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Towards Veritying the User of Motion-controlled
Robotic Arm Systems via the Robot Behavior

Long Huang*, Zhen Meng', Zeyu Deng*, Chen Wang*, Member, IEEE, Liying Li', and Guodong Zhao!

Abstract—Motion-controlled robotic arms allow a user to
interact with a remote real world without physically reaching it.
By connecting cyberspace to the physical world, such interactive
teleoperations are promising to improve remote education, virtual
social interactions and online participatory activities. In this
work, we build up a motion-controlled robotic arm framework
comprising a robotic arm end and a user end, which are
connected via a network and responsible for manipulator control
and motion capture respectively. To protect the system access, we
propose to verify who is controlling the robotic arm by examining
the robotic arm’s behavior, which adds a second security layer in
addition to the system login credentials. We show that a robotic
arm’s motion inherits its human controller’s behavioral biometric
in interactive control scenarios. By extracting the angle readings
of the robotic arm’s all joints, the proposed user authentication
approach reconstructs the robotic arm’s end-effector movement
trajectory that follows the user’s hand. Furthermore, we derive
the unique robotic motion features to capture the user’s be-
havioral biometric embedded in the robot motions and develop
learning-based algorithms to verify the robotic arm user to be one
of the enrolled users or a nonuser. Extensive experiments show
that our system achieves 94% accuracy to distinguish users while
preventing user identity spoofing attacks with 95% accuracy.

Index Terms—interactive control, robot behavior, motion-
controlled robot, user authentication, cyber-physical security

I. INTRODUCTION

Consumer robotic arms have been increasingly used for
a multitude of applications for providing augmented inter-
actions, including remote education, health care, research,
industrial control and social network [1], [2], [3]. By con-
trolling a robotic arm, the user is able to conduct mission-
critical and high-risk applications in the real world remotely
without physically reaching it. Moreover, the fast development
of motion capture techniques facilitates using hand motions to
directly manipulate the robotic arm, which allows the user to
focus more on the real-world operations than control. The out-
break of the COVID-19 pandemic further boosts the motion-
controlled robotic arm applications when physical presences or
face-to-face interactions might be under a high health threat.

A motion-controlled robotic arm is a type of intelligent
cyber-physical system comprising two ends, which are con-
nected by a local or wide area network. The user end is
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responsible for tracking the user’s motions and issuing the
corresponding control commands. The robotic arm end re-
ceives and executes the commands to perform tasks. In the
meanwhile, the user observes the robotic arm’s movement
feedback and adjusts his/her hand motion accordingly for the
interactive control, which facilitates performing fine tasks. But
because a motion-controlled robot system involves sensors,
actuators, networks and computing devices at two ends, it
suffers from more severe security threats from both cyberspace
and the physical world. More specifically, an adversary might
intrude and gain the system access by exploiting any of the
above interfaces, which makes the defense hard.

The current access control of the robot system is achieved
through the user-end authentication, in which the user needs
to log into the system by entering correct passwords or
physiological biometrics (e.g., fingerprints and faces) [4], [5],
[6]. However, these traditional methods are independent of
robot control. They could not guarantee that the robotic arm
is consistently under the control of the enrolled user(s). For
example, after the system access is granted, an adversary may
override or modify the user’s control commands anywhere
before they are executed to hijack the robot. Moreover, the
adversary might fool the authentication at the user end by
forging the user’s authentication entries.

To secure the access to such cyber-physical systems and de-
fend against various hijacking attacks, we propose to continue
to verify the user after the robot system is logged in, and the
verification is done by examining the robot’s behavior. This
work, for the first time, demonstrates that the robotic arm
could inherit much of its controller behavioral information
in the interactive control environment. This is because the
user’s arm motions can be uniquely mapped into the robotic
arm’s movements, though the robotic arm works in a distinct
kinematic mechanism with more joints and different arm
lengths. Due to the individually unique human arm structures,
strengths and motion behaviors, the robotic arm exhibits the
behaviors highly correlated with the user. We thus design the
robotic arm-end user authentication approach, which tracks the
robotic arm’s movements to verify the robot-inherited human
behavior. The proposed approach can detect impersonations
and control command forgeries, regardless of where and how
the attack originates.

In particular, our approach extracts the angle readings of
the robotic arm’s all joints to monitor its motions. Based on
that, we reconstruct the end-effector movement trajectories
using forward kinematics to describe the robotic arm’s motion
behaviors. Next, we derive the unique robotic motion features
to capture the user’s behavioral characteristics that are embed-



ded in the robotic arm’s motions. Furthermore, we develop a
learning-based algorithm to first recognize which task the user
is performing and then verify the identity of the user. We build
up a real motion-controlled robotic arm framework to evaluate
our authentication approach, which consists of a seven Degree-
Of-Freedom (DOF) robotic arm for control and six OptiTrack
sensors for motion capture. We use a local area network to link
the user end with the robotic arm end. We also implement a
human-robot kinematic mapping algorithm to enable real-time
robotic arm control via hand motions.
Our contributions are summarized as follows:

o We develop a user authentication approach for motion-
controlled robotic arm systems based on examining the
robotic arm’s movement behavior. The proposed approach
ensures that the robotic arm is consistently under the
control of the registered user, and the control hijacking
can be detected.

o This work demonstrates that people’s motion behaviors
in interactive control scenarios are individually unique,
though different from their regular behaviors. Moreover,
the robotic arm under control inherits such behaviors to
show the per-user distinctive robot behaviors.

e We develop an end-effector trajectory reconstruction
scheme to capture the robotic arm’s motion behaviors
based on the status of robot joints. Moreover, we design
the learning-based algorithms to both recognize the type
of task the robot perform is performing and verify the
identity of the robot’s user.

o We build up a real motion-controlled robotic arm plat-
form based on a 7-DOF robotic arm, OptiTrack sensors,
human-robot kinematic mapping algorithms and network
links. Extensive experiments with 30 participants are
conducted to evaluate our proposed authentication system
in interactive control scenarios. Results show that our
system can accurately verify the user while preventing
various impersonation and control hijacking attacks.

We arrange the rest of the paper as follows. We discuss the
related work in Section II. In Section III, we introduce the
framework of our system, the motion-controlled robotic arm
platform, as well as the threat models. Then, we discuss the
feasibility of robot behavior-based authentication in Section
IV. We next present the data pre-processing, robotic motion
features extraction, task recognition and user authentication al-
gorithm in Section V. The performance evaluation is reported
in Section VI. Finally, we conclude the work in Section VII.

II. RELATED WORK

The robot control systems are vulnerable to both cyber and
physical threats. An attack could be launched by exploiting
many attacking interfaces spanning from the controller, the
open network, the robotic device and computing resources.
To address the severe cyber-physical security issues, active
work is on monitoring the robot behavior to detect attacks at
the robot level. Guo et al. investigate the robot misbehaviors
originated from a variety of sources [7]. They propose to use a
robot anomaly detection system to counteract various mobile
robot attacks/failures, which exhibit either sensor or actuator

misbehaviors. In industrial control systems, learning-based
methods are employed to detect abnormal robot behaviors,
including water treatment systems [8], chemical processes [9]
and autonomous robots[10]. The robot anomalies are learned
to further specify which part of the system is under attack.
However, these anomaly detection methods did not consider
the emerging interactive robot control, where the human is a
significant factor in the control process. Moreover, they could
not detect the user spoofing attacks, where an adversary takes
over the robot to do valid tasks which may not exhibit any
anomalies.

Active researches have been done on the robust interactive
control for robots. Levine et al. propose an end-to-end deep
learning method [11] to coordinate vision and control, which
maps the visual observations of raw camera images into the
motor torque instructions for the robotic arm to perform
tasks including grasping, pushing, screwing, etc. In [12],
a Convolutional Neural Networks (CNN)-based approach is
proposed for hand-eye coordination when the user controls a
robotic arm to grasp objects. The approach predicts the robotic
arm moving path based on the historical monocular images
and achieves the continuous servoing mechanism. In [13], the
authors further develop a robot motion control method that
combines deep action-conditioned video prediction models
with model-predictive control. The method enables a robot
to successfully push the new objects, which have not been
seen in the training process. In [14], a human-machine-human
control loop is established by a Digital Twin (DT) framework,
which can achieve the low-latency visual feedback and short
system reaction times between the operator and the robot. In
[15], a novel DT prototype is developed, which explores the
potential of deploying human-computer interaction technology
to key scenarios, such as remote surgery. In [16], the authors
combine the remote motion capture and the robotic arm control
to build a remote healthcare system, which helps people with
disabilities to pick up bottles easily. However, the access
control of these systems still relies on verifying passwords or
biometrics during the system login, which is limited to address
severe cyber-physical threats.

This work proposes to leverage behavioral biometrics to
verify who is controlling the robotic arm. There have been
many studies on verifying the users via their motion behaviors.
Kinwrite uses a Kinect sensor to track the user’s fingertip
movements and utilizes the captured 3D handwriting as a
password to verify the user’s identity [17]. Similarly, the Leap
Motion camera tracks the user’s hand motions in the 3D space,
and the hand gesture pattern is learned and classified by using
machine learning methods [18], [19]. In addition to the vision-
based approaches, the diverse sensors on wearable devices
can be utilized to verify the user’s hand gestures in the air,
including inertial sensors [20], [21], [19], electromyography
(EMG) sensors [20]. Additionally, the recent wireless sensing
approaches examine how the wireless signals (e.g., WiFi
and mm-Wave) are interfered by the user’s hand motions,
and they extract behavioral characteristics from the signal
interference for authentication [22], [23], [24], [25]. However,
these methods are based on the user’s motion data captured
at the user end, which are hard to secure the robotic arm at
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Fig. 1: The secure motion-controlled robotic arm framework with the robot behavior authentication deployed at the robot end.

the other end of the network. It is still hard to know whether
the control commands originate from the user and are not
overridden or altered before they are executed.

III. FRAMEWORK OVERVIEW & ATTACK MODEL
A. Framework Architecture

The objective of this work is to build a secure motion-
controlled robotic arm framework, which provides the robot
behavior-based user authentication in interactive control sce-
narios. In the logical layer, the framework has two compo-
nents, a motion-controlled robotic arm platform and a robot
behavior-based user authentication module. The complete
framework is shown in Figure 1, which has two physical
components, a user end for the real-time motion capture and
a robotic arm end for executing control commands. The robot
behavior-based user authentication is deployed at the robot
end. When accessing the robotic arm, the user enters the login
account and password at the user end. Once the credentials
are accepted, the user can manipulate the robotic arm with
hand motions in real-time. The user’s hand motion is captured
by a camera system and further transformed into control
command sequences based on the human-robot kinematic
mapping, which is sent to the robot end to execute. In the
meanwhile, the user receives the visual feedback of the robotic
arm’s movement to perform the interactive control, which
forms a control loop.

When the robotic arm receives and executes the control
commands, the sampled angle values of its all joints are logged
and input to our authentication approach. The joint readings
are first segmented and normalized to represent the results
of the user’s every hand movement. Next, we reconstruct the
moving trajectory of the robotic arm’s end-effector in the 3D
space based on forward kinematics. We then derive unique
robotic motion features to capture the robotic arm’s unique
behavior associated with the user’s behavioral biometric,
which are fed into our learning-based algorithms, where task
recognition and user identification are performed successively.

When registering the system and using the robotic arm for the
first time, the user’s profile is created based on the robotic
arm’s motion behavior. When the user accesses the robotic
arm later, the current robotic arm behavior is compared with
the user’s profile to verify whether the user’s identity is as
claimed. Based on the verification result, the robotic arm
would continue to operate or reject the access and halt. If
the access is rejected, the framework requires the re-login
with correct credentials, and challenge/security questions and
message authentication codes could be further required. The
traditional login credentials and robot-behavior verification
form the two security layers for the motion-controlled robotic
arm framework.

B. Motion-Controlled Robotic Arm Platform Prototype

We first build the motion-controlled robotic arm platform
by mapping human motions to robotic movements in real-
time, which allows users to interactively control a robotic
arm by hand motions. As shown in Figure 2, the platform
consists of user-end devices and robotic arm end devices,
which are connected by a local area network. The user-end
devices capture the position and orientation information of the
user’s hand and map it to the corresponding target’s motion in
the robot’s workspace. The robotic arm end devices perform
the path planning method, as well as executing the commands
to achieve the goal for the end-effector of the robot arm to
follow the user’s hand in real-time. In the meanwhile, the user
observes the robotic arm movements and adjusts his/her hand
motions to achieve interactive control.

1) User-end Devices: At the user end, six OptiTrack cam-
eras are deployed in a 5Sm by 5m circular area as the system in-
put to capture the user’s hand movements. Since this is the first
work of authenticating a user based on robot behavior, we start
with a high-precision OptiTrack to build the system. OptiTrack
is one of the most precise motion capture cameras in the world,
which can achieve 240 FPS capture rate and with positional
errors less than +/-0.20mm and rotational errors less than 0.5
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degrees. It captures the positions of passive markers attached
on the object being detected rather than deploy the traditional
way of using images process and extracting features of human
motions. The device is widely used in a variety of scenarios
requiring high-resolution motion capture, from real-time 3D
modeling in video games and filmmaking to remote surgery.
Based on this high-performance motion capture module, we
can explore the extent of using robot behavior to authenticate
the user without suffering much from the motion capture
errors. The user is required to wear a 3D-printed glove attached
with seven passive reflective markers, which allows the motion
capture system to construct a rigid body of the user’s hand
and obtain high accuracy measurements of its position and
orientation in six degree of freedom (6-DOF) with less than
0.2-millimeter errors [26]. When the user moves the hand in
the air, the 3D hand pose position represented by Cartesian
coordinates and the orientation represented by quaternion are
sampled at 120 Hz. Then, the personal computer (PC) per-
forms the robotic arm inverse kinematics algorithm based on
the sampled motion information and the configuration of the
robot which is described by Denavit—-Hartenberg parameters,
converting the sampled information to seven target joint angles
of robots [27]. In addition, to enable the robotic arm to follow
human hand movements, we set the robotic arm and the motion
capture system in the same coordination system by directly
mapping the measured pose position and orientation of the
hand in the robot’s workspace. Here they both use the right-
hand coordination system, i.e., the x-axis faces to the left, the
Y-axis faces to the top and the Z-axis faces forward.

2) Robotic Arm-end Devices: At the robotic arm-end, a
Franka Emika Panda robot is used in the experiments [28].
It consists of a robotic arm and a control cabinet (Panda’s
control), which parses and executes the instructions from the
PC. The robot arm has 7 DOF achieving up to 2 m/s end-
effector speed and +/- 0.1 mm repeatability, which ensured the
applicability of industrial scenes and the accurate replication
of human hand movements. The PC acts as the robotic
arm controller for path planning. Considering the significant
differences between robots and the human arm of physiology,
kinematic character, joint and velocity limits, it is challenging
to directly mapping human movements to the robot arm. Here,
to generate smoothly, continuously mimicry-based control tra-
jectories, we design a path planning strategy to relax the map-

ping constraints between the human’s hand and end-effector of
robots by introducing proportional—integral-derivative (PID)
control algorithm, converting the received joint angle values
into a series of robotic control angular velocity commands
within trajectory limitations. At the robotic arm end, once
the PC for robot control received the new target joint angle
from the motion capture system, it will generate feasible
joint angular velocity commands in each control loop based
on the deviation between target joint value and current joint
state. Then, the commands can be directly executed by the
application programming interface (API) functions provided
by libfranka, which is C++ implementation of Franka Control
Interface (FCI) [29]. The interface streams the joint angular
velocity commands to the low-level engine driving the robot
arm and reads the robot state to get the sensor data at 1 kHz.
Since the updating rate of the target joint value is 120 Hz,
a new target path planning is implemented at approximately
every 8 milliseconds.

3) Local Area Network: Flexible network architecture can
be deployed in our system. For simplicity, the commercial
Ethernet is used to connect the two ends and facilitate the data
transmission from the user-end PC to the robot-end PC. We
utilize the User Datagram Protocol (UDP) to support the high
packet delivery rate. This protocol also reduces the queuing
delay at the transmitter side and improves real-time tracking
performance. The system can also be flexibly altered to deploy
the TCP/IP protocol for higher reliability based on the specific
application scenarios and performance requirements. Other
high-speed networks, such as LTE and 5G, can also be used
in our prototype.

C. Threat Model

This work aims to secure access to motion-controlled
robotic arms. We focus on the adversaries, whose goal is to hi-
jack the robotic arm or impersonate the target user to control it
for gaining higher control privileges, causing physical damages
and achieving the repudiation of performing malicious tasks.
These attacks could evade the existing anomaly detection
methods [7], because an adversary could control the robotic
arm to do valid tasks (e.g., grasping), which may not show any
anomalies at the robotic arm. As most robot systems require
login authentication, we assume the adversary has obtained the
user’s login credentials and gained access to the robotic arm to
perform various control tasks. Our robot behavior-based user
authentication then works as the second security layer to verify
who is controlling the robotic arm. In particular, we consider
the following attacks:

o Zero-knowledge Attack: We consider an adversary who
has no knowledge of our robot behavior-based authentica-
tion so that the adversary applies the program-generated
control commands to control the robotic arm, where
no human behavior is presented. Such attacks could be
launched at the user end by compromising the user-end
devices, in the network by packet spoofing or at the robot
end by hacking the CAN bus.

« Random Impersonation Attack: We consider an ad-
versary who realizes the existence of our authentication



approach and but has no knowledge of the user’s control
behavior. Then, the adversary could launch attacks at the
user end and attempt to control the robotic arm with
his/her motion behavior. Moreover, a stronger adversary
could attack the network and the robotic arm end by
substituting the user’s control commands with his/her
own to take over the robotic arm.

o Imitation Attack: A more skilled impersonation attacker
may obtain the opportunity to observe how the target user
controls the robotic arm. Based on this prior knowledge,
the adversary imitates the user’s motion behavior to
impersonate the user while controlling the robotic arm to
perform tasks. By presenting the user’s control behavior,
the adversary attempts to cheat our authentication.

IV. FEASIBILITY OF ROBOT BEHAVIOR-BASED
AUTHENTICATION

Before using the robot behaviors to verify users, it is
significant to first answer three questions:

1) Are people’s behaviors under the interactive control
environment still the same as their regular behaviors?

2) If no, are the user’s interactive control behaviors suffi-
ciently consistent and distinctive for user authentication?

3) Is a robotic arm able to inherit the user’s behavioral
information?

A. Interactive Control Behaviors vs. Regular Behaviors

To answer the first two questions, we conduct a feasibility
study to investigate the user’s regular behaviors and that in
the interactive control scenarios. In particular, we ask one
participant to repeatedly draw an “S” in the air 40 times in
the two scenarios respectively. In the non-control scenario,
the participants freely move one hand in the air to write
the letter just as they regularly do. In the interactive control
scenario, the participants operate a 7-DOF robotic arm to write
the same letter using our platform. We utilize the OptiTrack
camera system to precisely capture the users’ hand motion
trajectory in the time series of 3D coordinates. To figure
out whether the interactive control and non-control scenarios
contribute to differences in human behaviors, we compare the
participant’s motions both within each scenario and across the
two scenarios, where their Euclidean distances are calculated
after normalization.

Figure 3 presents the trajectories comparisons of a user’s
behavior in non-control and interactive control scenarios and
that of two user behaviors in the interactive control scenario.
Figure 3 (a) shows that when drawing an “S” in the air, the
trajectories of User 1 in the two scenarios (i.e., “ul_non-
control” and “ul_interactive control”) are different. Moreover,
the trajectories of the two users both in the interactive control
scenario (i.e., “ul_interactive control” and “u2_interactive
control”) are also different. Figure 3 (b) presents the statistical
analysis when each user is asked to repeat the experiment
20 times for each scenario, respectively. We find that the
inter-class Euclidean distances of ul_int-non are much higher
than that of the intra-class comparison u/_non. This result
indicates the user’s motion behaviors under the interactive

1 25
— u1_non-control
—— u1l_interactive control
u2_interactive control .
0.8 3 20 '
c —
£ ' -
0.6 g 15 ' _ .
' T
z 2 =
T
0.4 § 10
©
\/ S . T
0.2 w5 ! o
L
00 0.2 0.4 0.6 0.8 1 0
.. . . . n int n nt

(a) User hand trajectories (b) Distance distribution
Fig. 3: Comparison of the user’s motion behaviors under the
interactive control and the non-control scenarios (illustrated
with user drawing a 3D “S” in the air).

control scenario differ from their regular behaviors. Moreover,
we find that the intra-class comparison u/_int shows the low
Euclidean distances comparable to u/_non, which indicates
that the user’s motion behaviors under the interactive control
scenario are consistent. We take one step further to compare
two participants’ interactive control behaviors when they draw
the same curve (e.g., “S”) and find that their Euclidean
distances ul-u2_int are very high. The results show that each
user has an individual way of operating the robotic arm. The
behavioral uniqueness and consistency demonstrated above
confirm the feasibility to distinguish people through their
interactive control behaviors.

B. Human Behavioral Biometrics Embedded in Robot Motions

We next answer the third question based on similar ex-
periments in the interactive control scenario, where the same
OptiTrack cameras are utilized to record both the user’s hand
movement curve and the robotic arm end-effector trajectory as
shown in Figure 4. We find that the robotic arm follows the
path of the user’s hand and draws a similar “triangle” curve.
The reason is that both the user and the robotic arm try to
adapt to each other’s motion in the interactive control scenario.
The robotic arm then carries a portion of the user’s behavioral
biometrics when replicating the user’s hand motions. This
serves as the basis for us to design the robot behavior-based
authentication approach.

However, we also notice multiple challenges when extract-
ing human behavioral biometrics from the robot motions. We
find that the robotic arm does not completely replicate the
movement trajectory of the user’s hand. It does not move in
the same coordinate as the user’s hand, and the movement
scale is different. This is because the 7-DOF robotic arm has
a different kinematic mechanism compared to the human arm.
Furthermore, when following the user’s hand motions, the
sampling errors of the motion capture devices, the network
traffic delays and the user’s sudden hand motion changes all
cause the robotic arm to exhibit many additional or redundant
movements. In addition, in practical scenarios, we leverage the
robotic arm joint states to derive its motions, which exempts
the overhead of additional camera systems at the robot end, but
the derived robotic arm trajectory suffers from more noises.
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Fig. 4: Comparison of the user’s hand and the robotic arm
end-effector raw trajectories of drawing a “triangle”. Both are
obtained by OptiTrack cameras.

Therefore, distinguishing users via the robot behaviors is more
difficult than directly using human motions.

V. USER AUTHENTICATION DESIGN
A. Reconstructing the Robotic Arm’s End-effector Trajectory

Our authentication approach utilizes the sampled angle
values of the robotic arm’s joints to verify the user. To capture
how the robotic arm follows the user’s motion and inherits the
user’s behavior, we reconstruct the end-effector trajectory of
the robotic arm from these joint states based on the forward
kinematics. The robotic arm’s motion mechanism is modeled
as shown in Figure 5. For each joint such as Joint ¢, Z; is its
rotation axis, and X; and Y; are on its rotation plane. X; is
defined to be in the same direction of the arm link l; (towards
Joint ¢ + 1) at the beginning of the robotic arm control. When
the robotic arm starts to move, the coordinate of Joint 7 can
be determined by all of its ¢ — 1 prior joints. We use the
Denavit-Hartenberg [30] parametersm ,d, cand 0, namely the
link length, link offset, link twist and joint angle to describe
the robot kinematics. In particular, the link length |l;| is the
distance between Joint ¢ and Joint ¢+ 1, while the link offset J;
is measured against the Z;-axis. Figure 5 illustrates the joint
status at time ¢, when the angle between Z; and 7, is «;, and
the arm link l; rotates with the angle #;. The transformation
matrix from Joint ¢ to Joint ¢ + 1 can thus be expressed as:

Tit1 = Ry (ai)Dr<ai)R (ei)Qz(dz)
1 0 0 0] [1 0 0 a
|0 cosa; —sina; 0| (O 1 0 O
0 sina; cosa; O] |0 O 1 O
0 0 0 1110 0 0 1
[cosf; —sinh;, 0 0] 1 0 0 O
sinf; cosf; O Of (0 1 O O
0 0 1 0[]0 0 1 di|
| 0 0 0 1{|0 0 0 1
cos 0; —sin 6; 0 a;
sinf; cosa; cosb;cosa; —sinq; —sino;d;
sinf; sinc; cosf;sina;  cosq; cos a;d;
0 0 0 1

where R represents the rotation matrix, and D and () de-
note the translation. The end effector joint,, is obtained by

Joint i+1

Joint i

Fig. 5: Coordinates and robot kinematics parameters for a
general manipulator model.

multiplying all the transformation matrix T;, starting from
jJointy:
o, =0Ty Ty 1T, (1)

The 3D coordinate of the end effector "pos is calculated based
on the reference point %pos = (9, 3o, z0)”, which is set as:

Tn To 0

n, _|Yn| _o Yo 0 0

pos = | 7" | =T, |20 =T, || @)
1 1 1

The derived 3D coordinate time series ["posg,"posi, ...," pos:]
describe the movements of the robotic arm, based on which
we further extract the robotic arm’s unique behaviors.

B. Data Calibration and Normalization

The user’s hand movement scales, varying speeds and
different orientations and distances to the motion capture
device all affect the states of the robotic arm joints. The
derived robotic arm movement trajectories must be calibrated
and normalized to reduce these impacts so that the minute
behavioral differences among users could be captured from
robot behaviors. For this purpose, we apply the re-scaling and
the axis alignment schemes to calibrate the reconstructed end-
effector trajectories. In particular, the end-effector trajectory
of each movement is first segmented based on the short-time
energy. The 3D space that encloses a trajectory is scaled to a
1 x 1 x 1 bounding box. In addition, to unify the orientations
of different trajectories, we predefine a reference direction and
rotate all the trajectories to align with it. Figure 6 illustrates the
reconstructed end-effector trajectory of drawing an “A” after
calibration and normalization, which has a very high similarity
with that obtained by the OptiTrack camera system. We next
derive unique features to analyze the robot behavior.

C. Extraction of Robotic Motion Features

For each end-effector trajectory, we derive eight types of
robotic motion features to describe its behavior, including 3D
coordinate, position difference, 3D velocity, 3D acceleration,
acceleration norm, jerk, slope angle and curvature. These
features at the sampling time index ¢,t = 1,..., N can be
denoted as pos(t), pos_dif f(t), pos(t), pos(t), ||pos(t)

[l
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Fig. 6: OptiTrack recorded robotic arm movement and recon-
structed movement, both are calibrated and normalized. The
task is drawing a “triangle”.

pos(t), O(t) and k(t). The detailed derivations of these
features are presented in Table I. In particular, we obtain
three feature sequences respectively for the 3D coordinates,
velocity, acceleration and jerk by leveraging their three axes.
Moreover, we derive two slope angle sequences and one
feature sequence for position difference, acceleration norm
and curvature, respectively. The resulted feature sequences
fe = {f), f&(2), ..., fk(N)},k = 1,...,17 describe the
inherent user behavior embedded in the robot motions in
seventeen dimensions, including the large scale hand move-
ments, the habits of accelerating and making turns, and the
hand vibrations. For example, when different users perform
the same task, the 3D coordinate sequences of their hand
movements might show some similarities, but the detailed
hand speeds, accelerations and jerks during the task could be
distinct, owing to their unique arm sizes, strength, habits and
the individual ways to interact with the robotic arm. Based on
these robotic motion features, we first recognize which task the
robotic arm is performing and then verify who is controlling
the robotic arm under this task.

D. Dynamic Time Warping

To achieve the goal of task recognition and user authenti-
cation, we resort to machine learning algorithms and propose
to use Dynamic Time Warping (DTW). Compared to deep
learning, machine learning methods do not require high train-
ing efforts and computational resources, and thus are more
easily to deploy in practice. Furthermore, the time-warping
capability of DTW expands or shrinks the feature sequences
to find their minimum Euclidean distances during the template
matching, which can tolerate the impacts of unstable network
latency, the user’s varying hand movement speeds, behavioral
inconsistency and other environmental noises. For example,
given two end-effector trajectories, we denote their feature se-
quences as frira; = {fr,trar (1)s frtrar (2), s frtras (N1)}
and fk,trag = {fk,trag (1)7 fk,traz (2)7 ) fk',traz (N2)} Then
we build a N; x Ny distance matrix M where the element
Mij = ”fk,trm(i) - fk,traz(j)”’ = 1,2,.,N1, j =
1,2, ..., Na. A non-decreasing path is found between M;; and
Mn, n,, such that the sum value of the elements along this
path is minimum, which is defined as the DTW distance be-
tween the two trajectories, denoted as DTW ([ tray» [k tras)-

E. Task Recognition

As the user could operate the robotic arm to perform
different tasks, the robotic arm needs to recognize what task
is being performed rather than only executing a sequence of
commands. This is critical for detecting prohibited tasks or
auditing the user’s entire access duration based on his/her
privilege level. Moreover, we need to exclude the impact of
the task differences to focus better on the robot’s minute
behavioral differences. Thus, we first recognize which task the
robotic arm is performing before utilizing the user’s template
of the identified task to verify the user.

We apply DTW to learn the task templates and classify
the testing task. In particular, we develop a weighted DTW-
based method to recognize tasks based on the robotic motion
features, which consists of a training phase to create templates
and a testing phase for task classification. The reason why we
use robotic motion features for task recognition is that the
platform we developed is a robotic arm that follows the user’s
motions, and inherits the user’s detailed behaviors. Though
the tasks are defined based on the user’s hand movement
trajectory, we find that the other motion characteristics such
as the speeds, acceleration/de-acceleration and the hand vi-
brations when making turns can also be utilized to distinguish
movement tasks. We thus derive the motion features of the
robotic arm (e.g., position, velocity, acceleration, slope angle,
etc.) to recognize the robotic arm’s tasks in the interactive
control environment.

Template Construction. In the training phase, we construct
the task templates fj ;qs; based on the task instances from
a number of people. Specifically, with m instances collected
for a task, we select the top n instances, which have the
smallest DTW feature distances to all the m instances. The
task template set is then formed by these n instances as
{fk,task_traini L= ].7 e n and k = 17 ceey 17}

Weight Assignment. As different features have different
value ranges and different capabilities to distinguish various
robotic arm tasks, we assign a weight wy, ¢+, between 0 and
1 to each task feature sequence by computing DTW distances.
The weight of a feature sequence is determined by its ability
to distinguish different tasks. Features that separate the target
task from other tasks with greater DTW distances should
be assigned with higher weights. Figure 7 shows the DTW
distance distributions of tasks in regard to a target task based
on each feature. We find that most features clearly separate
the target task from others, especially the 3D position and

TABLE I: Features extracted for DTW.

Position pos(t) = (pos(t), posy(t), pos, ()T
Position Difference pos_dif f(t) = |[pos(t + 1) — pos(t)]|
Velocity Ppos(t) = (pos, (1), pos, (1), pos ()T
Acceleration pos(t) = (pos, (1), pos, (), pos, (t))T
Acceleration Norm [lpos(t)]|
Jerk pos(t) = (pos, (1), pos, (1), pos. (1)) "
Slope Angle Ozy(t) = arctan%7 020 (t) = arctanzzzzgf;
Vo2, (D42 ()+c3. ()
-~ 2y 2 v
Curvature () = GosT 0 +pos2 (0 1pos2 )37
where czy(t) = pbs,(t) X pos,(t) — pos,(t) x
pos. ()
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Fig. 7: Illustration of using robotic motion features to distin-
guish tasks.

velocity, which confirms the effectiveness of capturing the
robotic motion features for recognizing the type of tasks. The
reason is that the different tasks show different paths of robotic
arm movement. The trajectories and velocities associated with
moving and making turns capture such differences well, which
should be assigned with high weights. In comparison, the
curvature feature is not good at separating different tasks
and should be assigned with a low weight. By selecting
proper weights for these different robotic motion features,
the developed DTW-based algorithm is able to effectively
recognize different tasks.

Task Classification. The calculated weights are used
in the testing phase to compute the weighted DTW dis-
tance sum between the testing end-effector trajectory to
each of the task template sets, which is the sum of
the weighted DTW distance between the testing end-
effector trajectory to each template in the set, expressed
as Z?:l 211::1 DTW(fk,test;fk,task_trm’ni) X Wk task- The
robotic task is recognized to be the one whose template
exhibits the minimum weighted DTW distance sum to the
testing task.

FE. User Authentication

As the user must log into the robotic arm platform to operate
the robotic arm, the robot behavior-based user authentication
becomes to verify whether the user’s identity is as claimed by
the login credentials. After the robotic arm task is identified,
we resort to the user’s template under the task and compute
the weighted DTW distance to verify the user.

Template Construction. The user’s template is created
based on the user’s multiple instances of performing tasks.
Similar to the task template construction, we choose n top
instances that show the minimum DTW feature distances to
all of the m collected instances. The user template set is
then formed by these n instances as {fx user train; | ¢ =
1,.,nand k=1,...,17}.

Weight Assignment. Although we use the same sets of
features as in task classification, the weights wy, 4 s used for
user verification are derived based on their diverse abilities to
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Fig. 8: Illustration of using robotic motion features to distin-
guish users.

distinguish users. Figure 8 illustrates using the robotic motion
features to distinguish users when they perform the same
robotic arm task. We find it is more difficult to distinguish
users than classifying tasks, as some feature distances between
users are much smaller, such as the 3D coordinates. The
reason is that when the users perform the same task, similar
end-effector trajectories are resulted in. However, the other
features, such as accelerations, jerks and slope angles perform
well to separate the target user from other users. These
features capture the user’s unique small-scale hand movements
and vibrations, the patterns to move or make turns and the
interaction habits when operating the robotic arm. The result
indicates the feasibility to distinguish users via robot behaviors
even when they operate the robotic arm to do the same task,
using the DTW-based method which leverages the derived
robotic motion features. Thus, we compute the weights for
the user verification features based on the DTW distances.

User Verification. During the user verification phase, we
compute the weighted DTW distance sum between the test-
ing end-effector trajectory and the user’s template set as
Z?:l ]1;7=1 DTW(fk’,testafk,user_train,;) X Wk, user- If the
resulted Euclidean distance is less than a threshold, the robotic
arm is believed to be under the control of the user as claimed.
Otherwise, the verification fails, the robotic arm operation is
aborted. The system requires a re-login.

VI. PERFORMANCE EVALUATION
A. Experimental Setup

We evaluate our robot behavior-based user authentication
approach based on the motion-controlled robotic arm platform
we build in Section III-B. We recruit 30 participants for the
interactive control experiments, who are all first-time users
of the platform. The IRB approval is obtained with IRB
#4392. Before experiments, the users have 5 minutes to be
familiar with the platform by operating the robotic arm. During
the data collection, the participants are asked to control the
robotic arm to perform various tasks involving three basic
categories, writing, drawing and operations. In particular, the
participants control the robotic arm to write the letters “S”,
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Fig. 9: Confusion matrix of recognizing robotic arm tasks.

“W”, “Z” and “ABC”, draw the curves including “Circle”,
“Five-pointed Star” and “Triangle” in the air and perform the
basic operations such as “Pointing”, “Pushing” and “Stirring”.
For each task, the participants repeat 30-40 times, and the
angle readings of the robotic arm joints are logged. In addition,
to prevent the robotic arm from causing any harm to people
and objects, we set the excessive force on the robotic arm
so that it stops if it exceeds an area boundary or touches a
piece of furniture. The data collection lasts for six months,
and each participant completes the experiments in around an
hour. The resulted data set is split by half for training and
testing, respectively.

B. Task Recognition

We first present the performance of our approach to recog-
nizing robotic arm tasks. Figure 9 shows the confusion matrix
of the task classification. We find that our approach achieves
100% accuracy to differentiate all these tasks, regardless of
whether they are letter-writing tasks or drawing or operation
tasks. The result indicates that our robotic motion features
capture the differences among tasks well and the weighted
DTW-based classifier tolerates the network delays and the
user’s varying hand movement speeds when recognizing a task.
The accurate task classification not only help audit the user’s
control tasks but also enable us to further focus on the minute
user behavioral differences embedded in robot motions.

C. User Verification

We now evaluate our approach to verify users. In partic-
ular, we alternatively select each participant to be the target
legitimate user and use the corresponding user template for
verification. We compute the verification accuracy of each
user for all types of tasks. Figure 10 presents the average
accuracy for each of the 30 participants. We observe that
our user verification approach achieves high accuracy for all
the participants. In particular, all the participants achieve over
93% accuracy, while the median accuracy is 94.1%. Some
participants reach around 95% accuracies. The results confirm
that our approach verifies users via robot behaviors accurately.
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Fig. 10: Performance of user verification.

D. Impact of Training Data Size

Next, we study the impact of training data size on user
verification performance. In particular, the user verification
results are obtained based on the user templates derived with
different numbers of training instances. Our approach turns
out to be able to verify users accurately within a limited
number of training instances. In particular, when the training
data size is 6, the verification accuracy is over 80%. The
performance is improved to 93.5% when 13 instances are used
for training. After that, increasing the training data size does
not show significant performance improvement. For example,
the accuracy is 94.1% when 15 instances are used for training.

E. Algorithms Comparison

This work presents the first method to verify a user via the
robot behavior. To further demonstrate the efficiency of our
DTW-based method, we develop three other machine learning-
based methods for comparison, including Hidden Markov
Models (HMM), Support Vector Machine (SVM) and K-
Nearest Neighbors (KNN), and the same features are used.
The results of our four methods are shown in Figure 11. We
observe that for both the task recognition and the user verifi-
cation, our DTW-based method performs better than the three
methods. Specifically, HMM, SVM, and KNN achieve 91.4%,
94.1% and 93.7% accuracy for task recognition, and 84.7%,
89.0% and 88.3% accuracy for user verification, respectively.
The reason is that our method based on DTW is more robust
to the unstable network latencies and the user’s behavioral
inconsistency.

F. Under Zero-knowledge Attack

Setup: In this attacking scenario, we assume the adversary
has no idea of our authentication approach. Thus, the adver-
sary only focuses on operating the robotic arm to complete
malicious tasks without considering the robot behaviors during
the control, which is a common control hijacking scenario. We
simulate such attacks by using programs to generate command
sequences, which control the robotic arm to perform all three
categories of tasks.

Results: The performance of defending the zero-knowledge
attack is shown in Figure 12. We find that our system achieves
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100% True Positive Rate (TPR) and 0% False Positive Rate
(FPR) to verify the legitimate user. The reason is that the zero-
knowledge attacks fail to present any human control behaviors
in the control commands, which can be easily prevented by our
behavior-based authentication approach. The results confirm
the strong capability of our approach to handling the existing
robot hijacking attacks.

G. Under Random Impersonation Attack

Setup: In this attacking scenario, the adversary is assumed
to know the deployment of our approach but has no prior
knowledge of the target user’s control behavior. Thus, the
adversary attempts to cheat our approach with his/her own
behavior. To simulate this attack, we alternatively select each
participant to be the target user and the others to be the random
impersonation attackers.

Results: The performance of our approach under the ran-
dom impersonation attack is shown in Figure 12. Our system
achieves a 94.6% TPR and a 6.9% FPR to verify the legitimate
user under the random impersonations. The Equal Error Rate
(EER) is 6.9%. The results confirm the strong capability of
our approach to distinguish users via the robot behaviors.

H. Under Imitation Attack

Setup: In this attacking scenario, an adversary is assumed
to have prior knowledge of the target user’s control behaviors.
Thus, the adversary imitates the user’s behavior to cheat
our approach when controlling the robotic arm to perform
malicious tasks. To simulate this attack, the authors and three
skilled participants assume the roles of adversaries. They
watch the video of the target users’ control processes to imitate
the behavior, including the trajectories, speeds, accelerations
when moving or making turns and pauses. After practicing, the
adversaries control the robotic arm to spoof the target users.

Results: The performance of defending the imitation attacks
is shown in Figure 12. Our system achieves a 96.5% TPR
and a 9.2% FPR to prevent imitation attacks, and the EER
is 8.5%. The ROC curve under the imitation attacks is only
slightly lower than the random impersonations. The results
indicate that it is hard to imitate the user’s interactive control
behaviors, which integrates the user’s regular behaviors with
the interaction habits, and our approach greatly improves the
security of the motion-controlled robotic arm.
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1. Attack Detection Latency

The attack detection latency is a very important evaluation
metric for our system, which determines how much time we
need to detect and stop an attack. The attack detection latency
of our system mainly depends on the observation window,
which is the duration. According to our experiments, the
median latency is 3.7s, while the other types of latency time
(network latency, computation latency, etc.) is ms level. In our
future work, we will further reduce the latency by exploring
the potential of using partial tasks for authentication.

VII. CONCLUSION

In this work, we demonstrate that when a user interactively
controls a robot to perform tasks, the robotic arm could
inherit a portion of the user’s motion behaviors, which can be
leveraged to distinguish users. We propose a robot behavior-
based user authentication approach for the motion-controlled
robotic arm. The proposed approach ensures the robotic arm
is consistently under the user’s control but not hijacked or
overtaken by an adversary. In particular, we reconstruct the
robotic arm’s end-effector trajectories from the angle readings
of its all joints to describe the robot motion, which reflects
how it follows the user’s hand. We then derive unique robotic
motion features to capture the robot’s behaviors where the
user’s behavioral information is embedded. Based on that, we
develop a DTW-based algorithm to first recognize what type of
task the robot is performing and then verify who is controlling
the robotic arm. We build a real motion-controlled robotic
arm platform to evaluate our approach, which consists of the
motion capture devices, a 7-DOF robotic arm and a local area
network. Extensive experiments show that our authentication
approach verifies the user with 94% accuracy and prevents
hijacking and impersonation attacks with over 95% accuracy.
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