
Northumbria Research Link

Citation: Jiang, Feibo, Dong, Li, Wang, Kezhi, Yang, Kun and Pan, Cunhua (2022)
Distributed Resource Scheduling for Large-Scale MEC Systems: A Multi-Agent Ensemble
Deep Reinforcement Learning with Imitation Acceleration. IEEE Internet of Things Journal,
9 (9). pp. 6597-6610. ISSN 2372-2541

Published by: IEEE

URL: https://doi.org/10.1109/JIOT.2021.3113872
<https://doi.org/10.1109/JIOT.2021.3113872>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/47965/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

SUBMITTED FOR REVIEW 1

Distributed Resource Scheduling for Large-Scale
MEC Systems: A Multi-Agent Ensemble Deep

Reinforcement Learning with Imitation Acceleration
Feibo Jiang, Li Dong, Kezhi Wang, Kun Yang and Cunhua Pan

Abstract—In large-scale mobile edge computing (MEC) sys-
tems, the task latency and energy consumption are important
for massive resource-consuming and delay-sensitive Internet of
things devices (IoTDs). Against this background, we propose a
distributed intelligent resource scheduling (DIRS) framework to
minimize the sum of task latency and energy consumption for all
IoTDs, which can be formulated as a mixed integer nonlinear pro-
gramming. The DIRS framework includes centralized training
relying on the global information and distributed decision making
by each agent deployed in each MEC server. Specifically, we first
introduce a novel multi-agent ensemble-assisted distributed deep
reinforcement learning (DRL) architecture, which can simplify
the overall neural network structure of each agent by partitioning
the state space and also improve the performance of a single
agent by combining decisions of all the agents. Secondly, we
apply action refinement to enhance the exploration ability of the
proposed DIRS framework, where the near-optimal state-action
pairs are obtained by a novel Levy flight search. Finally, an
imitation acceleration scheme is presented to pre-train all the
agents, which can significantly accelerate the learning process
of the proposed framework through learning the professional
experience from a small amount of demonstration data. The
simulation results in three typical scenarios demonstrate that
the proposed DIRS framework is efficient and outperforms the
existing benchmark schemes.

Index Terms—Multi-agent reinforcement learning, Distributed
deep reinforcement learning, Imitation learning, Resource
scheduling, Lévy flight.

This work was supported in part by the National Natural Science Foundation
of China (NSFC) under Grant no. 41604117, 41904127, 61620106011 and
U1705263; in part by the Hunan Provincial Natural Science Foundation of
China under Grant no. 2020JJ4428, 2020JJ5105, 2021JJ30455; in part by
the Hunan Provincial Science Technology Project Foundation under Grant
2018TP1018 and 2018RS3065.

(Corresponding authors: Li Dong; Kezhi Wang.)
Feibo Jiang is with the Hunan Provincial Key Laboratory of Intelligent

Computing and Language Information Processing, Hunan Normal University,
Changsha 410081, China (e-mail: jiangfb@hunnu.edu.cn).

Li Dong is with the Key Laboratory of Hunan Province for New Retail
Virtual Reality Technology, Hunan University of Technology and Business,
Changsha 410205, China (e-mail: dlj2017@hunnu.edu.cn).

Kezhi Wang is with the Department of Computer and Information Sciences,
Northumbria University, Newcastle upon Tyne NE1 8ST, U.K. (e-mail:
kezhi.wang@northumbria.ac.uk).

Kun Yang is with the School of Information and Communication Eng.,
University of Electronic Science and Engineering of China, Chengdu, and also
with the School of Computer Sciences and Electrical Engineering, University
of Essex, Colchester CO4 3SQ, U.K. (e-mail: kunyang@essex.ac.uk).

Cunhua Pan is with the School of Electronic Engineering and Computer
Science, Queen Mary University of London, London E1 4NS, U.K. (e-mail:
c.pan@qmul.ac.uk).

I. INTRODUCTION

A. Motivation

Recently, with the rapid increase of resource-intensive tasks,
e.g., augmented reality (AR), Internet of things (IoT) appli-
cations and autonomous driving, the quality of our life has
the potential to be improved greatly. However, due to the
limited size and battery life of IoT devices (IoTDs), these
applications may be difficult to be implemented in practice.
Fortunately, mobile edge computing (MEC) has been proposed
recently as a promising technique to liberate IoTDs from
computation-intensive tasks by allowing them to offload their
high workloads to edge servers [1], [2].

However, due to the large number of IoTDs, one edge server
may not be powerful enough to support all the devices at
the same time. Thus, multiple MECs may be deployed to
support the IoTDs. Then, it is critical to determine the offload-
ing decision and resource allocation between computing and
communication resource from different MECs to IoTDs [1].
Unfortunately, the above problem is normally formulated as a
mixed integer nonlinear programming (MINLP) problem [3]
[4], which involves integer variables (i.e.,offloading decision)
and continuous variables (i.e., communication and computing
resource allocation). This problem is very difficult to solve in
general, especially in large-scale IoTD scenarios and dynamic
environments.

B. Background and related works

Some traditional solutions have been applied to solve the
above problem, such as game theory [5], branch-and-bound
method [6] and dynamic programming [7]. However, these
solutions normally needs a large amount of computing re-
source and it is difficult to realize online decision making
process. Some other solutions, such as convex relaxation [8]
and heuristic local search [9] algorithms are also applied
to handle the above problems. However, those algorithms
normally need a considerable amount of iterations to achieve
a satisfying local optimum, which may not be suitable for
dynamic environment. Moreover, with the increase of the
number of IoTDs and MEC servers, the complexity of the
above-mentioned traditional solutions increases significantly,
which makes them very difficult to be applicable in large-scale
environment.

Fortunately, the emerging deep reinforcement learning
(DRL) approach has shown great potential in solving the
above-mentioned joint optimization problem [10], [11]. The

SUBMITTED FOR REVIEW 2

DRL employs deep neural networks for mapping input MEC
system parameters to the output resource scheduling decisions
directly. After training from the environments, it can output the
optimal decisions very quickly without explicitly solving the
original mathematical optimization, which is very suitable for
the fast varying and large scale MEC environment. However,
there are still several challenges yet to be addressed: 1) Value-
based DRL (e.g., Q-earning [12], DQN [13] [14] and double
DQN [15]) can only work well in a limited action space, which
is inefficient in large-scale application scenarios; 2) Although
policy-based DRL (e.g., DDPG [16], A3C [17], and MADDPG
[18]) can update policy by computing policy gradient for
maximizing the expected reward, it is difficult to converge
in complicated environment, especially for distributed archi-
tecture [18].

C. Key contributions
In this paper, we aim to develop a distributed intelligent

resource scheduling (DIRS) framework, which can be applied
to large-scale MEC systems with multiple MECs and IoTDs
in dynamic environment. To enhance the performance of the
framework, centralized training scheme is designed, whereas
distributed decision making is proposed to increase the flexibil-
ity of the framework. The main contributions are summarized
as follows:

• We first formulate an optimization problem and the
objective is to minimize the sum of task latency plus
energy consumption for all the IoTDs. Then, we decom-
pose the proposed MINLP optimization problem into an
offloading decision sub-problem and a communication
and computing resource allocation sub-problem, which
can reduce the complexity of the original problem and
guarantee that the solutions meet all the constraints.

• We propose a distributed multi-agent ensemble DRL
framework for solving the decision making sub-problem.
In this framework, one agent is deployed in each MEC
to conduct the distributed decision making for IoTD
offloading tasks to this MEC. To improve the performance
of the whole system, we have a scheduler deployed
in the Core-MEC (C-MEC) to conduct the centralized
training with the global information in the training stage.
Ensemble learning is introduced into this distributed DRL
framework to simplify the neural network structure of
each agent by partitioning the state space and improve the
performance of a single agent by combining decisions of
all the agents. Once the centralized training is completed,
each agent in MEC can make distributed offloading
decision only with local information.

• We present a Lévy flight search as the action refinement
to find the best actions for the DRL model according to
the current state. Lévy flight search can help the DRL
framework to skip the local optimum. In the Lévy flight
search, h mutation operator is used to generate mutant
vector according to the channel state information, and
then the Lévy crossover operator is applied to avoid
candidate vector trapping into the local optimum. Finally,
greedy selection operator is applied to select the better
solution between candidate vector and original solution.

• We propose an imitation acceleration scheme, which
combines the DRL and imitation learning to accelerate
the training process of all the agents. We first generate a
small amount of demonstration data, and then we pre-
train all the agents using a novel demonstration loss
function, which can reduce the training time and increase
the stability of the DRL based framework.

D. Organization

The rest of this paper is organized as follows. Section II
presents a review of related works. Section III describes the
system model and problem formulation. Section IV describes
the detailed design of the DIRS framework. Section V presents
the simulation results, followed by the conclusions in Section
VI.

II. RELATED WORKS

The DRL-based algorithms have attracted extensive atten-
tion in the resource scheduling field. In the following, we
present the related works from four aspects: Value-based DRL,
Policy-based DRL, Distributed DRL, and Hybrid DRL.

Value-based DRL method: In [13], a deep Q-leaning based
offloading scheme was presented to optimize offloading policy
according to the current battery level, the radio transmission
rate and the harvested energy in the MEC system. In [14], a
deep Q network (DQN) approach was introduced to optimize
the networking, caching, and computing resources in the
vehicular networks. Moreover, in [19], a deep reinforcement
scheduling with experience relay is applied for mobile crowd-
sensing in fog computing.

Policy-based DRL: In [16], a deep deterministic policy
gradient (DDPG) method was used to design the trajectory
of UAVs by jointly considering the communications coverage,
fairness, energy consumption and connectivity. In [17], a high
performance asynchronous advantage actor–critic (A3C) DRL
algorithm is proposed to solve the complex dynamic resource
allocation problem in vehicles network.

Distributed DRL: In [20], a novel two-timescale deep rein-
forcement learning (2Ts-DRL) was presented, which leveraged
federated learning to train the 2Ts-DRL model in a distributed
manner. In [21], a distributed DQN was applied to search
the optimal sub-band and power level for transmission, and
each vehicle-to-vehicle link was considered as an agent and
trained in a decentralized way. Then, in [22], a decentralized
offloading policy learned by DDPG for a multi-user MEC
system was proposed, in which each DDPG was adopted to
learn the efficient offloading policy interdependently at each
mobile user. In [23], a meta-training enhanced multi-agent
DRL is introduced to design the trajectory of a team of drone
base stations under unpredictable environments. In [24], the
recent progress and future challenges of distributed learning
in wireless networks are summarized.

Hybrid DRL method: In [25], The task offloading method
was proposed based on meta reinforcement learning, which
can adapt fast to new environments with a small number
of gradient updates and samples. In [26], an A3C deep
reinforcement learning algorithm was introduced to obtain

SUBMITTED FOR REVIEW 3

the resource pricing and allocation MEC enabled blockchain
systems. In [27], the DRL with Monte Carlo tree learning was
introduced to solve the complex resource allocation problem
for a collaborative MEC network. In [28], a generative adver-
sarial network-powered deep distributional Q network (GAN-
DDQN) was proposed to learn the action-value distribution
driven by minimizing the discrepancy between the estimated
and the target action-value distribution, which can be used to
solve demand-aware resource allocation problem.

However, none of the above contributions considered the
application of distributed DRL in online resource scheduling
for large-scale MEC systems, which can be seen as a complex
MINLP problem. Traditional value-based and policy-based
DRLs are hard to be applied in large scale MEC systems
directly. For example, the value-based DRL can only work
well in a limited action space, thus it may not be suitable
for large-scale offloading decision making environment. The
advantage of policy-based DRL is that the outputs can be
continuous, but it is easy to fall into the local optimal for
the large action space and it is normally difficult to converge
in dynamic environments [18]. Distributed DRL has a great
potential in addressing the above-mentioned issues by con-
ducting distributed learning and dynamic decision in large-
scale application scenarios [22].

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

Fig. 1: Proposed MEC system.

Fig. 1 shows our proposed system with one C-MEC and
M normal MECs, denoted as the set of M = {1, 2, . . . ,M}.
C-MEC is deployed at the macro base station, whereas the
other edge servers are installed in each small base sta-
tion. We assume there are N IoTDs, denoted as the set of
N = {1, 2, . . . , N}. Each IoTD has a computation task to
be executed, which can be either offloaded to the MECs or
processed locally.

We define the computing task in each IoTD as Ui, where
Ui = (Fi, Di) ,∀i ∈ N [29], Fi denotes the total number of
the CPU cycles and Di describes the data size transmitting to
the MEC if offloading action is conducted. Di and Fi can be
obtained by using the approaches provided in [30] [31].

Then, the overall time consumption of completing a task
can be given by

Tij = TTr
ij + TC

ij =
Di

rij
+

Fi

fij
,∀i ∈ N ,∀j ∈ M (1)

where TTr
ij is time consumed for data offloading from the i-

th IoTD to the j-th MEC, TC
ij is execution time in an MEC

server if the i-th IoTD offloading task to the j-th MEC server,
fij is the computation capacity of the j-th MEC allocating to
the i-th IoTD and j = 0 if IoTD executes the task locally.
Also, rij denotes the offloading data rate from the i-th IoTD
to the j-th MEC, which can be given by

rij = B log2

(
1 +

pijhij

σ2

)
,∀i ∈ N ,∀j ∈ M (2)

where pij is the transmission power from the i-th IoTD to the
j-th MEC server and B is the channel bandwidth, σ2 is the
noise spectral density and hij is the channel gain which is
given by

hij =
β0lij

(Xj − xi)
2
+ (Yj − yi)

2 ,∀i ∈ N ,∀j ∈ M (3)

where β0 denotes the channel power gain at the reference
distance, lij describes the small-scale fading factor, (xi, yi) is
the coordinate of the i-th IoTD, and (Xj , Yj) is the coordinate
of the j-th MEC.

We consider a binary offloading strategy as

aij = {0, 1},∀i ∈ N ,∀j ∈ M (4)

where aij = 1 denotes that the i-th IoTD decides to offload
the task to the j-th MEC, while aij = 0 denotes that the i-th
IoTD decides not to offload the task to the j-th MEC. We
assume that one IoTD can access to at most one edge server,
which is formulated as follows:∑

j∈M
aij + ai0 = 1,∀i ∈ N . (5)

Also, assume that the computing resource of each MEC is
constrained by

N∑
i=1

aijfij ≤ FMEC
j, max,∀j ∈ M (6)

where FMEC
j, max is the computational capability of the j-th

MEC.
Then, define P IoTD

i, max as the maximum transmission power
that each IoTD can apply and then one has

M∑
j=1

aijpij + ai0p
E
i ≤ P IoTD

i, max (7)

where pEi is the execution power of the i-th IoTD which
is given by pEi = κi (fi0)

vi ,∀i ∈ N , and fi0 is the local
computing capacity and is a fixed value in this paper, κi ≥ 0

SUBMITTED FOR REVIEW 4

is the effective switched capacitance and vi ≥ 1 is the
positive constant. To match the realistic measurements, we set
κi = 10−27 and vi = 3 [29].

B. Problem Formulation

For each IoTD, the time consumption is

Ti =
∑
j∈M

aijTij + ai0
Fi

fi0
. (8)

Also, for each IoTD, the energy consumption is given by

Ei =
∑
j∈M

aij(pijT
Tr
ij) + ai0

Fi

fi0
pEi . (9)

Then, define Φi as

Φi = ϕTTi + ϕEEi. (10)

where ϕT and ϕE are weighted coefficients. The weighted co-
efficients are determined by the specific application scenarios
[32]. If the task is a time-sensitive task, one can set ϕT > ϕE .
If the task is energy-sensitive, then ϕT < ϕE can be set.
The weighted coefficients ϕT and ϕE regarding computational
energy and time can be determined by applying the multiple
criteria decision making theory [33].

In this paper, we aim to jointly optimize the offloading
selection, computing resource allocation, and power allocation
to minimize the weighted sum of task latency and energy
consumption of all tasks. Specifically, we formulate the op-
timization problem as follows:

P0 : min
a,f ,p

∑
i∈N

Φi

s.t. (4)− (7) (11)

where a = {aij |i ∈ N , j ∈ M′}, f = {fij |i ∈ N , j ∈ M′},
p = {pij |i ∈ N , j ∈ M′} are vectors for offloading decisions,
computing resource allocation and transmission power from
each IoTD, respectively. One can see that this problem in-
cludes both integer and continuous variables. If IoTD conducts
the task itself, the energy consumption can be expressed as
pi0 = pEi . Also assume that h = {hij |i ∈ N , j ∈ M} are
time-varying input values, whereas other parameters are fixed.

C. Problem transformation

One can see that Problem P0 is an MINLP, which is very
difficult to address in general. This problem becomes even
more complex if it involves large-scale variables. To obtain
the low complexity solution, we first decompose this problem
into two sub-problems: 1) Offloading decision making sub-
problem and 2) Resource allocation sub-problem.

Firstly, we propose a distributed DRL framework to obtain
optimal offloading decision a from the interaction between
distributed agent and global environment. Once the offloading

variable a is obtained, the resource allocation sub-problem can
then be expressed as follows:

P1 :min
f ,p

∑
i∈N

ϕT

∑
j∈M

aij

(
Di

rij
+

Fi

fij

)
+ ai0

Fi

fi0

+

ϕE

∑
j∈M

aijpij
Di

rij
+ ai0

Fi

fi0
pEi

s.t. (6)(7). (12)

Then, we can decouple the above problem into the following
optimization to facilitate the distribute decision making in each
MEC as

min
fj ,pj

∑
i∈N

(
ϕT

(
aij

(
Di

rij
+

Fi

fij

)
+ ai0

Fi

fi0

)
+

ϕE

(
aijpij

Di

rij
+ ai0

Fi

fi0
pEi

))
,∀j ∈ M

s.t. (6)(7). (13)

where pj = {p1j , . . . , pNj} and fj = {f1j , . . . , fNj}.
The above problem only includes the continuous variables

and therefore can be easily addressed using heuristic optimiza-
tion methods (e.g., Lévy flight search).

IV. DISTRIBUTED INTELLIGENT RESOURCE SCHEDULING
(DIRS) FRAMEWORK

In this section, we will introduce the proposed DIRS frame-
work, which focuses on joint computation offloading decision
and resource allocation in dynamic environment. Distributed
model-free DRL is introduced to address the offloading deci-
sion making problem, as it is a goal-oriented method which
can learn the optimal policy through the interaction between
agent and environment. In a large-scale MEC system with
multiple users, there are several challenges to be addressed
as follows: (1) The policy is randomly distributed and the
experience replay buffer is sparse at the beginning of the
learning process, so that the interaction process is inefficient
and the DRL framework is difficult to converge, especially in
dynamic situations. (2) Because of the large number of users,
the state space of the DRL is extremely large, which increases
the difficulty of policy learning. (3) The action exploration is
very challenging because of the complex optimization problem
such that the DRL is difficult to explore the optimal action
and the search is prone to trap into local minimum. These
challenges prohibit the DRL from being directly applied in the
real environment. To tackle the large-scale decision problems,
Google proposed an improved DRL with KNN as the action
refinement in large discrete action spaces [34], and leveraged
the demonstration data to accelerate the large-scale learning
of DQN [35]. Inspired by the previous works, we present
a DRL-based DIRS framework with centralized training and
distributed inference. Next, we give a brief introduction of the
proposed framework.

SUBMITTED FOR REVIEW 5

A. The framework outline

The DIRS framework is illustrated in Fig. 2, which includes
local agents and a global scheduler. Specifically, the local
agents are deployed on each MEC to conduct the independent
decision making, and a global scheduler is deployed on the
resource-abundant C-MEC to conduct the centralized training,
which involves local information exchange of all the agents,
generation of demonstration data by using imitation acceler-
ation scheme and refinement of the actions with the aid of
Lévy flight search. In online inference stage, each MEC only
needs to perform some simple algebraic calculations with the
help of local agent enhanced by DRL instead of solving the
original optimization problem.

The workflow of the DIRS framework is presented in
Algorithm 1. Firstly, we initialize parameters of all deep
neural networks (DNNs) in M agent with the parameters
θ0 =

{
θ01, . . . , θ

0
M

}
randomly generated and we also initialize

an empty replay buffer D. Then, we pre-train all the agents
using demonstration data produced by the imitation acceler-
ation scheme (i.e., Algorithm 2) and obtain the pre-trained
parameters of all the agents θD =

{
θD1 , . . . , θDM

}
, and then

keep all the demonstration data in the replay buffer D. Next,
the online training stage and online distributed inference stage
are executed. Particularly, the online distributed inference stage
is performed continuously, where each agent j generates an of-
floading action aj,t = {a1j,t, . . . , aNj,t} for N IoTDs accord-
ing to the channel state information hj,t = {h1j,t, . . . , hNj,t}
and policy π with parameters θj,t at time slot t, and obtains
pj,t = {p1j,t, . . . , pNj,t} and fj,t = {f1j,t, . . . , fNj,t} by
solving Problem (13) independently. The online training stage
is performed at every interval ϕ by multi-agent ensemble
algorithm (i.e., Algorithm 3) and Lévy flight search algorithm
(i.e., Algorithm 4), and then the learned parameters of all
M agents θ = {θ1, . . . , θM} are updated. ϕ is the training
interval. These two stages are alternately performed and the
offloading policies of all the agents can be gradually improved
in the iteration process.

In general, the DIRS includes three work stages: (1) Offline
pre-training stage is applied to accelerate the DRL training for
the large-scale application scenarios; (2) Online training stage
is introduced to track the variations of the real scenarios in
dynamic environments; (3) Online distributed inference stage
is presented to make real-time decisions. Moreover, there are
three key improvements of the DIRS framework compared
to traditional DRL: (1) An imitation acceleration scheme is
presented to generate demonstration data and initialize the pa-
rameters of distributed agents rather than initializing them ran-
domly to accelerate the learning speed of the distributed DRL
(i.e., Subsection-V-B). (2) Multi-agent ensemble algorithm is
proposed in Subsection-V-C for large state space partition and
decision consolidation, in which the original channel state
information h is regarded as the current state s of DRL and it
is divided into smaller subsets {h1, h2, . . . , hM} according to
the ownership of MECs. Finally, the maximum vote approach
is applied to integrate the results of all distributed agents,
and obtain the ensemble offloading decision ae according to
the maximum vote. This method can realize dimensionality

Algorithm 1 DIRS framework

Input: hj,t, ϕ.
Output: aj,t, pj,t, fj,t.

1: Initialize M agents with policies randomly parameterized
by θ0.

2: Initialize an empty replay buffer D.
Offline pre− training stage

3: Train all agents using demonstration data by Algo-
rithm 2, and obtain the demonstrated parameters of all
agents θD.

4: Keep all demonstration data in the replay buffer D.
Online distributed inference stage

5: Set iteration number of online inference TDRL.
6: while t < TDRL do
7: for each agent j do
8: Obtain the channel state information hj,t according

to the environment.
9: Generate the offloading action aj,t = π (hj,t|θj,t)

independently.
10: Obtain pj,t and fj,t by solving Problem (13) inde-

pendently.
11: end for

Online training stage
12: if t mod ϕ = 0 then
13: Train all agents using Algorithm 3 and Algo-

rithm 4.
14: end if
15: end while

reduction for the DNN in each agent and simplify the policy
learning in each sub-state space. (3) A novel Lévy flight
search is introduced in Subsection-V-D for action refinement,
which can enhance the action exploration of DRL. Then the
optimal offloading action a∗ is achieved by maximizing the
reward which is cached into the replay buffer D. One can
see that the DIRS framework is a model free DRL which can
provide distributed decision making and resource allocation
without solving the original MINLP problem. We describe
the implementation details of each module in the following
subsections.

B. Imitation acceleration scheme

In large-scale scenarios, distributed DRL typically requires
to learn a huge amount of data before they reach reasonable
performance, which is very time-consuming by trial and error.
This is the major drawback of the DRL to solve the large-
scale optimization problem. Recently, imitation learning has
been shown to help address this difficult exploration problems
in DRL [35], [36].

Imitation learning focuses on imitating human learning or
expert demonstration for controlling the behaviour of the
agent, which can help DRL reduce the time required to learn
by an agent to a great extent through reducing the number of
trials [37]. In DRL, imitation learning can help an agent to
achieve better performance in complex environment by pre-
training it with the demonstration data.

SUBMITTED FOR REVIEW 6

Agent 1

h1

Agent 3

h3 a3

Multi-agent ensemble

aSolving P1 f1,p1

Greedy
selection

s

Replay buffer

Transitions
a*

Lévy flight search

a*

Solving P1 f3,p3

Lévy flight
search with

small β

Imitation acceleration

31 2

ae

Agent 2

h2 a2 Solving P1 f2,p2

Binarization

Binarization

Binarization

Demonstration
Data generation

Enqueue

Dequeue

mini-batch

h1

h2

h3

a*1

a*2

a*3

h mutation

Lévy crossover

0.20.8 0.1

0.20.1 0.7

0.90.3 0.2

00 1

h31h11 h21

h32h12 h22

h33h13 h23

a1

Vote

MEC

MEC

MEC

C-MEC

Scheduler

10 0

01 0
...

...

... ...

... ...

...

...

...

...

...

...

...

s {
h1

h2

h3

...

Fig. 2: The DIRS framework.

In the proposed DRL, we propose an imitation acceleration
scheme combined with DRL and imitation learning. The
imitation acceleration algorithm leverages relatively a small
amount of demonstration data to pre-train the agents in our
framework, which can significantly accelerate the learning
process of the distributed DRL. The details of the imitation
acceleration scheme are described as follows.

Firstly, we collect demonstration data by leveraging the
optimization algorithm for solving the problem in Eq. (11).
In general, the algorithm can be divided into three categories:
(1) If the action space is small, we can use the exhaustive
search approach to obtain the optimal decision. (2) If the
action space is medium, we can use some mixed integer
programming solver (e.g., CPLEX). (3) If the action space is
large, we can use some global heuristic algorithms to obtain
suboptimal decisions [38]. In our study, the demonstration data
is generated from the Lévy flight search with small value of
parameter β (to be introduced in Appendix) which is suitable
for solving large-scale MINLP problems and can possibly

achieve globally optimal solutions [39]. Then the channel state
information as well as its optimal offloading actions solved by
the Lévy flight search are stored into the replay buffer D.

Secondly, we redefine the demonstration loss function from
[35]. Because our DRL is not a standard DQN network, so we
ignore the DQN loss terms in the original loss function. Then
the simplified demonstration loss function has two losses:

L1(θ) = LD(θ) + λ1LL2(θ) (14)

where LD(θ) = − 1
K

∑
k∈K

(
(a∗k)

T
log (π (hk|θ)) + (1− a∗k)

T

log (1− π (hk|θ)) is the demonstration data loss which is the
cross-entropy for demonstration data and K is the number of
demonstration data in the batch, whereas LL2(θ) = ∥θ∥2 is
the L2-norm of θ, which can increase the generalization of
DNN in each agent.

Thirdly, we initialize the pre-training process of all the
agents solely on the demonstration data before starting any
interaction with the environment.

SUBMITTED FOR REVIEW 7

Finally, once the offline pre-training phase is complete, all
the agents start to act in the environment. Then the online
training stage and distributed inference stage are alternately
executed. We describe the whole process of Algorithm 2 as
follows.

Algorithm 2 Imitation acceleration algorithm

Input: K.
Output: pre-trained parameters θD.

1: Generate demonstration data and record them in the replay
buffer D.

2: Set iteration number of imitation learning TD.
3: while t<TD do
4: Sample a minibatch of K transitions from replay buffer

D.
5: Train all agent and update the offloading policy πt with

parameters θD using the demonstration loss in Eq. (14).
6: end while

C. Multi-agent ensemble based distributed DRL algorithm
In the proposed large-scale MEC systems with a large num-

ber of IoTDs, the traditional DRL suffers from the challenge
that the state space is also extremely large, and therefore
it is difficult to train a steady policy because of the partial
observability of the large state space. To address this, we
introduce ensemble learning to enhance the distributed DRL
as follows.

Ensemble learning is a machine learning method that gen-
erates and combines multiple inducers to solve the complex
optimization problem. The intuitive explanation behind en-
semble learning stems from human nature and the tendency
to gather different opinions and combine them to make a
complicated decision [40]. There are many advantages to
introduce ensemble learning into our DIRS framework as
follows.

(1) Global optimization: a single agent that conducts local
inference may get stuck in a local optimum. By combining
several agents, ensemble methods can decrease the risk of
obtaining a locally minimal solution.

(2) Dimensionality reduction: each agent can be constructed
and trained using a selected subset of all the features (i.e., its
own channel gains), which can reduce the impact of the curse
of dimensionality by reducing the state space for each agent.

(3) Output manipulation: the original offloading decision
can be seen as a multi-class classification problem for multiple
MECs, but each agent is a binary classifier. By applying
ensemble learning, many binary classifiers can be combined
into a multi-class classifier, which can simplify the decision
process of each agent.

To this end, we propose a multi-agent ensemble algorithm
to support the distributed DRL, in which the basic components
are redefined as follows.

(1) State space: The overall channel state information is
h = {hij} ,∀i ∈ N ,∀j ∈ M. We also assume that each agent
in each MEC can only obtain its own related channel state
information, and therefore the state of agent j is denoted as
hj = {h1j , . . . , hNj}.

(2) Action space: We define two kinds of action, i.e., global
action and local action for each agent. Specifically, global
action is applied in the training stage, whereas local action
is generated in each agent for the distributed decision making.
The global action is defined as ae = {ai} ,∀i ∈ N , where
ai = 0 means the i-th IoTD decides to execute the task itself,
whereas ai = j means that the i-th IoTD decides to offload
the task to the j-th MEC, where j ∈ M. The local decision
in the j-th agent is defined as aj = {a1j , . . . , aNj}, where
aij = 1 means that the i-th IoTD decides to offload the task
to the j-th MEC, while aij = 0 means the i-th IoTD decides
not to offload the task to the j-th MEC. One can see that each
agent can make distributed decision according to its own local
information.

(3) Reward: The global reward is defined as the reciprocal
of the objective function in Eq. (11).

(4) Policy: The policy πj (hj |θj) of each agent j is imple-
mented by applying a DNN, where θj is the parameters of the
DNN at the j-th agent.

(5) Vote: The output of each agent can be combined by
voting solutions. The final solution is chosen based on the
highest value of the decisions of all the agents. Here we give
an example to illustrate the proposed voting process. Suppose
there are three MECs and the outputs of three agents for the i-
th IoTD are ai1=0.7, ai2=0.8 and ai3=0.2, respectively. Since
the second value ai2 is the highest number, we can have the
global ensemble action of the i-th IoTD aei as 2, which means
this IoTD will offload the task to the second MEC. If all the
values of the i-th IoTD are lower than 0.5, then we set the
corresponding ensemble action aei of the i-th IoTD as 0.

(6) Prioritized experience replay: The scheduler in C-MEC
refines the global action by applying Lévy flight search (to
be introduced in Subsection-V-D) and adds the self-generated
data to its replay buffer D. Data will be added to the replay
buffer until it is full, and then the agent starts to over-
write old data in this buffer during the online training stage.
Prioritization batch is also used in the replay buffer. The
probability of sampling transitions i is defined as

Pi =
wτ

i∑
k∈K wτ

k

(15)

where wi = |∆δt|+ϵ and ϵ is small positive constant that guar-
antees that all the transitions can be sampled. Two different
ϵA and ϵD can be applied to control the relative sampling of
the agent generated data versus the demonstration data. ∆δt
is the average loss function variation of all the agents. The
exponent τ determines the intensity of prioritization.

(7) Loss function: The loss function of the DNN in the agent
is proposed as follows:

L2(θ) = L1(θ) + λ2LA(θ) (16)

where L1(θ) is the demonstration loss function defined in Eq.
(14) and LA(θ) is the agent generated data loss which is given
by

LA(θ) = − 1

S

∑
k∈S

(
(a∗k)

T
log (π (hk|θ))

+ (1− a∗k)
T
log (1− π (hk|θ))

) (17)

SUBMITTED FOR REVIEW 8

where S is the number of agent generated transitions in the
batch.

When we initialize the environment and obtain the state,
the offline training stage is performed, in which each agent
j generates the offloading action aj,t according to the policy
πj,t (hj,t|θj,t) at the time slot t. Then, we obtain the global
offloading decision aet according to the maximum vote of all
the agents. To increase efficiency of action exploration, we
search the best a∗t by applying Algorithm 4, and then we
append the state-action pairs {ht, a

∗
t } to the replay buffer D

as training samples of all the agents. Next, we sample a batch
of transitions by applying priority strategy discussed before,
and then we train all the agents using the Adam algorithm [41]
and update all the offloading policies πt = {π1,t, . . . , πM,t} by
minimizing the loss function defined in Eq. (16). We describe
the whole process of Algorithm 3 as follows.

Algorithm 3 Multi-agent ensemble algorithm

Input: ht, at,D.
Output: θt.

1: Integrate the global aet by voting form all agents.
2: Find the best a∗t by Algorithm 4.
3: Append the state-action pair {ht, a

∗
t } to the replay buffer

D.
4: Sample a random minibatch of transitions by priority

strategy using Eq. (15) from replay buffer D.
5: Feed these transitions to all agents.
6: Set iteration number of distributed learning TD.
7: for each agent j do
8: while t < TM do
9: Update agent parameters θj,t by minimizing the loss

function in Eq. (16) in distributed way.
10: end while
11: end for

D. Lévy flight search

Action exploration is an important part in DRL. Traditional
DRL normally uses random process for action exploration
(e.g., ϵ-greedy), which is blind and inefficient in large action
space [18]. Some local search methods are also applied for
action exploration which can achieve the suboptimal offloading
policy π [34], [42]. However, these local search methods are
easily stuck in local optimum and the right offloading policy
cannot be guaranteed, especially in large-scale MEC systems
[42]. To address this problem, we introduce a novel Lévy
flight search, which can jump out of local optimum with high
efficiency, to find the best offloading action a∗t according to aet
in DRL. After Lévy flight search, the newly generated state-
action pairs {st, a∗t } at time slot t are appended to the replay
buffer as training transitions of all the agents.

Traditional Lévy flight is used to generate a new solution
in the heuristic search as follows:

xi(G) = xi(G− 1) + ηdi (18)

where xi(G) is the solution at iteration G, di is a Lévy flight
step, and η is a scale weight.

However, there are two disadvantages that avoid Lévy
flight from being directly applied to our distributed DRL
algorithm. Firstly, the search step di output from Lévy flight
is a continuous real number, but the offloading decision ai
in our problem is an integer value. Secondly, it does not
take advantage of the channel state information in the search
process. To tackle these issues, we propose a novel Lévy flight
search, in which the solution can be represented as:

x = [a1, . . . , aN , f1, . . . , fN , p1, . . . , pN] (19)

where N is the number of IoTDs, ai, fi and pi denote
the offloading decision, allocated computation resource and
transmission power of the i-th IoTD, respectively.

The Lévy flight search consists of three operations: h
mutation, Lévy selection and greedy selection. We introduce
each of them as follows.

(1) h mutation: channel state information h provides the
prior information to create a mutant vector ami (G). The h
mutation is applied by comparing the normalized hij with a
Lévy flight step, which represents that the IoTD that offloads
the task to the MEC with higher hij has a higher stability.
Thus, the h mutation for the integer part of the solution can
be represented as follows:

ami (G) =

randm if γdi >
hi,ai∑
j∈M hij

ai(G− 1) otherwise
(20)

where randm ∈ M′ is a randomly generated integer to ensure
that the i-th IoTD will offload the task to an MEC or execute
the task itself, γ is a decreased weight calculated as follows:

γ = 2− 2G/Gmax (21)

where Gmax is the maximum iteration number.
The rest part of the solution (e.g., fm

i (G) and pmi (G)) is
generated by Eq. (18).

2) Lévy crossover: the Lévy crossover is carried out to
produce a candidate vector xc

i (G) by combining the mutant
vector xm

i (G) and a target vector xi(G−1), which is achieved
by comparing the weighted Lévy flight step with a threshold
th. Thus, the Lévy crossover is represented as follows:

xc
i (G) =

{
xm
i (G) if γdi > th

xi(G− 1) otherwise
(22)

3) Greedy selection: The selection operator determines
whether the candidate vector xc

i (G) or the target vector
xi(G − 1) survives into the next iteration. Greedy selection
is used to select the vector with the better fitness as follows:

xi(G) =

{
xc
i (G) if f (xc

i) < f (xi(G− 1))

xi(G− 1) otherwise
(23)

where f(·) denotes the objective function in Eq. (11).
In a word, the Lévy flight search employs the channel state

information to guide the mutation of solution, and introduces
Lévy steps to avoid solution trapping into the local optimum,

SUBMITTED FOR REVIEW 9

so it is an efficient action exploration method. The detailed
description of the Lévy flight search algorithm is provided in
Algorithm 4.

Algorithm 4 Lévy flight search algorithm

Input: aet , β, th
Output: a∗t

1: Initialize x(0) with ensemble offloading decision aet , and
random computation resource and energy resource alloca-
tion.

2: while G ≤ Gmax do
3: Generate Lévy search step di.
4: Generate a mutant vector xm

i (G) with ami (G) by Eq.
(20)-Eq. (21), and fm

i (G) and pmi (G) by Eq. (18) in h
mutation.

5: Obtain a candidate vector xc
i (G) by Lévy crossover in

Eq. (22).
6: Calculate the fitness of xc

i (G) and xi(G−1) by solving
the objective function in Eq. (11).

7: Select the subsequent solution xi(G) by greedy selec-
tion in Eq. (23).

8: Update γ according to Eq. (21).
9: end while

In addition, variation factor β (to be introduced in Ap-
pendix) is the key parameter of Lévy flight to balance global
and local search. If β value is large, the step size of Lévy
flight will be restricted in a small search range, which can
really focus on the local search and occasionally global search.
Therefore, larger β value implies the faster convergence speed
and slightly lower solution accuracy. If the β value is small,
the search length of walking distance of Lévy flight is long
so that the global search can be enhanced and the optimal
solution is achieved with slow convergence speed. For these
above reasons, we use Lévy flight search with large β value
in online training stage (i.e., Ensemble learning at Algorithm
3) and apply Lévy flight search with small β value in offline
pre-training stage (i.e. Imitation acceleration at Algorithm 2).

E. Time complexity analysis of DIRS framework

There are two key elements which will influence the time
complexity of our DIRS framework. They are the DNN learn-
ing and the Lévy flight search. The time complexity of DNN
learning is O(K×IDNN ×TN), where K denotes the number
of samples, TN is the iteration number of DNN learning, and
IDNN indicates the time complexity of one iteration, which
depends on the number of parameters in DNNs. The time
complexity of Lévy flight search is O(P×ILF×Gmax), where
P denotes the population size, Gmax is the maximum iteration
number, and ILF indicates the time complexity of the update
of one feasible solution, which depends on the dimension
of the feasible solution and the evaluation complexity of the
feasible solution [43].

So, in our DIRS, the time complexity of the offline pre-
training stage (Imitation learning) is O(M×K×IDNN×TD),
where M indicates the number of MECs, TD is the maximum
iteration number for imitation learning. The offline pre-training

TABLE I: Simulation parameters.

Parameters Assumptions

Data size of task Di 100kB

Required CPU cycles of task Fi 109 cycles

Bandwidth B 1MHz

Local Computational Capability fi0 109 cycles/s

Maximum transmission power P IoTD
max 1.5W

Noise Spectral Density σ2 10−12W/Hz

stage is carried out in the core MEC or the remote cloud with
abundant resources. In multi-agent ensemble learning, the time
complexity of the online training stage for the core MEC is
max(O(K × IDNN × TM), O(P × ILF ×Gmax)), while the
time complexity of the online training stage for the normal
MEC is O(K × IDNN × TM). Considering the MEC system
with limited resources, the K and TM of the DNN and the
P and Gmax of the Lévy flight in online training stage are
set with very small values. The time complexity of the online
distributed inference stage is O(IDNN) for each MEC, which
is a low time complexity and is suitable for IoT and MEC
system.

V. SIMULATION RESULTS AND NUMERICAL ANALYSIS

A. Simulation environment settings

We first present experimental settings of the MEC system
in Table I. The proposed DIRS framework is implemented on
the Python 3 platform. The parameters of the DIRS framework
are chosen as follows: replay buffer size=1024, minibatch
size=256 and training interval ϕ=10. The parameters of the
imitation acceleration scheme are chosen as follows: TD=500,
λ1=10−4. The parameters of the multi-agent ensemble algo-
rithm are chosen as follows: TM=2, λ2=0.5, ϵA=0.08 and ϵD=
0.02. The parameters of the Lévy flight search are chosen as
follows: P=5, Gmax=10, β=1.5 and th=0.4. All simulations
are carried out in Tensorflow 2.2 environment running on a i7-
6500U CPU with 16GB RAM and 512GB SSD. The Agents
of the DRL are designed by Keras using dense layer and Adam
optimizer. Next, we present two different evaluations to verify
the performance of the DIRS framework.

B. Performance evaluation for different modules of DIRS

In this section we consider the performance for different
modules of DIRS in a medium-scale IoT scenario. There
are two MEC servers and 30 IoTDs randomly distributed
in the squared area with size 50m×50m. We assume that
the coordinates of two MEC servers are (10 m, 10 m) and
(40 m, 40 m). The remote computational capability of MEC
FMEC
max is set to 15 ×109 cycles/s. The 4-layer fully-connected

DNNs are applied as the agents, which includes 30, 80, 60
and 30 neurons in each layer, respectively. We collect 3000
environment data as the state inputs of DRL and TDRL is set
to 3000.

Imitation learning is used as a pre-training tool in our
DIRS framework, and the amount of demonstration data will

SUBMITTED FOR REVIEW 10

TABLE II: The performance comparison of imitation
learning.

Data quantity L1(θ) LD(θ)

Training
accuracy

Testing
accuracy

Training
accuracy

Testing
accuracy

64 90.8% 90.1% 90.3% 85.5%

128 92.4% 91.8% 92.2% 89.8%

256 96.7% 96.3% 96.6% 93.4%

512 96.7% 96.5% 96.6% 94.3%

influence the performance of pre-training. We compare the
performance of imitation learning with various quantities of
demonstration data using different loss functions in TABLE II.
It can be stated that, the DNNs may not improve its learning
performance significantly when demonstration data quantity
is above 256. Moreover, the proposed loss function L1(θ)
can achieve better training and testing accuracy than LD(θ).
The reason behind this is when demonstration data quantity is
above 256, the over-fitting issue may happen. Therefore, the
L2 regularized term is added in L1(θ) and it can ensure the
generalization of DNN, which can lead to a higher learning
accuracy, especially for the testing process.

Multi-agent ensemble learning assisted DRL is the core
part of DIRS framework, which uses multi-agent learning and
decision consolidation. Fig. 3 shows the convergence curves
of all the agents in different MECs. One can see that the
loss values of agent 1 and agent 2 all converge to 0.2 after
around 300 iterations, which means all the agents in our DIRS
framework can work properly and the over-fitting does not
happen in ensemble learning.

Fig. 3: Comparison of loss values for Agent1 and Agent2.

Moreover, Lévy flight search is applied to refine the action
in the proposed framework. Fig. 4 characterizes the action
refinement performance using classic Lévy flight search and
our proposed Lévy flight search. It can be observed from
Fig. 4 that the proposed Lévy flight search achieves better
performance with lower fitness value than classic Lévy flight

search. The reason of higher accuracy of the proposed Lévy
flight search is that the channel state information is applied to
guide the action exploration and the Lévy flight crossover is
applied to jump out from the local optimum during the search
process.

Fig. 4: Action refinement using different Lévy flight
searches.

Next, we analyze the benefits of Lévy flight search and
imitation acceleration for the whole DIRS framework by using
the performance metric of the average reward during the
training process. One can see from Fig. 5 that the ensemble
DRL with Lévy flight search converges to a higher average
reward than the ensemble DRL with ϵ-greedy search. This is
due to the fact that the Lévy flight search is a heuristic local
search which can refine the action and jump out of the local
optimum by Lévy steps. One can also see that the DIRS with
imitation acceleration converges faster than the ensemble DRL
without imitation acceleration in Fig. 5.

Fig. 5: The comparison of average reward curve.

SUBMITTED FOR REVIEW 11

C. Performance evaluation for the large-scale IoT scenario
with different parameters

In this section, we consider the performance of DIRS in
a large-scale IoT scenario. Assume that there are 8 edge
servers and 180 IoTDs, randomly distributed in the squared
area with size 50m×50m. The coordinates of 8 edge servers
are obtained by the k-means algorithm for all the IoTDs at
the first time. The remote computational capability of MEC
FMEC
max is set to 10 ×109 cycles/s. The 4-layer fully-connected

DNNs are applied for the agents, which includes 180, 260, 200
and 180 neurons in each layer, respectively. We collect 4000
environment data as the state inputs of DRL and TDRL is set
to 4000.

We first evaluate the performance of DIRS framework with
different weighted coefficients in Eq. (10). We define three
different tasks: Time-sensitive task (ϕT =1.5 and ϕE=0.5),
Normal task (ϕT =1 and ϕE=1) and Energy-sensitive task
(ϕT =0.5 and ϕE=1.5). Fig. 6 characterizes the energy and time
consumption of all the tasks. It can be observed that the time
consumption decreases gradually when the ϕT increases. Ad-
ditionally, the energy consumption decreases with the increase
of ϕE , as expected.

Fig. 6: The comparison of the DIRS framework with
different weighted coefficients.

Then, we evaluate the performance of the DIRS framework
with different position distributions of IoTDs. We select three
different random functions to generate the positions of IoTDs,
which are uniform distribution, Gaussian distribution and Lévy
distribution. Table III characterizes the objective function
values of the DIRS framework under different distributions of
IoTDs. For evaluating the influence of the different position
distributions of IoTDs, we define the normalized reward rate
(NRR), which is equal to that the inferred reward dividing
the optimal reward [44]. In NRR, the inferred reward in the
numerator is calculated from the output of the DIRS frame-
work, and the optimal reward in the denominator is obtained
from the particle swarm optimization (PSO) algorithm which
is always applied to solve large-scale MINLP problems with
high quality but low efficiency [44].

TABLE III: Performance of the DIRS framework with
different position distributions of IoTDs.

Metric Uniform
distribution

Gaussian
distribution

Lévy
distribution

Objective
function

295.27 291.07 290.38

Time
consumption

215.84 203.76 201.83

Energy
consumption

79.43 87.31 88.55

NRR 0.9536 0.9528 0.9574

TABLE IV: Performance of the DIRS framework with
different Di and Fi.

Metric Di Fi

50kB 1000kB 0.5×109

cycles
2×109

cycles

Objective
function

290.54 304.89 147.11 587.99

Time con-
sumption

200.37 225.52 107.77 395.72

Energy con-
sumption

90.17 79.37 39.34 192.27

NRR 0.9517 0.9519 0.9524 0.9508

From Table III, one can see that the IoTDs with non-
uniform distributions (e.g., Gaussian distribution and Lévy
distribution) obtain lower objective function values. One can
also find that all the distributions achieve similar NRR values,
which means the DIRS framework can work efficiently under
different position distributions.

Next, we evaluate the influence of different data size Di and
required CPU cycles Fi in the DIRS framework. We select
two different Di when Fi=109 cycles, and two different Fi

when Di=100kB. Table IV characterizes the objective function
values and NRRs of the DIRS framework with different Di

and Fi. It can be observed that when Di or Fi increase, the
time to complete the task and the energy consumption also
increase, as expected. Moreover, the DIRS framework achieves
good performance for different Di and Fi, which means the
DIRS framework is insensitive to the task parameters if it has
been trained adequately.

D. Performance evaluation for the large-scale IoT scenario
with different benchmarks

In this section we consider the performance of DIRS in
a large-scale IoT scenario. There are 10 MEC servers and
200 IoTDs randomly distributed in the squared area with size
50m×50m. The coordinates of 10 MEC servers are obtained
by the k-means algorithm for all IoTDs at the first time. The
remote computational capability of MEC FMEC

max is set to 10
×109 cycles/s. The 4-layer fully-connected DNNs are applied
as the agents, which includes 200, 300, 250 and 200 neurons
in each layer, respectively. We collect 5000 environment data
as the state inputs of DRL and TDRL is set to 5000.

SUBMITTED FOR REVIEW 12

TABLE V: The offloading performance comparison of
different offloading scheduling strategies.

Metric Training
time

Inference
time

Average time
consumption

Average energy
consumption

DIRS 434.23 0.0163 292.8779 40.5198

AC 489.64 0.017 322.7262 53.4802

DDPG 517.17 0.0198 302.8238 47.2354

PSO - 1.8565 293.3282 40.8271

DE - 1.8699 293.7273 40.6938

We first compare the DIRS framework with 2 well-known
DRL algorithms and 2 heuristic algorithms:

• Actor-Critic (AC) is a combination of the actor-only DRL
and the critic-only DRL. The critic uses an critic’s DNN
and simulation to learn a value function, which is then
used to update the policy of the actor’s DNN.

• Deep Deterministic Policy Gradient (DDPG) is a state-
of-the-art AC, which includes two critic’s DNNs and two
actor’s DNNs for performance enhancement.

• PSO is a heuristic search which is suitable for solving
large-scale MINLP problems for offloading optimization
and can normally achieve near-optimal global solutions
but with long computation time [45].

• Differential evolution (DE) is anther latest heuristic
search for task scheduling optimization in large-scale
MEC systems [46].

TABLE V characterizes the Training time, Inference time
and Average time and energy consumption of all offload-
ing methods for online joint resource scheduling. It can
be observed that the DIRS framework achieves the lowest
average time consumption and average energy consumption
while consuming the least training time. The superiority of
the DIRS framework can be attributed to three aspects: (1)
Imitation learning from the demonstration data accelerates
the training process of DIRS; (2) Ensemble learning sim-
plifies the structure of DNN by state space partition, which
leads to less learning time of each agent, while decision
consolidation according to the global information improves
the reward of DIRS; (3) Lévy flight search refines the action
and enhances the exploration, which leads to efficient search
and fast convergence. It can also be seen the DIRS framework
has the shortest inference time, which can be explained for
the following reasons: (1) The DIRS is a distributed DRL
framework, in which the trained agents can make offloading
decisions in a parallel way; (2) Each agent just needs to
solve the local optimization problem in Eq. (13), which is
simpler than the original optimization problem. Moreover, the
DIRS framework provides almost the same average energy and
time consumption as PSO and DE, while PSO and DE takes
113.89 and 114.72 times longer inference time than the DIRS
framework, respectively.

The inference performance of the DIRS framework is com-
pared with the following benchmark methods for real-time
decisions:

• Random offloading (Random) denotes that the offloading

decision is decided randomly for each IoTD. If the com-
putational resource of the allocated MEC is insufficient,
IoTD executes the task locally.

• All offloading (Remote) denotes that all the IoTDs offload
the tasks to the nearest MEC. If the computational
resource is insufficient, the IoTDs who need more com-
puting resources execute the task locally.

• Local execution (Local) denotes that all IoTDs decides
to execute the task locally.

• Multi-agent deep deterministic policy gradient (MAD-
DPG) is a celebrated multi-agent DDPG.

In Fig. 7, we compare sum of energy and time consump-
tion for all UEs (Objective function) between the proposed
framework, MADDPG, All offloading, Random offloading
and Local execution. As shown in Fig. 7, the proposed
method achieves the lowest value of the objective function
when the number of IoTDs is large, which implies that the
DIRS framework is suitable for the large-scale IoT scenario.
Moreover, one can see that the MADDPG also obtains better
performance than Remote, Random and Local strategies.

Fig. 7: The comparison of the object function with different
offloading schemes.

VI. CONCLUSION

In this paper, a novel DIRS framework has been pro-
posed for large-scale MEC systems. This framework adopts
a distributed DRL to jointly optimize computation offloading,
transmission power and recourse allocation, with the objective
of minimizing the sum of task latency and energy consumption
for all the IoTDs. Overall, the proposed DIRS framework has
the following three advantages:

(1) The proposed DIRS framework consists of a multi-agent
ensemble assisted DRL architecture for centralized learning
and distributed inference.

(2) A Lévy flight search is proposed as the action refinement
module of DRL for more efficient exploration in large action
space.

(3) An imitation acceleration is presented to help agents to
achieve better performance in complex environment by pre-
training with the demonstration data.

SUBMITTED FOR REVIEW 13

The simulation results demonstrate that the DIRS frame-
work has better performance than the existing benchmarks,
and it exhibits enormous potential in the large-scale application
scenarios.

In the future, we plan to apply our proposed framework
to more complex environment, for instance, in the scenario
where unnamed aerial vehicle (UAV) is served as the edge
computing node [3]. Additionally, we plan to propose the
prediction model to predict the moving pattern of the mobile
users based on the historical data. Then, we can integrate the
prediction result to our proposed solution to further improve
the scalability of the framework.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[2] S. Yu, B. Dab, Z. Movahedi, R. Langar, and L. Wang, “A socially-
aware hybrid computation offloading framework for multi-access edge
computing,” IEEE Transactions on Mobile Computing, vol. 19, no. 6,
pp. 1247–1259, 2020.

[3] F. Jiang, K. Wang, L. Dong, C. Pan, W. Xu, and K. Yang, “Deep-
learning-based joint resource scheduling algorithms for hybrid mec
networks,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6252–
6265, 2020.

[4] L. Zhang, H. Zhang, Q. Tang, P. Dong, Z. Zhao, Y. Wei, J. Mei, and
K. Xue, “LNTP: An end-to-end online prediction model for network
traffic,” IEEE Network, vol. 35, no. 1, pp. 226–233, 2021.

[5] D. Liu, L. Khoukhi, and A. Hafid, “Decentralized data offloading
for mobile cloud computing based on game theory,” in 2017 Second
International Conference on Fog and Mobile Edge Computing (FMEC).
IEEE, 2017, pp. 20–24.

[6] P. M. Narendra and K. Fukunaga, “A branch and bound algorithm for
feature subset selection,” IEEE Transactions on computers, no. 9, pp.
917–922, 1977.

[7] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas,
Dynamic programming and optimal control. Athena scientific Belmont,
MA, 1995, vol. 1, no. 2.

[8] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,”
IEEE Transactions on Communications, vol. 65, no. 8, pp. 3571–3584,
2017.

[9] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Transactions on Wireless Communications, vol. 17, no. 6, pp.
4177–4190, 2018.

[10] F. Jiang, K. Wang, L. Dong, C. Pan, W. Xu, and K. Yang, “AI
driven heterogeneous MEC system with UAV assistance for dynamic
environment: Challenges and solutions,” IEEE Network, vol. 35, no. 1,
pp. 400–408, 2021.

[11] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Transactions on Wireless Communications,
vol. 20, no. 1, pp. 269–283, 2020.

[12] Y.-J. Liu, S.-M. Cheng, and Y.-L. Hsueh, “eNB selection for machine
type communications using reinforcement learning based markov de-
cision process,” IEEE Transactions on Vehicular Technology, vol. 66,
no. 12, pp. 11 330–11 338, 2017.

[13] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-
based computation offloading for iot devices with energy harvesting,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1930–
1941, 2019.

[14] Y. He, N. Zhao, and H. Yin, “Integrated networking, caching, and com-
puting for connected vehicles: A deep reinforcement learning approach,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 1, pp. 44–55,
2017.

[15] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet of Things Journal,
vol. 6, no. 3, pp. 4005–4018, 2018.

[16] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, “Energy-efficient
UAV control for effective and fair communication coverage: A deep
reinforcement learning approach,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 9, pp. 2059–2070, 2018.

[17] M. Chen, T. Wang, K. Ota, M. Dong, M. Zhao,
and A. Liu, “Intelligent resource allocation management for
vehicles network: An A3C learning approach,” Computer
Communications, vol. 151, pp. 485–494, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140366419314215

[18] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Advances in neural information processing systems, 2017,
pp. 6379–6390.

[19] H. Li, K. Ota, and M. Dong, “Deep reinforcement scheduling for mobile
crowdsensing in fog computing,” ACM Trans. Internet Technol., vol. 19,
no. 2, Apr. 2019. [Online]. Available: https://doi.org/10.1145/3234463

[20] S. Yu, X. Chen, Z. Zhou, X. Gong, and D. Wu, “When deep rein-
forcement learning meets federated learning: Intelligent multitimescale
resource management for multiaccess edge computing in 5G ultradense
network,” IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2238–2251,
2021.

[21] H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep reinforcement learning based
resource allocation for V2V communications,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 4, pp. 3163–3173, 2019.

[22] Z. Chen and X. Wang, “Decentralized computation offloading for multi-
user mobile edge computing: A deep reinforcement learning approach,”
arXiv preprint arXiv:1812.07394, 2018.

[23] Y. Hu, M. Chen, W. Saad, H. V. Poor, and S. Cui, “Distributed multi-
agent meta learning for trajectory design in wireless drone networks,”
IEEE Journal on Selected Areas in Communications, pp. 1–1, 2021.

[24] M. Chen, D. Gündüz, K. Huang, W. Saad, M. Bennis, A. V. Feljan, and
H. V. Poor, “Distributed learning in wireless networks: Recent progress
and future challenges,” arXiv preprint arXiv:2104.02151, 2021.

[25] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast
adaptive task offloading in edge computing based on meta reinforcement
learning,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 1, pp. 242–253, 2021.

[26] J. Du, W. Cheng, G. Lu, H. Cao, X. Chu, Z. Zhang, and J. Wang,
“Resource pricing and allocation in mec enabled blockchain systems:
An A3C deep reinforcement learning approach,” IEEE Transactions on
Network Science and Engineering, pp. 1–1, 2021.

[27] J. Chen, S. Chen, Q. Wang, B. Cao, G. Feng, and J. Hu, “iRAF: A
deep reinforcement learning approach for collaborative mobile edge
computing iot networks,” IEEE Internet of Things Journal, vol. 6, no. 4,
pp. 7011–7024, 2019.

[28] Y. Hua, R. Li, Z. Zhao, X. Chen, and H. Zhang, “GAN-powered
deep distributional reinforcement learning for resource management in
network slicing,” IEEE Journal on Selected Areas in Communications,
2019.

[29] K. Wang, K. Yang, and C. S. Magurawalage, “Joint energy minimization
and resource allocation in C-RAN with mobile cloud,” IEEE Transac-
tions on Cloud Computing, vol. 6, no. 3, pp. 760–770, 2018.

[30] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework
for partitioning and execution of data stream applications in mobile
cloud computing,” ACM SIGMETRICS Performance Evaluation Review,
vol. 40, no. 4, pp. 23–32, 2013.

[31] W. Yang, P. Dong, L. Cai, and W. Tang, “Loss-aware throughput
estimation scheduler for multi-path TCP in heterogeneous wireless
networks,” IEEE Transactions on Wireless Communications, vol. 20,
no. 5, pp. 3336–3349, 2021.

[32] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

[33] J. Wallenius, J. S. Dyer, P. C. Fishburn, R. E. Steuer, S. Zionts,
and K. Deb, “Multiple criteria decision making, multiattribute utility
theory: Recent accomplishments and what lies ahead,” Management
Science, vol. 54, no. 7, pp. 1336–1349, 2008. [Online]. Available:
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.1070.0838

[34] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap,
J. Hunt, T. Mann, T. Weber, T. Degris, and B. Coppin, “Deep re-
inforcement learning in large discrete action spaces,” arXiv preprint
arXiv:1512.07679, 2015.

[35] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband et al., “Deep Q-learning
from demonstrations,” in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

SUBMITTED FOR REVIEW 14

[36] S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang, “Intelligent
edge: Leveraging deep imitation learning for mobile edge computation
offloading,” IEEE Wireless Communications, vol. 27, no. 1, pp. 92–99,
2020.

[37] Y. Liu, W. Zhang, S. Pan, Y. Li, and Y. Chen, “Analyzing the robotic
behavior in a smart city with deep enforcement and imitation learning
using iort,” Computer Communications, vol. 150, pp. 346–356, 2020.

[38] S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang, “Intelligent
edge: Leveraging deep imitation learning for mobile edge computation
offloading,” IEEE Wireless Communications, vol. 27, no. 1, pp. 92–99,
2020.

[39] E. Emary, H. M. Zawbaa, and M. Sharawi, “Impact of lèvy flight on
modern meta-heuristic optimizers,” Applied Soft Computing, vol. 75, pp.
775–789, 2019.

[40] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woźniak,
“Ensemble learning for data stream analysis: A survey,” Information
Fusion, vol. 37, pp. 132–156, 2017.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[42] L. Huang, S. Bi, and Y. J. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Transactions on Mobile Computing, 2019.

[43] F. Jiang, L. Dong, and Q. Dai, “Designing a mixed multilayer wavelet
neural network for solving eri inversion problem with massive amounts
of data: A hybrid stgwo-gd learning approach,” IEEE Transactions on
Cybernetics, pp. 1–12, 2020.

[44] F. Jiang, K. Wang, L. Dong, C. Pan, and K. Yang, “Stacked autoencoder-
based deep reinforcement learning for online resource scheduling in
large-scale MEC networks,” IEEE Internet of Things Journal, vol. 7,
no. 10, pp. 9278–9290, 2020.

[45] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. Leung, “An efficient com-
putation offloading management scheme in the densely deployed small
cell networks with mobile edge computing,” IEEE/ACM Transactions
on Networking, vol. 26, no. 6, pp. 2651–2664, 2018.

[46] Y. Wang, Z.-Y. Ru, K. Wang, and P.-Q. Huang, “Joint deployment and
task scheduling optimization for large-scale mobile users in multi-UAV-
enabled mobile edge computing,” IEEE Transactions on Cybernetics,
vol. 50, no. 9, pp. 3984–3997, 2020.

Feibo Jiang received his B.S. and M.S. degrees
in School of Physics and Electronics from Hunan
Normal University, China, in 2004 and 2007, re-
spectively. He received his Ph.D. degree in School
of Geosciences and Info-physics from the Central
South University, China, in 2014. He is currently
an associate professor at the Hunan Provincial Key
Laboratory of Intelligent Computing and Language
Information Processing, Hunan Normal University,
China. His research interests include artificial intel-
ligence, fuzzy computation, Internet of Things, and

mobile edge computing.

Li Dong received the B.S. and M.S. degrees in
School of Physics and Electronics from Hunan Nor-
mal University, China, in 2004 and 2007, respec-
tively. She received her Ph.D. degree in School
of Geosciences and Info-physics from the Central
South University, China, in 2018. Her research in-
terests include machine learning, Internet of Things,
and mobile edge computing.

Kezhi Wang received his B.E. and M.E. degrees in
School of Automation from Chongqing University,
China, in 2008 and 2011, respectively. He received
his Ph.D. degree in Engineering from the University
of Warwick, U.K. in 2015. He was a Senior Research
Officer in University of Essex, U.K. Currently he is a
Senior Lecturer in Department of Computer and In-
formation Sciences at Northumbria University, U.K.
His research interests include wireless communica-
tion, mobile edge computing, UAV communication
and machine learning.

Kun Yang received his PhD from the Department
of Electronic & Electrical Engineering of University
College London (UCL), UK. He is currently a Chair
Professor in the School of Computer Science &
Electronic Engineering, University of Essex, leading
the Network Convergence Laboratory (NCL), UK.
He is also an affiliated professor at UESTC, China.
Before joining in the University of Essex at 2003,
he worked at UCL on several European Union (EU)
research projects for several years. His main research
interests include wireless networks and communi-

cations, IoT networking, data and energy integrated networks, mobile edge
computing. He manages research projects funded by various sources such as
UK EPSRC, EU FP7/H2020 and industries. He has published 150+ journal
papers and filed 10 patents. He serves on the editorial boards of both IEEE
and non-IEEE journals. He is a Senior Member of IEEE (since 2008) and a
Fellow of IET (since 2009).

Cunhua Pan received the B.S. and Ph.D. degrees
from the School of Information Science and En-
gineering, Southeast University, Nanjing, China, in
2010 and 2015, respectively. From 2015 to 2016, he
was a Research Associate at the University of Kent,
U.K. He held a post-doctoral position at Queen Mary
University of London, U.K., from 2016 and 2019,
where he is currently a Lecturer.

His research interests mainly include reconfig-
urable intelligent surfaces (RIS), intelligent reflec-
tion surface (IRS), ultra-reliable low latency commu-

nication (URLLC) , machine learning, UAV, Internet of Things, and mobile
edge computing. He serves as a TPC member for numerous conferences,
such as ICC and GLOBECOM, and the Student Travel Grant Chair for ICC
2019. He is currently an Editor of IEEE Wireless Communication Letters,
IEEE Communications Letters and IEEE ACCESS. He also serves as a
leading guest editor of IEEE Journal of Selected Topics in Signal Processing
(JSTSP) Special Issue on Advanced Signal Processing for Reconfigurable
Intelligent Surface-aided 6G Networks, leading guest editor of IEEE Vehicular
Technology Magazine on the special issue on Backscatter and Reconfigurable
Intelligent Surface Empowered Wireless Communications in 6G, leading guest
editor of IEEE Open Journal of Vehicular Technology on the special issue of
Reconfigurable Intelligent Surface Empowered Wireless Communications in
6G and Beyond, and leading guest editor of IEEE ACCESS Special Issue
on Reconfigurable Intelligent Surface Aided Communications for 6G and
Beyond. He is Workshop organizer in IEEE ICCC 2021 on the topic of
Reconfigurable Intelligent Surfaces for Next Generation Wireless Commu-
nications (RIS for 6G Networks), and workshop organizer in IEEE Globecom
2021 on the topic of Reconfigurable Intelligent Surfaces for future wireless
communications. He is currently the Workshops and Symposia officer for
Reconfigurable Intelligent Surfaces Emerging Technology Initiative.

