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Abstract—As the number of interconnected devices increases
and more artificial intelligence (AI) applications upon the
Internet of Things (IoT) start to flourish, so does the environmen-
tal cost of the computational resources needed to send and process
all the generated data. Therefore, promoting the optimization of
Al applications is a key factor for the sustainable development
of IoT solutions. Paradigms such as Edge Computing are pro-
gressively proposed as a solution in the IoT field, becoming an
alternative to delegate all the computation to the Cloud. However,
bringing the computation to the local stage is limited by the
resources’ availability of the devices hosted at the Edge of the
network. For this reason, this work presents an approach that
simplifies the complexity of supervised learning algorithms at the
Edge. Specifically, it separates complex models into multiple sim-
pler classifiers forming a cascade of discriminative models. The
suitability of this proposal in a human activity recognition (HAR)
context is assessed by comparing the performance of three dif-
ferent variations of this strategy. Furthermore, its computational
cost is analyzed in several resource-constrained Edge devices in
terms of processing time. The experimental results show the via-
bility of this approach to outperform other ensemble methods,
i.e., the Stacking technique. Moreover, it substantially reduces
the computational cost of the classification tasks by more than
60% without a significant accuracy loss (around 3.5%). This high-
lights the potential of this strategy to reduce resource and energy
requirements in IoT architectures and promote more efficient and
sustainable classification solutions.

Index Terms—Edge computing, edge intelligence, embedded
systems, ensemble learning, Internet of Things (IoT), machine
learning (ML), optimization.

I. INTRODUCTION

LONG with the rapid emergence of the Internet of
Things (IoT) and its progressively wider impact on many
sectors, the number of interconnected devices has increased
exponentially [1]. At the same time, the growing demand for
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data from artificial intelligence (AI) applications motivates
the interest in monitoring and capturing as much information
as possible. However, while connecting large numbers of
low-resource and low-cost nodes is more affordable than ever,
the environmental costs of transmitting and processing the
amount of data they generate are escalating at a fast rate [2].

IoT ecosystems have traditionally relied on remote Cloud
data centers to carry out the fundamental parts of the data
analysis. This means that, despite being obtained locally, the
information needs to travel long distances and reach remote
data centers where the processing capabilities are placed [3].
The volume of information produced by IoT devices every
day makes transmitting every byte not favorable in terms of
both resources and time. In consequence, this emphasizes the
scalability and sustainability issues of traditional Cloud-based
scenarios and brings into question the high energy and com-
putational costs associated with the data-driven interconnected
future that IoT envisages [4].

To solve the latter issue, it becomes more logical to place
at the Edge as much analytical power as possible since data
is generated at sensors close to the users, factories, or cities.
For this reason, the current body of the research proposes a
paradigm shift from the legacy systems, that have traditionally
relied on remote Cloud data centers, to the concept of Edge
Intelligence, that pushes the decision-making process to local
devices [S5]. However, this transition comes at a price. In this
case, the Edge paradigm poses a considerable challenge in
terms of the computational and storage capabilities needed for
the devices hosted at the Edge. As processing techniques and
machine learning (ML) applications are resource-demanding
tasks, alleviating their computational load becomes necessary
to undertake heavy operations in such constrained settings.

In consequence, several research efforts have been made
to design more efficient Edge solutions. In this direction,
some works delve into the possibility of sharing heterogeneous
computation and communication resources among devices and
creating new offloading schemes for a decentralized Cloud [6]
or Mobile Edge Computation [7], and improving the resource
management of Federated Learning approaches [8]. Other works
address the idea of embedding the processing capabilities on the
devices themselves and propose running Al models solely on
the device [9]. The first approach copes with the requirements of
running computation-intensive algorithms by proposing a syn-
ergy between Edge devices and even Edge-Cloud approaches.
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In contrast, the second one reduces the path length of data
offloading and favors data privacy at the local stage [10]. Thus,
one of the main challenges of ML techniques being executed
upon IoT is related to improving the efficiency of Edge intel-
ligent systems for different application scenarios [11]. As so,
in both approaches, the tradeoff between optimality and effi-
ciency should be studied to balance the computational cost and
the accuracy of the system based on the characteristics of the
network infrastructure. Thus, saving time and resources while
avoiding as much externalization of data as possible [12].

To contribute to the sustainability of IoT systems and Edge
Intelligence solutions, in this article we evaluate a multistage
ML strategy to ease the optimization of the data process-
ing power in Edge nodes. In particular, we implement an
adaptive ensemble learning approach through a discriminative
model cascade, aiming at matching the computational needs
of classification tasks to their complexity. Here, complex ML
systems are divided into successive layers of simpler mod-
els that filter input elements at each stage of the cascade
based on the confidence of the prediction at that level. In
this approach, the simplicity of the models depends on the
number of features that are considered at each level. This
number of features increases as the cascade progresses. Thus,
optimization comes from having simple classifiers at the initial
levels of the cascade to increase the efficiency of the system
when classifying the easiest instances. Then, more complex
classifiers at the final levels of the cascade are considered for
a refinement of the classification accuracy in those hardest
to classify instances. This reduces the overall computational
time and avoids oversizing the computational resources dedi-
cated to each classification task. Thus, the proposed strategy
contributes to mitigating the environmental impact of such
solutions proposing a more efficient and dynamic usage of
the available resources of each node.

To evaluate its suitability in Edge settings, we present three
novel variations of the training process of this discriminative
cascade of models. Then, we assess them in a human activity
recognition (HAR) context. Their different results are analyzed
by providing the tradeoff between efficiency and classifica-
tion results. To this aim, four publicly available HAR data
sets and a novel data set produced for this research, which
is related to office hydration habits recognition, are used.
Finally, we empirically analyze the performance, in terms of
classification time, of a scenario resembling a real-world IoT
system. We perform this evaluation on the introduced novel
data set in several low-cost Edge devices (namely, Nvidia
Jetson Nano, Raspberry Pi 3, Raspberry Pi 4, and Raspberry
Pi Zero). The results show the potential of the proposed
strategy to simplify the classification tasks in constrained
settings (Edge/users’ devices) while outperforming Stacking
techniques and maintaining similar classification results as the
reference models.

In essence, the contributions of this article are twofold.

1) An ensemble learning approach is proposed, with three
novel variations, to increase the efficiency of classifica-
tion tasks through a discriminative model cascade.

2) An evaluation of its potential to reduce computational
time is presented, aiming to optimize the available
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resources of Edge devices and to the
sustainability of ML-based IoT systems.

The remainder of this article is organized as follows.
Section II outlines the literature on ensemble learning and
optimization techniques. Section III describes the presented
approach. Section IV explains the procedure and the experi-
mental setup. The obtained results are presented in Section V
and discussed in Section VI, with a special emphasis on the
relevance of energy-efficient Al systems. Finally, Section VII
draws some conclusions and outlines the future work.

improve

II. RELATED WORK

Ensemble learning techniques have been widely covered in
ML research. Approaches like Bagging [13], Boosting [14], or
Stacking [15] are well-known methods that have traditionally
been used to improve the general performance of classification
systems by combining several base models in a final predictive
meta-model [16]. Cascading is another particular example of
ensemble learning. First introduced by Viola and Jones [17],
it consists of the concatenation of several classifiers to mini-
mize the generalization error rate. HAR applications [18] or
the classification of rare events in face detection [19] are exam-
ples of domains in which cascade ensemble learning is usually
applied.

Even though these strategies improve the predictive
performance of a single model, they also tend to increase
the computational complexity of training the ensemble and
predicting new instances [20]. An interesting alternative is
to use the combination of models of cascading approaches
in a cost-sensitive manner. In this regard, the complexity
of the ensemble methods is faced by implementing several
increasingly complex classifiers that divide the computation
into different stages and classify the input data with the stage
that fits the most to its difficulty [21]. This idea was first
introduced by Kaynak and Alpaydin, who proposed a mul-
tistage cascading scheme that relies on the concatenation of
several small classifiers [22]. The objective of this method-
ology was to reduce computational cost yet not losing much
in terms of accuracy. The authors assessed their proposal in
a two-stage approach. The former classifier was based on
single-layer and multilayer perceptron (MLP) models, consid-
ered lighter prediction methods. The latter classifier was based
on k-nearest neighbors (KNN). To improve the classification
results, successive models were trained with a self-modified
training set, prioritizing the uncovered patterns or data that the
previous models overlooked. Additionally, confidence thresh-
olds to define if the classification was acceptable were defined
based on previous probabilities rates.

Silva et al. [23] proposed a classification approach also
based on a two-stage combination of monolithic and ensem-
ble classifiers. The rationale behind their proposal was to deal
with the majority of unclassified instances using the monolithic
classifier leaving the most challenging instances of classifica-
tion problems for the ensemble classifier systems. The latter
classifier was based on pool generation methods. This way, in
this work, the complexity of every stage of the system is deter-
mined by the inherent complexity of the generation methods.
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In particular, they applied KNN and support vector machines
(SVMs) methods for the initial model and different ensem-
ble techniques (i.e., bagging, boosting, and random subspace
selection—RSS) for the final model. Since the authors com-
pared their approach against other multiple classifiers systems,
it remains an open question whether such a method outper-
forms a single monolithic classifier in optimization. Other
approaches have proposed additional simplification techniques
by understanding the cascading techniques as a tree topology
case [24], [25]. In this case, different topologies can be com-
bined to construct a tree of classifiers that determine how many
features are needed to predict new unseen data.

The reviewed methods for optimizing the classification of
data are often done at the cost of losing accuracy. This high-
lights the need for additional adjustments to compensate for
this loss. As introduced above, Kaynak and Alpaydin [22]
coped with accuracy loss by specifically tuning each of
the successive models and thresholds to better match with
previously uncovered patterns. Other authors usually require
to consider the influence of additional/side factors, such as
the rejection margin and fit the models accordingly [26]. In
this case, to keep the loss in accuracy to a minimum, it is
important to analyze the reasons for accepting or rejecting the
instances classified by each of the models that comprise the
cascade. Oliveira et al. [27] studied the optimum class-related
reject threshold to provide a better error rejection in cascad-
ing classifiers. The proposed methodology proved to improve
the performance of a system based on a set of MLP models
for handwritten digits recognition systems. Zhang et al. [28]
increased the recognition reliability by using a double-check
mechanism to weight and verify the neural network (NN)
confidence values and to correct the errors. Nevertheless, the
computational cost was not considered in their work.

Regarding NN, Wang et al. [29] analyzed how cascade
models could outperform in efficiency other ensemble-based
architectures. Similarly, adapting the size and the number of
layers of those models has been a subject of deep research.
One approach is defining a combination of big/little mod-
els [30], or cascading the depth of the layers in NN tech-
niques [31]. Similarly, Taylor et al. [32] faced the intrinsic
complexity of the Deep Learning models by presenting an
adaptive scheme to determine which model to use for a given
input. Considering the desired accuracy and inference time,
their approach employed a KNN predictive model to select
the pretrained models that best suited a given input and the
optimization constraint. In parallel, other approaches leave
open the possibility to adapt their work in an optimized
way [33].

Going in a different direction with respect to the reviewed
body of knowledge, this work targets IoT architectures and
Edge Computing approaches. Therefore, it aims to shed light
on the actual optimization opportunities a discriminative cas-
cade of models has in constrained settings, providing an
empirical demonstration of its potential computational cost-
savings in real Edge devices. For that, we present and evaluate
three novel variations for the training setup of the cascade
strategy. In all cases, the cascade method’s complexity is given
by the number of characteristics of the input data. This way, we
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evaluate the influence of the simplicity of the models in terms
of feature computation since the computation time required
for feature extraction can penalize those applications that rely
on the characteristics obtained from the signal [34]. This opti-
mizes both the prediction task and the data processing stage
at each level of the cascade, contributing to the efficiency of
the cascade in a greater way than basing the definition of
its levels around the completeness of the classification algo-
rithm. In this regard, the potential accuracy loss of relying
on a reduced subset of features is faced by setting up confi-
dence thresholds that are more restrictive for those potentially
weaker cascade stages. Additionally, we also evaluate the suit-
ability of some of the most common classic ML algorithms to
be part of a model cascade, complementing previous studies
that are mainly focused on specific cascade configurations. In
the following, we will present our approach and examine its
suitability for HAR contexts.

III. MODEL CASCADE OPTIMIZATION APPROACH

In this section, we describe a particular ensemble learning
method for constrained contexts. In this work, this method is
defined as an optimization mechanism. Given a particular input
(e.g., a new data stream captured by an IoT sensor), it faces
the complexity of the classification techniques by adapting the
resources of the node in charge of the prediction process to
the difficulty of the task. We also introduce three variations
of the training process that seek to find the most suitable strat-
egy to distribute the discovery of uncovered patterns across the
included models.

A. Proposed Discriminative Cascade for Inference

The presented cascade ensemble method is comprised of
a series of successive N discriminative models, starting from
Model 1. Based on the confidence of the prediction at each
level i, a particular data input may requiere a more fine-grained
prediction with the following model at level i + 1, which is
more complex in terms of features, given some confidence
thresholds ¢ (hyperparameter to be tuned). If the prediction of
a sample at level i is considered to be reliable, the sample
is removed from the pipeline and classified using ith model’s
prediction. If none of the different N — 1 models is able to
provide a reliable prediction within these thresholds ¢, the
final Nth model would be in charge of classifying the remain-
ing instances. Notice that the latter model is created using
all the available features so that it has the maximum amount
of information that is possible for the task. A schematic rep-
resentation of this system is presented in Fig. 1. This way,
simpler models act as filters that make it less likely for the
data to reach the complex ones, allowing for a reduced com-
putational burden and time to process the samples through the
N —i models. Therefore, the complexity of the final application
is reduced by choosing from an initial cascade of pretrained
models the configuration that fits the most to the complexity
of the prediction.

The confidence values are determined by the prediction
probabilities, which summarize the likelihood (or uncertainty)
of samples belonging to each of the available classes (in our
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Fig. 1. Schematic representation of the workflow for classifying new samples.

case, human activities). In this context, prediction probabilities
represent the confidence a model has in the predictions, i.e.,
in samples belonging to the different classes. If the confidence
of a sample being of class ¢ is high, the model is confident
the sample should be classified as class c. In this specific pro-
posal, this value is calculated through a multiclass log loss
metric (also referred as categorical cross-entropy).

This metric calculates the negative log-likelihood for the
probability predictions made by the classification model. Log
loss values are always positive, being bounded between 0
and oco. Thus, a log loss of O represents the minimum diver-
gence between the prediction probability and its corresponding
true value. In other words, the model can be considered to be
entirely confident in the prediction. In this approach, instead
of using log loss for evaluating the predicted probabilities and
assessing the performance of a classification problem, we use
this metric as an estimator of the reliability of a prediction in
which the actual class is unknown. Hence, we calculate the
multiclass log loss to obtain the loss coefficient by comparing
the expected probability vector, constituted by the predicted
probabilities of all the classes, against the predicted label. The
multiclass log loss for each observation would be given by (1),
which calculates the loss for each class label per observation
and then sums the result

M
L(p. Ypred) = = Y _ Yo.c10g(po.c) )

c=1

where M is the number of classes, ypred is a discrete binary
value (0 or 1) of the predicted class ¢ of the observation o, and
p is the predicted probability of that observation belonging to
class c.

This L(p, y) value is compared against the numeric thresh-
old set at each level; if the confidence L(p,y); at stage i is
above a specific threshold value #;, the prediction is marked
as valid. In this case, the lower the threshold, the more strin-
gent the confidence requirements of the model, i.e., it is easier
that a sample has to go through more stages until it is suc-
cessfully classified with a confidence higher than f;. From the
optimization point, we avoid specific samples to be processed
by more complex models than what is required for classifying
that difficulty. Besides, the data processing stages of the signals
and the feature extraction phases are improved. That is, just the
features needed for each of the levels are computed, and the
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Fig. 2. Schematic representation of the workflow for parallel training.

remaining features are only computed at the following levels
of the cascade if required. Recall that the presented cascade
approach may have all the new samples labeled with the ini-
tial and simpler classifiers without requiring the computation
of all the features and just a subset of them.

B. Different Training Methods

To better understand the flexibility of the proposal, we have
defined three different implementations of the system’s train-
ing strategy. The difference among those implementations is
determined by the input data used to train each of the layers.
Resembling model ensemble techniques, we can differenti-
ate those implementations in which all the models are trained
with all the available data (parallel implementation) from the
ones in which the successive layers of models are trained
only with previously unclassified data (sequential implementa-
tion). We also present a mixture of both methods that seeks to
combine the potential advantages of both approaches (hybrid
implementation).

1) Parallel Implementation: In the parallel training all the
models are trained using all the available data to, presumably,
be able to generalize better on unseen samples. Therefore,
all the levels are independent in terms of input. A schematic
representation of the training set up is shown in Fig. 2. This
training approach is similar to the one followed by the stacking
model ensembling technique [15], in which several heteroge-
neous models learn in parallel with the whole training data set.
However, contrary to the stacking method, in the cascade of
models, there is no final stage of creating a meta-predictor or
meta-model that combines the output of the different trained
models.

2) Sequential Implementation: The second implementation
uses the whole data set to train the initial model. However, the
successive models are trained using only a fraction of this ini-
tial data set. At stage i, this fraction consists of those instances
that do not have a reliability/confidence higher than # in the
previous phase i — 1. That is, only those instances that fail to
pass all of these N—1 confidence tests are used in the construc-
tion of the following exception learner, as shown in Fig. 3. This
way, the data input of the successive models is conditioned by
the previous predictions. This allows having N — 1 models
forced to learn suitable patterns for hard to classify samples,
covering the flaws of the initial model. Thus, it is designed to
better discover uncovered patterns of the data. This strategy
follows a similar approach to the Boosting model assembling
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Fig. 4. Schematic representation of the workflow for hybrid training.

technique [14], where the successive homogeneous models are
created based on the errors of the past ones and random sam-
pling techniques. In contrast to this, in the cascade approach,
new data does not need to go through all the trained models
to be classified.

3) Hybrid Implementation: It presents a mixed approach in
which the idea of parallel training is followed in all the stages
except in the last stage of the cascade, as Fig. 4 illustrates. The
objective of this implementation is to balance the generaliza-
tion of the initial cascade stages (trained with all the available
input data) with a greater particularization in the final model
(trained only with only a fraction of this input data). This way,
the last model is intended to specialize only in those patterns
that have been left uncovered by the rest of the N — 1 models
and it is forced to be trained with few but hard to classify
examples.

IV. PROCEDURE AND METHODOLOGY

In this section, we propose the use case of a HAR problem
to analyze the suitability of the introduced approach for con-
tinuous time-series data (e.g., data from accelerometers). For
this reason, by means of several public HAR data sets, we
evaluate the performance of the different variations presented
in Section III. Then, we analyze the suitability of the selected
strategy when a single constrained IoT device works as the
central element of an Edge architecture and is in charge of
classifying new inputs of data.

A. Selected Data Sets

We have selected four publicly available data sets from the
body of literature. These data sets aim to cover different con-
texts in HAR with data captured by motion sensors. Those
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TABLE I
MAIN CHARACTERISTICS OF THE SELECTED DATA SETS

Dataset N° Instances  N° Classes  N° Initial Feat.

OHM Dataset [40] 1000 3 486
HAR Dataset [36] 10299 6 561
ADL dataset [35] 839 13 162
Office Dataset [37] 7551 5 272
Sports Dataset [38] 9120 19 162

data sets are: 1) ADL recognition with wrist-worn accelerom-
eter data set [35]; 2) HAR using smartphones data set [36];
3) office activity recognition using accelerometers and gyro-
scopes located on the forearms [37]; and 4) the daily and
sports activities data set [38]. The latter data set is included in
the ones recommended for elaborating benchmarks and com-
paratives of the performance of Edge devices for classification
purposes [39]. In our case, only the torso and right arm sensors
have been considered.

Besides, we also present a novel data set created explicitly for
this research, namely, the office hydration monitoring (OHM)
Data set. It focuses on classifying office employees’ hydration
patterns based on an accelerometer and a gyroscope sensor
placed on different liquid containers (e.g., mugs, bottles, or
glasses). It contains 1000 instances performed by ten subjects
and includes 25 variations of different interactions that could
be made with liquid containers. Those interactions are grouped
into three main classes: 1) drinking from a bottle; 2) drinking
from a cup; and 3) other kinds of interactions). This data set
was created with the idea of having a noncontrolled activity
data set that resembles real-world scenarios. Therefore, the
interaction to be recorded was intentionally described very
vaguely to the volunteer. Moreover, each of them had their
own containers (no instructions were given apart from the
bottle and mug/glass categories). Besides, the placement of the
sensor around the glass, mug, or bottle was not fixed. Thus, this
induces a high variance in the recorded data, as the reference
system for the accelerometer and gyroscope signals can vary.
For these reasons, we will provide a more detailed analysis of
the proposal that articulates this work using this data set. The
OHM data set is publicly available in [40].

A summary of the number of instances, classes, and the
initial set of features that will be used as a reference for further
comparison is shown in Table L.

B. Experimental Setup and Design

In this work, we have selected a variety of classic supervised
ML classifiers that offer a good efficiency for resource-
constrained environments when classifying sequences of con-
tinuous data from IoT sensors [9]. This selection includes
logistic regression (LG), random forest (RF), KNN, Gaussian
Naive Bayes (NB), Linear SVM, and MLP. It is important
to remark that not all the included algorithms are probabilis-
tic. In some cases, such as KNN or SVM, the confidence
of the prediction is measured according to other parameters.
These parameters correspond to the number of nearest neigh-
bors from your new instance in KNN or the distance from
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TABLE 11
SELECTED EDGE DEVICES AND THEIR SPECIFICATIONS

Device Processor  Architecture CPU Freq  Cores RAM
Laptop i7-9750H Intel x86  2.60 GHz 6 16 Gb
Nvidia Jetson Nano  Cortex-A57 ARMV8 64  1.43 GHz 4 2 Gb
Raspberry Pi 4 B Cortex-A72 ARMV8 64  1.50 GHz 4 4 Gb
Raspberry Pi 3 B+ Cortex-A57 ARMv8 64  1.40 GHz 4 1 Gb
Raspberry Pi Zero ARMI11 ARMV6 32 1 GHz 1 512 Mb

the hyperplane in SVM. Moreover, RF is for itself an ensem-
ble learning method, consisting of an ensemble of decision
tree algorithms. This variety of learners enriches the scope of
the proposal by not limiting it to specific probability-based
algorithms and provides a broader scenario for evaluation
purposes.

In this work, Edge devices are the target hardware platforms
for inferring new knowledge through the different proposed
strategies. Thus, we evaluate the performance of four differ-
ent platforms and compare them against a laptop computer,
which works as a reference device. The selected devices
include one Nvidia Jetson Nano platform and three Raspberry
Pi Foundation single-board minicomputers: 1) the Raspberry
Pi model 4 B; 2) Raspberry Pi 3 model B+; and 3) the
Raspberry Pi Zero W. Even though the three latter devices
belong to the same family, there are significant differences
in terms of processing power and memory, especially for the
Raspberry Pi Zero, which is the most constrained device out
of the five. Table II includes a summary of the main technical
specifications of the selected platforms.

The experimental setup enabled for this comparative assess-
ment entails a series of tasks that need to be performed to
relate continuous signals to previously labeled actions. That
is, the procedure of capturing/reading new data, processing
it to obtain useful inputs, and comparing those inputs against
already trained models. Thus, each of the instances of the data
set goes through the following phases during the prediction
process: 1) a 3-median data filtering stage which avoids
anomaly values induced by noise; 2) a data segmentation pro-
cess that divides each instance of data into five segments (or
windows) of equal length without overlapping; 3) a feature
calculation step that transforms raw data into statistical time-
domain characteristics; 4) the normalization step that scales
those features into an [0 — 1] interval; and 5) the inference
task itself. When evaluating the cascade strategy, steps 1)-3)
are performed at the initial stage of the cascade. Then, the rest
of the steps are repeated at each stage, but only those features
that are needed for that level are calculated.

The classification solutions are powered by the ML frame-
work Scikit-Learn [41]. All the evaluated devices are compat-
ible with the same software libraries and are evaluated under
the same conditions to provide a fair comparison between
them. For the performance evaluation, we use the Python
library Timeit to profile execution times. Furthermore, all
experiments are executed solely on the CPU, with no other
application running simultaneously. The materials used for the
evaluation experiments are publicly available.!

1 https://github.com/OihaneGomez/Model_Cascade_Optimization
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C. Model Cascade Configuration

As the objective of this work is to evaluate the capabilities
of the proposed approach in an algorithm and parameter inde-
pendent and agnostic manner, we made a deliberate choice to
maintain the same configuration for all the experiments in the
comparison. Thus, no hyper-parameter tuning has been done
to improve the ML algorithms’ performance and adapt them to
a specific scenario. This avoids the impact of other factors that
could distort the overall vision of the strategy being evaluated.

In the proposed discriminative model cascade, the complex-
ity of the different models is given by the number of features
selected for creating the model, as it is a crucial factor for its
computational cost [34]. For this reason, for every stage i a
feature selection process is performed. This process reduces
the feature matrix’s dimension by removing irrelevant features,
obtaining the subset of them that contributes the most to the
prediction. From the exiting feature selection strategies, we
apply a Chi2 filtering method [42], a computationally light
strategy for ranking every characteristic of the signal according
to its contribution to the prediction [43].

We opt for a cascade configuration based on three layers
of independent models trained with an increasing number of
features, as shown in Fig. 5. This cascade of models (that is,
the three layers that it encompasses) is deployed on a sin-
gle stand-alone Edge device to evaluate its performance when
classifying new sequences of data. This performance is com-
pared against a single reference model. For this reason, all the
models of the cascade are trained using the same learning algo-
rithm to provide a fair comparison between having a unique
model and having a discriminative cascade of three models
performing classification tasks on Edge devices. The first level,
i1, corresponds to a reduced model constituted by only ten fea-
tures. This model initially classifies every new data sequence.
This way, the most straightforward data sequences are pro-
cessed in a computationally lighter way if their prediction
meets the confidence threshold #;. Recall that this confidence
threshold represents the maximum log loss value for consid-
ering the output of the corresponding model as acceptable.
In the second level, ip, the number of features of the model
increases up to 50. In this case, the model classifies only those
sequences that the initial model was not able to classify with
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the required confidence. Finally, the last level, i3, is in charge
of classifying all the remaining instances (those not classified
at level i1 and level ip). This final model is trained using all
the available baseline features. For comparison purposes, this
configuration of layers and the number of features remain the
same, independent from the data set or the evaluated learning
algorithm.

The agnostic nature of this setup also applies to the thresh-
olds #; applied at each stage of the cascade. We have selected
two different thresholds, one more restrictive than the other.
Even though the log loss value is dependent on the number of
classes and the balance of the data set, those thresholds remain
the same in each of the evaluated data sets and algorithms. For
the sake of comparison, the first threshold #; (from model 1
to 2) is set at 0.15, which is a highly restrictive value, as it is
closer to 0. The second one t, (from model 2 to 3) is set at
0.40, being laxer than the previous one. These parameters rep-
resent the maximum log loss value for considering the output
of the corresponding model as acceptable.

As aforementioned, we have fixed this selection of models
and thresholds for all our experiments. Furthermore, we focus
our evaluation on one specific configuration of the model cas-
cade regarding its number of layers. Thus, the evaluated setup
is only one example of the many alternative configurations
that the proposed approach’s flexibility allows. While tuning
the models or defining the most suitable configuration of the
cascade is out of the scope of this work, we hypothesize that
both the selected number of features and the applied thresholds
could provide a good cost-accuracy balance for our evaluation
purposes. For this reason, we leave the possibility of better
adjusting these factors or evaluating their impact open for
further implementations of this strategy in which parameter
fitting, thresholds adjustments, or selecting the most appro-
priate number of layers could be studied for the specific task
and data. In the following, we will provide the results, both
in terms of classification performance and efficiency, for the
described setup.

V. ANALYSIS AND RESULTS

Several experiments were conducted to analyze the potential
benefits of the presented approach regarding the classification
performance and efficiency of the proposal. For this reason,
the results presented in this section can be divided into three
main categories: 1) the evaluation of the classification accuracy
for the presented approach; 2) the comparison of the three
variations of the proposal described in Section III; and 3) the
computational cost, in terms of execution time, of the selected
variant when performing classification tasks in one piece of
each of the evaluated platforms.

A. Classification Results

This section evaluates the accuracy of the model cascade
according to the procedure described in Section IV. For evalua-
tion purposes, we have adapted the training schemes explained
in Section III for each variation of the cascade. To ensure
the reliability of our experiments, a stratified five fold-cross-
validation (CV) procedure was applied for each data set.
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The CV process is applied at each stage of the cascade
independently.

In the parallel approach, the training set (composed of four
folds of the data set) remains the same at every level. At each
stage, only the samples of the test set (the remaining fold)
whose log loss is above #; go to the next stage. The evaluation
metrics for the cascade are computed using the samples of
the test folds. For each sample, the prediction obtained at the
stage in which the sample got a log loss below ¢; is taken into
account to obtain the final classification score. That is, if the
kth sample gets a log loss above ¢ at the first level and a
log loss below 7, at the second level, only the prediction of
model 2 would be considered. For the sequential approach,
the CV process of the first level is performed over the whole
training set. For the next stage, at each iteration, only the
samples of the test fold that got a log loss above 71 are used.
Then, a new fivefold CV is performed with all the data that
remain unclassified from each test folds of the previous levels.
This process is repeated with models 2 and 3. In the case of
the hybrid approach, the parallel approach is used between
the first and second models, while the sequential approach is
used between the second and the third one. To increase the
robustness of the evaluation, the results are provided as the
average of 10 runs for each of the variations.

We calculate the macro-weighted F1-score metric for all the
experiments, which provides the harmonic mean of precision
and recall metrics. It averages both the true positives among
all positive results (precision) and the correct labeled positives
based on all the correct positive and negative events (recall).

We compare the three variations of the model cascade
(sequential, parallel, and hybrid) against the reference model
and the stacking technique. The reference model corresponds
to a single model created using the maximum initial number of
features available, according to Table I. Thus, this is the most
complex single model that can be created using the available
features. Stacking is an ensemble modeling technique in which
a stack of different estimators is used to train a meta-predictor
based on the outputs of all the individual estimators. Despite
their differences, this is the closest example of model cascade
among the rest of the model ensembling techniques. We use
the same setup for the stacking method and the cascade, using
10, 50, and the total available features to train each level. In
stacking, both the single models and the final meta-predictor
are trained using the same algorithm.

Table III shows the obtained results for the five method-
ologies (reference model, stacking, and the three variations of
the cascade) in terms of F1 macro results. Besides, Table IV
presents the relative percentage of instances classified with
the two initial models of the cascade (10 and 50 features). For
illustrative purposes, these tables have been colored to better
represent the magnitude of the obtained F1 results and classifi-
cation percentages, being the reddish colors the lowest values
and the bluish the highest ones. This provides an absolute
representation of the performance of the different evaluated
scenarios for all the data sets and algorithms combined.

A closer look at the algorithm-dependent results indi-
cates that LG, RF, and SVM are the classifiers that show
the most stable performance in all the evaluated data sets,
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TABLE III
F1 MACRO RESULTS FOR THE REFERENCE MODEL, THE STACKING METHOD, AND THE THREE PRESENTED VARIATIONS OF THE MODEL CASCADE

Algorithm

DATASET  Threshold Features Method LG RF KNN NB SVM MLP
486 (all) ~ REFERENCE 87.69 (SD 0.708) 89.44 (SD 0.368) 80.03 (SD 0.596) 78.76 (SD 0.122) 87.35 (SD 0.542) 87.75 (SD 0.407)
TI =015 Stacking 87.58 (SD 0.900) 88.27 (SD 0.775) 72.45 (SD 1.817) 78.23 (SD 0.401) 87.93 (SD 0.551) 86.23 (SD 0.888)
OHM ™ - ()'40 10-50-486 Casc. sequential 86.70 (SD 0.561) 88.36 (SD 0.865) 81.66 (SD 0.742) 69.74 (SD 0.905) 85.76 (SD 0.727) 84.38 (SD 0.851)
e Casc. parallel 85.94 (SD 0.599) 88.58 (SD 0.425) 82.52 (SD 0.668) 66.87 (SD 0.709) 86.40 (SD 0.682) 83.45 (SD 0.950)
Casc. hybrid 86.93 (SD 0.806) 87.90 (SD 0.473) 81.93 (SD 1.334) 66.82 (SD 0.646) 85.96 (SD 0.692) 82.70 (SD 0.965)
162 (all) ~ REFERENCE 83.35 (SD 1.093) 85.92 (SD 0.948) 86.45 (SD 1.166) 74.74 (SD 1.357) 88.96 (SD 0.951) 83.24 (SD 1.118)
TI =015 Stacking 79.09 (SD 1.160) 83.66 (SD 1.111) 72.98 (SD 1.742) 53.89 (SD 3.183) 85.30 (SD 1.614) 71.73 (SD 1.451)
ADL ™ - 0'40 10-50-162 Casc. sequential 84.39 (SD 0.922) 86.37 (SD 1.605) 79.24 (SD 1.001) 63.71 (SD 1.671) 86.98 (SD 1.075) 78.91 (SD 1.826)
e Casc. parallel 84.48 (SD 1.000) 85.78 (SD 0.663) 84.55 (SD 0.798) 65.41 (SD 1.709) 88.36 (SD 1.155) 80.27 (SD 1.790)
Casc. hybrid 84.21 (SD 1.434) 86.68 (SD 1.274) 80.73 (SD 1.306) 65.41 (SD 1.709) 87.17 (SD 1.145) 71.56 (SD 2.299)
561 (all) REFERENCE 97.96 (SD 0.065) 97.85 (SD 0.076) 96.93 (SD 0.106) 73.90 (SD 0.357) 98.67 (SD 0.069) 98.19 (SD 0.137)
T1 = 015 Stacking 98.01 (SD 0.075) 98.01 (SD 0.075) 95.67 (SD 0.245) 70.13 (SD 0.604) 98.66 (SD 0.066) 97.91 (SD 0.150)
HAR ™ - 0'40 10-50-561 Casc. sequential 95.71 (SD 0.072) 95.77 (SD 0.138) 90.46 (SD 0.235) 73.87 (SD 1.131) 93.77 (SD 0.134) 92.73 (SD 0.342)
e Casc. parallel 95.45 (SD 0.079) 96.16 (SD 0.107) 92.12 (SD 0.199) 73.00 (SD 0.393) 94.06 (SD 0.101) 93.27 (SD 0.193)
Casc. hybrid 95.50 (SD 0.077) 96.33 (SD 0.099) 91.49 (SD 0.203) 73.35 (SD 0.453) 93.67 (SD 0.072) 92.87 (SD 0.223)
272 (all) REFERENCE 87.52 (SD 0.145) 97.37 (SD 0.083) 94.93 (SD 0.107) 63.86 (SD 0.059) 93.37 (SD 0.169) 92.34 (SD 0.378)
T1 = 0.15 Stacking 84.58 (SD 0.154) 94.23 (SD 0.296) 72.73 (SD 2.792) 65.84 (SD 0.156) 89.33 (SD 0.211) 84.15 (SD 0.684)
OFFICE ™ _ 0'40 10-50-272 Casc. sequential 88.66 (SD 0.149) 96.60 (SD 0.135) 92.94 (SD 0.188) 57.65 (SD 0.277) 92.48 (SD 0.186) 91.02 (SD 0.750)
=Y Y Casc. parallel 87.25 (SD 0.153) 96.81 (SD 0.102) 93.95 (SD 0.162) 54.65 (SD 0.213) 92.28 (SD 0.160) 92.19 (SD 0.284)
Casc. hybrid 88.65 (SD 0.167) 96.47 (SD 0.108) 93.29 (SD 0.144) 54.85 (SD 0.213) 91.81 (SD 0.127) 91.56 (SD 0.397)
162 (all) REFERENCE 97.58 (SD 0.051) 99.13 (SD 0.037) 98.01 (SD 0.070) 94.06 (SD 0.108) 98.43 (SD 0.049) 98.05 (SD 0.122)
TI =015 Stacking 97.47 (SD 0.062) 98.88 (SD 0.073) 93.85 (SD 1.779) 80.37 (SD 0.856) 98.08 (SD 0.050) 97.39 (SD 0.224)
SPORTS ™ _ ()'40 10-50-162 Casc. sequential 97.35 (SD 0.060) 98.57 (SD 0.089) 96.18 (SD 0.212) 77.10 (SD 1.531) 97.09 (SD 0.130) 96.16 (SD 0.177)

Casc. parallel
Casc. hybrid

97.30 (SD 0.058)
97.40 (SD 0.041)

98.65 (SD 0.048)
98.53 (SD 0.070)

96.64 (SD 0.192)
96.68 (SD 0.210)

74.11 (SD 1.435)
74.05 (SD 1.432)

97.26 (SD 0.105)
97.14 (SD 0.137)

96.36 (SD 0.150)
95.97 (SD 0.336)

TABLE IV
PERCENTAGE (%) OF INSTANCES CLASSIFIED WITH THE TWO INITIAL MODELS OF THE CASCADE FOR THE THREE PRESENTED VARIATIONS

Algorithm
DATASET  Threshold  Features Method LG RF KNN NB SVM MLP

TI = 0.15 Casc. sequential 70.42 (SD 1.981) 77.07 (SD 0.691) 80.31 (SD 0.917) 99.68 (SD 0.218) 76.77 (SD 1.673) 97.84 (SD 0.480)

OHM T2 - o4y 10-50-486  Casc. parallel 70.21 (SD 0.670) 76.36 (SD 0.649) 79.98 (SD 1.006) 99.39 (SD 0.225) 78.30 (SD 0.841) 97.28 (SD 0.543)
e Casc. hybrid 70.21 (SD 0.670) 76.36 (SD 0.649) 79.98 (SD 1.006) 99.39 (SD 0.225) 78.30 (SD 0.841) 97.28 (SD 0.543)

TI = 0.15 Casc. sequential 51.47 (SD 0.415) 61.60 (SD 1.484) 74.80 (SD 1.098) 99.32 (SD 0.266) 61.07 (SD 1.337) 88.02 (SD 1.801)

ADL ™ - 040 10-50-162  Casc. parallel 51.44 (SD 0.539) 65.42 (SD 0.727) 79.30 (SD 0.734) 99.52 (SD 0.380) 62.69 (SD 0.862) 91.63 (SD 0.777)
e Casc. hybrid 51.44 (SD 0.539) 65.42 (SD 0.727) 79.30 (SD 0.734) 99.52 (SD 0.380) 62.69 (SD 0.862) 91.63 (SD 0.777)

T =015 Casc. sequential 68.12 (SD 0.128) 74.76 (SD 0.199) 82.09 (SD 0.391) 97.29 (SD 1.844) 77.63 (SD 0.474) 84.23 (SD 3.179)

HAR o - 0'40 10-50-561  Casc. parallel 69.46 (SD 0.104) 81.67 (SD 0.171) 85.80 (SD 0.217) 93.96 (SD 0.722) 81.37 (SD 0.160) 86.37 (SD 0.544)
= Casc. hybrid 69.46 (SD 0.104) 81.67 (SD 0.171) 85.80 (SD 0.217) 93.96 (SD 0.722) 81.37 (SD 0.160) 86.37 (SD 0.544)

T1 = 0.15 Casc. sequential 65.40 (SD 0.065) 87.18 (SD 0.204) 92.64 (SD 0.307) 99.73 (SD 0.032) 74.13 (SD 0.214) 90.59 (SD 3.742)

OFFICE ™ - 040 10-50-272  Casc. parallel 65.27 (SD 0.156) 87.41 (SD 0.244) 93.66 (SD 0.210) 99.41 (SD 0.058) 76.02 (SD 0.313) 92.72 (SD 0.497)
e Casc. hybrid 65.27 (SD 0.156) 87.41 (SD 0.244) 93.66 (SD 0.210) 99.41 (SD 0.058) 76.02 (SD 0.313) 92.72 (SD 0.497)

T1 = 0.15 Casc. sequential 81.17 (SD 1.071) 94.67 (SD 0.123) 96.51 (SD 0.165) 99.76 (SD 0.144) 96.38 (SD 0.127) 97.58 (SD 0.172)

SPORTS T2 - o4 50-50-162  Casc. parallel 74.99 (SD 0.192) 94.79 (SD 0.075) 97.79 (SD 0.132) 99.41 (SD 0.135) 96.64 (SD 0.084) 97.23 (SD 0.261)

Casc. hybrid 74.99 (SD 0.192)

94.79 (SD 0.075)

97.79 (SD 0.132) 99.41 (SD 0.135) 96.64 (SD 0.084) 97.23 (SD 0.261)

presenting uniform F1 results. Ensemble techniques obtained
worse results in MLP and KNN compared to the reference
model. They also show high variances compared to the rest of
the algorithms, particularly for the ADL and HAR data sets.
Still, they maintain reasonable classification rates. NB obtains
the worst performance. Not only the reference results for NB
are the worst but applying NB within the cascade penalizes
its results. A reason for this circumstance can be found in
Table IV. Here, NB obtains, by far, the highest rates of clas-
sified instances using the simplest models (first levels of the
cascade), in which almost all the instances do not reach the
last level. This has an impact on the classification results and
may indicate that the applied confidence thresholds are not
well calibrated for this algorithm. Similarly, MLP and, to a
lesser degree, KNN also classify a high number of instances
at the early stages of the cascade. As it can be observed, for
the last two algorithms, there is an indirect effect between the
correlation of classified instances and the F1 values, meaning
that the higher this percentage is, the lower the classification
result may be.

Tables V and VII show a summarized comparison between
the different methodologies (the reference model, the stacking

TABLE V
AVERAGE F1 RESULTS FOR ALL THE CLASSIFIERS AND THEIR DECREASE
PERCENTAGE (% D) COMPARED AGAINST THE REFERENCE RESULTS

OHM ADL HAR OFFICE SPORTS

Fl %D F1 %D FI %D F1 %D FI %D
REFERENCE  86.45 85.58 97.92 93.11 98.24
Stacking 8345 202 7544 995 9307 091 8181 728 9434 328
Sequential 82.77 282 7993 459 9039 376 8656 190 93.74 3.90
Parallel 8229 338 8148 275 90.68 345 86.19 232 9339 426
Hybrid 82.04 3.68 8029 416 90.54 3.60 86.11 241 9330 436

technique, and the three variations of the cascade). The for-
mer averages the algorithms’ results, while the latter averages
the results across all the algorithms and data sets. They also
include the averaged percentage decrease of comparing the
stacking and the three cascade approaches against the refer-
ence model. The percentage decrease measures the percent
change between two values, according to

Initial Value — Final Value

BD = % 100. 2)

Initial Value
In this case, %D measures the relative decrease of each
of proposed approach’s results (FinalValue) when compared
against the reference model (InitialValue).
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TABLE VI
AVERAGE PERCENTAGE (%) OF INSTANCES CLASSIFIED
WITH THE TWO SIMPLEST MODELS

OHM ADL HAR OFFICE SPORTS
Sequ. 83.68 (SD 12.1)  72.71 (SD 18.2)  80.69 (SD 9.9)  84.95 (SD 12.7)  94.34 (SD 6.7)
Parallel ~ 83.59 (SD 11.9)  75.00 (SD 18.4) 83.10 (SD 8.1) 85.75 (SD 12.8) 93.47 (SD 9.2)
Hybrid  83.59 (SD 11.9)  75.00 (SD 18.4) 83.10 (SD 8.1) 85.75 (SD 12.8) 93.47 (SD 9.2)

TABLE VII
AVERAGE F1 RESULTS AND THEIR DECREASE PERCENTAGE (% D)
FOR ALL THE LEARNERS AND DATA SETS

Fl % D
REFERENCE  89.73 (SD 5.85)

Stacking 85.62 (SD 7.97)  4.69 (SD 3.80)
Sequential 86.68 (SD 5.58)  3.39 (SD 1.04)
Parallel 86.80 (SD 5.18)  3.23 (SD 0.74)
Hybrid 86.45 (SD 5.50)  3.64 (SD 0.75)

In this regard, the single (and more complex) model that
acts as the reference method outperforms the rest of the can-
didates (stacking and cascade strategies). That is, stacking and
cascade strategies obtain, on average, lower results than the
reference model. Moreover, cascade variations show similar
or even higher classification results than stacking techniques
across algorithms. In fact, when compared against the refer-
ence model, the average percentage decrease when averaging
the 3 cascade variations is 3.42% (SD 0.81%), compared to the
4.69% (SD 3.8%) shown by stacking techniques. Nonetheless,
based on the standard deviation, stacking techniques present
higher performance variations depending on the data set. On
the contrary, cascade methods present more consistent results.

However, it is paramount to emphasize that the importance
of cascade approaches lies in the optimization possibilities
they enable and their potential efficiency, not in their capabili-
ties to improve the classification results. Therefore, its interest
lies in the relative comparison of how much computational
improvement can be obtained without substantially impair-
ing the system’s performance. With the cascade approach, the
potential computational gains are given by the percentage of
instances classified with the simplest models, summarized in
Table VI. The first noticeable fact is that parallel and hybrid
approaches classify the same number of instances with the two
first stages of the model cascade. This is attributed to both of
them sharing the same structure for those levels. Beyond that,
some differences can be observed depending on the data set,
but, on average, the 83.88% (SD 13.17%) of the instances can
be classified within these two stages.

When combined, the average Fl-score (Table V) and the
average percentage of classified instances with the initial lev-
els of the cascade (Table VI) illustrate the capabilities of the
model cascade system and the benefits of setting a confidence
threshold. This is reflected in the comparison of cascading
variations with stacking techniques in Table VII. In the cas-
cade method, setting a confidence threshold compensates for
the potential errors induced by the lighter models. Thus, even
mainly using simple models belonging to the first levels of the
cascade, it is possible to achieve similar or even better results
than using a much heavier and complex model such as the
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one created in the stacking technique. In our case, the stud-
ied cascade strategies are able to reduce by more than 80%
the number of instances to be classified with the last level of
the cascade and maintain detection rates that only decrease on
approximately 3.4%. This means that assuming a decrease in
accuracy lower than 4%, we can have a system in which more
than 80% of the instances can be classified with much simpler
models than the reference one.

B. Selecting the Best Strategy

Selecting which of the three variations of the cascade
approach is better requires choosing between maximizing the
classification results or the number of instances classified with
the simplest models (recall that efficiency in this piece of work
is given by the number of instances that are classified with
the initial levels of the cascade). Depending on this choice,
the performance of the system is prioritized in terms of the
classification outcomes or its efficiency, one being conditional
on the other. Having two different optimization objectives, the
best strategy consists of analyzing which of the three variations
provides a better balance between both factors (i.e., which of
the three variations optimize in a better balance between them).

By comparing Tables V and VI some initial conclusions
can be obtained in this regard. At least for the evaluated data
sets, the hybrid approach does not provide any advantage over
the rest of the methods. Not only the parallel and sequen-
tial approaches obtain, in general, better classification results
but the models with the parallel approach classify the same
percentage of instances as models with the hybrid approach,
as they maintain the same structure for the cascade’s initial
stages. From this point, further evaluation can optimize this
tradeoff to find which is the model cascade variation that better
fulfills those two objectives (the best classification results and
highest number of initially classified instances). To that end,
we conduct a Pareto multiobjective optimization analysis [44].
The Pareto analysis is a statistical tool for decision making that
selects a limited number of Pareto-optimal solutions, corre-
sponding to the Pareto front, which maximizes two objectives:
1) accuracy and 2) the percentage of classified instances in the
first stage of the cascade in our case.

First, we apply this strategy for all the combinations of
algorithms and data sets we are considering in this work.
Additionally, we have specifically targeted the OHM Data set
as we will focus the rest of the computational experiments
on it. Fig. 6 represents the relationship between the accuracy
(F1 result) and the percentage of classified instances, both for
the OHM Data set (left plot) and the combination of all the
data sets (middle and right plots). A zoom-in of the upper
right corner of the middle plot is shown in the right plot
for the sake of visualization. This region represents the best
balance between the two analyzed factors. Those plots also
include the Pareto frontier as a dashed line representing the
optimal solutions that maximize the accuracy (highest y-axis
values) and the classification percentage (largest values on the
x-axis). Finally, Table VIII shows each of these optimal solu-
tions for all the data sets and the OHM data set. It includes
the name of their corresponding variation of the cascade
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Fig. 6. Balance between the classification results and the number of instances classified in the first levels of the cascade for the OHM data set (left plot)

and all the data sets together (middle plot) with a special focus on the best accuracy-classified percentage region of the latter (right plots).

TABLE VIII
FINAL PARETO OPTIMAL SOLUTIONS

All Datasets

OHM Dataset

Type F1 % Type F1 %

Parallel 98.65 94.79 Parallel 88.58  76.36
Parallel 97.26  96.64 Sequential ~ 88.36  77.07
Hybrid 96.68  97.79 Parallel 86.40  78.30
Sequential  96.16  98.86 Sequential ~ 84.38  97.84

approach, F1 value, and the percentage of initially classified
instances.

The Pareto optimal solutions listed in Table VIII show that
the sequential and parallel approaches are predominant, being
the latter the most frequently listed variation. Although it is
not possible to generalize based on the evaluation carried out
and the five selected data sets, it does allow us to obtain certain
indications of the potential strengths of this approach. For this
reason, we carry out the computational experiments using this
variation, as it obtains the most balanced results. Either way,
considering how close the average classification percentage
is for the sequential and parallel approaches (83.68% versus
83.59%) in Table VI, no substantial performance differences
are expected due to this decision.

C. Timing Results

The results presented in this section seek to shed light on the
potential of the cascade strategy to save time and resources in
the classification task. That is, to make a more efficient usage
of the available resources of each individual node deployed at
the Edge. To evaluate its impact, we compare the performance
of both the reference model and the parallel implementation
of the model cascade strategy, being this latter one selected
after performing the Pareto optimization process, using the
OHM data set. We measure the computational cost as the
actual amount of time needed to process and classify new
instances of data according to the experimental setup described
in Section IV. In particular, we compare the performance of
the cascade strategy against a single reference model and eval-
uate the potential computational savings (in terms of time) of
each of these approaches when deployed on a single Edge
device (i.e., one piece of the evaluated platforms).

We have randomly divided the data set into two parts to per-
form this experiment, maintaining the 80%-20% proportion
used in the fivefold CV process. Thus, 800 out of the 1000
instances that the data set contains are used for training and the
remaining group of data, consisting of 200 instances, are used
for prediction. Therefore, we compare the elapsed time in clas-
sifying these 200 instances of the data set with the reference
model and the cascade strategy. This test resembles an online
classification scenario in which new sequences of continuous
data need to be predicted by the intelligent system. To ensure
the reliability of the results, the averaged elapsed time is com-
puted (i.e., the experiment is executed 30 times—10 runs of
3 loops).

The results obtained in the experimental evaluation for each
of the five selected devices operating individually are included
in Table IX. It shows that, in the evaluated scenario, our
approach is more efficient than the reference model when
classifying new instances of HAR data. This also means that
classifying part of these instances with simpler models offsets
the possible overhead of some of them going through the dif-
ferent stages of the cascade until the confidence requirement
is met. Table X summarizes the order of these time improve-
ments, reflected in the decrease percentage (%D) between the
reference times and the optimized ones. Again, this table has
been colored to better represent the magnitude of obtained
time improvements, being the reddish colors the lowest val-
ues and the bluish the highest ones. As can be observed, in
most of the cases, the metrics improve more than the 50%. As
expected, the obtained results for every algorithm are highly
reliant on the percentage of classified instances of the OHM
data set showed in Table IV. Consequently, those algorithms
that could deal with a larger amount of data at the early stages
of the model cascade show higher performance improvements.
In the case of RF, the time complexity of the prediction pro-
cess associated with this algorithm penalizes the efficiency of
the cascade approach, obtaining improvements below the ones
that would correspond to its classification percentage. Even so,
it still improves the reference model’s performance.

When averaging all the algorithms, the time improvements
for the first two devices were 61.67% (SD 15.71%) for the
laptop and 64.93% (SD 18.01%) for the Jetson Nano board.
For the Raspberry foundation devices, the average Pi 4 results
were 60.56% (SD 17.23%), the Pi 3 obtained 60% (SD
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TABLE IX

ELAPSED TIME FOR CLASSIFYING 200 INSTANCES OF NEW DATA WITH THE REFERENCE MODEL AND THE PARALLEL CASCADE METHOD

OHM Dataset

LG RF KNN NB SVM MLP

Lanto Reference 7.69s £ 156ms 9.46s £ 181ms 7.96s + 198ms 7.29s + 122ms 7.79s £ 54.8ms 7.19s + 331ms
ptop Cascade 4.1s + 198ms 5.385 £ 57.4ms 3.08s £ 193ms 1.21s 4+ 33.3ms 3.12s £+ 34.3ms 1.76s &+ 59.6ms
Jetson Nano Reference 39s + 242ms 46.5s &+ 131ms 39.6s £+ 14.5ms 38.7s £ 7.3dms 38.8s5 £ 1.34ms 38.8s £ 15.8ms
Cascade 18.9s 4+ 20.9ms 27.3s £5.27Tms 14.6s &+ 3.83ms 6.12s £+ 2.35ms 14.7s + 6.57ms 4.91s £ 1.33ms

RPi 4B Reference 35.7s £ 14.4ms 42.4s £ 63.4ms 36.8s £+ 7.44ms 36s + 3.72ms 36s + 4.93ms 35.8s £ 5.14ms
Cascade 17.1s + 3.27ms 23.9s £ 31.2 13.3s + 3.63ms 5.37s £ 142s 13s £ 6.26ms 8.6s + 2.88ms

RPi 3B+ Reference  1minl0s & 301ms  1minl7s + 121ms 1minlls £ 152ms  1minl0s £ 164ms 1minlls £ 233ms 1minlls £ 233ms
Cascade 39s + 86.6ms 44.3s + 161ms 29.6s £ 243ms 14.5s + 35.9ms 31.4s £ 280ms 11.9s + 11.8ms

RPI Zero Reference  6minb5s + 584ms  Tmind6s + 265ms Tminls £ 73.5ms  6min57s £ 100ms  6min58s 4 49.6ms 6minb56s + 524ms
Cascade 4minl3s + 76ms  4minlds + 156ms  2mindds + 38.8ms  1minl6s + 186ms 2mind7s + 185ms  2minl7s £+ 79.6ms

TABLE X
DECREASE PERCENTAGE (% D) SHOWING THE TIME IMPROVEMENTS
WHEN APPLYING THE CASCADE METHOD

OHM Dataset

LG RF KNN NB SVM MLP
Laptop 46.68 43.13 6131 8340 5995 75.52
Jetson Nano 51.54 4129 63.13 84.19 62.11 87.35
Rpi 4B 52.10 4336 63.86 85.08 6222 7598
RPi 3B+ 4429 4247 5831 7929 55777 8324
Rpi Zero 48.19 4549 61.05 81.77 60.05 67.07

13.21%), and the Pi Zero 62,31% (SD 13.21%). Therefore,
the time improvement explored in this section produced an
enhanced performance in all the classification tasks regardless
of the devices’ resources for a continuous HAR classifi-
cation system. Furthermore, the time decreased on average
62.31% (SD 1.96%) when averaging all the devices’ mean
results. These results represent the actual amount of time that
the evaluated operations require to be completed as well as
its reduction when applying the proposed cascade strategy.
According to Bennett and Parrado-Herndndez [45], those times
are related to obtaining good performance in practice in terms
of execution times. On the one hand, this increases response
times in IoT systems, as data is processed faster. On the
other hand, it minimizes the complexity of intelligent systems
and increases its scalability, allowing to deploy more complex
HAR applications in a local stage that, otherwise, could not
be efficiently executed at the Edge.

D. Limitations

Before concluding this section, we want to address the
possible limitations of this study. The obtained results are
dependent on the number of levels and the selection of the
models (according to the number of features in each stage)
that constitute the cascade. Besides, they are also dependent on
the probabilistic thresholds that govern the transition from one
stage to another. In these experiments, the same parameters
are applied for every algorithm and data set to provide better
insights into the effect of the different strategies in the clas-
sification rates. Additionally, they do not cover other cascade
settings in terms of model parameters or number layers. For
this reason, this evaluation is not intended to test every possible

combination of models and attributes but to provide insights
on the optimization possibilities of this strategy based on the
described evaluation procedure. Therefore, the importance of
the performed comparison lies in the relative observable results
between the different strategies, not in their absolute values.
It is important to note that the results obtained, both in the
reference model and in the strategies evaluated, are not the
best possible ones, nor do they seek to be compared against
the state-of-the-art of their respective data sets.

Besides, despite the possibilities that separating a com-
plex model into a simpler model enables, this evaluation does
not cover a distributed scenario in which cascade layers are
deployed in various devices. Thus, the provided timing results
and performance may vary if the system’s setup is changed.
Finally, the obtained computational times are not deterministic
and can be sensitive to the device’s internal processes or rou-
tines (despite calculating these times iteratively and running
solely on the device). To increase the reliability of the mea-
surements, we took a large number of measurement samples
and provided average results.

VI. DISCUSSION

The uptake of emerging technologies and the unleashing of
innovation when monitoring and predicting the environment
are the drivers of an interconnected future that can improve
many aspects of our lives in domains, such as the city [46],
the workplace [47], or our home [48]. Moreover, Al tech-
niques are transforming our world and have the potential
to enhance health [49], promote sustainable practices [50],
or lead us toward achieving the Sustainable Development
Goals [51]. These technologies have brought with them sig-
nificant advances in innovation, creating profound impacts
on society. As an example, identifying and analyzing the
occupants’ activities and behaviors toward energy utilization
in buildings has an energy-saving potential of up to 30%,
which has a direct positive effect in reducing climate change
risks [52].

However, the environmental impact caused by the infras-
tructure necessary to operate these kinds of solutions is rarely
taken into account. For this reason, there is a need for under-
standing their benefits while mitigating their risks. On the
one hand, users demand more and better services without
really being aware of the energy implications. From a user
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perspective, it is easy to associate everyday activities such
as turning on a light with the fact that it generates energy
consumption. Nevertheless, in the digital world, this barrier
is more blurred when it comes to the processes behind the
services we use on a daily basis. This hinders understanding
the magnitude of the resources needed for deploying some of
the applications or services we use every day. On the other
hand, the scientific world continues its progress toward the
development of new techniques that improve existing ones
and provide answers to more and more complex problems.
Although this works in favor of progress, it does not take
into consideration the high computational requirements of such
advances.

Enabling technologies, such as Big Data or Deep Learning
are based on increasingly complex mathematical models with
millions of parameters that provide answers to complicated
problems of image, voice, continuous signals, or text classi-
fication. The rise in popularity of Deep Learning, a subfield
of Al that depends on processing vast amounts of data, has
accentuated this sustainable problem in recent years due to
its growing use and deployment [53]. Also, the Blockchain
technology and cryptocurrencies have raised the debate about
the viability of this exponential growth and the energy con-
sumption and carbon emissions they bring with them. In fact,
their massive energy consumption has reached a point in which
it has become a primary environmental concern [54]. Bitcoin,
the most famous Blockchain-based cryptocurrency, has an esti-
mated electricity consumption compared with countries, such
as Ireland, Hong Kong, or Austria [55]. This is a clear exam-
ple of how a technological advance with enough potential
to revolutionize the digital future can end up having more
environmental costs than benefits.

Nonetheless, users and several sectors will continue
demanding and adopting new services. In parallel, scientists
need to keep pushing forward new horizons toward the con-
vergence of different technologies to improve those services.
Edge Computing and, in particular, embedded ML techniques
propose a total paradigm shift to overcome this situation. For
years, the world of Al and Deep Learning has been based
on the search for massive amounts of data for training bigger
models, scaling as much as possible the resources needed to
deal with the complexity of those approaches. This has led
to a centralized approach in which all captured data must be
sent to remote data centers where the only equipment capable
of deploying these systems is hosted. Those data centers are
located hundreds or even thousands of kilometers away, which
increases the associated costs of data transmission.

In contrast, in optimization approaches, the importance lies
in the quality of the data and the efficiency of the models
under the principle that any unnecessary data sent and/or pro-
cessed is a potential waste of resources. As the complexity of
classification techniques decreases, less powerful equipment is
needed, and a local resource management is possible. For this
reason, with this work, we want to shed light on the importance
of making an optimal management of resources, avoiding
as much as possible the high energy cost of classification
tasks and the dependence on long-distance external servers.
With the proposed cascade of models, classification times are
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reduced, which can be translated directly into lower energy
use associated with such data processing and decreased latency
times. Furthermore, splitting the reference model into straight-
forward, simpler, and independent models enables a more
efficient usa of the available resources, alleviating the overhead
of Edge nodes. This way, it prevents energy-intensive and com-
plex models from taking on tasks for which they are oversized.
At the same time, this helps to scale up the complexity of the
applications that can be allocated in those resource-constrained
devices. This way, splitting the computation opens the door to
a greater flexibility in the architectures surrounding the IoT
devices. It also allows deploying those techniques in low-
powered Edge devices (e.g., microcontrollers), which reduces
the dependence on large infrastructures and remote data cen-
ters. Thanks to the ever-increasing computational capacity of
hardware devices, this strategy could eventually enable a local
system in which a preliminary classification step could be per-
formed on end-point devices. At the same time, only some
specific data would be sent to more powerful devices at the
Edge.

We believe that further exploring the synergy between Edge
Computing, [oT, and energy-efficient Al techniques may be a
suitable alternative toward a more sustainable digital world
where technological advances do not imply compromising
future environmental development.

VII. CONCLUSION AND FUTURE WORK

In this work, we have presented a method to optimize
and improve the performance of classification tasks using
model ensemble techniques in resource-constrained devices.
This is motivated by the challenge of contributing to a more
sustainable IoT development by understanding the need for
simplified processing techniques that improves the usability
and efficiency of Edge Intelligence solutions for different
application scenarios with embedded Al. To that end, we
have analyzed the suitability of three variations of a dis-
criminative model cascade strategy that combine different
classification stages to better fit the system to the complexity
of the input data. Besides, we have empirically analyzed and
compared the performance of the presented approach concern-
ing HAR applications through four resource-constrained Edge
platforms.

On average, the proposed model cascade strategy outper-
forms the results of the model stacking technique. Compared
with the full (and more complex) reference model, it main-
tains acceptable detection rates with an average decline of
only 3.42% while classifying around 80% of the instances
at the early stages of the cascade. In the evaluated case of
study, the proposed cascade strategy reduced by more than
60% the baseline processing times of the prediction task for
a set of 200 instances in all the evaluated platforms. The out-
come of this evaluation shows the potential of the proposed
approach to substantially improve the performance of classifi-
cation tasks without drastically compromising their results. It
paves the way for low-latency and energy-efficient applications
that make the Edge truly intelligent. This analysis seeks to
assist in providing a strategy for optimizing similar problems
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and contribute to bringing advanced processing capabilities to
the Edge of the network.

Having evaluated the suitability of this approach to increase
the efficiency of stand-alone Edge devices, the obtained results
provide us with an outlook for the future work and the pos-
sibilities of adapting this scheme to a collaborative approach.
The division of models that the cascade proposes enables new
offloading schemes in the distribution of computing power
around nearby devices around the Edge. Further research in
this direction would be needed, analyzing the suitability of a
hierarchy of heterogeneous Edge nodes to accommodate each
of the cascade levels and identifying the most optimal commu-
nication mechanisms to promote this collaboration efficiently.
In this regard, the future work also points to the possibility to
port models with lower computational requirements from the
Edge to end-device and allocate part of the cascade system
there. Finally, studying the deployment of the proposed solu-
tion in a real-world online classification scenario would be
interesting to extend the conclusions regarding its potential to
meet the Edge requirements in a timely manner.
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