
1

Secure and Efficiently Searchable IoT
Communication Data Management Model:

Using Blockchain as a new tool
Ziqing Guo, Student Member, IEEE, Hua Zhang, Member, IEEE, Zhengping Jin, and Qiaoyan Wen

Abstract—With the rapid development of the Internet of things (IoT), more and more IoT devices are connected and communicate
frequently. In this background, the traditional centralized security architecture of IoT will be limited in terms of data storage space, data
reliability, scalability, operating costs and liability judgment. In this paper, we propose an new key information storage framework based
on a small distributed database generated by blockchain technology and cloud storage. Specifically, all encrypted key communication
data will be upload to public could server for enough storage, but the abstracts of these data (called ”communication logs”) will be
recorded in ”IoT ledger” (i.e., an distributed database) that maintained by all IoT devices according to the blockchain generation
approach, which could solve the problem of data reliability, scalability and liability judgment. Besides, in order to efficiently search
communication logs and not reveal any sensitive information of communication data, we design the secure search scheme for our ”IoT
ledger”, which exploits the Asymmetric Scalar-product Preserving Encryption (ASPE) approach to guarantee the data security, and
exploits the 2-layers index which is tailor-made for blockchain database to improve the search efficiency. Security analysis and
experiments on synthetic dataset show that our schemes are secure and efficient.

Index Terms—IoT Communication Data Management, Blockchain, Secure Search, Two Layers Index

F

1 INTRODUCTION

1.1 Motivation

THE Internet of things (IoT) is developing toward high
intelligence and detailed division of labor [1], [4]. It is

common that each IoT device in the same network only need
to deal with their ”own job”, while the operation of whole
task will be achieved by data sharing or instruction switch-
ing among these IoT devices. However, this development
tendency brings great convenience as well as new problem
for IoT usage. Specifically, the behaviour of one device may
be the result of multiple related devices’ actions. In indus-
trial control systems that with high security requirements,
once there are some accidents happened, finding the wrong
links according to IoT devices’ key communication data will
naturelly becomes the user’s first task.

An example can be shown as Fig.1. A heat detector and
a fan heater work together to control the temperature. One
day user find that the fan herater has worked when the
temperature is higher than predefined threshold. Obviously,
there may be two reasons for this accident: the heat detec-
tor sent the wrong temperature data to the fan heater, or
the fan heater received the correct information but there
were something wrong with itself. To solve this problem,
the straightford way is examining the communication data
between they two. Therefore, it is necessary to design a
trusted, secure and high-performance IoT communication
data management system.

In fact, it is not difficult for the traditonal data man-
agement architecture to provide communication data man-
agement system. There are 4 straightforward frameworks

All authors of this paper are with State key Laboratory of Networking
and Switching Technology, Beijing University of Posts and Telecommuni-
cations, Beijing 100876, China. Corresponding author: Hua Zhang, e-mail:
zhanghua 288@bupt.edu.cn.

Fig. 1. An accident that may occured in IoT

that could maintain the IoT communication data and enable
user to search data he/she interested under the help of IoT
devices, but all these 4 frameworks have some limitions
regarding to efficiency and security. We specifically analyze
them as follows.

1.1.1 IoT without Center

In this framework, there is no center server responsible
to monitor and store the communication data of entire
network, so that each IoT device has to maintain its own
communication data on local site. Therefore the following
three limits are inevitable. Assuming the IoT device R
interacts with other α devices {S1, S2, . . . , Sα}.

ar
X

iv
:1

81
2.

08
60

3v
1

 [
cs

.C
R

]
 2

0
D

ec
 2

01
8

2

• Constrained Storage: It is difficult for some
lightweight storage IoT devices to store all related
communication data which increases over time.

• Poor Data Reliability: Since all communication data
for device R are stored by itself, there is a potential
risk that the data will be tampered or lost if R mal-
functions or suffers external attacks, moreover, once
it happens, recovering the original data is difficult.

• Poor Scalability: Both the bandwidth and storage
space of one device R would be challenged when
the number of IoT devices that R linked increases.

1.1.2 IoT with One Local Center
In this framework, there is only one center server respon-
sible to monitor and store the communication data of en-
tire network, so that all IoT devices do not need to store
anything, which would solve the problem of constrained
storage for lightweight IoT devices, but it still faces the
following two limits.

• Poor Data Reliability: Due to the potential risk that
the center server may suffer the single point of fail-
ure, once the data it stored are tampered or lost, it is
difficult to recover the original data.

• Poor Scalability: Like the model ”IoT without Cen-
ter”, it is difficult to extend the scale of IoT under
”one center” framework.

1.1.3 IoT with Multiple Local Centers
In this framework, there are multiple center servers re-
sponsible to monitor and store the communication data of
entire network, and each of them maintains one duplicate
of all communication data. Compared with ”IoT with One
Center”, this model solves the poor data reliability problem
produced by center server’s single point of failure, and also
could provide enough storage. However, it still faces the
following two limits.

• Poor Scalability: Since each center server maintains
one duplicate, the storage burdren of one center
server does not mitigate. It is also difficult to extend
the scale of IoT under ”multiple centers” framework.

• High Operating Costs: The increased number of cen-
ter servers will increase the operating costs of IoT,
especially for some small application scenarios (such
as smart home), the increased operating costs can not
be accepted.

1.1.4 IoT with Cloud
The combination between IoT and cloud computing has
become a popular research topic in recent years. In IoT
application, due to the unconstrained computation and
communication resources for cloud computing, the cloud
server could play the role of center server, which is re-
sponsible to monitor, process and store the IoT data. As
for IoT communication data management, a straightforward
solution is all IoT devices upload their encrypted (for secu-
rity purpose) communication data to cloud server and user
could query on these data in cloud platform. Compared
with the model ”IoT with Multiple Centers”, exploiting the
cloud computing to IoT could solve the problems of poor
scalability and high cost, but it still exist two limits.

• Poor Data Reliability: Like the model ”IoT with One
Center”, once the data cloud stored are tampered or
lost, it is difficult to recover the original data.

• Difficult Liability Judgment: Unlike the model ”IoT
with One Center”, the cloud server can not be full
controlled by user, so that if the cloud server lose
the user’s data (due to the internal faults or external
attacks), it may deny that it received the data, and
user can not determine whether it lies.

In summary, all above 4 IoT communication models can
not simultaneously achieve the properties of (1) enough
storage, (2) good data reliability and (3) reliable liability
judgment, (4) scalability and (5) cheap operating costs. So
it is necessary to design a new ICDM model that satisfy
all these requirements. Besides, to facilitate user efficiently
search on IoT communication data and not reveal anything
privacy, a secure and efficient search scheme for the ICDM
model is also of critical importance.

1.2 Our Contributions

In this paper, we propose a novel ICDM model based on
blockchain technology which could achieve better perfor-
mance in terms of the 5 aspects we mentioned in above
paragraph. Specifically, all IoT devices are regarded as
nodes in blockchain network, they outsource the encrypted
commmunication data to public cloud and then broadcast
their encrypted communication logs (like the digest com-
munication data) as well as corresponding index to entire
network. After that, all nodes will cooperate in generating
new block based on broadcasted information, and the com-
plete blockchain is maintained by some IoT devices with
relatively enough storage space. From the above, we can
see that the cloud storage provide enough storage space
for communication data; the small size communication logs
contained in blockchain and the tamper-resistant property
of blockchain guarantees data reliability and reliable liability
judgment; the decentralized management framework make
the scheme would not constrained by the growth of network
scale. Besides, for supporting secure and efficiently search
on IoT communication logs, we construct encrypted index
for searching on IoT communication logs which stored in
blockchain: the ASPE algorithm [6] is exploited for carrying
out range query on encrypted communication logs and
not reveal any privacy; the two layers index (time series
index and kd-tree index) is exploited for improving search
efficiency. In conclusion, our major contributions can be
summarized as follows.

• For the first time, we propose a practical IoT com-
munication data management (ICDM) model based
on blockchain. Compared with the existing 4 ICDM
models we mentioned above, our model could
achieve better performance in storage capacity, data
reliability, scalability and operating costs simultane-
ously.

• We design a novel 2 layers index for efficiently
searching on IoT communication logs. Furthermore,
the combination of Merkle tree and kd tree we exploit
in guarantees the tamper-resistant of the 2nd layer
index.

3

• Thorough security analysis and experiments on syn-
thetic data show our proposed scheme is secure and
supports efficient search on IoT communication log.

The reminder of this paper is organized as follows.
Section 2 introduces the notations and some related prelimi-
naries, proposes the system and threat models, summarizes
the design goals of our blockchain-based ICDM model.
Followed by Section 3.1 and Section 3.2, we describes the
principal of our blockchain-based ICDM model and the
scheme for searching IoT communication log, respectively.
The security and performance analysis are presented in
Section 4, and the related works are discussed in Section
??. Finally, Section 5 covers the conclusion.

2 OVERVIEW

2.1 Notations
• D - The IoT device collection, which is composed by

n IoT devices D = {D1, D2, . . . , Dn}.
• M - The miners collection, which is the subset of D.

The miners are unoccupied IoT devices who would
like to generate the new block for broadcasted infor-
mation.

• Fi - The communication data files, denoted
as a collection of mi communication data files
that maintained by the IoT device Di. Fi =
{Fi,1, Fi,2, . . . , Fi,mi

}.
• Li - The communication log collection of the IoT de-

vice Di, which is composed by mi formalized com-
munication data files (called communication logs),
denoted as Li = {Li,1, Li,2, . . . , Li,mi

}.
• τi - The plaintext form of kd-tree for the communica-

tion log collection Li.
• τ∗i - The secure searchable IMT index that is en-

crypted from τ .
• B - The blockchain, which is composed by a series of

ordered blocks: B1, B2, . . . , Bcur , where Bj denotes
the j-th block, and Bcur denotes the last block in B
currently.

• Q - The plaintext form of user’s range query (i.e.,
a l-dimensional hyperrectangle), denoted as a col-
lection composed by 2l pairs of anchor points Q =
{Ain1 , Aout1 ;Ain2 , A

out
2 ; . . . ;Ain2l , A

out
2l }.

• TR - The ciphertext form of query Q, which plays as
a trapdoor for search request.

2.2 Preliminaries
2.2.1 Blockchain
The blockchain has become a popular technology due to
its good properties like decentration, tamper-resistant and
distributed accounting.

Decentralized cryptocurrency (e.g., Bit- coin [1]) has
gained popularity and is also quoted as a glimpse in the
future . The cryptocurrency system builds on top of a
novel technology named blockchain , which is essentially
a distributed database of transactions. Digital information
has been executed and shared among participating parties
and allows public ledger of all transactions. A blockchain is
composed of verifiable records for each single transaction
ever made which is verified by consensus of a majority

of the participants in the system. Blockchain technology is
finding applications in wide range of non-financial areas
besides current financial areas, such as decen- tralized proof
of the existence of documents , decentralized IoT and de-
centralized storage . Blockchain-based storage has become
a newly of growth engine in data sharing since it does
not need a central service provider. We find that the data
retrieval approaches are rarely studied in the blockchain-
based system. To date, a personal data management system
was proposed with the assistance of the blockchain technol-
ogy to ensure users own and control their data against the
honest-but-curious services. A decentralized smart contract
system named Hawk was proposed to retain transaction
privacy from the publics view, while no detailed retrieval
algorithm was given. A healthcare chain was constructed
to facilitate data interoperability in health information net-
works. However, these systems focus on the concepts with
the corresponding frameworks instead of the concrete al-
gorithms to guarantee data utilization and data secrecy.
Also, the linkable transaction privacy is still a margin in
the blockchain-based retrieval.

2.2.2 Merkle Tree
A merkle tree(hash tree) is a tree in which every leaf node
recods the hash of a data block and every non-leaf node
stores the hash of its child nodes’ values. Most merkle trees
are binary, in which every node has two child nodes [3].
As shown in Fig.4, for leaf nodes with labels h1, h2, their
father node’s label is the hashed of his children such as
h12 = h(h1||h2), where || means concatenation. Merkle
tree is used to effectively verify data stored or transferred
between computers, specially, to verify whether there exsits
a data record in block in BC, the computation cost of demon-
strating a leaf node is a part of a given binary hash tree is
no more than log(N)(N is the total number of leaf nodes);
this contrasts with hash lists, where the cost is proportional
to the number of leaf nodes itself [2].

2.2.3 Secure Range Query (SRQ)
The secure range query (SRQ) has been a hot research
topic recent years [4]. Its purpose is to search on an en-
cryptd database with an encrypted range query (such as
an encrypted hyperrectangle or hypersphere), and finally
outputs the encryptd points who are in this range. In our
search scheme, after locking the target blocks that needs to
be further searched, user would like to carry out SRQ on
our 2nd index (i.e., encrypted Indexed-Merkle tree) with
rectangular query for searching interested communication
logs. The SRQ algorithm we exploit in this paper is based
on the ”Halfspace Range Query” approach proposed Wang
et.al. [5], Here we briefly introduce how it works.

Firstly we introduce how to determine the location re-
lationship between a point and a hyperplane. As given in
[5], there is a hyperplane H , which could divide the space
into 2 halfspaces, denoted as H1 and H2. Now, we can
give 2 anchor points A1andA2 for H , where the segment
A1A2 is normal to H and equidistance from H . We can
find that, for any point P in this l-dimensional space, if
dist(A1, P) > dist(A2, P), P is in the halfspace H1; if
dist(A1, P) < dist(A2, P), P is in the halfspace H2; and
if dist(A1, P) = dist(A2, P), P is on the H , where dist()

4

denotes the Euclidean distance of two points. Therefore, we
can determine P is in H1, H2 or on the H by computing the
distance between Aj , j ∈ {1, 2} and P .

Secondly we show how to determine whether a point
is in an hyperrectangle under l-dimensional space. Since
there are 2l hyperplanes for a l-dimensional hyperrectangle
Q, we need to totally prepare 4l anchor points. For each
hyperplane Hi, the halfspace contains R is denoted as Hin

i ,
and the other halfspace is denoted as Hout

i . For point P ,
if and only if P is in all Hin

i , P is in Q Therefore, we can
determine whether P is in Q by computing the the distance
between P and each pair of anchor points Aini and Aouti ,
shown in Algorithm 1.

Algorithm 1 isPointInRect(P , R)
Input: the l-dimensional point P and the hyperrectangle

Q which is indicated by a 4l anchor points collection,
Q = {Ain1 , Aout1 ;Ain2 , A

out
2 ; . . . ;Ain2l , A

out
2l }

Output: a boolean value that denotes whether P is in Q
1: for each Aini and Aouti in Q do
2: if dist(P,Aini) > dist(P,Aouti) then return false
3: end if
4: end for
5: return true

Thirdly we show how to determine whether a hyperrect-
angle Q interact with another hyperrectangle R. According
to the theorem proposed by Wang et.al., if the 2 extremal
vertices (denoted as V1, V2) of R are both not in any Hin

i of
Q, Q would not interact with R, where the extremal vertices
are vertices of R who has the maximum and minimum
coordinates (like lower-left vertex and upper-right vertex in
2-dimensional rectangle). The detail is shown in Algorithm
2.

Algorithm 2 areRectsInter(Q, R)
Input: the hyperrectangle Q which is composed by a 4l an-

chor points Q = {Ain1 , Aout1 ;Ain2 , A
out
2 ; . . . ;Ain2l , A

out
2l },

and the hyperrectangle R which is composed by 2
extremal vertices R = {V⊥, V>}.

Output: a boolean value that denotes whether Q is interact
with R

1: for each Aini and Aouti in Q do
2: if dist(V⊥, A

in
i) > dist(V⊥, A

out
i) and

dist(V>, A
in
i) > dist(V>, A

out
i) then

3: return false
4: end if
5: end for
6: return true

In above two algorithms, the key computational steps
are Euclidean distance of two l-dimensional points, and
such computation can be efficiently realized by the Asym-
metric Scalar-product Preserving Encryption (ASPE) [6] ap-
proach in encrypted environment. Hence, the Algorithm
1,2 combined with ASPE is our main technological method
when user searches encrypted communication logs stored
in blockchain.

2.3 System Model

As shown in Fig.2, the system model of our scheme involves
three kinds of entities: IoT devices, cloud server and user,
where some unoccupied IoT devices will play the role of
miners. We now describe these entities in detail as follows.

Fig. 2. The architecture of privacy-preserving LRS service

IoT Devices is a collection composed by all IoT de-
vices. During the the process of IoT system running, an
IoT device would communicate with other related devices
for switching orders or sharing data. Originally, each IoT
device should maintain its own communication in case
user inquires it. But with the limit of storage capacity, not
all IoT devices have enough space to store their whole
communication data that grow over time. In our scheme,
once the cumulative size of maintained communicate data
exceeds the storage upper bound of one IoT device (denoted
as Di), Di would first upload the integrated ciphertext form
of communication data into cloud server, and then broadcast
the formalized communication data (denoted as communi-
cation logs Li, including the hash values of communication
data, the corresponding signatures and the index used to
search) to entire network. After that, the miners (shown in
next paragraph) construct a blockchain for recording these
communication logs, which will support user’s search task.
Finally, Di could empty its local storage. Note that, in gen-
eral, different IoT devices have different storage capacities,
so the number of broadcasted communication logs from
different IoT devices are different, too.

Miners is a subset of whole IoT devices. In fact, the
miners are unoccupied IoT devices that are not busy dealing
their own business when an IoT device Di broadcasts its
formalized communication log collection Li. In our scheme,
once a miner receives Li, it will generate a new block B
that contains Li according to the predefined difficulty, and
then publish this new block. If there are more than half
of IoT devices in the entire network approve the validity
of block B, B can join up to the main blockchain. Note
that the Miners is a dynamic collection, its members are
only decided by who are unoccupied when there are IoT

5

devices broadcast their formalized communication logs. For
convenience, we denote all IoT devices except miners are
”Busy IoT Devices”.

Cloud Server is responsible for storing the integrated
communication logs. In our scheme, IoT devices will upload
all of its encrypted communication logs into cloud platform
before broadcasting the logs’ digests and corresponding
signatures to entire network. So that user could retrieve the
integrated encrypted communication logs from cloud server
according to the corresponding storage indexes contained in
blockchain. Finally, user decrypts the encrypted communi-
cation logs and obtains integrated communication logs.

User searches on blockchain by some data attributes,
in terms of communication data, its timestamp, keywords,
corresponding sender and receiver are all can be regarded as
effective search items. The properties of distributed storage
and tamper-resistant guarantee that user could obtain the
true and complete formalized communication logs. More-
over, if user would like to retrieve integrated communi-
cation data, he/she could retrieve it from cloud server
by corresponding storage indexes contained in blockchain.
Note that all search processes are executed on ciphertext.

2.4 Threat Model

The IoT devices and cloud server in our scheme are both
”honest but curious and weak”. Specifically,

As for IoT Devices, no matter they play the role of miner
or busy IoT devices, they would honestly and correctly
executes instructions in the designated protocol, but they
are curious to infer and analyze the received data, including
the content of other IoT devices’ formalized communication
logs and the users’ queries. Furthermore, due to some inter-
nal and external factors (like equipment failures or external
attack), a block stored in some IoT devices also possibly be
corrupted (damaged or even lost), that is why we call IoT
devices are ”weak”.

As for Cloud Server, it would honestly execute the
protocol, but it is curious about the plaintext content of the
uploaded communication data. Besides, if the cloud data is
damaged or even lost, maybe the cloud server would shift
the duties onto others. For example, it says that it has never
received this piece of data.

2.5 Design Goals

Our proposed blockchain-based IoT communication data
management (ICDM) model should achieve the following
design goals simultaneously.

• Tamper-resistant Communication Log: To protect
the authenticity and completeness of IoT commu-
nication logs, our proposed ICDM model should
guarantee that any malicious participants can not
tamper any maintained communication logs as soon
as there are more than half of IoT devices honestly
execute the protocol.

• Data Retrievability: For communication logs, to pre-
vent data loss risk due to the IoT device’s single
point of failure, the ICDM model should enable the
user to retrieve any communication logs, unless all
IoT devices who store the blockchain data miss the

data; for communication data, if the cloud server
thoroughly loss the data, the ICDM model enable
user to obtain corresponding communication sum-
mary information by communication logs.

• Enough Storage: With the rapid increase of con-
nected IoT devices amount, our ICDM model should
guarantee that even the communication data (logs) of
lightweight storage IoT devices could be maintained
completely.

• Efficient and Secure Range Query: The proposed
ICDM model aims to achieve efficient secure range
query for communication logs on IoT devices. In
the search process, the index privacy and query
privacy should not be revealed to IoT devices, and
our scheme also should guarantee that the commu-
nication logs’ indexes are tamper-resistant.

For the last point we mentioned above, the index privacy
and query privacy in our scheme are extremely similar to
previous secure range query schemes [5], so we do not
describe them here in detail. In Section 4, we will analyze
how our ICDM model achieves these privacy requirements.

3 THE PROPOSED SCHEMES

In this section, we first show the framework of the novel
blockchain-based ICDM model, where the specific working
steps of different roles will be explained in detail. And then
we design the secure and efficient data search scheme on
encrypted IoT communication logs stored in blockchain,
including the construction of two layers index and corre-
sponding range query algorithm.

3.1 Blockchain-based ICDM model
In Section 2.3, we have briefly introduced the roles of 4
different entities, now we describe a step-by-step scheme
to show their specific work.

3.1.1 Upload communication data
As we mentioned in Section 2.3, in certain period, one IoT
device Di generally communication with not only one IoT
device, and each of these IoT devices will switch with Di

for not only one piece of message. Therefore, the commu-
nication data file collection Fi can be formally defined as
follows.

Fi = {(Fαi1, Fαi2), (F
β
i3, F

β
i4, F

β
i5), . . . , (F

γ
i(m−1), F

γ
im)}

Where F jit, t ∈ {1, . . . ,m} denotes one communication
data file between Di and Dj .

We assume there are totally n devices communicate
with Di, and Di totally stores m data files in this period.
Note that m is depend on the size of each F jit and the
storage capacity of Di, i.e., size m is different for different
IoT devices, even different for the same device in different
periods.

When the cumulative size of communication data main-
tained by Di has exceeded its storage upper bound, Di

will upload the ciphertext form of Fi (denoted as Ci =
{Ci1, Ci2, . . . , Cim}) to public cloud server. For confirming
this upload process, Di and the cloud server need to gen-
erate corresponding signature as below. After verifying the

6

validity of signateurs, they would mutual hold each other’s
signature.

• Sigc(h1||h2|| . . . ||hm||ID(Di)||TS): Signed by cloud
server, where ht is the hash value of tth encrypted
data files in Ci, ID(Di) is the identification of Di,
TS denotes the timestamp of upload process, and
the symbol || means the cascade. This signature is
briefly denoted as Sigc and hold by Di.

• Sigd(h1||h2|| . . . ||hm||ID(C)||TS): Signed by Di,
where ID(C) denotes the identification of cloud
server. This signature is briefly denoted as Sigd and
hold by cloud server.

3.1.2 Generate communication logs
After uploading encrypted data to cloud server, the IoT
device Di need to generate communication log collection Li
for Fi and broadcast it to entire network, so that the miners
could record it in new block. In fact, Li is similar to the
transactions in bitcoin network, it should contain the digest
of communication data and corresponding authentication
information. Specifically, for any communication file F jit, no
matter it is the information that Di send to Dj or Dj send
to Di, to confirm the authenticity of this communication
behavior, the signatures of both communication parties are
necessary. In summary, the communication log collection Li
can be formly described as follows.

Li ={(E(h(Fi1)), sigα), (E(h(Fi2)), sigα), (E(h(Fi3)), sigβ),

. . . , (E(h(Fim)), sigγ)} = {Li1, Li2, Li3, . . . , Lim}

Communication log is composed by the following 4
items:

• E(h(Fit)): The encrypted hash value of communica-
tion data file F jit.

• sigj : Signed by Dj , it means sigj((E(h(Fit)||TS),
where Fit is sent from Dj to Di.

• Sigc(h1||h2|| . . . ||hm||ID(Di)||TS): The signature of
cloud server, it is same to the above in section. This
signature is briefly denoted as Sigc hereafter.

• Sigd: Signed by the communication data owner Di,
it means Sigd(h(Li||Sigc))

Finally, the whole communication logs can be formly
written as Li||Sigc||Sigd(h(Li||Sigc)). And it is broadcasted
by Di to entire network.

3.1.3 Generate new block
Bitcoin network uses a proof-of-work(PoW) system to gen-
erate new block. This work is often called bitcoin mining.
As same as bitcoin, in our scheme, new block is gen-
erated by proofing of work. The detials of a new block
is shown in Fig.3. A new block is composed of block
header and block body. In the block header, H(Bi−1) is
hash value of father block, sigD(Indexed merkle root)
is device’s signature of root value in constructed indexed
merkle tree(IMT), difficulty is predefined difficulity tar-
get of PoW algorithm before constructing this block, TSi
represents time stamp, Nonce is a counter used in PoW
algorithm. In the block body, beside the communication
logs Li1, Li2, Li3, . . . , Lim introducted in3.1.2, there is a

completely index tree Indexed merkletree, whereas, it is
the hash value of root in merkle tree in block used in
bitcoin network. It is the key difference between block in
our scheme and in bitcoin network, and is due to the
requirement of subsequent index. Note that the detials of
index are demonstrated in section3.2.

Fig. 3. The detials of a new block

There are some other differences in mining block be-
tween our proposed IoT network and traditional bitcoin
network. In bitcoin network, selecting new legal block by
adjusting difficulty of mining. To achieve better perfor-
mance of practical operation, the difficulty predefined in
our scheme is lower. One miner can get paid(bitcoin) after
generating a legal block in bitcoin network. Compared with
incentive mechanism(paying bitcoin to miner) used in bit-
coin model based BC, the propsed ICDM model incentes un-
occupied IoT devices through other methods. For example,
user can pay some money to the factory which manufactures
or allocates the miner devices, or give score to devices or
related factory. In addition, the incentive mechanism is out
of scope of this paper, study of this field will be discussed
in our future work.

Then the newly generated block is broadcasted to entire
network. If it is approved by 51% IoT devices, it can join up
to the main chain.

3.1.4 Analyses
This section will give some analysis of constructing block in
terms of storage, data reliability, reliable liability judgment,
scalability and cheap operating costs as followings.

• enough storage: In traditional IoT based on cloud
server, cloud server plays a role of maintaining the
encrypted commmunication data, device only stores
limited data. And in this scenario, cloud may deny it
had received encrypted commmunication data when
users wants to investigate in and assess the blame
for the accident. To solve this, it is necessary for one
device to record some information about its inter-
ation with other devices. In our proposed scheme,
devices only needs to store main hash arrays of
BC. And storage space is individually personalised
depending on device’s storage capacity and owner’s
preferences. Specifically, if one device’s storage space

7

is large enough, it can maintain the whole main
chain in IoT network based BC. Otherwise, if one
device’s storage space is limited, it can only store
short chain composed of the latest block. Every block
contains a hash of the previous block. Given that
propertycorrectness of all communication data are
verifiable in the block chain, no matter how long the
chain stored by device is.

• scalability: With the extension of IoT network, data-
storage burden dose not increase, because device
can store chain within custom length. The designed
decentral secure structure based on BC basically does
not limite the scalability of IoT network. Because peer
to peer network uses resources of all participating
nodes and eliminates many-to-one traffic flows, of
which the benefits is decreasing delay and overcom-
ing the problem of a single point of failure.

• Data recover: Beacause of formalization of communi-
cation data files, user can deduct approximate usable
information stored in communication logs, even if
the cloud data is damaged or lost.

• system operating costs: In this paper, neither do
we introdue additional center devices nor adopt
double cloud server. Data transmission, such as
broadcasting, and generating new block may cause
communcation consumption and computational con-
sumption, which is less compared with consumption
of introducing a third party. As a whole, system op-
erating costs in proposed scheme is more acceptable.

3.1.5 Digitization of file content
Cosider the content of every device’s communication
data file is including many ordered attributes, i.e.,
F jit = {attr1, attr2, . . . , attrl}. For example, in former
mentioned, the attributes of the heat detector’s
communication data file is temperate, wind keeps,
wind direction and so on, namely Fheat detector =
{temperate, wind power, wind direction . . . }. For
every atrribute in communication data file, it
relates attribute value. For example, Fheat detector =
{temperate = 26degrees centigrade, wind power =
strong, wind direction = south . . . }. All these contents can
be be expressed by numbers, in this way, every file’s content
is mapped to a point, i.e., F jit = {attr1, attr2, . . . , attrl}
can be represented as P jit = (x1, x2, . . . , xl). For example,
Fheat detector can be represented as (26, 7, 3). We omit
process of data normalization here.

Fi = {(Fαi1, Fαi2), (F
β
i3, F

β
i4, F

β
i5), . . . , (F

γ
i(m−1), F

γ
im)}

→ Pi = {(Pi1, Pi2, Pi3, Pi4, Pi5, . . . , Pi(m−1), Pim)}

Finally, all the files belongs to one device can be digital as
points in l-dimensional space area. Thereafter, every device
constructes kd-tree for search.

3.1.6 Construct kd-tree
A kd-tree can improve the search efficiency of range queries.
The basic idea of building a kd-tree is to separate points
by a hyperplane into two part at the same level and the
different of the numbers of points in two part is no more

than one, distribute them to a smaller bounding box in a
higher level until there is only one point in one leaf node.
In the proposed scheme, root node in kd-tree is a hyper-
rectangle R ⊂ Rl contians all the file points, is specified by
its two extremal vertices V⊥ = {min{x1}, . . . ,min{xl}},
V> = {max{x1}, . . . ,max{xl}}.

Algorithm 3 Construct kd-tree
Input: the communication data files F1, . . . , Fm.
Output: a kd-tree τi

1: Converting F1, . . . , Fm into point collection u.S ob-
taining the inirial hyperrectangle R that contains all
Ph ∈ u.S

2: if S is empty then
3: return None
4: else
5: Construct a empty treeτi = φ, with a root node u
6: if u.size = 1 then
7: Deleting point Ph in u, u.Pointers = {Pc, Pl}

are point to corresponding Cit and Lit
8: else
9: patitioning u.R as 2 rectangles R1,R2 and
u.Pointers = {P1, P2} point to its child nodes u1, u2

10: for uj ∈ {u1, u2} do
11: node = nodej , back to line 5
12: end for
13: end if
14: end if
15: return τi

• u - a node of τi that has 4 attributes
{ID,R, size, Pointers, S}, where u.ID is
the unique identifier of u; u.R is the
hyperrectangleR(V⊥, V>) represented by u; u.size
is the number of file points contained in u.R. If u
is leaf node, u.Pointers consists of pointers that
point to Cit and to Lit, t ∈ {1, . . . ,m}, whose
corresponding Pit in u.R. Otherwise, u.P iointers
consists of two pointers point to u’s two child nodes,
respectively.u.S is the set of all files points in u.R.

• GenID() - The function for generating the unique
identifier of kd-tree node, {0, 1}l ← GenID().

Notethat, hyperrectangle R(V⊥, V>) stored in one nodeu
is split into two small hyperrectangle R1(V⊥, V>) and
R2(V⊥, V>) in child nodes by hyperplane x′i denotes as
X , where xi is ith dimensional median of all Ph ∈ u.S,
i is orderly selected dimension in {1, 2, . . . , l}. u.S is split
into two set by useing Algorithm1 isPointInRect(Ph, X).
Algorithm3 of constructing a kd-tree is shown below.

After constructing the plaintext index kd-tree, device
deletes u.S stored in every node, generats encryption of
u.R as u.[R] = ([V⊥], [V>]) by using ASPE, and replaces
R(V⊥, V>) with [R] = ([V⊥], [V>]). Device uses its secret
key M , an invertible (l + 1) × (l + 1) matrix. For V =
(v1, v2, . . . , vl), V ∈ {V⊥, V>}, device creats V+ = V T |1
and obtains [V] = M−1V+. Finally, node u has 4 attributes
{ID, [R], size, Pointers}, the encrypted form of tree is de-
noted as [τi].

8

3.1.7 Construct index merkle tree
After encrption of kd-tree, device construct an index merkle
tree by bottom-up add context in construted kd-tree follows
the algorithm4.

• u - a node of τ∗i that has 4 attributes
{ID, [R], size, Pointers, hash} The first three at-
tributes are as same as defintion in 3.1.6. If u is a
leaf node, u.hash = h([V⊥]||[V>]||h(Li)) , otherwise,
u.hash = h(h1||h2||[V⊥]||[V>]), where h1 and h2 are
value in this node’s two child nodes.

Algorithm 4 Construct index merkle tree
Input: The encrypted kd-kdtree [τi], all encrypted commu-

nication data files Li1, . . . , Lim.
Output: an index merkle tree τ∗i

1: u = [τi].rootnode
2: if u is leafnode then
3: return u.hash = h([V⊥]||[V>]||h(Lh)), whereu.[R] =

([V⊥], [V>]),u.Pointer = Pl stored in leaf node in [τi]
points to Lh

4: else
5: leaf node and right node of one node are u1 and u2,

respectively
6: u.hash = h(u1.hash||u2.hash||[V⊥]||[V>])
7: u = ui, i ∈ {1, 2}, back to line 2
8: end if
9: return τ∗i

It is clearly that the construct of [τi] and τ∗i is
same according to the algorithm of constructing in-
dex merkle tree. Finally, in τ∗i , every node u contains
{ID, [R], size, Pointers, hash} as shown in Fig.4.

Fig. 4. The architecture merkle tree

Once device finishes above work, it will broadcast
Li||Sigc||Sigd(h(Ci||Sigc)) with the corresponding index
merkle treeτ∗i to entire network.

There are many devices receiving the broadcast informa-
tion. They check whether the sigature of device is legal, then
mines new block. But only the miner device, which firstly
finishes the predefined difficulity of PoW, can broadcast its
new block into the enter network. And other device receives
the new block and checks if H(Bi−1) is the right hash
value of the block recently stored in block chain and if the
signature of index merckle tree is valid. If both conditions
are satisfied and 51% of all devices approve it, the new block
can be join up to main chain.

3.2 Searching in two layers
In Section 3.1, steps of constructing index of two layers
based on BC are presented. Now, details of searching in

two layers will be described as followings. And the main
goal of build this architecture is to promote accountability,
i.e. user can accurately determine that the cause of system
trouble is which instruction from which device and repair
or change device, even though communication data file in
cloud is damaged or lost.

3.2.1 First layer:Locating the block in blockchain
First of all, user locates the block, in which the communi-
cation file he/she needs to trace. As shown in the Fig.5,
we construsts an unbalanced index tree on block chain. Its
property of unbalance can support hot and cold stratifica-
tion of information, which means that newer block in BC
can be easier to locate through less non-leaf node. Because of
time-effectiveness of information, users pay more attention
to recent block than former block in BC. In reality, user can
define granularity of every leaf node, such as one week,
one day even one hour. For example we use one day as
the granularity in temperature control scenario mentioned
before. In the index tree, every leaf nodeBi is generating
block in Dayi, i ∈ 1, 2, . . . , 7, every non-leaf node is TIgh,
g, h is the minimum i and maximum i of leaf node belongs
to the node. If user in that scenario finds that trouble of
temperature control occured before D7 , he/she download
main chain from the network. And using the unbalance
index tree, he/she will exclude the blocks generated after
D6 by check node TI17, for the blocks gernated before D7,
user spends less time to checkes recent block than former
block. User checks one block by verifying whether this block
stores signature signed by one of the two participants of the
communication.

Fig. 5. Locating the block in blockchain

3.2.2 Second layer:Searching in index merkle tree
User searches the comminication files in the index merkle
tree stored in the block that he/she located in the
blockchain. The user need to convert his/her query
context to hyperrectangle Q, classfy Q’s anchor points
into two part Ain = (Ain1 , A

in
2 , . . . , A

in
2l)

T , Aout =
(Aout1 , Aout2 , . . . , Aout2l)T , append distance information to
the anchor points Ain+ = (Ain

T |(−0.5||Ain||2))T , Aout+ =

(Aout
T |(−0.5||Aout||2))T , and encrypt Ain+ and Aout+ as

[Ain] = MTAin+ and [Aout] = MTAout+ by M , respectively.
Then user computes r([Ain]− [Aout]) · [Vi], where r is a ran-
dom positive value, [Vi] ∈ [V⊥], [V>]of hyperrectangle [R],
r([Ain]− [Aout]) · [Vi] < 0 iff dist(Vi, Aini) > dist(Vi, A

out
i).

The encrpted form of Q’ anchor collection is trapdoorTR =
{[Ain1], [Aout1]; [Ain2], [Aout2 ;] . . . ; [Ain2l], [A

out
2l]}. Therefore the

9

algorithm2 combined with ASPE is shown in algorithm5.
Using algorithm6, user can obtain a collection of leaves L
whose hyperrectangles intersect query hyperrectangle Q.

Algorithm 5 RectsInter([Q], [R])
Input: [Q] is the encrpted form of Q, Q ==
{[Ain1], [Aout1]; [Ain2], [Aout2 ;] . . . ; [Ain2l], [A

out
2l]}, and [R] is

the encrpted form of R.
Output: a boolean value that denotes whether Q is interact

with R
1: for each [Ain1] and [Aout1] in [Q] do
2: if r([Ain]− [Aout]) · [V⊥] < 0 and r([Ain]− [Aout]) ·

[V>] < 0) then
3: return false
4: end if
5: end for
6: return true

Algorithm 6 Index merkle tree.Qry(TR, τ∗i)
Input: the encryped query TR and an index merkle tree τ∗i .
Output: a collection of encrypted communication data files

L
1: node = τ∗i .root, L = φ
2: if RectsInter(u.[R], TR) then
3: if node is a leaf node then
4: L = L

⋃
node

5: else
6: for each u’s child do
7: if RectsInter(u′schild.[R], TR) then
8: u = u′schild, backto line2
9: end if

10: end for
11: end if
12: return L
13: else
14: return φ
15: end if

User can use pointers stored in leaf nodes in L to
find identifiers of communication files and download files
he/she needs, if files are well preserved. But in our scheme,
we provide an efficient validation method by checking
encrypted communication log stored in block if files data
can not be downloaded or recovered.

4 SECURITY PERFORMANCE ANALYSIS

4.1 security anlysis

We will give security anlysis in term of secure query and
secure store.

4.1.1 security anlysis on query

• Query Privacy: User encrpted it by ASPE approach,
which has been proved to be secure in known ci-
phertext model, if the secret key is kept confiden-
tial[]. During download process, user find pointer in
merkle tree and download the ciphertext form of Fi
without any leak of query.

• Region Privacy In process of constructing merkle
tree, ASPE approach are using to protexct informa-
tion of hyperrectangleR. Though the whole merkle
tree is exposed in block, adversary can not get anyt-
ing about region in the tree.

• Secure Range Query In the search precess, cipher-
text of tree protect information in tree. And tamper-
resistant of blockchain is the guarantee of data com-
pleteness.

• Trapdoor UnlinkabilityThe trapdoor of query hy-
perrectangle is generated based on encryption op-
eration proposed by wang[]. And they hade prove
thet the same query will be encrypted into different
trapdoors.

4.1.2 security anlysis on store

• Data Privacy Communication data files are en-
crypted by utilizing the traditional symmetric key
technique before submitting them to cloud. It is not
within the major research scope of this paper.

• Non-repudiation On one hand, user can retrive
pointer of goal communition flies on located block to
prevent cloud denying. Because block in BC cannot
be damaged, so if one file is record on block, user can
find block records pointer.On the other hand, even if
user can not retrive files from cloud, it can retrive sig-
nature of cloud and participants of communication,
whivh can prevent all of three part denying.

• Tamper-resistant According to the property of BC,
only files that authenticated and approved by more
than 51% can join up to BC, therefore this system pre-
vent malicious participants tampering during broad-
casting process. And block chain is tamper-resistant
which also protect communication log stored in
exsited block from tampering.

• Data Retrievability Due to the formalization of com-
muninication logs, user can deduct approximate key
information of communication data files in condition
of cloud data is damaged or lost and cloud server
would shift the duties onto others.

4.2 performance anlysis

We implement the proposed scheme using Python lan-
guagein Linux operation system and test its efficiency on
a artificial data uniformly distributed of different size. All
experimental results are obtained with an Intel(R) Core
(TM)i5-3470 processor running at 3.74GHz, 8.00GB of RAM.

4.2.1 Kd-tree Index Construction

Device builds the original kd-tree index when it wants
to oursoure its communication data, which is assumed to
contain n l-dimensional file points. It will takeO(nlogn) if
an O(n) median of medians algorithm, as shown in Fig6.
The time cost of constructing kd-tree of different number
of dimentions is almost changeless on the left of Fig6. It is
increase with the increase in the number of file points in
direct ratio on the right of Fig6.

10

Fig. 6. Building Kd-tree

4.2.2 Encrypt Kd-tree

We using ASPE to encrypted kd-tree. According to the
structure of kd-tree, O(logn) nodes will be generated. In
every node, there are two l-dimensional vertexs needs to be
encrypted by extenting to l-dimensional vector and doing
multiplication of a (l + 1) × (l + 1) matrix. Totally, the
complexity of encrypting kd-tree is O(m2logn).On the left
of Fig7, it is clearly that time cost is increasing slowly with
the increase of number of dimensions, but on the right, it is
clear that the time coast is proportional to points size.

Fig. 7. Encrypting Kd-tree

4.2.3 Merkle tree Index Construction

After obtaining encrypted kd-tree, device building merkle
tree by using ciphertext stored in every node in kd-tree. And
it is affected by points size.

Fig. 8. Merkle tree Index Construction

4.2.4 Trapdoor Generation

User generates trapdoor from query segment by mumultipy
4l vectors with (l+1)×(l+1) matrix, the complexity isO(l2),
and Fig9 shows that the time cost is affected by number of
dimensions.

Fig. 9. Trapdoor Generation

4.2.5 Search in First Layer
One unemployed device performs search algorithm on en-
crypted index tree with trapdoor submited by user. Because
the complexity of inner products is O(m) in m-dimensional
space, we assume that the number of leaf nodes trapdoor
visited is t. The total number of nodes visted is log(t).
From the above, the whole time complexity of search is
O(mlog(t)). Fig10 records the search time varies with dif-
ferent numer of dimensions and points sizes. The bigger the
points size is, the longer time needs to be used in searching
process with the same number of dimensions. And with the
same size of points, device needs more time to search due
to increasion number of dimensions.

Fig. 10. Search in First Layer

5 CONCLUSION

In this paper, we firstly propose an IoT data management
system based on blockchain. Each IoT devices could up-
load the big size communication files to cloud server with
ciphertext form, but broadcast the encrypted small size
communication logs to entire network, so that each IoT
devices could participate to record these communication
logs in a distributed database generated by blockchain tech-
nology. Under this data management model, the problem
of limited data storage space, poor data reliability, poor
scalability, high operating costs and poor liability judgment
will be solved to some extent. For protecting privacy of
both IoT devices and user, we exploit ASPE approach to
encrypt the indexes of communication logs. And the new
designed 2-layers index structure could provide efficient
search function on blockchain database which record the
IoT communication logs. Experiments on synthetic dataset

11

demonstrate the time and space efficiency of our proposed
schemes.

ACKNOWLEDGMENTS

This work is supported by NSFC (Grant Nos. 61502044)

REFERENCES

[1] J. Göbel, H.P. Keeler, A.E. Krzesinski, and P.G. Taylor. Bitcoin
blockchaindynamics: The selfish-mine strategy in the presence of
propagation delay. Performance Evaluation, 104:23–41, 2016.

[2] D. T. Lee and C. K. Wong. Worst-case analysis for region and
partial region searches in multidimensional binary search trees and
balanced quad trees. Acta Informatica, 9(1):23–29, 1977.

[3] Ralph C. Merkle. A digital signature based on a conventional
encryption function. In Th Conference on Advances in Cryptology,
pages 369–378, 1987.

[4] Boyang Wang, Yantian Hou, and Ming Li. Practical and secure
nearest neighbor search on encrypted large-scale data. In IEEE
INFOCOM 2016 - the IEEE International Conference on Computer
Communications, pages 1–9, 2016.

[5] Peng Wang. Secure and efficient range queries on outsourced
databases using rp-trees. In IEEE International Conference on Data
Engineering, pages 314–325, 2013.

[6] Wai Kit Wong, Wai Lok Cheung, Ben Kao, and Nikos Mamoulis.
Secure knn computation on encrypted databases. In Acm Sigmod
International Conference on Management of Data, pages 139–152, 2009.

Hua Zhang Hua Zhang received B.S. degree in Communication en-
gineering from Xidian University in 2002, M.S. degree in Cryptology
from Xidian University in 2005 and PhD in Cryptology from Beijing
University of Posts and Telecommunications (BUPT) in 2008. Now, she
is an associate professor in Institute of Network Technology, BUPT.
Her research interests include cryptography and information security.
E-mail:zhanghua 288@bupt.edu.cn

Ziqing Guo Ziqing Guo received B.S. degree in Mathematics from Bei-
jing University of Posts and Telecommunications in 2013. Now, he is a
Ph.D. candidate in Beijing University of Posts and Telecommunications.
His research interests include cryptography and information security. E-
mail: guoziqing@bupt.edu.cn

Shaohua Zhao Shaohua Zhao received B.S. degree in Mathematics
and Information Science from Henan Normal University in 2015. Now,
she is a Ph.D. candidate in Beijing University of Posts and Telecommu-
nications. Her research interests include cryptography and information
retrieval. E-mail: zhaoshaohua@bupt.edu.cn

Qiaoyan Wen Qiaoyan Wen received the B.S. and M.S. degrees in
mathematics from Shanxi Normal University, and the Ph.D. degree in
cryptography from Xidian University. She is now the Leader of Network
Security Center, Beijing University of Posts and Telecommunications.
Her current research interests include cryptography and information
security. She is a Senior Member of the Chinese Association for Cryp-
tologic Research. E-mail:wqy@bupt.edu.cn

	1 Introduction
	1.1 Motivation
	1.1.1 IoT without Center
	1.1.2 IoT with One Local Center
	1.1.3 IoT with Multiple Local Centers
	1.1.4 IoT with Cloud

	1.2 Our Contributions

	2 Overview
	2.1 Notations
	2.2 Preliminaries
	2.2.1 Blockchain
	2.2.2 Merkle Tree
	2.2.3 Secure Range Query (SRQ)

	2.3 System Model
	2.4 Threat Model
	2.5 Design Goals

	3 The proposed schemes
	3.1 Blockchain-based ICDM model
	3.1.1 Upload communication data
	3.1.2 Generate communication logs
	3.1.3 Generate new block
	3.1.4 Analyses
	3.1.5 Digitization of file content
	3.1.6 Construct kd-tree
	3.1.7 Construct index merkle tree

	3.2 Searching in two layers
	3.2.1 First layer:Locating the block in blockchain
	3.2.2 Second layer:Searching in index merkle tree

	4 Security performance analysis
	4.1 security anlysis
	4.1.1 security anlysis on query
	4.1.2 security anlysis on store

	4.2 performance anlysis
	4.2.1 Kd-tree Index Construction
	4.2.2 Encrypt Kd-tree
	4.2.3 Merkle tree Index Construction
	4.2.4 Trapdoor Generation
	4.2.5 Search in First Layer

	5 Conclusion
	References

