with the related weights
equal to θQ. The actor-critic networks are illustrated in Fig.
4. As done in the first system, steps to follow are illustrated
in Algorithm 4. First, copies of the main networks, namely
target networks, are created with the same NN parameters,
i.e., θ′µ = θµ and θ′Q = θQ (lines 2-4). Next, the learning
process is performed by generating episodes of experiences
repeatedly (lines 6-31) and storing the generated MDP tuples
in a replay buffer D (line 14). To ensure that the agent
discovers different possible actions, an exploration policy
is constructed by adding a noise sample through a noise
process Ns. The selected action under the state St is defined
by At = µ(s|θµ) +Ns

t (line 9). Once the decision is made,
the direct reward is assigned and a new state St+1 is given.
To improve the critic policy, the agent samples each step a

random mini-batch from the replay buffer D (lines 17-18)
and calculates the target values y(j) for each sample using
the critic target network (lines 19-20). Meanwhile, the actor
target network generates an action µtarget(Sj+1) and feeds
it to the critic target network. The DDPG critic policy is
presented by the classical Bellman equation illustrated in
(24). This critic network is updated by reducing the loss
illustrated in (line 20) and expressed as:

L =
1

B

∑
j

(y(j)−Q(Sj , Aj |θQ))2. (32)

Algorithm 4 Energy management RL system

1: Initialization:
2: - Randomly set the parameters θµ of the actor network
3: and θQ of the critic networks.
4: - Set weights of target networks: θ′µ ← θµ and θ′Q ← θQ.
5: DDPG Learning:
6: for each episode e do
7: for each step t = 1..L do
8: St = {E(t), X(t),Wt}
9: Select At = µ(St|θµ) +Ns

t

10: if C3 ∗ C4 ∗ C5 = 1 then
11: Rt = Wt ∗At
12: else Rt = −1
13: end if
14: - Observe Rt and the next state St+1.
15: - Save (St, At, Rt, St+1) in an experience
16: memory D.
17: - Sample a mini-batch of (Sj , Aj , Rj , Sj+1) of
18: size B from the memory D.
19: - Find target Q-value y(j) from target Q-network:
20: y(j) = Rj + γQtarget(Sj+1, µtarget(Sj+1|θ′µ)|θ′Q)
21: - Update the weights θQ of the critic network by
22: reducing the loss:
23: L = 1

B

∑
j(y(j)−Q(Sj , Aj |θQ))2

24: - Update the weights θµ of the actor network using
25: the gradient policy:
26: ∇θµJ ' 1

B

∑
j ∇aQ(s, a|θQ)|s=Sj ,a=µ(Sj)∇θµµ(s|θ

µ)|Sj
27: - Update the target networks:
28: θ′Q ← ρθQ + (1− ρ)θ′Q

29: θ′µ ← ρθµ + (1− ρ)θ′µ

30: end for
31: end for

On the other hand, the actor network µ is updated using the
gradient policy:

∇θµJ ' E[∇θµQ(s, a|θQ)|s=St,a=µ(St|θµ)]. (33)

Similarly to the target network, the main actor generates an
action µ(Sj) and inputs it to the critic network. However,
in this process, the action and weights gradients, namely
∇θµQ(Sj , Aj |θQ) and ∇θµµ(Sj |θµ), are calculated using
the automatic differentiation technique. These gradients al-
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low the approximation of the global policy gradient:

∇θµJ '
1

B

∑
j

∇aQ(s, a|θQ)|s=Sj ,a=µ(Sj)∇θµµ(s|θµ)|Sj .

(34)
Finally, the target networks are softly updated using a small
rate ρ, to always represent the most recent learning (lines
28-29):

θ′Q ← ρθQ + (1− ρ)θ′Q, θ′µ ← ρθµ + (1− ρ)θ′µ.
(35)

The theoretical complexity of our DRL resource manage-
ment approach in hybrid energy LoRa wireless networks is
based on the complexity of both RL systems. More specif-
ically, the complexity of Algorithm 3 to accomplish one
episode is determined by the loops between lines 11 and 21,
where the number of iterations is equal to LK. Meanwhile,
the complexity of Algorithm 4 is determined by one loop
performing L iterations. Therefore, the complexity of the
whole system can be expressed as O(L(K+1)). Furthermore,
the complexity of the DNN decisions inside these loops
depends on the neural network. In our case, we adopt an MLP
deep neural network comprising 2 layers of 64 neurons, which
is a light-weight network.

VII. EVALUATION RESULTS

In this section, Monte Carlo and reinforcement learning
simulations are done to evaluate the proposed resource man-
agement schemes in LoRa wireless networks by averaging up
to 10000 realizations. Monte Carlo simulations are based on
repeating random sampling to obtain numerical results. The
underlying concept is to use randomness to solve problems
having a probabilistic interpretation. In our work, we use
Monte Carlo simulation to simulate the random variables that
represent the channel, energy, and device distribution. The
users are uniformly distributed within a circular cell. The
grid energy consumption weights Wi are randomly generated
according to a standard uniform distribution. The simulation
parameters used in this section are summarized in Table II.

The RL algorithms are validated based to the parameters

TABLE II: Simulation Parameters.

Symbol Description Value
Bmax max battery capacity 200 J
K number of devices 35
L number of frames 50
M number of channels 5

path loss exponent 3.7 [43]
noise PSD -174 dBm/Hz [43]

circuit power 30 dBm [51]
cell radius 500 m

defined in Tables III and IV. These parameters are empirically
adopted and we expect that, using the same values, similar
architectures perform identically.

A. Uncorrelated Channel
First, we investigate the performance of the resource man-

agement schemes in LoRa networks considering uncorrelated

TABLE III: Hyper-parameters of the channel assignment RL
system.

Parameter Description Value
γ Gamma 0.99
α Learning rate 0.0001
Policy DNN policy MLP, 2 layers of 64
ε cliprange 0.2
λ Adjusting factor 0.01

PPO epoch 4

TABLE IV: Hyper-parameters of the energy management RL
system.

Parameter Description Value
γ Gamma 0.99

αa
Learning rate
of actor 0.0001

αc
Learning rate
of critic 0.001

Policy DNN policy MLP, 2 layers of 64
bz Buffer size 25000

Ns
t

Noise
parameter None

ρ soft update 0.001

channels. Particularly, we will start by examining the perfor-
mance of the RL approaches in terms of convergence and
ability to respect the system constraints. Fig. 5 illustrates the
variation of the cumulative rewards over the training episodes,
for the channel allocation RL system.
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Fig. 5: Average cumulative rewards vs. training episodes of
the channel allocation RL system (M = 2,K = 6, Bmax =
10 J,Γ = {7, 8, 9}).

We note that the presented rewards are averaged over
a window of 5 for all SNR levels to see the behavior of
the system during training. In the beginning of the learning
process, all decisions are taken randomly in order to have
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an initial estimation of the RL policy. At this stage, we
can notice that the reward is low, which means that the
constraints described in eq. (21) are not respected. However,
as the number of episodes increases, the system starts to
learn how to respect different constraints and assign optimal
allocations. After the learning process, the stability is reached,
which confirms the convergence of the channel allocation RL
system.
Fig. 6 shows the accuracy of both RL systems, namely
channel assignment and energy management. We define
the accuracy of the RL as its ability to respect different
constraints. More specifically, the accuracy is equal to the
percentage of episodes where all system requirements are
satisfied, after the convergence. We can see that the accuracy
of both RL models is very high reaching 80% and more for
most of the SNR levels, which means more than 80% of
episodes respect the defined constraints (e.g. channels, SFs,
and energy constraints).
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Fig. 6: Accuracy in terms of meeting constraints for both RL
systems (M = 2,K = 6, Bmax = 10 J,Γ = {7, 8, 9}).

Next, we will present the performance of the proposed
HURMA algorithm and energy management RL system com-
pared to the optimal solution. Fig. 7 plots the Grid energy cost
of the proposed low complexity algorithm HURMA and the
RL system as a function of the SNR. This figure is drawn for
only limited number of devices K = 6, number of channels
M = 2 and a set of SFs Γ = {7, 8, 9} due to the high complex-
ity of the exhaustive search optimal algorithm. It is clear that
the HURMA and the RL approach significantly outperform the
random scheme (random channel and SF assignment) thanks to
the adequate channel and SF assignment, which significantly
saves the transmitted power. Also, they achieve a performance
near to the optimal specifically in low SNR region in which
LoRa operates. However, we can notice that the HURMA
heuristic presents a better performance compared to the RL
approach. This can be explained by the fact that no MDP
process is set, when channels are uncorrelated. This means
that the episode steps are independent and the state transition
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Fig. 7: Optimal grid energy cost versus SNR target (M =
2,K = 6, Bmax = 10 J,Γ = {7, 8, 9}).
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Fig. 8: Grid energy cost versus SNR target with heuristic
resource management schemes (M = 5,K = 35, Bmax =
200 J,Γ = {7, 8, 9, 10, 11, 12}).

follows a uniform distribution. Therefore, the RL policy only
learns how to respect the constraints to maximize the reward.
Additionally, it captures the channels and SFs that have
higher probabilities to minimize the required energy, owing to
the experience memory D storing past allocation decisions.

To summarize, when channels are uncorrelated, HURMA
outperforms the RL approaches due to its efficient energy
management design. Still, the RL shows a good performance,
while presenting a lower complexity. Particularly, our RL
system uses an MLP predictive network composed of 2 layers
of 64 neurons, which is a light-weight DNN model with a
negligible complexity. Moreover, the edge of the RL over
heuristic based approaches is its run-time ability to adapt to
the environment changes (e.g., SNR, number of channels, and
number of users.), thanks to its continual online learning.
In Fig. 8, the performance of HURMA is shown as a func-
tion of the SNR for higher number of number of devices
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Fig. 9: Accuracy in terms of meeting constraints for both
RL systems (M = 5,K = 35, Bmax = 200 J,Γ =
{7, 8, 9, 10, 11, 12}).
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Fig. 10: Grid energy cost versus number of channels with
heuristic resource management schemes (K = 40, Bmax =
200 J,Γ = {7, 8, 9, 10, 11, 12}, γth = 0 dB).

K = 35, number of channels M = 5 and a set of SFs
Γ = {7, 8, 9, 10, 11, 12}. It is clear that the proposed algorithm
HURMA significantly saves grid energy cost compared to the
RL approach and round-robin scheduling, which confirms the
performance of the heuristic over the online learning when
channels are uncorrelated. We note that the accuracy of both
RL models leading to energy saving is verified in Fig. 9.
Fig. 10 shows the performance of the proposed scheme
HURMA as a function of the number of channels K. The
increase of the number of channels allows to schedules more
devices, which increases the total grid energy cost. Moreover,
HURMA performs very well and the performance gap with the
random scheme keeps almost unchanged when the number of
channels increases.
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Fig. 11: Average cumulative rewards vs. training episodes of
the channel allocation RL system (M = 2,K = 6, Bmax =
10 J,Γ = {7, 8, 9}).

B. Time-correlated Channel

Now, the performance of the resource management schemes
in LoRa networks is investigated considering time-correlated
channels. Fig. 11 depicts the average cumulative rewards of
the channel allocation RL over the training episodes, smoothed
over a window of 5. Similarly to the uncorrelated scenario,
the system applies the trial and error process, until reaching
the convergence phase. Fig. 12 depicts the convergence of
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Fig. 12: Average cumulative penalties vs. training episodes of
the channel allocation RL system (M = 2,K = 6, Bmax =
10 J,Γ = {7, 8, 9}).

the penalties used to learn the optimal channel assignment
strategy. In fact, the RL penalties match the objective function
of the optimization problem (14), which is added to the reward
function as illustrated in eq. (22).
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Fig. 13: Average penalties (channel assignment objective function) vs. smoothed episodes (M = 2,K = 6, Bmax = 10 J,Γ =
{7, 8, 9}).
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Fig. 14: Accuracy in terms of meeting constraints for both RL
systems (M = 2,K = 6, Bmax = 10 J,Γ = {7, 8, 9}).

According to the latter equation, the RL agent selects the
optimal allocations by minimizing the penalties over the
training episodes. We note that the cumulative penalties are
smoothed over a window of 10. On these bases, we notice
that the convergence is reached after 5000 episodes, which is
not the case of the cumulative rewards that converge faster.
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Fig. 15: Optimal grid energy cost versus SNR target (M =
2,K = 6, Bmax = 10 J,Γ = {7, 8, 9}).

This can be explained by the fact that the exploration space
of channel allocation tasks is large. However, after learning
the optimal actions related to the given states, reasonable
decisions will be taken on the fly. It is worth to mention that
this convergence pattern is not observed, when channels are
uncorrelated due to the insignificance of the MDP process.
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Fig. 16: Grid energy cost versus SNR target with heuristic
resource management schemes (M = 3,K = 20, Bmax =
200 J,Γ = {7, 8, 9, 10, 11, 12}).

To further evaluate the performance of the channel assignment
RL system over episodes, we compared it to the HCRMA
heuristic and the Random resource allocation. Fig. 13 presents
the average cumulative penalties (i.e., objective function of the
channel allocation problem) over 1000 episodes for different
approaches. We can see that the RL approach outperforms
the heuristic in terms of allocation decisions and stability,
when the SNR is equal to 10 or 0. In low SNR region, the
RL presents a similar or slightly better performance.
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Fig. 18: Grid energy cost versus number of channels with
heuristic resource management schemes (K = 40, Bmax =
200 J,Γ = {7, 8, 9, 10, 11, 12}, γth = 0 dB).

Next, the performance of the second RL responsible
for energy management is examined through evaluating its
accuracy first (see Fig. 14), and then benchmarking it against
the low complexity algorithm HCRMA and the optimal

solution (see Fig. 15). Fig. 14 shows that both RLs have a
high ability to respect different requirements and constraints
of the system. Fig. 15 presents the grid energy cost as a
function of the SNR, for different resource management
approaches. Similarly to uncorrelated channel scenario, the
optimal resource management solution is derived with high
computational complexity. The proposed algorithm HCRMA
and the RL system achieve high system performance thanks to
their adequate SF and channel assignment methods. Indeed,
the performance gap with the optimal is tight, for both
approaches. However, in the correlated channel scenario, the
RL approach outperforms the heuristic-based strategy thanks
to its capacity to learn a sub-optimal allocation strategy,
predict the required energy for the next frames, and manage
the existing resources accordingly. This is not the case of
HCRMA that executes greedy decisions.
We plot the performance of HCRMA and the corresponding
RL system for higher number of devices K = 20. Fig. 16
presents the grid energy cost versus the SNR target,
for different resource management schemes. Clearly, the
HCRMA heuristic and the RL approach outperform the
random scheme in terms of grid power consumption cost for
wide range of SNR. Additionally, we can see that the RL gives
better results compared to the heuristic, owing to its online
learning ability. The convergence and accuracy performance
of the channel assignment and energy management RL
models are confirmed in Fig. 17, where we present the
average cumulative rewards and penalties, and the accuracy
in terms of respecting the constraints.
The performance of the proposed scheme HCRMA is shown
in Fig. 18 as a function of the number of channels M . The
increase of the number of channels allows to us schedule more
devices, which increases the total grid energy cost. HCRMA
performs very well in terms of grid power consumption cost
and the performance gap with the random scheme keeps
increasing when the number of channels increases.
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Fig. 17: Performance of the RL models (M = 3,K = 20, Bmax = 200 J,Γ = {7, 8, 9, 10, 11, 12}): (a) Average cumulative
rewards vs. training episodes of the channel assignment RL system; (b) Average cumulative penalties vs. training episodes of
the channel assignment RL system; (c) Accuracy in terms of meeting constraints for both RL systems.
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Fig. 19: Cumulative consumed grid energy and harvested
energy versus number of episodes with heuristic resource man-
agement schemes. (M = 5,K = 35, γth = −20dB,Bmax =
200 J,Γ = {7, 8, 9, 10, 11, 12}).

We show in Fig. 19 the cumulative consumed grid energy
and harvested energy over time. It can be seen that HCRMA
allows to reduce both the consumed energy from the grid and
from the battery. Moreover, HCRMA optimizes the use of the
renewable energy which allows to minimize the grid energy
cost.

VIII. CONCLUSION

This paper has investigated energy-efficient resource man-
agement in green LoRa wireless network powered by both
a renewable energy source and the conventional grid. A
grid power consumption minimization problem subject to the
devices’ quality of service demands, has been formulated. The
optimal energy management solution which consists of device
scheduling, SF and channel assignment, and energy manage-
ment, has been solved. The online resource management has
been also investigated considering both scenarios uncorrelated
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and time-correlated channels by developing low complexity
heuristic algorithms. Moreover, smart and adaptable resource
management schemes based on RL have been developed
taking into account the channel and energy correlation with the
objective to improve the power consumption in LoRa wireless
networks. Simulation results show that the proposed resource
management approaches allow efficient use of renewable en-
ergy in LoRa wireless networks.
Future works may cover the study of model-based RL frame-
works and their performance on LoRa systems compared to
our proposed model-free RL approach. We will also focus on
developing efficient resource management schemes for feder-
ated learning over LoRa wireless networks. Moreover, SWIPT
system could be incorporated in LoRa wireless networks, and
efficient resource management schemes may be developed.
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