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Abstract—LoRa networks are pivotally enabling Long Range
connectivity to low-cost and power-constrained user equipments
(UEs) in a wide area, whereas a critical issue is to effectively
allocate wireless resources to support potentially massive UEs
while resolving the prominent near-far fairness issue, which is
challenging due to the lack of tractable analytical model and
the practical requirement for low-complexity and low-overhead
design. Leveraging on stochastic geometry, especially the Poisson
rain model, we derive (semi-) closed-form formulas for the
aggregate interference distribution, packet success probability
and hence system throughput in both single-cell and multi-cell
setups with frequency reuse, by accounting for channel fading,
random UE distribution, partial packet overlapping, and/or
multi-gateway packet reception. The analytical formulas require
only average channel statistics and spatial UE distribution, which
enable tractable network performance evaluation and incubate
our proposed Iterative Balancing (IB) method that quickly yields
high-level policies of joint spreading factor (SF) allocation, power
control, and duty cycle adjustment for gauging the average
max-min UE throughput or supported UE density with rate
requirements. Numerical results validate the analytical formulas
and the effectiveness of our proposed optimization scheme, which
greatly alleviates the near-far fairness issue and reduces the
spatial power consumption, while significantly improving the cell-
edge throughput as well as the spatial (sum) throughput for the
majority of UEs, by adapting to the UE/gateway densities.

Index Terms—Stochastic geometry, Poisson rain model, aggre-
gate interference distribution, partial packet overlapping, optimal
duty cycle, multi-cell frequency reuse

I. INTRODUCTION

THE Internet of Things (IoT) has found fast-growing

applications over recent years in the civilian domain

such as for environmental monitoring, building automation and

smart cities, which call for wireless technologies that enable

low-cost, large-scale, and ultra-durable connectivity for almost

everything. Low Power Wide Area Network (LPWAN) [2] is

one of the IoT paradigms that targets at providing long range

wireless connectivity to power-constrained IoT devices in a

wide area, which includes pronounced technologies such as

Narrow Band (NB)-IoT [3] in the licensed band, and LoRa

(Long Range) [4] in the unlicensed band.
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This paper focuses on LoRa, one of the most promising

LPWAN technologies proposed by Semtech [5] and further

promoted by the LoRa Alliance [4], which attracts a lot of

interests from both academia and industry (see e.g., the recent

surveys [2] and [6] and the references therein). By adaptively

trading bit rates for better link budgets, the LoRa physical

layer enables flexible long-range communication with low

power consumption and low-cost design, which is suitable

for those user equipments (UEs) that transmit little amount

of data over long periods of time, e.g., water and gas meters.

However, due to the wide coverage area, there are potentially

massive UEs to be connected by each LoRa gateway (GW).

Moreover, the near-far fairness issue becomes more promi-

nent, as the cell-edge UEs suffer from more severe path-loss

and thus more packet failures in the presence of co-channel

interference. Worse still, the UEs’ uplink transmissions are

typically uncoordinated and may experience random channel

fading/packet overlapping. To date, how to model and char-

acterize the performance of such a large-scale LoRa network,

and thereby effectively allocate wireless resources to support

massive connectivity with fairness in a wide area, remains as

a challenging and critical issue.

The LoRa physical layer adopts the robust Chirp Spread

Spectrum (CSS) modulation with different spreading factors

(SFs), where higher SF is associated with larger spreading

gain, thus extending the communication range at the cost of

lower bit rate. Moreover, LoRa CSS has a pseudo-orthogonal

characteristic with different-SF signals [5] which can be ex-

ploited to accommodate multiple UEs in one channel. On top

of the physical layer, LoRa Alliance has defined the higher

layers and network architecture termed as LoRaWAN [4],

whereby the medium access control (MAC) layer is essentially

an Aloha variant of random access owing to its simplicity. In

particular, the class A-type devices in LoRaWAN consume

the lowest power as they adopt the pure (unslotted) Aloha-

like random access with no synchronization or scheduling

overhead, and thus are well suited for low duty-cycle1 devices

which are idle most of the time. Therefore, we consider class

A type with pure Aloha in this paper, which is the simplest

and also mandatory for all LoRa devices to implement.2

Despite the low duty cycle, in wide-area or dense deploy-

ment scenarios, LoRa networks will still suffer from collisions

of concurrent transmissions in the same channel and SF. The

1The duty cycle reflects the time intensity of random access, which can be
regulated by the network server for traffic shaping [4].

2Note that further performance improvement can be achieved by means of
light-weight scheduling and coarse [7] or complete [8] synchronization, which
is left for future work.

http://arxiv.org/abs/2008.07438v3


IEEE INTERNET OF THINGS JOURNAL 2

conventional protocol model3 for pure Aloha does not account

for the channel capture effect4 that depends on transmit power

(TP), channel fading, and aggregate interference which in turn

depends on both spatial randomness of UE distribution and

time randomness of (partial) packet overlapping. A simulation

model based on real interference measurements is presented in

[9], while a scalability analysis of LoRa networks is performed

in [10] using a LoRa error model together with the LoRaWAN

MAC protocol in the ns-3 simulator. In addition, measure-

ment trials (e.g., [11]) are carried out to justify the practical

deployment of LoRa networks. However, as field trials are

costly and system-level simulations are time-consuming, the

investigated network is typically limited in size and/or lack

flexibility for quick and fine-tuned analysis. To this end, a

model-based methodology is adopted in this paper, by seeking

tractable analytical models for the large-scale LoRa network,

based on which general network analysis/capacity planning

can then be performed to reveal insights on network scalability

and thereby provide general deployment suggestions.

Along this line of research, stochastic geometry has been

extensively applied for tractable modeling/analysis of the

spatial/temporal randomness of wireless networks [12] [13]. In

the context of LoRa networks, scalability analysis is conducted

in [14] and [15] via stochastic geometry, which neglects the

time dependence of (partially) overlapping packets. Accurate

packet overlapping is considered in [16] and [17], and yet it

is difficult to obtain the exact distribution of packet success

probability analytically. For analytical tractability, we hence

leverage another thread of stochastic geometry for non-slotted

Aloha, i.e., the Poisson rain model [18], which caters for

channel fading, aggregate interference, and accurate packet

overlapping. The Poisson rain model is recently applied in [19]

to analyze a single-cell LoRa network whereby the SFs are

tuned to be inversely related to the respective receiver sensi-

tivity in order to equalize the packet reception probability of all

UEs. However, the above work has not considered throughput

fairness and the options of TP and duty cycle control, thus

leaving an open question on the network scalability in the

general multi-cell setup under jointly optimized design.

Motivated by the above, to achieve massive connectivity

(in terms of throughput per UE) with fairness, we study the

problem of maximizing the minimum throughput of all UEs in

both the single-cell and multi-cell setups, by jointly optimizing

the SF, TP, and duty cycle control. The formulated problem

can be shown to be a mixed-integer non-linear programming

(MINLP) due to the discrete SF allocation and nonconvex

throughput constraint, which is thus challenging to solve. To

this end, our main contributions are summarized as follows.

• By leveraging the Poisson rain model and average channel

statistics, (semi-) closed-form formulas are derived for the

aggregate interference distribution, packet success probabil-

ity and hence system throughput in both single- and multi-

cell setups, by accounting for channel fading, power control,

3Two packets are considered both failure if they overlap by any part in
time.

4A strong-enough packet could reject the co-channel interference and be
correctly received, a.k.a. channel capture. Details are provided in Section II.

random UE distribution, partial packet overlapping, and/or

multi-GW packet reception.

• Based on the derived analytical results, a novel Iterative

Balancing (IB) method is further proposed which quickly

yields high-level policies of joint SF, TP and duty cycle

control for gauging the average max-min UE throughput or

supported UE density with rate requirements.

• Analytical formulas for approximating the optimal duty

cycle within each SF group are derived, which provide quick

reference for traffic shaping under given UE/GW densities.

• Different multi-cell frequency reuse schemes are investi-

gated which trade off throughput performance with the lim-

ited number of concurrent demodulation paths in practical

LoRa GWs. Moreover, a modified fractional frequency reuse

scheme, termed as LoRa-FFR, is proposed by accounting for

the pseudo-orthogonal SFs.

• Simulation results validate the analytical formulas and the

effectiveness of our proposed optimization scheme, which

greatly alleviates the near-far fairness issue and reduces

the spatial power consumption, while significantly improv-

ing the cell-edge throughput as well as the spatial (sum)

throughput for the majority of UEs, by adapting to the

UE/GW densities.

Finally, we briefly compare our proposed method with other

existing works. An Adaptive Data Rate (ADR) mechanism is

recommended by Semtech [20] to automatically adapt each

UE’s SF and TP based on individual link budget. However,

simulation studies in [21] reveal that if link conditions change

or network size becomes too large, the convergence time of

the ADR mechanism to a desired communication setting is

quite long. Various improved ADR schemes are thus proposed

to dynamically optimize the data rate, airtime, and energy

consumption (see the recent survey [22] and the references

therein). In particular, instead of rate adaptation merely based

on link-level budget/measurements [20], a better strategy

is the system-level load balancing that exploits the quasi-

orthogonality and diverse communication range of different

SFs [14]–[16], [23]–[26], which is also adopted in this paper.

In [23], SFs are assigned by equalizing the time-on-air of

packets sent by each UE, while in [24] the optimal proportion

of SFs is calculated to assist the SF and TP allocation by

minimizing the collision probability within each SF group.

However, these works [23] [24] focus more on the protocol

design and rely on simplified channel contention models.

Another widely adopted SF allocation strategy is to assign

higher SF to farther UEs based on their distances to the GW,

whereby the distance thresholds are set according to different

rules such as equal-interval-based [14], equal-area-based [16],

signal-to-noise-ratio (SNR)-based [15], and packet-delivery-

ratio (PDR)-based [16] [25], which rely on distance/path-

loss estimations based on statistical channel state information

(CSI). In the case when instantaneous CSI is available, the net-

work performance such as energy efficiency [26] can be further

improved by solving sophisticated problems (typically belong-

ing to MINLP due to discrete channel/SF allocation and/or

user scheduling) with advanced optimization techniques, at the

cost of increased complexity and communication overhead.
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Fig. 1: (a) Single-GW LoRa network. (b) Hexagonal cell layout in
multi-GW LoRa networks.

Different from the above works [14]–[16], [25], [26], our

proposed IB method builds upon the tractable Poisson rain

model, and aims at achieving the average max-min throughput

in large-scale LoRa networks under given network parameters.

The rest of this paper is organized as follows. The sys-

tem model is introduced in Section II, while the max-min

throughput problem is formulated in Section III. Next, the

proposed solution for the single-GW LoRa network is pre-

sented in Section IV, which is extended to the multi-GW

scenario under different frequency reuse schemes in Section

V. Further extension to account for macro diversity of multi-

GW reception is discussed in Section VI. Numerical results

are provided in Section VII. Finally, we conclude the paper in

Section VIII.

II. SYSTEM MODEL

A. Network Model

Consider uplink communication5 from distributed UEs to

LoRa GWs. Consider a typical GW 0 located at the origin

which is also the center of the typical cell 0 with a two-

dimensional (2D) region A ⊂ R
2 of radius rc meters (m).

The typical cell region A is considered as a disk region in the

single-GW scenario as shown in Fig. 1(a). In the multiple-GW

scenario, the classic hexagonal grid cell layout is considered,6

where each GW is at the center of its hexagonal cell with

radius rc and inter-cell distance of
√
3rc, as shown in Fig.

1(b). Moreover, consider M tiers of other GWs denoted by

the sets Mm,m = 1, 2, · · · ,M , where the GWs in tier m
have the same distance Dm from GW 0. By default, denote

m = 0 as the 0-th tier which consists of GW 0 only. Further

denote M ,
⋃M
m=0 Mm as the set of all GWs, vn ∈ R

2 as

the horizontal location of GW n ∈ M, and HG as the GW

height.

Different from the conventional cellular network, a LoRa

uplink packet can be potentially received by multiple nearby

5Uplink communication from LoRa end devices to the network server is
typically uncoordinated and presents as the performance bottleneck. Similar
to other prior works [14]–[17], [19], [23], [24] that focus on uplink scalability,
we consider unconfirmed traffic that consists of only uplink data packets.

6The regular grid-based GW layout serves as a baseline for evaluating the
network performance under planned topology [7], [10], [23], while tailored
GW planning [27] for specific LoRa networks can bring further performance
improvement and is left for future work.

GWs to increase the packet success probability. The uplink

transmission is successful if the packet can be decoded by

one of the GWs, which then further forwards the packet to

the network server (NS) via wired backhaul.7 For the purpose

of exposition, we first focus on the uplink reception by GW

0 in Sections II, III, IV and V, and then extend to the general

setup with multi-GW reception in Section VI.

Consider a given frequency reuse factor of ω (0 < ω ≤ 1)

for the multiple GWs to share a set of F orthogonal channels

each with bandwidth B Hz. As a baseline scheme, consider

full frequency reuse (ω = 1) where each GW uses the full set

of channels as in the state-of-the-art LoRaWAN solutions.8

Assume that each UE randomly selects its operating channel,

and as a result the UEs are uniformly distributed over the

F channels. For the purpose of exposition, we focus on one

typical channel to characterize the co-channel interference and

hence throughput performance. In the whole considered region

and on one typical channel, denote K = {1, 2, · · · ,K} as the

set of UEs which have packets to transmit in the considered

time period, with 2D locations wk , (xk, yk), xk, yk ∈
R, k ∈ K on the ground, which are assumed to follow a

homogeneous9 Poisson point process (HPPP) Φ ⊂ R
2 with

density λ /m2.

Note that in the multi-GW scenario, the set K can be further

divided into M + 1 disjoint subsets K(m), m = 0, 1, · · · ,M
where K(m) denotes the set of UEs in tier-m cells. In the rest

of the paper, we use the superscript (m) to mark a variable

associated with the tier-m cell.

B. Channel Model

LoRa is adopted as the physical layer transmission technol-

ogy for UE-GW communications. For the purpose of exposi-

tion, consider one of the channels with pseudo-orthogonal SFs

s ∈ S , {7, · · · , 12}. For a given s, the transmission rate in

bits/second (bps) is given by [5]

Rs =
s

2s
BC, (1)

where C is the code rate. For simplicity, assume that the

packets are of equal length Ls bits for a given s, which

corresponds to a packet duration of Ts , Ls/Rs.
Denote Pk as the TP of UE k in Watt (W), capped by the

maximum allowed value Pmax. Assume that the GWs and UEs

are each equipped with a single omnidirectional antenna with

unit gain. We assume a simplified fading channel model with-

out shadowing, which consists of distance-dependent path-loss

with path-loss exponent n0 ≥ 2 and an additional random

term ζ accounting for small-scale fading. Note that shadowing

effect can also be incorporated into the stochastic geometry

7The NS can be equipped with higher computational capability than GWs
and thus can handle more sophisticated tasks including ADR operations.

8Other frequency reuse schemes will be discussed later in Section V, which
trade off throughput performance with the limited number of concurrent
demodulation paths in practical LoRa GWs, thereby providing possible
options of network planning for future release of LoRaWAN solutions.

9Our analytical framework can be extended to handle the inhomogeneous
PPP case with non-homogeneous intensity measure [25] in the considered
area. Nevertheless, the HPPP assumption serves as a good baseline for
evaluating the general network performance.
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based analytical framework by treating it as equivalent random

perturbation in the locations of the transmitters (see Sections

III.G and VI.A in [28] and the references therein), which is

ignored in this work for simplicity. Therefore, the channel

power gain from UE k to GW 0 can be modeled as gk = ḡkζk,

where ḡk , α0(H
2
G+ d2k)

−n0/2 is the average channel power,

with α0 = (4πfcc )−2 denoting the average channel power at a

reference distance of 1 m, fc denoting the carrier frequency,

c denoting the speed of light, and dk denoting the horizontal

distance from UE k to GW 0; and ζk
dist.
= ζ ∼ Exp(1) is an

independent and identically distributed (i.i.d.) exponential RV

with mean 1 accounting for the small-scale Rayleigh fading,10

with
dist.
= denoting equal in distribution.

C. SNR and SIR

Consider a typical UE 0 with SF s to communicate with

GW 0. Assume that the receiver noise at GW 0 is additive

white Gaussian noise (AWGN) with zero mean and power σ2.

In the case without interference, the received signal-to-noise

ratio (SNR) is given by

ηs,0 , P0g0/σ
2 = P0ḡ0ζ0/σ

2, (2)

which needs to be not smaller than a certain threshold η̄s in

order for the packet to be successfully decoded, where η̄s is

typically lower for higher SF (see, e.g., Table I in [14]).

On the other hand, when multiple UEs transmit concurrently

on the same channel, it is possible for the reference packet

to reject the co-channel interference and be correctly received

(a.k.a. channel capture) if its signal-to-interference ratio (SIR)

is a few dBs in case of co-SF interference (6 dB as in [30], or

1 dB as in [31]) or as low as −8 ∼ −25 dB in case of inter-

SF interference depending on the interfering SF [31]. First,

we introduce the case with co-SF interference only. Consider

unslotted Aloha as the MAC-layer multiple access method,

which corresponds to Class A in LoRaWAN. Denote Ks ⊆ K
as the set of UEs with SF s, i.e.,

Ks = {k|sk = s, k ∈ K}, (3)

where sk is the SF of UE k. Denote the duty cycle, i.e., fraction

of time that a UE is transmitting packets, as δk ∈ [0, 1] for

UE k, which is subject to a certain limit ∆max (e.g., 1%) and

can be regulated by the network server for traffic shaping [4].

For simplicity, assume that the UEs in Ks comply with the

same duty cycle level δk = ∆s, ∀k ∈ Ks. The number of

transmission initiations per UE per unit time is then given by

ρs ,
1

Ts/∆s − Ts
=

∆s

(1−∆s)Ts
, (4)

which corresponds to the time frequency of channel access.

The aggregate co-SF interference is modeled in the follow-

ing. Consider the typical UE 0 with SF s which transmits a

reference packet during the time interval [0, Ts]. The average

number of co-SF packets initiated during this packet interval

is given by ρsTs|Ks|. At a given time instant t ∈ [0, Ts], the

10The proposed analytical method in this paper can be extended to account
for other fading channels such as the more general Nakagami-m fading [29].

transmitting UEs with SF s make up a set Ks(t) ⊆ Ks, which

cause the total received interference power at GW 0 as

Is(t) ,
∑

k∈Ks(t)\{0}

Pkgk =
∑

k∈Ks(t)\{0}

Pkḡkζk. (5)

Second, it is also possible to incorporate inter-SF interfer-

ence in our analytical framework by introducing the cross-

correlation factor χs,s′ ∈ [0, 1) between the target SF s and

other SF s′, which represents the cross-correlation of inter-

fering energy between these two different spreading codes. In

this case, the co-channel interference at time t for the typical

UE 0 with SF s is given by

Is(t) ,
∑

k∈Ks(t)\{0}

Pkḡkζk+
∑

s′∈S\{s}

χs,s′

(

∑

k∈Ks′ (t)

Pk ḡkζk

)

,

(6)

where Ks′(t) denotes the set of transmitting UEs with SF s′

at time t.

The aggregate interference power at GW 0 averaged over

one packet duration Ts is then given by

Īs ,
1

Ts

∫ Ts

0

Is(t) dt. (7)

Under the pure Aloha model with average interference con-

straint [18], the SIR γs,0 of the reference packet is given by

γs,0 , P0ḡ0ζ0/Īs, (8)

which corresponds to the situation where some coding with

repetition and interleaving of bits on the whole packet duration

is used; and the reference packet can be successfully decoded

if its SIR is not smaller than a certain threshold γ̄s (see, e.g.,

Table 1 in [30]). Finally, note that the formulas (7) and (8)

are applicable to both the case with co-SF interference only

in (5) and the case with inter-SF interference as well in (6).

Nevertheless, since different SFs are pseudo-orthogonal and

the co-channel interference comes mostly from co-SF UEs

especially under power control [24] [32], we ignore the inter-

SF interference in the rest of the paper for simplicity, and

focus on characterizing the achievable capacity upper bound

under joint SF/TP/duty cycle control.

D. Packet Success Probability and Throughput

Due to the unique characteristics of LoRa CSS modulation

[30], [31], a success event of the LoRa packet needs to satisfy

both the SNR and SIR conditions mentioned above [14], [16],

[23], [30], [32].11 The success probability of a reference packet

sent by UE 0 with SF s and received by GW 0 is then given

11Note that our analysis can be readily extended to the case where a
threshold of the signal-to-interference-plus-noise ratio (SINR) for successful
LoRa packet transmission is available.



IEEE INTERNET OF THINGS JOURNAL 5

by

Psuc
s,0 , P

{

{ηs,0 ≥ η̄s}&{γs,0 ≥ γ̄s}
}

(9)

= P
{

{P0ḡ0ζ0/σ
2 ≥ η̄s}&{P0ḡ0ζ0/Īs ≥ γ̄s}

}

= P
{

{ζ0 ≥ η̄sσ
2/(P0ḡ0)}&{ζ0 ≥ γ̄sĪs/(P0ḡ0)}

}

= P
{

{ζ0 ≥ a}&{ζ0 ≥ b}
}

= P{ζ0 ≥ a}P{ζ0 ≥ b|ζ0 ≥ a}
(1◦)

≥ P{ζ0 ≥ a}P{ζ0 ≥ b}
(2◦)
= e−η̄sσ

2/(P0ḡ0)LĪs
(

γ̄s/(P0ḡ0)
)

, (10)

where a , η̄sσ
2/(P0ḡ0), b , γ̄sĪs/(P0ḡ0) and P{·} denotes

the probability of an event; (1◦) is due to P{ζ0 ≥ b|ζ0 ≥
a} ≥ P{ζ0 ≥ b} since the event of ζ0 ≥ a implies that ζ0 ≥ b
is more likely to happen; (2◦) is due to ζ0 with exponential

distribution; and the term P{ζ0 ≥ a} = e−η̄sσ
2/(P0ḡ0)

represents the packet success probability based on the SNR

condition, while the term P{ζ0 ≥ b} = LĪs
(

γ̄s/(P0ḡ0)
)

represents that based on SIR, where LĪs(·) is the Laplace

transform12 of the RV Īs.
Note that the inequality (1◦) is tight when b ≫ a (i.e.,

Īs ≫ η̄sσ
2/γ̄s), which is typically the case for interference-

limited scenario, especially thanks to the low value of η̄s (e.g.,

-6 dB to -20 dB) associated with the low sensitivity of LoRa

receiver [14]. In the rest of the paper, we use the lower bound

in (10) directly to calculate Psuc
s,0. To this end, we need to

characterize the Laplace transform of the average interference

Īs in order to obtain Psuc
s,0, and further obtain the throughput

of UE 0 in bps given by

θs,0 , Rs∆sP
suc
s,0. (11)

The throughput of other UE k with SF s, denoted as θs,k, can

be obtained similar to θs,0.

III. PROBLEM FORMULATION

In this section, we formulate the optimization problem to

maximize the minimum throughput θ of all UEs by jointly

optimizing the TP Pk , SF sk, and duty cycle ∆s of all UEs

k ∈ K, under given cell radius rc, UE density λ per channel,

and a certain frequency reuse pattern with reuse factor ω. The

problem can be formulated as

(P1) : max
θ,∆s,s∈S
Pk,sk,k∈K

θ

s.t. θs,k ≥ θ, ∀k ∈ Ks, s ∈ S, (12)

0 ≤ ∆s ≤ ∆max, s ∈ S, (13)

0 ≤ Pk ≤ Pmax, k ∈ K, (14)

sk ∈ S, k ∈ K. (15)

The problem (P1) is a MINLP due to the discrete SF

allocation and the nonlinear/nonconvex constraint (12). In

general, (P1) requires O(|S|K ) complexity to exhaustively

search for the optimal SF allocation, and it is still a nonconvex

problem with O(K) variables even for fixed SF allocation,

which is thus prohibitive to solve for the scenario with massive

IoT devices.

12The Laplace transform of an RV X is defined as LX(z) , EX

{

e−zX
}

.

In addition to the complexity, solving (P1) also faces

practical challenges. Due to the low energy consumption

requirement, the UEs typically have low wake-up frequency

and limited active time upon wake-up. Therefore, the set of

active UEs may be constantly changing over time from the

pool of massive IoT devices. As a result, it would be difficult

for the GW(s) to obtain the instantaneous CSI of all UEs at

all time which is required to solve (P1) optimally. Moreover,

the GW(s) has limited downlink capacity to send control or

feedback information to UEs. Therefore, even if the centralized

problem (P1) can be solved instantaneously for every given

snapshot of active UEs, it would cause a huge overhead for

GW-UE handshaking and conveying the optimal solutions to

each UE.

In order to resolve the above challenges, we propose a

different approach by first characterizing the statistical dis-

tribution of the aggregate interference and hence the packet

success probability and throughput averaged over a larger time

scale, instead of detailed optimization on a short time basis.

Specifically, instead of requiring detailed information about

instantaneous CSI at a given time snapshot, our proposed

analytical framework requires only knowledge about the active

UE distribution and density over a certain period of time

as well as the channel statistics such as fading distribution

and path-loss exponent, thus allowing for tractable and quick

network performance evaluation. We seek to maximize the

minimum throughput averaged over time, by jointly designing

high-level policies of SF/TP/duty cycle control that adapt to

network parameters including UE/GW densities.

Remark 1: The average max-min throughput can be trans-

lated into an overall estimate of the maximum supported UE

density with rate requirements under given GW density and

other network parameters, which provides useful and quick

reference for network planning to satisfy the overall through-

put demand of large-scale LoRa networks. Such network

capacity planning is needed especially for massive Machine

Type Communications (mMTC) services due to the massive

number of devices involved, which are more likely to cause

network congestions. In addition, the max-min fairness serves

as a baseline to evaluate the network performance when the

data from all users (e.g., sensors) have the same value/priority.

On the other hand, for the user data with heterogeneous

value/priority, other types of fairness (e.g., proportional fair-

ness that assigns resource based on priority) can be applied so

that the data with lower priority can still have a chance to get

through instead of being blocked all the time, which is left for

future investigation.

Remark 2: In practice, the knowledge of active user dis-

tribution and density can be estimated based on collected

location information during the deployment phase along with

the user traffic/mobility information collected in the current

time period, while the knowledge of channel statistics can be

estimated according to the type of environment and/or channel

measurement campaigns in the site of interest, which is worth

the effort for planning large-scale network deployment. Note

that a complete treatment for estimating network parameters

is beyond the scope of this paper. Nevertheless, in the case

with potential bias of the network knowledge, our proposed



IEEE INTERNET OF THINGS JOURNAL 6

iterative balancing method (discussed later in Section IV) can

also be applied, by first obtaining a good initial operating

point based on the analytical model and estimated network

parameters, and then fine-tuning the SF/TP control based on

the measured average throughput of the UEs. For simplicity

in this paper, we focus on the network analysis/planning

under given network parameters as is typically assumed in

the stochastic geometry method, which has been extensively

adopted in the wireless communication research literature for

tractable network analysis, including recent works for LoRa

networks such as [14]–[17] and [19].

IV. PROPOSED SCHEME FOR SINGLE-GW LORA

NETWORK

In this section, we consider the single-GW scenario as in

Fig. 1(a), with the overall UE set K = K(0) representing

the UEs in the single disk cell area A.13 In general, higher

SF is associated with lower SNR threshold η̄s at the cost of

lower data rate [5], which helps to extend the communication

range from the GW in the absence of interference. Therefore,

it is natural to assign higher SF to UEs at a longer distance

from the GW, which have larger path-loss and hence lower

average received power at the GW under the same TP. We

thus adopt the distance-based SF allocation policy which can

be implemented by using distance/path-loss estimations based

on statistical CSI instead of instantaneous CSI.

Specifically, for the considered cell area A of radius rc, it

is partitioned into |S| = 6 zones with the delimiting distance

threshold rs, s = 7, · · · , 11. By default, denote r6 = 0 and

r12 = rc. The UEs in each zone As within distance rs to

rs−1 are allocated with the SF s, respectively.14 For example,

the UEs within distance r7 from GW 0 are allocated with

SF 7, the UEs within distance r8 to r7 are allocated with SF

8 and so on, as shown in Fig. 1. Denote r , (r7, · · · , r11)
as the vector of partitioning distance threshold, which is the

optimization variable to determine the SF allocation. For HPPP

distributed UEs, the number of UEs K
(0)
s with SF s in cell 0

is a Poisson RV with mean λAs, where As = |As| denotes

the area in cell 0 associated with SF s and is given by

As = π(r2s − r2s−1), s = 7, · · · , 12. (16)

When the partitioning distance threshold r is given, the

power control problem is also simplified. If the typical UE is at

the zone edge with distance rs from GW 0, its packet success

probability follows from (10), and thus is more likely to be

in outage due to larger path-loss than the inner UEs with the

same SF s, under the same TP. In order to achieve the average

max-min throughput for the UEs k ∈ Ks, we propose the

“slow” channel inversion power control based on the average

channel power gain ḡk, such that the average received power

13For brevity, throughout this section, we use the superscript (0) to mark
a variable associated with the considered typical cell 0, without further
definition.

14Note that in practical implementations, the distance thresholds can be
translated into equivalent path-loss thresholds. Our analysis can be extended
to account for the shadowing effect, whereby the sharp distance boundaries
for SF allocation could be replaced by “soft” boundaries with overlapping
regions between different SF zones, as suggested by [15].

at GW 0 is the same15 for all UEs with SF s, denoted by Q̄
(0)
s .

Specifically, the TP of each UE k ∈ Ks is given by

Pk = Q̄(0)
s /ḡk = Q̄(0)

s (H2
G + d2k)

n0/2/α0, ∀k ∈ Ks, (17)

where the TP Pk is inversely proportional to ḡk, and thus

we have Q̄
(0)
s = Pkḡk, ∀k ∈ Ks, including the typical UE 0.

The power control in (17) can also be written in the form of

distance-based policy as follows:

P (s, r) , Q̄(0)
s (H2

G + r2)n0/2/α0, (18)

where P (s, r) denotes the TP of the UE with SF s at distance

r from its receiving GW. In particular, for the UE at the zone

edge with TP P edge
s , P (s, rs), we have

Q̄(0)
s , P edge

s α0(H
2
G + r2s)

−n0/2, (19)

and hence

P (s, r) = P edge
s

(

H2
G + r2

H2
G + r2s

)n0/2

. (20)

In other words, the TP of inner UEs with SF s and r < rs is

reduced so that their average received power at the receiving

GW equals to that of the UE at the zone edge, which achieves

both fairness and power savings.

Under the above UE partitioning and power control, we

derive the packet success probability in the following. The

average interference Īs = Ī
(0)
s is given by (7), where the

instantaneous interference Is(t) in (5) is reduced to

Is(t) = I(0)s (t) =
∑

k∈K
(0)
s (t)\{0}

Q̄(0)
s ζk. (21)

Note that the UEs k ∈ K(0)
s reside in the ring region As,

whose locations wk and packet initiation time instant tk are

both random, rendering the set K(0)
s (t) difficult to model

and analyze. For simplicity, assume that the packet arriving

time instants tk, k ∈ K(0)
s follow the Poisson arrival process

with arrival rate ρs. In this paper, we adopt the Poisson rain

model for the UEs k ∈ K(0)
s (t), which forms a space-time

HPPP Φs , {(wk, tk), k ∈ K(0)
s }. We may think of wk

“born” at time instant tk transmitting a packet during time

interval [tk, tk+Ts) and “disappearing” immediately after. The

HPPP Φs has a density λρs, which corresponds to the space-

time frequency of channel access. In the sequel, we derive

the Laplace transform of the interference Ī
(0)
s based on the

formula for the Laplace functional of the HPPP:16

Lemma 1 (Fact A.3 in [18]). Consider a generic shot-

noise J ,
∑

Yk∈Π f(ζk, Yk) generated by some HPPP Π
with density Λ, response function f(·, ·) and i.i.d. marks ζk
distributed as a generic RV ζ. Then the Laplace transform of

J is given by

LJ (z) = exp

{

− Λ

∫

(

1− Eζ{e−zf(ζ,y)}
)

dy

}

, (22)

15For simplicity, continuous power control is considered here while the ob-
tained results can be quantized into discrete power levels for implementation.

16The formula can be extended for non-homogeneous PPP by integrating
over the density measure in the considered space instead of fixed density.
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where the integral is evaluated over the whole state space on

which Π lives.

Based on Lemma 1, we derive the Laplace transform of the

average interference Ī
(0)
s in our setting with power control and

bounded UE distribution field. The results are summarized in

the following proposition:

Proposition 1. The Laplace transform of the average inter-

ference Ī
(0)
s from the typical cell 0 defined by (7) and (21)

under the Poisson rain model is given by

L
Ī
(0)
s

(z) = exp

{−2λ∆s

1−∆s
E(0)
s (z)

}

, (23)

where E
(0)
s (z) , As

(

1 + 1

Q̄
(0)
s z

ln 1

1+Q̄
(0)
s z

)

.

Proof: For the average interference Īs, it follows from (7)

and (21) that

Īs =
1

Ts

∫ Ts

0

∑

k∈Ks(t)\{0}

Q̄(0)
s ζk dt

dist.
=

∑

(wk,tk)∈Φs

ζkh(tk)Q̄
(0)
s ,

(24)

where the second equality is due to swapping of integration

and summation, and the fact that the HPPP remains equal in

distribution after removing one point; and

h(tk) ,
1

Ts

∫ Ts

0

1(tk ≤ t < tk+Ts) dt =
max

(

Ts − |tk|, 0
)

Ts
,

(25)

which represents the time ratio of UE k’s packet overlapping

with the reference packet in the time interval [0, Ts], where

1(·) is the indicator function.

Note that (24) matches with the shot-noise definition with

the response function ζkh(tk)Q̄
(0)
s , and thus it follows from

Lemma 1 that

LĪs(z) = e
−λρs

∫
∞

−∞

∫
2π
0

∫
rs
rs−1

(

1−Eζ{e
−zζh(t)Q̄

(0)
s }

)

r dr dφ dt

= e−λρsAs
∫

∞

−∞

(

1−Eζ{e
−zζh(t)Q̄

(0)
s }

)

dt

(a)
= e

−λρsAs
∫

∞

−∞

(

1− 1

1+zh(t)Q̄
(0)
s

)

dt

= e
−2λρsAsTs

(

1+ 1

Q̄
(0)
s z

ln 1

1+Q̄
(0)
s z

)

, (26)

where As is given in (16); and (a) is due to the Laplace

transform of exponentially distributed ζ with mean 1, which

is given by Lζ(z′) , 1
1+z′ . Therefore, Proposition 1 follows

by substituting (4) into (26).�

Remark 3: For the case with discrete power levels Pk ∈
{p1, · · · , pL}, the continuous power level in (20) can be

rounded to its nearest allowed power level pl. As a result,

the UEs with SF s adopting a certain TP level pl make up

a group Ks,l which reside in the distance range (rs,l−1, rs,l]
from GW 0. In this case, the interference power in (5) is given

by

Is(t) ,
∑

k∈Ks(t)\{0}

Pkgk =

L
∑

l=1

∑

k∈Ks,l(t)\{0}

plḡkζk. (27)

Therefore, following similarly the proof of Proposition 1, the

interference Laplace transform in (26) can be generalized as

LĪs(z) =
L
∏

l=1

e−2πλρs
∫

∞

−∞

∫ rs,l
rs,l−1

(

1−Eζ{e
−zζh(t)plḡ(r)}

)

r dr dt

= e
−2πλρs

∑L
l=1

∫ rs,l
rs,l−1

∫
∞

−∞

(

1− 1
1+zh(t)plḡ(r)

)

r dtdr

= e
−4πTsλρs

∑L
l=1

∫ rs,l
rs,l−1

(

1+ 1
plḡ(r)z

ln 1
1+plḡ(r)z

)

r dr
,

(28)

where ḡ(r) , α0(H
2
G+ r2)−n0/2 denotes the average channel

power gain of a UE k at distance r from GW 0. Note that

the formula in (28) does not admit a closed-form and yet can

be evaluated numerically by simple integrals. For simplicity,

continuous power control is considered in the rest of the

paper in order to characterize the achievable performance

upper bound, whereas the case with discrete power levels is

investigated in Section VII to illustrate the performance loss.�

For the UEs k ∈ K(0)
s with i.i.d. fading ζk

dist.
= ζ and

under the above power control, their SNR and SIR are both

equal in distribution, respectively, and hence they have equal

packet success probability, for which a closed-form lower-

bound expression can be obtained based on (10), given by

Psuc
s,0 ≥ e−η̄sσ

2/Q̄(0)
s LĪs

(

γ̄s/Q̄
(0)
s

)

= exp

{−σ2η̄s

Q̄
(0)
s

− 2λ∆sAsC
(0)
s

1−∆s

}

, (29)

where C
(0)
s ,

(

1 + 1
γ̄s

ln 1
1+γ̄s

)

is a constant. Therefore, the

common throughput of UEs with SF s is lower bounded by

θ̄s , Rs∆sP
suc
s,0

≥ Rs∆s exp

{−σ2η̄s

Q̄
(0)
s

− 2λ∆sAsC
(0)
s

1−∆s

}

, θ̄lb
s . (30)

Note that in the interference-limited scenario, the through-

put lower-bound θ̄lb
s in (30) is tight, which has a tractable

closed-form that reveals insights about the effects of key

system parameters. First, θ̄lb
s is monotonically increasing with

the equalized received power Q̄
(0)
s in (19), which suggests

P edge
s = Pmax to be adopted by the zone-edge UE. Second,

θ̄lb
s is monotonically decreasing with the zone-edge distance

rs, which affects not only the average received power Q̄
(0)
s

at the zone edge, but also the zone area As (and hence the

number of UEs in the zone). Third, it can be verified that θ̄lb
s

first increases and then decreases with ∆s, which facilitates

efficient solutions to achieve the maximum throughput for the

UEs with SF s. Also note that θ̄lb
s goes to 0 as ∆s → 1,

which is consistent with the practical scenario where all UEs

keep transmitting all the time. Finally, besides for system

optimization, the throughput formula (30) is itself useful as

a tractable analytical result for quick performance evaluation

in LoRa networks, while its deriving method is extendable to

other general settings, e.g., the multiple-GW scenario in the

next section.
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As a result, (P1) can be re-cast into the following problem:

(P2) : max
θ̄,r

∆s,s∈S

θ̄

s.t. θ̄s ≥ θ̄, s ∈ S, (31)

0 ≤ ∆s ≤ ∆max, s ∈ S, (32)

where the optimal solution to (P2) is denoted as (r∗; ∆∗
s , s ∈

S), and the corresponding max-min (average) throughput

denoted as θ̄∗. In order to solve (P2), we first obtain an

estimate of the optimal duty cycle under given r for each

SF s based on the throughput lower bound in (30), given by

∆∗
s(r) ≈ min

{

∆max, 1+λAsC
(0)
s −

√

λAsC
(0)
s (2 + λAsC

(0)
s )

}

,

(33)

which is obtained by finding the root of the first-order deriva-

tive on ∆s in (30) along with the constraint (32). It can be

further verified that the corresponding throughput θ̄∗s(r) is de-

creasing with the zone area As, which itself is decreasing with

rs−1 but increasing with rs as given in (16). This corresponds

to the fact that the achievable common throughput θ̄∗s in each

SF group s is decreasing as more UEs are partitioned into this

group.

Based on such monotonicity, we propose the Iterative Bal-

ancing (IB) method to find the optimal partitioning threshold

r
∗ to achieve the average max-min throughput θ̄∗. Specifically,

in each iteration, we find two neighboring zones As and As+1

which have the largest throughput gap ϑmax, and then tune

rs with others in r fixed, such that the throughput gap is

eliminated or reduced to the best extend. The iterations con-

tinue until ϑmax is less than a certain threshold ǫ, upon which

the max-min throughput is achieved whereby the achievable

common throughput θ̄∗s of each SF group s is bounded within

a difference interval of width ǫ. The optimality of the IB

method can be justified based on the following property of

the investigated problem, namely, the max-min throughput θ̄∗

is unique, with the achievable common throughput θ̄∗s = θ̄∗

equal for all SFs s used17. Such a property can be proved by

contradiction. First, assume otherwise that θ̄∗s > θ̄∗s+1 for a

certain SF s. Then we can tune up rs such that more UEs are

partitioned from SF s+1 into SF s, and as a result the lower

throughput θ̄∗s+1 can be increased. Therefore, by induction,

the higher throughput in a certain SF could help increase

the lower throughput in other SFs, which leads to increased

minimum throughput and thus poses contradiction. Second,

assume that the current max-min throughput θ̄∗ is achieved

by the partitioning distance r
∗, and there exists a higher one

θ̄∗
′

> θ̄∗. Then for the lowest SF 7, to achieve θ̄7 = θ̄∗
′

> θ̄∗,

the partitioning distance r7 needs to be reduced. Similarly for

other higher SFs, the corresponding partitioning distance rs
needs to be reduced in order to achieve θ̄∗

′

. By induction, this

would lead to a contradicting result that the served cell radius

is smaller than rc. Therefore, the property mentioned above is

proved.

Similarly, the convergence of the IB method can be justi-

17In the case with low UE density and/or small cell radius, the highest
SF(s) might not be used due to its low data rate.

fied by induction. For all the SFs used, sort their currently

achieved common throughput θ̄s by descending order, and

define ϑ1 , max
s
θ̄s−min

s
θ̄s, i.e., the gap between the highest

and lowest throughputs achieved so far. In each iteration of the

IB method, if any of the SF s = argmax θ̄s or s = argmin θ̄s
is encountered, then the gap ϑ1 would be reduced since either

the highest throughput is reduced or the lowest throughput is

increased, or both. Otherwise not encountered, we can further

define ϑ2 as the gap between the second highest throughput

and the second lowest throughput. Similarly, the gap ϑ2 is

either reducing or the induction continues, by the end of which

only one gap exists and will be eliminated, thus returning to

the previous level of induction and reducing the corresponding

gap ϑi. As a result, the bounding gap ϑ1 is ultimately reduced

which leads to convergence of the IB method.

Algorithm 1 Computing the partitioning distance threshold r

for SF allocation by IB method

1: Initialize r, where rs ≤ rs+1 ≤ rc, s ∈ S .
2: repeat
3: For each SF s ∈ S , obtain the throughput θ̄s under a given

duty cycle ∆s (∆s could be initialized as the estimated optimal
duty cycle in (33), and fine-tuned for the optimal).

4: Find the largest throughput gap ϑmax = max
7≤s≤11

|θ̄s− θ̄s+1| and

corresponding index s0.
5: Adjust rs0 while keeping others in r fixed, subject to rs0−1 ≤

rs0 ≤ rs0+1 and rs0 ≤ rs0,max:
6: if θ̄s0 ≤ θ̄s0+1 then
7: Tune rs0 down such that θ̄s0 = θ̄s0+1;
8: else
9: Tune rs0 up such that θ̄s0 = θ̄s0+1, or until rs0 =

min{rs0+1, rs0,max}.
10: end if
11: until ϑmax < ǫ, or none of the throughput gaps can be reduced,

or the maximum number of iterations Nmax is reached.

The IB method is summarized in Algorithm 1. Note that

we place a bound Nmax on the maximum number of iterations

in order to limit the worse-case running time. Also, as an

option, we can further define an upper limit rs,max for rs in

practice, which could be set, for example, as the maximum

range reachable by SF s under path-loss only. For the tuning

process in Line 7 or 9, the worst-case complexity is given by

O
(

log2(1/ǫ)
)

if bisection search is used, which runs fast since

the underlying computation is based on our derived (semi-)

closed-form expressions. As a result, the overall complexity

of the IB method is given by O
(

Nmax log2(1/ǫ)
)

, although

the algorithm runs much faster in practice than such worse-

case time complexity.18 Finally, note that for the case where

the duty cycle is pre-determined and cannot be adjusted,

the proposed IB method can still be applied to achieve the

corresponding average max-min throughput given the duty

cycle.

18In our simulations, a value of Nmax = 50 would suffice, and such
computation typically completes within a few minutes on a laptop computer
even for the multi-cell scenarios in Sections V and VI.
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(a) (b)

Fig. 2: (a) 1-reuse. (b) 1/3 reuse.

V. FREQUENCY REUSE SCHEMES IN MULTI-GW LORA

NETWORKS

In this section, we consider the multi-GW scenario in Fig.

1(b), and investigate how to achieve the max-min throughput

of the multi-GW LoRa network under different frequency

reuse schemes and different GW density (corresponding to

different cell radius rc). Denote λactive as the total UE density

to be served in the considered multi-cell region during the

considered time period. To incorporate the additional interfer-

ence from other cells, we consider a typical GW 0 and its

cell region A in Fig. 2, and M tiers of other co-channel GWs,

denoted by the sets Mm,m = 1, 2, · · · ,M , where the GWs in

tier m have the same distance Dm from GW 0. For example,

we have D1 =
√
3rc, D2 = 3rc and D3 = 2

√
3rc for the

1-reuse scheme in Fig. 2(a). By default, denote m = 0 as the

0-th tier which consists of GW 0 only.

A. 1-Reuse

Consider the full-reuse scheme (ω = 1) where all GWs

use the full set of F channels, and the UE density on each

channel is given by λ = λactive/F. As a result, the overall

received interference at GW 0 comes from different tiers of

cells, and the expression in (5) is now given by

Is(t) , I(0)s (t) +
M
∑

m=1

I(m)
s (t), (34)

where I
(0)
s (t) follows directly from (21), and I

(m)
s (t) is the

total interference from the tier-m cells, which is given by

I(m)
s (t) ,

∑

k∈K
(m)
s (t)

Pkgk =
∑

k∈K
(m)
s (t)

Pkḡkζk, (35)

where K(m)
s (t) denotes the set of UEs in tier-m cells which

are transmitting at time t with SF s on the typical channel.

Assume that all cells adopt the same policies of SF/TP/duty

cycle control, which follow similarly from the single-cell case

in Section IV. Denote nk as the GW in UE k’s residing cell.

Denote rk and ψk as the UE k-GW nk distance and UE k-GW

nk-GW 0 angle, respectively, as shown in Fig. 2(a). As a result,

the TP Pk of UE k with SF s follows the power control policy

in (20), with r = rk. On the other hand, the average channel

power ḡk from an interfering UE k in a tier-m cell (m =
1, · · · ,M ) to GW 0 is given by ḡk = α0(H

2
G + d2k)

−n0/2,

where d2k can be expressed using the cosine law as

d2k = D2
m + r2k − 2rkDm cosψk. (36)

Therefore, the average interference power received at GW

0 caused by UE k with SF s in tier-m cell is given by

Q
(m)
s,k , Pkḡk = P edge

s

(

H2
G + r2k

H2
G + r2s

)

n0
2

· α0

(H2
G + d2k)

n0
2

= P edge
s α0

(

H2
G + r2k

(H2
G + r2s)(H

2
G +D2

m + r2k − 2rkDm cosψk)

)

n0
2

, Q(m)
s (rk, ψk). (37)

As a result, the total interference at time t from tier-m cells

is given by

I(m)
s (t) ,

∑

k∈K
(m)
s (t)

Q
(m)
s,k ζk, (38)

which has a similar form with I
(0)
s (t) in (21).

Based on (34), the aggregate interference power at GW 0

averaged over one packet duration Ts is then given by

Īs ,
1

Ts

∫ Ts

0

Is(t) dt = Ī(0)s +
M
∑

m=1

Ī(m)
s , (39)

where Ī
(0)
s denotes the average total interference from cell 0,

and Ī
(m)
s denotes the average total interference from tier-m

cells, m = 1, · · · ,M , which are mutually independent. As a

result, the Laplace transform of Īs is given by

LĪs(z) , EĪs

{

e−zĪs
}

= L
Ī
(0)
s

(z)

M
∏

m=1

L
Ī
(m)
s

(z), (40)

where L
Ī
(m)
s

(z) denotes the Laplace transform of Ī
(m)
s , m =

0, 1, · · · ,M .

For the typical cell 0, L
Ī
(0)
s

(z) follows directly from (23)

with the UE density λ = λactive/F, yet noting that the area

As may not be a ring region as in (16), but instead may be a

slightly more complicated shape (e.g., UEs with SF 12 may

reside in a region with hexagonal boundary). For other cells

in tier-m, we have the following proposition.

Proposition 2. The Laplace transform of Ī
(m)
s , m =

1, · · · ,M is given by

L
Ī
(m)
s

(z) = exp

(

− 2λ∆s|Mm|E(m)
s (z)

1−∆s

)

, (41)

where |Mm| is the number of GWs in tier m,19 and E
(m)
s (z)

is given by

E
(m)
s (z) ,

∫ 2π

0

∫ rs

rs−1

(

1+
1

zQ
(m)
s (r, ψ)

ln
1

1 + zQ
(m)
s (r, ψ)

)

r dr dψ,

(42)

with Q
(m)
s (r, ψ) given by (37).

Proof: The average total interference from tier-m cells is

given by

Ī
(m)
s ,

1

Ts

∫ Ts

0

I
(m)
s (t) dt =

1

Ts

∫ Ts

0

∑

k∈K
(m)
s (t)

Q
(m)
s,k ζk dt, (43)

19For example, we have |M1| = |M2| = |M3| = 6 in the 1-reuse
scheme in Fig. 2(a).
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which comprises |Mm| parts of i.i.d. interference I
(m)
s,n from

cells n ∈ Mm. Therefore, based on similar derivations for

Proposition 1, the Laplace transform of Ī
(m)
s is given by

L
Ī
(m)
s

(z) =
∏

n∈Mm

L
Ī
(m)
s,n

(z)

= e
−λρs|Mm|

∫
∞

−∞

∫
2π
0

∫
rs
rs−1

(

1−Eζ

{

e−zζh(t)Q
(m)
s (r,ψ)

})

r dr dψ dt

(a)
= e

−λρs|Mm|
∫ 2π
0

∫
rs
rs−1

∫
∞

−∞

(

1− 1

1+zh(t)Q
(m)
s (r,ψ)

)

r dtdr dψ

(b)
= e

−λρs|Mm|2Ts
∫

2π
0

∫
rs
rs−1

(

1+ 1

zQ
(m)
s (r,ψ)

ln 1

1+zQ
(m)
s (r,ψ)

)

r dr dψ

= e−2λ|Mm|ρsTsE
(m)
s (z), (44)

where Q
(m)
s (r, ψ) is given by (37); (a) is due to the Laplace

transform of exponentially distributed ζ with mean 1; (b) is

by integrating over t, similarly to that in (26); and E
(m)
s (z)

is given by (42). The final expression in (41) is then obtained

by substituting ρs in (4) into (44).�

As a result, based on (23), (40) and (41), the Laplace

transform of Īs is then given in a semi-closed form expression:

LĪs(z) = exp

{−2λ∆s

1−∆s
Gs(z)

}

, (45)

where Gs(z) , E
(0)
s (z) +

∑M
m=1 |Mm|E(m)

s (z). Therefore,

the packet success probability can be obtained based (10)

with the interference Laplace transform substituted by the

expression in (45), which is given by

Psuc
s,0 ≥ exp

{

− η̄sσ
2

Q̄
(0)
s

}

LĪs(z)
∣

∣

z=γ̄s/Q̄
(0)
s

= exp

{

− η̄sσ
2

Q̄
(0)
s

− 2λ∆s

1−∆s
Gs

(

γ̄s

Q̄
(0)
s

)}

. (46)

Based on (46), an estimate of the optimal duty cycle to

maximize the common throughput θ̄s = Rs∆sP
suc
s,0 can be

derived similarly as in (33), which is given

∆∗
s(r) ≈ min

{

∆max, 1 + λGs(z0)−
√

λGs(z0)[2 + λGs(z0)]
}

,
(47)

with z0 , γ̄s/Q̄
(0)
s . As a result, the derived formulas in (33)

and (47) can be applied to approximate the optimal duty cycle

within each SF group, which provides quick reference for

traffic shaping under given UE/GW densities.

Finally, thanks to similar monotonic property of the achiev-

able common throughput θ∗s as discussed in Section IV, we

can tune the partitioning distance threshold r for SF allocation

to achieve the average max-min throughput θ̄∗, based on the

IB method in Algorithm 1.

B. 1/F-Reuse

Consider the 1/F-reuse scheme where each cell uses only

one of the F channels based on a certain pattern. As a result,

on one typical channel, the UE density in the co-channel cells

is given by λ = λactive, which is F times that of the 1-reuse

scheme and hence more interference arises from a co-channel

cell at a given distance away. On the other hand, however,

the distance Dm of tier-m GWs also becomes larger thanks

to the frequence reuse pattern, hence resulting in weaker

Available Spectrum

Cell Edge Cell Center

(a)

Available Spectrum
Cell Edge

Cell Center

Different 

SFs

(b)

Fig. 3: (a) Classic FFR. (b) LoRa-FFR.

interference generated per UE. Therefore, there is a general

trade-off between the density and distance of interfering UEs

in different frequency reuse patterns. For the case with F = 3
channels, an illustrative example is shown in Fig. 2(b), with

D1 = 3rc for tier-1 co-channel GWs in the 1/3-reuse scheme.

Despite the density and distance of interefering UEs, the

analytical framework follows directly from that in Section

V-A, including formulas for the interference, packet success

probability and throughput, as well as the solution method.

Note that the reuse patterns with different F or other reuse

factors can be similarly analyzed by our analytical framework.

C. LoRa-FFR

Fractional frequency reuse (FFR) is a classic frequency

reuse scheme which divides each cell into cell-center and

cell-edge zones which are allocated with orthogonal bands.

Moreover, the cell-edge zones in neighboring cells are also

allocated with orthogonal bands in order to mitigate the inter-

cell interference, since the cell-edge UEs are closer to other

cells. An example of the classic FFR scheme is shown in Fig.

3(a).

In this subsection, we propose a modified FFR scheme for

LoRa networks, termed as LoRa-FFR, which also allocates

orthogonal bands to different cell-edge zones in neighboring

cells, as shown in Fig. 3(b). In contrast, however, there is

an additional degree of design freedom, i.e., the pseudo-

orthogonal SFs, which naturally separate the cell-center and

cell-edge zones according to the distance-based SF allocation

policy as in Fig. 1(a) and Fig. 2. As a result, the cell-center

zones can now reuse the full spectrum band, thus further

improving the spectrum efficiency. In this case, on one typical

channel, the UE density in the cell-edge zones is still given

by λ = λactive, while it is reduced to λ = λactive/F in the cell-

center zones thanks to the pseudo-orthogonal SFs in LoRa

networks. Similarly, the analysis for the cell-center and cell-

edge zones follows directly from that in Sections V-A and

V-B, respectively.

VI. MACRO DIVERSITY OF MULTI-GW RECEPTION

In Section V, we have characterized the packet success

probability which considers uplink packet reception at GW

0 only. Different from the conventional cellular network, a

LoRa uplink packet can be potentially received by multiple
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nearby GWs. The uplink transmission is successful if the

packet can be decoded by one of the GWs. Thanks to such

macro diversity, each uplink packet gets additional chances

to be received by nearby GWs in other cells, especially for

cell-edge UEs which are closer to other GWs. Note that we

have proposed the complete channel inversion power control

for the single-GW reception case in the above sections, which

equalizes the received signal power at GW 0 (and hence packet

success probability) for the UEs with the same SF s. In the

multi-GW reception scenario, the UEs at the outer-boundary of

the ring region (i.e., at distance rs from GW 0) tend to have

a higher packet success probability than those at the inner-

boundary due to the macro diversity. Therefore, to maximize

the minimum throughput in each ring region, we propose the

distance-proportional fractional power control by introducing

a power control factor β ∈ [0, 1] in (20), i.e.,

P (s, r) = P edge
s

(

H2
G + r2

H2
G + r2s

)

n0
2 β

, (48)

whereby β = 0 corresponds to the special case with constant

power P (s, r) = P edge
s , while β = 1 reduces to the case in

(20) with complete channel inversion. As a result, the TP of the

typical UE 0 at location w0 , (r, φ) with SF s is then given

by P0 = P (s, r), where (r, φ) denotes the polar coordinate

centered at GW 0, as shown in Fig. 2(a).

For the channel between UE 0 and GW n, the channel power

gain can be modelled as g0,n = ḡ0,nζ0,n, where ζ0,n ∼ Exp(1)
and ḡ0,n , α0(H

2
G+d20,n)

−n0/2 is the average channel power

gain, with d0,n , ‖w0 − vn‖ denoting the corresponding

horizontal distance, and vn denoting the horizontal location

of GW n. Based on the cosine law, the square of the distance

d0,n can be expressed in the polar coordinate system as

d20,n = r2 + ‖vn‖2 − 2r‖vn‖ cos(φ − ∠vn). (49)

Therefore, the average channel power gain ḡ0,n is also a

function of UE 0’s location w0 , (r, φ).
Denote ηs,0,n and γs,0,n as the SNR and SIR of a reference

packet sent by the typical UE 0 with SF s received at GW n.

Following the definition of packet success probability at GW

0 in (9), we can similarly obtain the packet success probability

at GW n, which is given by

Psuc
s,0,n(w0) , P

{

{ηs,0,n ≥ η̄s}&{γs,0,n ≥ γ̄s}
}

≥ e−η̄sσ
2/(P0ḡ0,n)EĪs,n

{

e−γ̄sĪs,n/(P0ḡ0,n)
}

, (50)

where Īs,n denotes the aggregate interference power at GW n
averaged over one packet duration Ts, similar to the definition

of Īs for GW 0 in (7). The term e−η̄sσ
2/(P0ḡ0,n) represents the

packet success probability based on the SNR condition, while

the term EĪs,n

{

e−γ̄sĪs,n/(P0ḡ0,n)
}

, LĪs,n
(

γ̄s/(P0ḡ0,n)
)

rep-

resents that based on the SIR condition. In order to obtain

Psuc
s,0,n, we need to derive the interference Laplace transform

LĪs,n(·) first.

For GW 0, we have assumed that its received interference

comes from M tiers of other GWs centered at GW 0. Simi-

larly, by symmetry, we assume that the interference received

by GW n comes from its own M tiers of surrounding GWs. As

a result, the interference Īs,n received by GW n has the same

statistical distribution as that of the interference Īs received

by GW 0. Therefore, the Laplace transform of Īs,n can be

obtained similarly to that in (45), with only slight modification

of Q
(m)
s (r, ψ) in (37) to account for the fraction power control

in (48), i.e.,

Q(m)
s (r, ψ) =

α0P
edge
s

(

H2
G+r2

H2
G
+r2s

)

n0
2 β

(H2
G +D2

m + r2 − 2rDm cosψ)
n0
2

. (51)

As a result, the packet success probability at GW n can then

be obtained by substituting the interference Laplace transform

LĪs,n(·) into (50).

Finally, with multi-GW reception, a LoRa uplink packet

fails if and only if none of the GWs can decode the packet.

For analytical tractability, we assume that the interferences

received by different GWs are mutually independent, as is

justified in [33]. As a result, given the location w0 of the

typical UE 0, its overall packet success probability with SF s
is given by

Psuc
s,0(w0) , 1−

∏

n∈M

(

1− Psuc
s,0,n(w0)

)

. (52)

Therefore, the average packet success probability for the UEs

with SF s can be obtained by integrating over the distribution

of w0, i.e.,

P̄
suc

s,0 ,
1

As

∫ 2π

φ=0

∫ rs

rs−1

Psuc
s,0(w0)r dr dφ. (53)

The average throughput of the typical UE 0 with SF s under

multi-GW reception is thus given by

θ̄s,0 , Rs∆sP̄
suc

s,0. (54)

Finally, we can similarly tune the partitioning distance thresh-

old r for SF allocation to achieve the average max-min

throughput θ̄∗, based on the IB method in Algorithm 1.

In summary, we have extended our analytical results of the

single-cell LoRa network in Section IV to the multi-cell LoRa

network under single-GW/multi-GW reception in Sections V

and VI, respectively. Based on these analytical results, we are

able to perform quick evaluation of the throughput fairness

and scalability in a large-scale LoRa network under different

UE/GW densities, which are cross-validated with Monte-Carlo

(MC) simulations in the next section.

VII. NUMERICAL RESULTS

In this section, we first perform MC simulations and verify

the accuracy of our proposed analytical formulas for the aver-

age throughput in (11) for both the single-GW and multi-GW

scenarios. In the MC simulations, we first generate the location

database for the set Kall of all UEs (including both active and

inactive) in the considered area, which is a random realization

of an HPPP with larger density λall (e.g., λall = 10λactive). Then

the set K of active UEs per channel in the considered time

period is randomly and independently drawn from Kall. The

packet success probability is obtained by averaging over N
(e.g., N = 106) realizations of K, where for each realization

we simulate the random packet generation and overlapping,
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TABLE I: LoRa parameters

SF Bit rate Rs(bps) SNR threshold η̄s (dB) Max. range (m) under pathloss only

7 5469 -6 1053

8 3125 -9 1283

9 1758 -12 1563

10 977 -15 1904

11 537 -17.5 2244

12 293 -20 2645

and verify both the SNR and SIR conditions for the reference

packet according to (9). The following parameters are used

if not mentioned otherwise: HG = 25 m, λ = 350/km2,

B = 125 kHz, C = 4/5, Ls = 25 Bytes, Pmax = 14 dBm,

β = 0.9, n0 = 3.5, fc = 868 MHz, c = 3 × 108 m/s,

σ2 = −117 dBm, ∆max = 1%, ǫ = 0.02 bps, γ̄s = 6 dB

for s ∈ S, and η̄s is given in Table I.

Based on the verified analytical formulas, we can then apply

our proposed optimization scheme to achieve the average max-

min throughput in the LoRa network. Besides the average

minimum (common) throughput θ̄min, we define the spatial

throughput of all UEs k ∈ K in bps/m2 as the ratio of the

average total throughput versus the considered population area

S, i.e.,

Θ ,
1

S
E

{

∑

s∈S

∑

k∈Ks

θs,k

}

. (55)

Further define the κ percentile-spatial throughput as the spatial

throughput for the (disadvantaged) κ percentile of UEs which

have lower throughput in K. In this section, we use the 90%-

spatial throughput to measure the sum-rate performance for

the disadvantaged majority of UEs. Moreover, to measure

the throughput fairness exactly, we adopt the Jain’s fairness

index.20 Finally, to measure the power consumption, we intro-

duce the spatial transmit power (STP) defined as the ratio of

the average total TP versus the considered population area S,

i.e., STP , 1
SE

{
∑

k∈K δkPk
}

.

A. Single-GW Scenario

1) Verifying Throughput and Duty Cycle Formulas: In

the first set of simulations, we verify the accuracy of the

throughput formula in (30) and the estimated optimal duty

cycle in (33). For the purpose of illustration, we consider a

cell with radius rc = 900 m which is partitioned into six equal-

width ring regions (i.e., r7 = 150 m, r8 = 300 m, r9 = 450
m, etc.) each allocated with SF 7 to 12, respectively. Under the

slow channel inversion power control, we obtain the average

(common) throughput of the UEs in each region for a given

duty cycle, and plot the results for SF 9 and SF 10 in Fig. 4,21

under different UE density. It can be seen that the proposed

formula matches quite well with the MC simulation results.

Moreover, under given UE density and SF allocation, it is

observed that there exists an optimal duty cycle in maximizing

the average throughput of the UEs with a given SF. Therefore,

it is beneficial for the network server to regulate the duty cycle

level for traffic shaping in adaptation to the UE and/or GW

20Jain’s fairness index J for θk, k ∈ K, is defined as J ,
(E{θ})2

E{θ2}
, where

J ∈ [0, 1] and a higher J represents better fairness.
21Other SFs have similar results which are omitted for brevity.
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Fig. 4: MC simulation verification for the throughput formula in (30)
and the estimated optimal duty cycle in (33).

densities, as is done in our proposed scheme in (33) and (47)

for the single- and multi-GW cases, respectively.

2) Impact of Discrete Power Levels: Here we investigate

the impact of discrete TP levels on the throughput perfor-

mance. For illustration, consider a single cell with radius

rc = 500 m and all UEs transmitting with SF 7 and a duty

cycle of 1%. The throughput of the typical UE located at

different distance from GW 0 is shown in Fig. 5, under three

different TP profiles, respectively, i.e., 1) discrete TP levels:

2, 5, 8, 11 and 14 dBm (default by Semtech); 2) discrete TP

levels: -10 to 14 dBm with 1 dB increment; and 3) continuous

TP levels.

First, it can be seen that the generalized formula in (28) to

account for discrete power levels still matches well with the

corresponding MC simulation results. Second, allowing more

TP levels renders more flexibility and finer granularity for TP

control, which helps improve both the minimum throughput

and fairness index. For the three TP profiles above, the

achieved minimum throughput is 1.12, 1.66 and 1.95 bps, with

a fairness index of 0.206, 0.328 and 0.999, respectively. Third,

allowing a lower TP level for those UEs close to the GW not

only saves more power, but also helps alleviate the near-far

fairness issue. For the example in Fig. 5, the UEs using TP

profile 1 within distance around 200 m from GW 0 (around

(200/500)2 = 16% of all UEs) transmit with 2 dBm power

and have dominant throughput over others. In comparison, in

the case with TP profile 2, the UEs with dominant throughput

transmit with 0.1 mW power and reside within distance around

100 m from GW 0 (around (100/500)2 = 4% of all UEs),

while the common throughput for the majority of UEs has been

improved from 1.12 bps to 1.66 bps. In the rest of simulations,

we focus on the case with continuous TP levels in order to

characterize the achievable common throughput upper bound.

3) Achieving Max-Min Throughput: In this set of simula-

tions, we apply our proposed scheme to achieve the average

max-min throughput in a single-cell LoRa network, and also

simulate a benchmark scheme using the MC method with

fixed TP Pk = Pmax and fixed duty cycle δk = 1% for

all UEs k ∈ K, under the equal-area cell partitioning where

the partitioning distance threshold r is set such that the ring

regions associated with different SFs have the same area. The

results for a single cell with radius 1 km are plotted in Fig. 6.

For the benchmark scheme, it can be seen that the average
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Fig. 5: Impact of discrete power levels.

Fig. 6: Throughput distribution in a single cell with radius 1 km.

throughput of the typical UE with a certain SF decreases

with its distance from the GW, resulting in a prominent near-

far fairness issue whereby the UEs close to the GW unfairly

enjoy dominant throughput. Worse still, the UEs close to the

cell edge (with SF 11 or 12) suffer from a poor throughput

due to lower bit rate, resulting in a minimum throughput of

θ̄min = 0.29 bps. For our proposed scheme, it can be seen

that our proposed formula in (30) for the throughput lower

bound tightly matches the MC simulation results, and more

UEs tend to be allocated with lower SF to enjoy higher bit

rate. In particular, the optimal duty cycle of SF 11 is capped

by 1%, while SF 12 is not used in this case due to its low bit

rate. As a result, the near-far fairness issue is greatly alleviated,

and the throughput of cell-edge UEs greatly improved, with

a minimum throughput of θ̄min = 2.81 bps per UE which

is an order of magnitude higher than that of the benchmark

scheme. Moreover, compared with the benchmark scheme, our

proposed scheme improves the fairness index from 0.2145

to 0.9996, increases the 90%-spatial throughput from 654.6

bps/km2 to 930.5 bps/km2, and also reduces the STP from

87.9 mW/km2 to 22.8 mW/km2 thanks to our proposed power

control scheme.

Next, we consider a larger cell with radius rc = 2 km and

plotted the results in Fig. 7. For the benchmark scheme, due

to longer range and larger service area, it can be seen that the

near-far fairness issue becomes more severe, and the through-

put of cell-edge UEs becomes even poorer. In comparison, our

proposed scheme greatly alleviates the near-far fairness issue

and improves the cell-edge throughput. Moreover, compared

Fig. 7: Throughput distribution in a single cell with radius 2 km.

with the benchmark scheme, our proposed scheme improves

the fairness index from 0.0226 to 0.7614 and increases the

90%-spatial throughput from 1.34 bps/km2 to 134.4 bps/km2,

while the STP is further reduced from 87.9 mW/km2 to

7.42 mW/km2. Finally, some deployment/design guidelines

are suggested for a large service area. The properly-optimized

LoRa network is able to serve the cell-edge UEs but typically

at a low throughput, and it is beneficial to regulate the duty

cycle level in adaptation to the network parameters including

UE/GW densities so as to alleviate the collisions from mas-

sive co-SF devices. This also motivates us to investigate the

throughput fairness and scalability in the multi-GW scenarios,

to further shed light on the network capacity or maximum

supported UE density with rate requirements by densifying

the GWs.

B. Multi-GW Scenario

In this subsection, we focus on the multi-GW LoRa net-

works under different cell sizes. Since the interference from

remote cells to the central cell is relatively weak, we consider

a maximum interference range, denoted by dmax, whereby the

cells within (or partially within) this range are taken into

account. For the example of dmax = 3.2 km, the number

of considered cells is 7, 7, 13, 19 and 37 for the cases

with cell radius rc = 2.6 km, 2 km, 1.5 km, 1 km and

700 m, respectively. In the following, we first compare the

performance of different frequency reuse schemes, and then

focus on the 1-reuse scheme to illustrate how to achieve the

average max-min throughput in the multi-GW scenario.

1) Comparison of Different Frequency Reuse Schemes: For

the purpose of exposition, we compare the 1-reuse, 1/3-reuse,

and LoRa-FFR schemes in Section V under given TP and

duty cycle as well as fixed SF allocation based on equal-area

distance partitioning, similar to the setup of the benchmark

scheme in Fig. 6 and Fig. 7. For fair comparison, here we

assume that F = 3 channels are available to serve UEs with

density λactive = 3λ. Consider rc = 700 m and 37 cells within

range dmax = 3.2 km. For the 1-reuse scheme, the UE density

on each channel is λ and the co-channel interference comes

from all 37 cells. For the 1/3-reuse scheme, the UE density on

each channel is 3λ and the co-channel interference comes from

12 co-channel cells. For the LoRa-FFR scheme, assume that

the inner disk region associated with SFs 7, 8 and 9 use the 1-

reuse scheme while the outer ring region associated with SFs
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Fig. 8: Comparison of different frequency reuse schemes.

10, 11 and 12 use the 1/3-reuse scheme. The results for single-

GW reception is shown in Fig. 8 while similar results for the

multi-GW reception case are observed and hence omitted for

brevity.

It can be seen that the 1-reuse scheme achieves overall

higher throughput than that of the 1/3-reuse scheme, especially

for the inner disk region close to GW 0. Due to the random

(and hence non-orthogonal) time-sharing nature of Aloha, the

co-channel interference comes from both cell 0 and other cells,

whereby the intra-cell interference plays a more dominant role

owing to its shorter distance from GW 0. As a result, the 1-

reuse scheme that thins the co-channel UE density in cell 0 is

more effective in alleviating the co-channel interference level

than the 1/3-reuse scheme which reduces interference from

other cells. The LoRa-FFR scheme can be treated as a hybrid

scheme of the above two schemes and hence has corresponding

performance on the respective regions.

Despite the achievable throughput performance, it is worth

noting that the 1/F-reuse and LoRa-FFR are still of value in

practice, depending on the capability (and associated cost) of

the LoRa GW chips used. For example, Semtech SX1301 chip

[34] can scan over multiple frequency channels, and supports

a maximum of ND = 8 concurrent demodulation paths for

arbitrary combination of operating channel and SF. Note that

ND can be set to any value for a customer specific circuit with

the corresponding number of demodulation circuits installed.

Therefore, since the 1/F-reuse and LoRa-FFR schemes may

require smaller ND compared with the 1-reuse scheme, they

provide different options for capacity and cost trade-off. In the

rest, we focus on the 1-reuse scheme on a single channel.

2) Achieving Max-Min Throughput: In this subsection, we

compare the performance of our proposed scheme with the

benchmark scheme (similar to the benchmark setup in Fig. 6)

under both single-GW reception and multi-GW reception. For

illustration, consider the multi-GW scenario with cell radius

rc = 1 km. The obtained results are shown in Fig. 9.

Similar to the results in Fig. 6 for the single-cell case, our

proposed scheme greatly improves the achieved throughput

and fairness. Under single-GW reception, compared with

the benchmark scheme, our proposed scheme improves the

fairness index from 0.1477 to 0.9975, increases the minimum

throughput from 0.001 bps to 1.591 bps, increases the 90%-

spatial throughput from 395.1 bps/km2 to 605.0 bps/km2, and

also reduces the STP from 87.9 mW/km2 to 11.5 mW/km2.
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Fig. 9: Throughput distribution in cell 0 for the multi-GW scenario
with rc = 1 km.

In the multi-GW reception scenario, it can be seen from

Fig. 9 that the benchmark scheme has almost no improvement

over the single-GW reception counterpart, except marginal

improvement for UEs with SF 12 which locate at the cell

edge and are closer to other neighboring GWs. This is due

to the lack of power control in the benchmark scheme which

results in high aggregate interference power at the GWs and

hence reduces the multi-GW reception probability. In contrast,

thanks to our joint power control and duty cycle adjustment,

our proposed scheme reduces the aggregate interference at

the GWs and hence improves the throughput for all the UEs

with different SFs under multi-GW reception. As a result, in

the multi-GW reception scenario, the minimum throughput

is improved to 2.147 bps and the 90%-spatial throughput is

improved to 779.3 bps/km2, with comparable fairness index

of 0.9914 and STP of 12.8 mW/km2.

C. Fairness and Scalability under Different UE/GW Densities

In this subsection, we investigate the network fairness

and scalability under different UE/GW densities, where the

results for the minimum throughput, 90%-spatial throughput,

throughput fairness index and spatial transmit power (STP) are

plotted in Figures 10 to 13, respectively.

1) Minimum Throughput: It can be seen from Fig. 10 that

our proposed scheme significantly improves the minimum

throughput as the GW density increases or as the UE density

decreases, and is able to effectively exploit the multi-GW

reception diversity in achieving higher throughput. In compar-

ison, the benchmark scheme suffers from severe fairness issue

discussed in the above subsections, whereby the UEs close

to the receiving GW enjoy dominant throughput performance

while the cell-edge UEs have very poor throughput. As a

result, the minimum throughput of the benchmark scheme

remains very low despite the increase of GW density.

Moreover, the results in Fig. 10 provide quick reference for

the maximum supported UE density with rate requirements

under given GW density and other network parameters, or

equivalently, the required GW density to satisfy such rate

requirements. For the example setup considered and a target
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Fig. 10: Minimum throughput under different UE/GW densities.
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Fig. 11: 90%-spatial throughput under different UE/GW densities.

rate requirement of 1 bps per UE, the required GW density

to support a UE density of λ = 350/km2 (or 2λ = 700/km2)

per channel of 125 kHz, is around 0.27 and 0.22 GWs/km2

(or around 0.48 and 0.36 GWs/km2) for the cases with single-

and multi-GW reception, respectively.

2) 90%-Spatial Throughput: It can be seen from Fig. 11

that the 90%-spatial throughput increases as the GW density

increases, for both the benchmark scheme and our proposed

scheme. However, such improvement comes mostly from the

cell-center UEs (dominant minority) in the benchmark scheme,

while our proposed scheme fairly improves the throughput

of all UEs. As a result, as the UE density increases, the

90%-spatial throughput of the benchmark scheme drops sig-

nificantly since most throughput is reaped by the cell-center

UEs, while that of our proposed scheme remains almost the

same thanks to our joint optimization algorithm that is able to

adapt to different network size and UE density. Moreover, our

proposed scheme can better exploit the multi-GW reception

diversity than the benchmark scheme.

3) Throughput Fairness Index: It can be seen from Fig. 12

that the throughput fairness index increases as the GW density

increases for both the benchmark scheme and our proposed

scheme, since the corresponding cell radius becomes smaller

and the near-far fairness issue becomes less severe. However,

the fairness index of the benchmark scheme remains at a low

level and decreases as the UE density increases, due to similar

reasons discussed in Section VII-C1. In contrast, our proposed

scheme adapts to the UE/GW densities and achieves a high

level of throughput fairness under both single-GW/multi-GW

reception.

4) Spatial Transmit Power (STP): It can be seen from Fig.

13 that the STP of the benchmark scheme is high and also
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Fig. 12: Throughput fairness index under different UE/GW densities.
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Fig. 13: Spatial transmit power under different UE/GW densities.

increases linearly as the UE density increases. In comparison,

our proposed scheme adapts to the UE/GW densities by joint

power control and duty cycle adjustment, and hence is able to

save the STP significantly regardless of the UE density.

In summary, compared with the benchmark scheme, our

proposed scheme with joint power control, duty cycle ad-

justment and SF allocation not only alleviates the near-far

fairness issue, but also significantly improves the minimum

throughput and 90%-spatial throughput as well as saving

the STP, regardless of the UE/GW densities. Moreover, our

proposed scheme is better at exploiting the multi-GW recep-

tion diversity in achieving higher throughput improvement.

Finally, the results in Section VII-C provides a good reference

for network operators in deploying LoRa GWs/UEs in the

considered area with a proper density, in order to satisfy the

overall throughput fairness and scalability requirement in the

large-scale LoRa network.

VIII. CONCLUSIONS

To achieve massive connectivity with fairness in large-

scale LoRa networks, we leverage on stochastic geometry,

especially the Poisson rain model, and derive (semi-) closed-

form formulas for the aggregate interference distribution,

packet success probability and hence system throughput in

both single-cell and multi-cell setups with frequency reuse,

by accounting for channel fading, random UE distribution,

partial packet overlapping, and/or multi-GW packet reception.

Based on the derived analytical formulas which require only

average channel statistics and spatial UE distribution, we

further propose an IB method that quickly yields high-level

policies of joint SF/TP/duty cycle control in adaptation to net-

work parameters including UE/GW densities, for gauging the

average max-min UE throughput or supported UE density with
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rate requirements. Numerical results validate the analytical

formulas and the effectiveness of our proposed optimization

scheme, which greatly alleviates the near-far fairness issue

and reduces the spatial power consumption, while significantly

improving the cell-edge throughput as well as the spatial

(sum) throughput for the majority of UEs. Finally, it is shown

that the macro diversity of multi-GW reception can be effec-

tively exploited by our proposed scheme in achieving higher

throughput improvement. Future work could further consider

confirmed traffic and incorporate downlink interference into

the interference characterization.
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