
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3120766, IEEE Internet of
Things Journal

Throughput Enhancement in FD- and
SWIPT-enabled IoT Networks over Non-Identical

Rayleigh Fading Channels
Tan N. Nguyen, Member, IEEE, Dinh-Hieu Tran,Graduate Student Member, IEEE, Van-Duc Phan*,

Miroslav Voznak, Senior Member, IEEE, Symeon Chatzinotas, Senior Member, IEEE, Björn Ottersten,Fellow, IEEE, and
H. Vincent Poor,Life Fellow, IEEE,

*Corresponding author: Van-Duc Phan (Email: duc.pv@vlu.edu.vn)

Abstract—Simultaneous wireless information and power trans-
fer (SWIPT) and full-duplex (FD) communications have emerged
as prominent technologies in overcoming the limited energy
resources in Internet-of-Things (IoT) networks and improving
their spectral efficiency (SE). The article investigates the outage
and throughput performance for a decode-and-forward (DF) relay
SWIPT system, which consists of one source, multiple relays,
and one destination. The relay nodes in this system can harvest
energy from the source’s signal and operate in FD mode. A sub-
optimal, low-complexity, yet efficient relay selection scheme is
also proposed. Specifically, a single relay is selected to convey
information from a source to a destination so that it achieves the
best channel from the source to the relays. An analysis of outage
probability (OP) and throughput performed on two relaying
strategies, termed static power splitting-based relaying (SPSR)
and optimal dynamic power splitting-based relaying (ODPSR), is
presented. Notably, we considered independent and non-identically
distributed (i.n.i.d.) Rayleigh fading channels, which pose new
challenges in obtaining analytical expressions. In this context, we
derived exact closed-form expressions of the OP and throughput
of both SPSR and ODPSR schemes. We also obtained the optimal
power splitting ratio of ODPSR for maximizing the achievable
capacity at the destination. Finally, we present extensive numerical
and simulation results to confirm our analytical findings. Both
simulation and analytical results show the superiority of ODPSR
over SPSR.

Index Terms—Full duplex, Internet of Things (IoT), indepen-
dent and non-identically distributed (i.n.i.d), performance analysis,
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I. INTRODUCTION

The Internet of things (IoT) has received substantial attention
from academia and industry because it is a promising com-
munications paradigm which can potentially boost the quality
of life with advances in smart transportation, manufacturing,
smart cities, energy, health care, agriculture, and retail [1]–
[3]. Particularly, IoT plays an important key role in fifth
generation and beyond, i.e., sixth-generation (6G) systems
[4]. Besides many advantages, IoT users usually have limited
energy budgets due to their mobility nature and use in remote
working environments. Moreover, the explosive increase of
resource-intensive IoT applications such as multi-view video
construction, augmented reality (AR), virtual reality (VR), and
interactive gaming imposes more stringent demands on energy
consumption and can significantly reduce the device lifetime.
Fortunately, energy harvesting (EH) is a promising solution
to overcome the aforementioned problems in IoT networks.
In contrast to environmental energy sources such as solar [5]
and wind, radio frequency (RF) EH is potential because of its
manageability and predictability [6], [7].

RF EH techniques can be divided into wireless power
transfer (WPT) [8]–[11] and simultaneous wireless information
and power transfer (SWIPT) categories. The main distinction
between WPT and SWIPT is that the transmitter’s RF signals
carry only power in WPT, while it can carry both informa-
tion and power concurrently in SWIPT. Therefore, SWIPT
brings more utilities than WPT but also presents more design
challenges since it needs to allocate the harvested energy and
information transmission to IoT users. Varshney [12] originated
the SWIPT concept and Pulkit Grover and Anant Sahai [13]
extended the work to frequency-selective channels with additive
white Gaussian noise (AWGN). Nevertheless, [12] and [13]
only provided theoretical limits, which was impractical because
the electric circuit used to harvest energy from an RF signal
could not decode the carried information. To overcome the
limitations in [12] and [13], Zhang and Ho [14] proposed
two practical receiver designs, termed time switching (TS) and
static power splitting (SPS), to schedule the wireless power
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transfer (WPT) and wireless information transfer (WIT) at the
EH receiver.

Recently, extensive studies have been performed to investi-
gate SWIPT with cooperative relaying communications since
the SWIPT relay network can improve the communication
range and provide power to energy-restricted users. Moreover,
the benefits of SWIPT in communication networks have been
thoroughly discussed in [15]. The SWIPT relay network can
be divided into two types: time switching (TS)-based relaying
[16]–[18] and power splitting (PS)-based relaying [19]–[25].
Specifically, Nasir et al. [16] proposed TS-based EH and infor-
mation transmission (IT) protocols with continuous-time EH
and discrete-time EH modes at the relay. They then derived the
analytical expressions in terms of throughput for the proposed
protocols. Focusing on the TS architecture, the authors in
[17] proposed novel relaying protocols based on adaptive TS
for amplify-and-forward (AF) and decode-and-forward (DF)
modes. In contrast to the studies in [16] and [17], which only
considered a simple static TS structure, [18] divided the total
time T into N equal time slots and optimized the TS factor in all
time slots. Making use of a PS-based EH receiver architecture,
a novel system model in which a massive multi-input multi-
output (MIMO) two-way relaying system with a PS relay was
considered in [19]. By taking into account the Nakagami-m
and Rayleigh fading channel, Tan et al. [20] analyzed the
performance analysis of user selection protocols with PS-based
EH. Differently from [19] and [20], which only considered a
static PS factor, [21] and [22] designed relay selection schemes
based on an optimal dynamic PS ratio. While [19]–[22] only
considered TS- or PS-based relaying schemes, [23] and [24]
investigated a two-way half-duplex hybrid time-switching and
power-splitting (HTPSR) relay network which leveraged the
advantages of both TS and PS protocols. Besides, Liu et al
[25] aimed to maximize the 5G and IoT transmission rate and
the total power consumption by jointly optimizing time/power
allocation factors and transmit powers. In [26], the authors
proposed a practical non-linear EH model in SWIPT systems,
where they aimed to maximize the total harvested energy at the
EH receivers according to the minimum demanded signal-to-
interference-plus-noise ratios at the information receivers.

The above works on SWIPT relay networks are discussed in
the context of half-duplex (HD) scenarios in which half of the
time or frequency resources are wasted [27]. However, advances
in self-interference cancellation (SIC) techniques achieve more
than 110 dB reduction of self-interference [28]–[31]. There-
fore, full-duplex (FD) communication may be considered a
potential spectral efficiency (SE) enhancement technique for
future 5G/6G systems [32], [33]. The combination of SWIPT
techniques and FD for cooperative relaying systems was studied
in [34]–[39]. Tan et al. [34] investigated a DF FD adaptive re-
laying network over a Rician fading environment with SWIPT.
Specifically, in the first time slot, the relay harvested energy
from the source node. In the second time slot, a portion of
power was used for EH in combination with the PS method,
and the other portion was scheduled for relaying data from the

source to destination. The integration of physical layer security
together with FD and SWIPT was studied in [35], [36]. In
[35], the secrecy sum rate maximization problem for OFDMA
with PS-SWIPT and TDMA with TS-SWIPT under perfect
and imperfect CSI was investigated. In [36], sum-information-
transmission-rate-maximization (SITRM) and fairness-aware-
SITRM problems were studied, whereas multiple eavesdroppers
could overhear information from the FD base station and FD
users. An accumulated loopback self-interference (ALSI) under
the AF protocol in a two-way FD relaying system with SWIPT
was first proposed and investigated in [37]. In [38], self-energy
recycling was applied to improve the network performance of
an FD wireless-powered AF relaying system.

Note that for simplicity, all the aforementioned works on
FD SWIPT relay systems [34]–[39] only consider traditional
independent and identically distributed (i.i.d.) fading channels.
Moreover, few works apply an independent and non-identically
distributed (i.n.i.d.) fading model because of the difficulty
in obtaining the closed-form expressions. Motivated by these
observations, our work presents a generalized FD SWIPT relay
network which models the transmission channels with i.n.i.d.
Rayleigh fading. The main contributions of this work can be
summarized as follows:
• We propose and thoroughly study the benefits of two co-

operative relaying schemes: (i) static power splitting-based
relaying (SPSR); (ii) optimal dynamic power splitting-
based relaying (ODPSR).

• To the best of our knowledge, this is the first work which
obtains closed-form expressions for the outage probability
(OP) and system throughput in DF-based FD SWIPT
cooperative networks over non-identical fading channels.
This is particularly challenging since the mathematical
analysis involves many random variables and the model
channel uses i.n.i.d. Rayleigh fading, thereby complicating
derivation.

• We present a mathematical analysis for the optimal value
of the power splitting ratio ρ? to maximize the destina-
tion’s capacity, i.e., CDF. Specifically, since we consider
the DF protocol, the ρ? can be obtained by equalizing the
signal-to-noise ratio (SNR) on the first and second hop.
Notably, ρ? is achieved before data transmission begins.

• Our analytical expressions are corroborated through Monte
Carlo simulations. The simulation results show the supe-
riority of ODPSR compared to SPSR.

The remainder of the paper is organized as follows. The sys-
tem model and problem formulation are given in Section II. The
derivation of key performance metrics, including the OP and
throughput of the proposed model, is presented in Section III.
Numerical results are shown in Section IV. Section V concludes
the paper.

II. SYSTEM MODEL

In this model, a source S communicates with the destination
D with the assistance of full-duplex relays denoted by Rm,
where m = {1, . . . ,M}.
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Fig. 2: Schematic illustration of EH and IT processes with a power splitting relaying protocol at the relay

Let us denote hSRm and hRmD as the channel coefficients
between S → Rm and Rm → D links, respectively. We also
denote the self-interference between the transmit antenna and
the receive antenna of the relay Rm.

Let us assume that all the channels are independent and
non-identical (i.n.i.d.) Rayleigh fading, hence the channel gains
γSRm = |hSRm |2 and γRmD = |hRmD|2 are exponential
random variables (RVs) whose CDF are given as

FγSRm
(x) = 1− exp (−λSRmx) , (1)

FγRmD(x) = 1− exp (−λRmDx) . (2)

The physical meaning of the parameters λSmR or λRmD

is the inverse of the channel power gains. Furthermore, the
channel power gain is inversely proportional to the distance
between transmitter and receiver, increasing exponentially with
the path-loss exponent. In this paper, we apply the simplified
path-loss model [40], thus, the parameters λSmR and λRmD can

be modeled respectively as follows:

λSRm =
(
dSRm

)β
, (3)

λRmD =
(
dRmD

)β
, (4)

where dSRm and dRmD are Euclidean distances between S →
Rm and Rm → D, respectively.

Let us denote fm as the residual self-interference suppression
(SiS) level after interference cancellations, which is modeled
as a complex Gaussian RV and ϕm = |fm|2 follows exponen-
tial distribution. Therefore, its cumulative distribution function
(CDF) can be expressed as

Fϕm(x) = 1− exp
(
−Ωmx

)
. (5)

From (1), (2), and (5), the probability density functions
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TABLE I: Key Parameters of the System Model

Notations Descriptions
PS The average transmit power at the source
PRm The average transmit power at the relay Rm

nRm The additive white Gaussian noise (AWGN) at the relay Rm

nD The AWGN at the destination D
ΓSRm The SNR at the relay Rm

ΓRmD The SNR at the destination D
CDF The capacity of system
ψDF The overall SNR of system
τ The average achievable throughput at the destination D
OP The outage probability
T The time duration
γSRm = |hSRm |

2 The channel gain of S→ Rm link
γRmD = |hRmD|2 The channel gain of Rm → D link
ϕm = |fm|2 The channel gain of residual self-interference at the relay Rm

Cth The target rate
γth The SNR threshold of the system

(PDFs) of γSRm , γRmD, and ϕm are respectively given as

fγSRm
(x) = λSRm exp (−λSRmx) , (6)

fγRmD
(x) = λRmD exp (−λRmDx) , (7)

fϕm (x) = Ωm exp (−Ωmx) . (8)

Then, the received signal at the m-th relay can be expressed
as

yRm =
√

1− ρhSRmxS + fmxRm + nRm , (9)

where m ∈ (1, 2, ...,M); xS denotes the transmitted signal
at the source S such that E

{
|xS|2

}
= PS, where PS is

the average transmit power at the source and E {•} is the
expectation operator; nRm ∼ CN (0, N0) is the additive white
Gaussian noise (AWGN) at relay Rm; xRm is the loopback
interference signal at Rm due to full-duplex relaying and
satisfies E

{
|xRm |

2 }
= PRm .

Use of the power splitting method means the transmit power
at relay Rm can be mathematically modeled as

PRm =
Em
T

= ηρPSγSRm , (10)

where 0 < η ≤ 1 is the energy conversion coefficient at the
relay. The received signal at the destination D can then be given
as

yD = hRmDxRm + nD, (11)

where nD is the zero mean AWGN with variance N0 at the
destination D.

From (9), the signal to noise ratio (SNR) at the m-th relay
can be derived according to

ΓSRm =
(1− ρ)γSRmPS

ϕmPRm +N0
. (12)

By substituting (10) into (12), ΓSRm is re-written as

ΓSRm =
(1− ρ)γSRmPS

ηρPSϕmγSRm +N0
≈ (1− ρ)

ηρϕm
. (13)

Based on (11), the SNR at the destination can be obtained

as

ΓRmD =
PSRmγRmD

N0
= ηρΨγSRmγRmD, (14)

where

Ψ ,
Ps
N0

. (15)

In the proposed system, we consider the decode-and-forward
(DF) technique. Therefore, the overall SNR and the capacity of
the system can be respectively given by

ψDF = min (ΓSRm ,ΓRmD) , (16)
CDF = log2 (1 + ψDF) . (17)

The average achievable throughput at the destination D can
be defined as

τ = (1−OP)× CDF, (18)

where

OP = Pr (ψDF < γth) , (19)

γth , 2Cth − 1, (20)

are defined as the outage probability and the SNR threshold of
the system, respectively. Cth is the target rate at the destination
to successfully decode the received signals.

Remark 1: In the present paper, we apply the partial relay
selection (PRS) method. Specifically, we propose an optimal
relay selection protocol in which the best relay user is selected,
as follows:

Ra : γSRa = max
m=1,2,...,M

(γSRm) . (21)

Because the best relay fails to decode a message from the
source is equivalent to the failure of all of the relays, and each
relay is independent of the others. Therefore, the CDF of γSRa

can be expressed as follows [41]:

FγSRa
(x) = Pr (γSRa < x) =

M∏
m=1

FγSRm
(x). (22)

Particularly, we consider a generalized system model with
i.n.i.d. Rayleigh fading channel such that λSRm 6= λSRn ,∀m 6=
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n. Thus, FγSRa
(x) can be expressed as follows [41]:

FγSRa
(x) =

M∏
m=1

[1− exp (−λSRmx)]

= 1 +
M∑
n=1

(−1)
n

M∑
SR1=···=SRn=1,
SR1<···<SRn

exp

(
−

n∑
t=1

λSRtx

)
. (23)

III. OUTAGE PROBABILITY ANALYSIS

In this section, the outage probability of the FD- and SWIPT-
assisted DF relaying system with i.n.i.d. Rayleigh fading chan-
nels and PS method is derived. It is noted that the derived
mathematical framework can be straightforwardly apply to the
TS protocol by modifying some constant numbers, i.e., the
target rate and the constant number associates with ΓSRm .

A. Static Power Splitting-based Relaying (SPSR)

In this case, the power splitting ratio ρ is fixed at a constant
value.

By combining (16) and (19), the OP of the SPS-based
relaying method can be formulated as in (24) shown at the
top of the next page.

Lemma 1: Based on (23), the CDF function of Za can be
computed as

FZa (x) = Pr (Za < x) =

M∏
m=1,m6=a

(1− exp (−λSRmx))

= 1 +
M−1∑
u=1

(−1)
u

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a

exp
(
−

u∑
v=1

λSRivx
)

= 1 +
M−1∑
u=1

(−1)
u

M∑
i1=···=iu=1,
i1<...<iu,
i1,...,iu 6=a

exp
(
−λsum

a,u x
)

(26)

where

λsum
a,u =

u∑
v=1

λSRiv
(27)

Lemma 2: Based on (26), the PDF function of Za can be
computed as

fZa (x) =

M−1∑
u=1

(−1)
u+1

M∑
i1=...=iu=1,
i1<...<iu,
i1,...,iu 6=a

λsum
a,u exp

(
−λsum

a,u x
)
.

(28)

Theorem 1: In the FD SWIPT system which uses the static
power splitting method, the exact closed-form expression of OP
can be mathematically formulated as in (29), which is shown
at the top of next page.

Proof: See Appendix A.

B. Optimal Dynamic Power Splitting-based Relaying (ODPSR)

From (16)(18), in order to improve the achievable throughput
of system, we find the optimal value of the power splitting ratio
ρ? to maximize CDF. Since the DF protocol is considered in
our work, the optimal power splitting ratio ρ? can be obtained
as follows:

ΓSRm = ΓRmD ↔
(1− ρ)

ηρϕm
= ηρΨγSRmγRmD. (31)

Proof: See Appendix B.
Lemma 3: In an FD SWIPT system which uses ODPSR with

one source, multiple FD relay nodes, and one destination, the
closed-form of optimal power splitting ratio ρ? can be given as

ρ? =

√
4η2ΨϕmγSRmγRmD + 1− 1

2η2ΨϕmγSRmγRmD
. (32)

Proof: See Appendix C.
By substituting (32) into (14), we then have

Γ?RmD =

√
4η2ΨϕmγSRmγRmD + 1− 1

2ηϕm
. (33)

Then, the OP of ODPSR method can be mathematically
formulated as

OPODPSR

=
M∑
a=1

Pr

(
γSRa = max

m=1,...,M
(γSRm) ,Γ?RmD < γth

)

=
M∑
a=1

Pr

 γSRa > Za,√
4η2ΨϕaγSRaγRaD + 1− 1

2ηϕa
< γth


=

M∑
a=1

Pr

(
γSRa > Za,

4η2ΨϕaγSRaγRaD + 1 < (2ηγthϕa + 1)
2

)

=
M∑
a=1

Pr
(
γSRa > Za, ηΨγSRaγRaD < γth(ηγthϕa + 1)

)
=

M∑
a=1

Pr

(
γSRa > Za, γSRaγRaD <

γth(ηγthϕa + 1)

ηΨ

)
︸ ︷︷ ︸

Υ

(34)

From (34), we need to find Υ to obtain the closed-form of
OPODPSR, which can be given by

Υ =

∫ +∞

0

Ωa exp (−Ωax) Θdx, (35)

where

Θ , Pr

(
γSRa > Za, γSRaγRaD <

γth(ηγthx+ 1)

ηΨ

)
. (36)

Lemma 4: The closed-form expression of Θ can be given as

Θ =
M−1∑
u=1

(−1)
u+1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a

λ1
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OPSPSR =
M∑
a=1

Pr

(
γSRa = max

m=1,2,...,M
(γSRm) , ψDF < γth

)

=
M∑
a=1

Pr

(
γSRa > Za,min

(
(1− ρ)

ηρϕa
, ηρΨγSRaγRaD

)
< γth

)

= 1−
M∑
a=1

Pr

(
γSRa > Za,

(1− ρ)

ηρϕa
≥ γth, ηρΨγSRaγRaD ≥ γth

)
︸ ︷︷ ︸

ÕP

, (24)

where Za = max
m=1,2,...,M,m6=a

(γSRm) . (25)

OPSPSR = 1 +
M∑
a=1

{
1− exp

[
−Ωa(1− ρ)

ηργth

]}
×


M−1∑
u=1

(−1)u+1
M∑

i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a


2λSRa

λsum
a,u + λSRa

×
√

(λsum
a,u + λSRa)χ

×K1

(
2
√

(λsum
a,u + λSRa)χ

)
−2
√
λSRaχ×K1

(
2
√
λSRaχ

)


, (29)

where χ ,
λRaDγth

ηρΨ
. (30)

Kv {•} is the modified Bessel function of the second kind and vth order.

+

M−1∑
u=1

(−1)
u+1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a

Θ1, (37)

where

Θ1 =
2λSRa

λsum
a,u + λSRa

√(
λsum
a,u + λSRa

)
λRaDγth (ηγthx+ 1)

ηΨ

×K1

2

√(
λsum
a,u + λSRa

)
λRaDγth (ηγthx+ 1)

ηΨ


− 2

√
λSRaγthλRaD (ηγthx+ 1)

ηΨ

×K1

(
2

√
λSRaλRaDγth (ηγthx+ 1)

ηΨ

)
. (38)

Proof: See Appendix D.

Lemma 5: Based on Θ from (37), the exact closed-form

expression of Υ can be given as

Υ =

M−1∑
u=1

(−1)
u+1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a

λ1

+
∞∑
t=0

M−1∑
u=1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a

(−1)
t+u+1

(
Ωa
ηγth

)t+1

exp
(

Ωa
ηγth

)
t!

×


λSRa×G

3,0
1,3

ϑ2

∣∣∣∣∣∣ 0
−1, t+ 1, t


(λsum
a,u +λSRa)ϑ2t

−
G3,0

1,3

ζ2

∣∣∣∣∣∣ 0
−1, t+ 1, t


ζ2t

 , (39)

where Gm,n
p,q

(
z| a1, ..., ap

b1, ..., bq

)
is the Meijer G-function.

Proof: See Appendix E.

Based on the result obtained in Lemma 5, the OP of DPS
can be given as the theorem below.

Theorem 2: In an FD SWIPT system which uses the dy-
namic power splitting method, the exact closed-form expression
of OP can be mathematically formulated as follows:

OPODPSR =
M∑
a=1

M−1∑
u=1

(−1)
u+1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a

λ1 +
∞∑
t=0
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TABLE II: Simulation parameters.

Symbol Parameter name Value
Cth SNR threshold of the system 1.25
η Energy harvesting efficiency 0.8
ρ Power splitting ratio 0.05 to 0.95

λRR Rate parameter of |hRR|2 0.5 to 5
Ψ Transmit power-to-noise-ratio -15 to 15 (dB)
M Number of relays 1 to 4

M∑
a=1

M−1∑
u=1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a

(−1)t+u+1×
(

Ωa
ηγth

)t+1
×exp

(
Ωa
ηγth

)
t!

×


λSRa ×G

3,0
1,3

(
ϑ2

∣∣∣∣ 0
−1, t+ 1, t

)
(
λsum
a,u + λSRa

)
ϑ2t

−
G3,0

1,3

(
ζ2

∣∣∣∣ 0
−1, t+ 1, t

)
ζ2t




.

(40)

Remark 2: By substituting (29) and (40) into (18), we can
obtain the average achievable throughput at the destination for
both the static and the dynamic power splitting methods.

IV. NUMERICAL RESULTS

This section presents the numerical results, validation of the
analytical expressions with simulations, and a description of
the effect on system performance by the various parameters.
Unless otherwise stated, we assume the following parameters:
threshold rate Cth = 1.25 bps/Hz, static power splitting ratio
ρ = 0.3, energy conversion coefficient η = 0.8, Ψ = 5 dB, Ωa
= 0.5, number of relays M = 2, path loss exponent β = 3
[42], [43]. We also assume a unit distance between the source
S and destination D. The results were obtained from Monte
Carlo simulations with MATLAB [44]. All simulation results
were averaged over 106 channel realizations. For clarity, the
simulation parameter settings are listed in Table II.

Fig. 3 charts the outage probability and throughput versus
Ψ of the SPSR and ODPSR schemes for a varying number of
relay nodes, where Cth = 1.25 bps/Hz, η = 0.8 and Ωa = 5.
The distance from source S to relay Rm was dSRm = 0.3 or
dSRm = [0.3, 0.65, 0.8], corresponding to the respective number
of relays used. We can observe from Fig. 3 that the outage
probability of the SPSR and ODPSR schemes significantly
improved as Ψ increased from -15 to 15 dB. Specifically, at
Ψ = -15 dB and Ψ = 15 dB for M = 3, the OP of the ODPSR
scheme was 0.5333 and 0.0013, respectively, while the SPSR
only achieved 0.7866 and 0.0036. This was expected since Ψ is
defined as the ratio of the transmit power at the source divided
by the noise power. Therefore, the higher Ψ values imply that
a higher source transmit power Ps is used. Consequently, a
higher SNR at the destination can be obtained, calculated from
Eqs. (10) and (14).In addition, by increasing the number of
relays from one to three, the outage performance improved
dramatically. For example, at Ψ = -15 dB for M = 1 and M = 3,
the OP of ODPSR scheme was 0.6024 and 0.533, respectively.

This is obvious because we have more opportunities to select
the better channel, which improves the network performance.

Fig. 4 plots the total collected throughput versus Ψ of the
SPSR and ODPSR schemes for a varying number of relay
nodes, where Cth = 1.25 bps/Hz, η = 0.8 and Ωa = 5. We
observe that as the Ψ value increased from -15 to 6 dB, the
achievable throughput at the destination improved significantly.
Specifically, at Ψ = -15 and -9 dB, the throughput of ODPSR
with three relays was 0.5837 and 0.9860 bps/Hz, respectively.
This is because the outage value reduced dramatically as Ψ
changed from -15 to 6 dB, leading to an improvement in
the achievable throughput given by Eq. (18). We can also
observe that the throughput of the ODPSR scheme is much
higher than the throughput of SPSR. This is because the outage
performance of ODPSR is much lower than the OP of SPSR,
shown in Fig. 3. Specifically, for M = 3 and Ψ = -15 dB,
the throughput of the ODPSR scheme achieved 0.5837 bps/Hz
while SPSR obtained less than 54 % throughput, i.e., 0.2667
bps/Hz. Nevertheless, when the value of Ψ is large enough
(i.e., Ψ ≥ 15 dB), the throughput of all algorithms converges
to the saturation value. For wireless communication systems,
we expect high throughput but low outage probability. Thus, it
is necessary to select a suitable value of Ψ to achieve this target.
A large value of Ψ may not always benefit since the system
cannot be supported because of the limited energy budget,
especially in IoT networks. Moreover, it also increases the risk
of eavesdropping on important information.

Figs. 5 and 6 chart the OP and throughput versus Ψ for
different distances of the relay node to source S, where M =
2, Cth = 1.25 (bps/Hz), η = 0.8, and Ωa = 5. We observe
from Fig. 5 results similar to those in Fig. 3. Specifically, the
outage probability of ODPSR still outperforms SPSR methods.
SPSR where ρ = 0.3 has better results than SPSR where
ρ = 0.7. We can also observe that the closer the distance
between the relay nodes and the source node, the better the
achieved outage performance. This is because we apply two-
hop decode-and-forward relaying, and the overall SNR of the
system can be calculated as the minimum of the SNR at relay
Rm and the SNR at destination D, as in (16). When the relay
nodes are allocated near source S, we thus have more chance
of successfully decoding the signal on the first hop, which
enhances the OP. If the relay node fails to decrypt the received
signals, an outage will occur. Inherited from the superior OP of
ODPSR, the throughput of this method is still better than SPSR-
based schemes, as shown in Fig. 7. Moreover, the throughput of
ODPSR and SPSR where ρ = 0.3 can converge to a saturation
value when Ψ is large, e.g., Ψ ≥ 15 dB. However, the
throughput of SPSR where ρ = 0.7 is still much worse than
others, even with a high source transmit power, i.e., Ψ = 15 dB.
This means SPSR only attains the same throughput performance
as ODPSR when the source transmit power is large and a
suitable ρ value is applied. Otherwise, the throughput of SPSR
is far inferior to that of ODPSR.

In Figs. 7 and 8, we investigate the effect of the power
splitting ratio ρ on OP and throughput. The parameters are
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Fig. 3: OP versus Ψ with Cth = 1.25 (bps/Hz), η = 0.8, and Ωa =
5, where dSRm = 0.3 and dSRm = [0.3, 0.65, 0.8] corresponding to
M = 1 and M = 3, respectively.
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to M = 1 and M = 3, respectively.
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Fig. 5: OP versus Ψ with M = 2, Cth = 1.25 (bps/Hz), η = 0.8, and
Ωa = 5.
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Fig. 6: Throughput versus Ψ with Cth = 1.25(bps/Hz), η = 0.8 and
Ωa = 5.

set at M = 2, Cth = 1.25 bps/Hz, η = 0.8, Ψ = 5 dB, and
dSR = [0.25, 0.65]. Notably, the power splitting ratio is a
crucial factor because it not only affects the harvested energy
at the relay but also the data transmission from relay Rm to
destination D. Fig. 7 shows that for both SPSR-Ωa = 0.5 and
SPSR-Ωa = 2, the outage decreased as ρ increased from 0
to the optimal ρ, but then decreased for a higher value of ρ.
For instance, the optimal ρ equals 0.1 and 0.25, corresponding
to SPSR-Ωa = 0.5 and SPSR-Ωa = 2, respectively. This is
because a low amount of harvested energy is obtained with
a small ρ, which results in a larger OP. However, when ρ is
larger than the optimal value, more time is used for energy

harvesting, while less time accounts for data transmission from
Rm → D, which also degrades the outage performance. This
only exists for an optimal value of ρ maximizing the OP, which
is obtained in ODPSR. This also explains why the outage
performance of ODPSR for Ωa = 0.5 and ODPSR for Ωa = 2
is fixed with various ρ values. Fig. 8 plots the throughput of
SPSR and ODPSR versus ρ. We can see that the throughput
of ODPSR maintains a constant value with a varying value
of ρ. In addition, ODPSR-based methods always outperform
SPSR-based ones. This is expected since the inherent nature
of ODPSR is to find the optimal power splitting ratio value
which maximizes system capacity, as described in Section B.
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(bps/Hz), where dSRm = [0.35, 0.85] and dSRm = [0.25, 0.55, 0.4,
0.75] corresponding to M = 2 and M = 4, respectively.

As the results show, the throughput of the SPSR-based scheme
increased at the optimal ρ but then significantly decreased as
ρ increased. This demonstrates the stability of ODPSR-based
methods compared to SPSR-based methods.

Figs. 9 and 10 plot the effects of the residual self-interference
parameter Ωa at the relay in full-duplex operation on outage
probability and throughput, where η = 0.8, Ψ = 3 dB and
Cth = 1.5 bps/Hz. Fig. 9 indicates that ODPSR for M =
4 achieves the best results. Specifically, at Ωa = 3, the OP
values of ODPSR for M = 4, ODPSR for M = 2, SPSR for
M = 4, SPSR for M = 2, were 0.0178, 0.0475, 0.1491, and
0.1823, respectively. Moreover, OP improved significantly as

Ωa increased. For example, at Ωa = 0.5 and Ωa = 2, the OP
of ODPSR for M = 4 was 0.0451 and 0.0208, respectively.
An explanation for this is that the higher the Ωa, the lower
the residual self-interference gain fm at the relay, thereby
reducing the effect of interference noise at the relay Rm and
improving the system capacity. Fig. 10 shows the effect of Ωa
on throughput in each proposed method. We can observe that
as Ωa increased, the throughput of the SPSR-based methods
dramatically improved. For example, at Ωa = 2 and Ωa = 4,
the throughput of SPSR for M = 4 was 1.0916 and 1.3691
bps/Hz, respectively. However, the throughput performance of
ODPSR-based methods only slightly improved as Ωa increased.
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Fig. 11: PR versus the transmit power-to-noise ratio Ψ.
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Fig. 12: PR versus the power splitting ratio ρ.

This demonstrates that the residual self-interference has a more
significant effect on SPSR than ODPSR. In other words, the
ODPSR-based methods have better stability than SPSR-based
methods. Figs. 4 to 10 clearly show that the analytical results
closely match the simulation results for the proposed scheme,
validating the analysis in Section IV.

Fig. 11 unveils the relationship between the transmit-power-
to-noise Ψ and the average transmit power of the relay PR. It
is noted that since we assume that the transmission duration
is normalized to 1, i.e., T = 1, the average transmit power,
thus, can be considered as the average harvested energy too. It
is no doubt that PR increases linearly versus Ψ and confirms
the accuracy of (10). Moreover, it is expected that the smaller
the distance from S to R, the higher the harvested energy is
achieved, improving the transmit power of the relay. Fig. 12
stretches the behavior of PR regarding the PS ratio ρ. It is
apparent that PR is a monotonic increasing function of the
ρ. Specifically, the larger the η is, the higher the PR can be
obtained.

V. CONCLUSION AND DISCUSSION

In the paper, we investigated the outage and throughput
performance of a DF-based FD SWIPT relay network con-
sisting of a source, multiple relays, and a destination under
i.n.i.d. Rayleigh fading channels. By using the PS method and
operating in FD mode, the relays could harvest energy from
the source’s signals. Closed-form expressions of the system
OP and achievable throughput for SPSR and ODPSR schemes
were derived. The theoretical analysis and numerical results
indicated that the outage and throughput performance were
highly dependent on the source’s transmit power, the PS ratio,
and the residual self-interference. It was observed that the
performance of SPSR was shown to be far inferior to that
of ODPSR. Nevertheless, when the source transmit power is

high enough or when the self-interference has a small effect
(i.e., Ωa > 5), the SPSR can obtain the same performance as
ODPSR. Thus, the system is able to operate using SPSR with a
simpler configuration. The outcome of this work will motivate
a more general model that considers the Rician channel, which
imposes new challenges and complexities but might enhance
network performance.
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APPENDIX A: PROOF OF THEOREM 1

First, the ÕP in (24) can be calculated as

ÕP =
M∑
a=1

Pr

(
γSRa > Za, ϕa ≤

(1− ρ)

ηργth
,ΓRaD ≥ γth

)

=
M∑
a=1

Pr

(
ϕa ≤

(1− ρ)

ηργth

)
︸ ︷︷ ︸

P1

Pr (γSRa > Za,ΓRaD ≥ γth)︸ ︷︷ ︸
P2

(41)

Based on (41), P1 can be expressed as follows:

P1 = Pr

(
ϕa ≤

(1− ρ)

ηργth

)
= 1− exp

[
−Ωa(1− ρ)

ηργth

]
. (42)
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Then, P2 in (41) can be computed by

P2 = Pr (γSRa > Za, ηρΨγSRaγRaD ≥ γth)

= Pr
(
γSRa > Za

)
− Pr (γSRa > Za, ηρΨγSRaγRaD < γth)

=

∫ +∞

0

fZa(z)
(
1− FγSRa

(z)
)
dz

−
∫ +∞

0

fλRaD(y)

[∫ z1

0

∫ z1

z

fZa(z)fλSRa
(t)dzdt

]
dy

=

∫ +∞

0

exp(−λSRaz)fZa(z)dz

−
∫ +∞

0

fλRaD
(y)
{∫ z1

0

fZa(z)fλSRa
(z, z1)dz

}
dy, (43)

where

z1 ,
γth

ηρΨy
, (44)

fλSRa
(z, z1) ,

[
exp(−λSRaz)− exp(−λSRaz1)

]
. (45)

Then, by substituting fZa(x) of Lemma 2 into (43), P2 can
be expressed as in (46), shown at the top of the next page.

Note that (46) still contains an integral. By adopting [45, Eq.
(3.471.9)], the exact closed-form expression of P2 is given as
in (48), which is shown at the top of the next page.

By substituting (41), (42), (48) into (24), the OPSPSR can
be obtained from (29), which completes the proof.

APPENDIX B: PROOF OF LEMMA 1

Since we consider DF technique, the overall SNR of our
system can be represented as in (16). The average throughput
of the system is given as in (17). Therefore, to find the optimal
value of the dynamic power splitting ratio ρ?, we need to solve
the following optimization problem:

P1 : max
ρ

(1−OP)× CDF, (49)

s.t. 0 ≤ ρ ≤ 1. (50)

The problem P1 means we need to find the value of ρ
to maximize the throughput (1 − OP) × CDF such that ρ
ranges from 0 to 1. Because the OP and CDF are expressed
as OP = Pr (ψDF < γth) and CDF = log2 (1 + ψDF), respec-
tively, P1 is therefore equivalent to the following optimization
problem:

P2 : max
ρ

ΨDF (51)

s.t. 0 ≤ ρ ≤ 1, (52)

where ΨDF = min (ΓSRm ,ΓRmD).
To clarify, Fig. 13 illustrates the ΨDF as a function of ρ.

It shows that the values of ΓSRm linearly decrease and ΓRmD

linearly increase as ρ changes from 0 to 1. This can be explained
based on the expressions of ΓSRm and ΓRmD in (13) and (14).
From Fig. 13, it is easy to see that the optimal value of ρ? is
obtained when ΓSRm = ΓRmD, which completes the proof.

APPENDIX C: PROOF OF LEMMA 3

From (31) and after some algebraic manipulations, ρ? can
be expressed as

ρ? =
−
√

4η2ΨϕmγSRmγRmD + 1− 1

2η2ΨϕmγSRmγRmD
, (53)

or

ρ∗ =

√
4η2ΨϕmγSRmγRmD + 1− 1

2η2ΨϕmγSRmγRmD
. (54)

Because ρ? =
−
√

4η2ΨϕmγSRmγRmD+1−1

2η2ΨϕmγSRmγRmD
< 0, ρ∗ =√

4η2ΨϕmγSRmγRmD+1−1

2η2ΨϕmγSRmγRmD
is selected as the optimal value of

ρ. This completes the proof of Lemma 3.

APPENDIX D: PROOF OF LEMMA 4

From (36), Θ can be re-written as

Θ =

∫ +∞

0

fγRaD
(y)

[∫ z2

0

∫ z2

z

fZa (z) fγSRa
(t) dzdt

]
dy

=

∫ +∞

0

fγRaD
(y)

[∫ z2

0

fZa (z) fλSRa
(z, z2)dz

]
dy, (55)

where

z2 =
γth(ηγthx+ 1)

ηΨy
, (56)

fλSRa
(z, z2) ,

[
exp(−λSRaz)− exp(−λSRaz2)

]
. (57)

By applying Lemma 2, Θ can be expressed as in (58), which
is shown at the top of the next page.

Then, by adopting [45, Eq. (3.324.1)], the exact closed-form
expression of Θ is obtained as in (37). This completes the proof
of Lemma 4.

APPENDIX E: PROOF OF LEMMA 5

By substituting (37) into (35), we obtain

Υ =
M−1∑
u=1

(−1)
u+1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a

λ1

λsum
a,u

λsum
a,u + λSRa

+
M−1∑
u=1

(−1)
u+1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a

∫ +∞

0

Ωa exp (−Ωax)Θ1dx.

(59)
By denoting y = ηγthx+ 1, (59) can be expressed as

Υ =
M−1∑
u=1

(−1)
u+1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a

λ1 +
M−1∑
u=1

(−1)
u+1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a

Ωa
ηγth

exp

(
Ωa
ηγth

)∫ +∞

1

exp

(
−Ωay

ηγth

)
Θ1dy.

(60)
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P2 =
M−1∑
u=1

(−1)
u+1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a

∫ +∞

0

λsum
a,u exp

(
−λsum

a,u z − λSRaz
)
dz

−
∫ +∞

0

fγRaD (y)


∫ z1

0

M−1∑
u=1

(−1)
u+1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a

λsum
a,u exp

(
−λsum

a,u z
)
×fλSRa

(z)dz

 dy

=
M−1∑
u=1

(−1)
u+1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a

λ1

−
∫ +∞

0

fγRaD
(y)



M−1∑
u=1

(−1)
u+1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a

λ1

[
1− exp

(
−(λsum

a,u + λSRa)z1

)]

−
M−1∑
u=1

(−1)
u+1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a

exp (λSRaz1)
[
1− exp

(
−λsum

a,u z1

)]


dy

=
M−1∑
u=1

(−1)
u+1

M∑
i1=...=iu=1,
i1<...<iu,
i1,...,iu 6=a

λ1

−
∫ +∞

0

fγRaD (y)

M−1∑
u=1

(−1)
u+1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a

 λ1 − exp (λSRaz1)

+
λSRa

λsum
a,u + λSRa

exp
(
−(λsum

a,u + λSRa)z1

)dy

=
M−1∑
u=1

(−1)
u+1

M∑
i1=...=iu=1,
i1<...<iu,
i1,...,iu 6=a

∫ +∞

0

λRaD × exp (−λRaDy − λSRaz1) dy

−
M−1∑
u=1

(−1)
u+1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a

λ1

∫ +∞

0

λRaD × exp
(
−λRaDy − (λsum

a,u + λSRa)z1

)
dy, (46)

where λ1 ,
λsum
a,u

λsum
a,u + λSRa

. (47)

P2 = −
M−1∑
u=1

(−1)
u+1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a


2λSRa

λsum
a,u + λSRa

×

√(
λsum
a,u + λSRa

)
λRaDγth

ηρΨ
×K1

2

√(
λsum
a,u + λSRa

)
λRaDγth

ηρΨ


−2

√
λSRaλRaDγth

ηρΨ
×K1

(
2

√
λSRaλRaDγth

ηρΨ

)
 .

(48)
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Fig. 13: Illustration of the ΓSRm and ΓRmD as a function of ρ.

To simplify analysis, we adopt the Taylor Series, as follows:

exp

(
−Ωay

ηγth

)
=
∞∑
t=0

(
− Ωay
ηγth

)t
t!

=
∞∑
t=0

(−1)
t

(
Ωa
ηγth

)t
t!

yt.

(61)
By substituting (61) into (60), we have

Υ =

M−1∑
u=1

(−1)
u+1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a

λsum
a,u

λsum
a,u + λSRa

+

M−1∑
u=1

(−1)
u+1

M∑
i1=···=iu=1,
i1<···<iu,
i1,...,iu 6=a


Ωa
ηγth

exp

(
Ωa
ηγth

)

×
∫ +∞

1

∞∑
t=0

(−1)
t

(
Ωa
ηγth

)t
t!



×

 2λSRaϑ

λsum
a,u + λSRa

× yt+0.5 ×K1 (2ϑ
√
y)

−2ζyt+0.5 ×K1 (2ζ
√
y)

 dy, (62)

where

ϑ =

√(
λsum
a,u + λSRa

)
λRaDγth

ηΨ
, (63)

ζ =

√
λSRaλRaDγth

ηΨ
. (64)

By adopting [45, Eq. (6.592.4)], the exact closed-form ex-
pression of Υ can be obtained as in Lemma 5. This completes
the proof.
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