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Blockchain and Federated Edge Learning for
Privacy-Preserving Mobile Crowdsensing
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Abstract—Mobile crowdsensing (MCS) counting on the mobil-
ity of massive workers helps the requestor accomplish various
sensing tasks with more flexibility and lower cost. However, for
the conventional MCS, the large consumption of communication
resources for raw data transmission and high requirements
on data storage and computing capability hinder potential
requestors with limited resources from using MCS. To facilitate
the widespread application of MCS, we propose a novel MCS
learning framework leveraging on blockchain technology and the
new concept of edge intelligence based on federated learning
(FL), which involves four major entities, including requestors,
blockchain, edge servers and mobile devices as workers. Even
though there exist several studies on blockchain-based MCS and
blockchain-based FL, they cannot solve the essential challenges
of MCS with respect to accommodating resource-constrained
requestors or deal with the privacy concerns brought by the
involvement of requestors and workers in the learning process.
To fill the gaps, four main procedures, i.e., task publication,
data sensing and submission, learning to return final results, and
payment settlement and allocation, are designed to address major
challenges brought by both internal and external threats, such
as malicious edge servers and dishonest requestors. Specifically,
a mechanism design based data submission rule is proposed to
guarantee the data privacy of mobile devices being truthfully
preserved at edge servers; consortium blockchain based FL is
elaborated to secure the distributed learning process; and a
cooperation-enforcing control strategy is devised to elicit full
payment from the requestor. Extensive simulations are carried
out to evaluate the performance of our designed schemes.

Index Terms—Mobile crowdsensing, federated learning, data
privacy, blockchain, game theory.

I. INTRODUCTION

FACILITATED by a variety of embedded sensors on mo-
bile devices and ubiquitous Internet access opportunities,

mobile crowdsensing (MCS) evolves into a vigorous paradigm
[1], benefiting the data collection of Internet of Things (IoT)
and various practical applications, such as transportation mon-
itoring [2], localization and navigation [3]. There are also an
increasing number of mobile apps based on MCS, providing
great convenience for our daily lives, such as Waze and Uber.
In general, the success of MCS lies in the solicitation of
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distributed sensing capabilities of mobile devices across a
large-scale area to serve for a major task in an environmentally
friendly way, which can significantly reduce the cost of de-
ploying traditional sensors in a large number of fixed locations.

Currently, mainstream research on MCS put efforts on
incentive mechanisms design [4]–[6], quality control [7], and
privacy preservation [8], lacking attention on huge communi-
cation resource consumption for raw data transmission. More-
over, the large chunk of data collected from mobile workers
put certain requirements on the data storage, processing and
analysis capabilities of MCS requestors, which can prevent
resource-constrained users from exploring and experiencing
this promising computing model, thus hindering the wider
application of MCS.

To overcome these challenges, we propose a novel MCS
learning framework for the first time, leveraging on blockchain
technology and the new concept of edge intelligence based
on federated learning (FL). Four parts are involved in this
framework in a top-down order, namely requestors, blockchain
system, edge servers and mobile devices as workers, where the
blockchain is maintained by a group of consortium members
specified at the initialization of the MCS learning system
while all other entities access to the blockchain via a client
application.

As a matter of fact, there exist plentiful studies about
blockchain-based MCS [9]–[30] and blockchain-based FL
[31]–[46]. Each can be further classified into tightly-coupled
and loosely-coupled frameworks, where the tightly-coupled
one employs blockchain to replace the originally centralized
MCS platform or parameter aggregator in FL so as to achieve
full decentralization and avoid the single point of failure, while
the loosely-coupled framework implements the blockchain as
an independent module to serve for some specific functions,
such as the reputation management of MCS workers and FL
participants. Our proposed framework compactly integrates
blockchain into both MCS and FL, so the aforementioned
existing schemes are not applicable to MCS learning due to
the following two reasons. On the one hand, blockchain-based
MCS still suffers from the huge cost of data transmission and
storage, which becomes even worse by using the blockchain
since every blockchain node is supposed to hold a copy of the
complete data about the main chain; besides, the requirement
on data processing capability of the requestor continues to
be a difficulty for resource-limited users. On the other hand,
blockchain-based FL cannot be directly employed here, either,
since the additionally involved requestors and mobile workers
can bring new challenges to privacy protection in FL.

To fill the gaps, we design main procedures for our proposed
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MCS learning system, including i) task publication, ii) data
sensing and submission, iii) learning to return final results, and
iv) payment settlement and allocation. The first procedure is
initiated by the requestor sending an MCS learning request and
then finished via a smart contract stored on the blockchain for
worker recruitment. The second step is executed by the mobile
devices and edge servers where devices undertake the sensing
jobs according to the requirement of the requestor published
on the blockchain and upload sensing data to the nearest edge
servers for rewards. Edge servers can thus collect sensing data
and establish local datasets for the next learning stage. FL is
implemented in the third procedure where edge servers utilize
their local data to collaboratively train the assigned machine
learning (ML) model without leaking the raw data of mobile
devices. And the final step is executed between the requestor
and the blockchain once the task requirement is satisfied,
where the blockchain system aims to successfully charge the
payment from the requestor so that the fair distribution of
rewards to all participants can be achieved for motivating their
continuous contribution in the future.

However, there exist several challenges in the above-
mentioned procedures. First, mobile devices may seriously
concern whether the submitted sensing data to the edge servers
can be protected from leakage; second, the conventional FL is
vulnerable to malicious attacks on the centralized aggregator;
third, the requestor might be reluctant to compensate the
cost of all participants throughout the whole MCS learning
process. Via solving these challenges, we make the following
contributions:

• A novel and holistic MCS learning framework is pro-
posed to conduct MCS and the subsequent data analy-
sis in an integrated manner, which can not only lower
the communication consumption and the requirement of
computing and storage capabilities for requestors, but also
preserve the privacy of workers at the local edge server
level.

• To guarantee that the submitted data of mobile devices
are preserved at edge servers without leaking to others,
we resort to mechanism design theory for devising an
incentive-compatible game rule to restrict the privacy
disclosing behaviors of edge servers.

• For securing the learning process, consortium blockchain
based FL is deployed, where the distributed ledger main-
tained by consortium nodes undertakes the coordination
job and edge servers with local sensing data participate
in the collaborative learning.

• To fully elicit compensation from the requestor, we
employ the zero-determinant (ZD) game theory to work
out a cooperation-enforcing control scheme, which is both
theoretically and experimentally proved to be effective
in driving requestors to pay fully, thus safeguarding the
interests of all participants in the MCS learning system.

The remaining of this paper is organized as follows. We
summarize the most related work in Section II and present
the overall system model in Section III. Detailed designs of
main procedures are elaborated in Section IV, followed by
experimental evaluations on specifically designed schemes in

Section V. Finally, we conclude the whole paper in Section
VI.

II. RELATED WORK

Since the proposed MCS learning framework is largely
unexplored, here we mainly summarize the most related work
about blockchain-based MCS [9]–[30] and blockchain-based
FL [31]–[46].

A. Blockchain-based Mobile Crowdsensing

Most of the research on blockchain based MCS deeply
embed the blockchain system into MCS framework via em-
ploying the blockchain to undertake jobs of the traditional
centralized MCS platform, such as task allocation, incentive
mechanism implementation, and sensing data verification. In
[9]–[13], smart contracts were employed to handle the inter-
actions between the requestors and workers in an automatic
manner. Further, Liang et al. [14] used Trusted Execution
Environments to avoid potential malice from requestors in
blockchain-based MCS. To guarantee the data privacy of work-
ers, Cai et al. [15] employed secret sharing technique to enable
flexible submission aggregation among blockchain nodes and
workers. TrustWorker, a trustworthy and privacy-preserving
worker selection mechanism for blockchain-assisted crowd-
sensing, adopted the deterministic encryption method to fa-
cilitate worker selection and privacy protection [20]. In [21],
URIM was introduced as an incentive mechanism to maximize
the utilities of participants in blockchain-based crowdsensing.
With more focus on specific performance improvement of
MCS, An et al. [16], [17] utilized the blockchain nodes as
verifiers to achieve quality control, and researchers in [18],
[19], [22], [23] took advantage of the distributed blockchain
nodes to realize k-anonymity for workers so as to protect their
location privacy in MCS. Blockchain was also implemented
in vehicular crowdsensing [24], [25] and radio frequency
powered MCS [26].

Other studies utilizing blockchain for MCS work in a
loosely coupled fashion, where the blockchain network is used
to facilitate some specific MCS procedure(s) as an independent
function module rather than acting as the distributed MCS
platform. In [27], [28], blockchain was adopted to evaluate or
verify the submissions from workers so as to eliminate their
malicious behaviors and resist information tampering. Jia et al.
[29] designed a blockchain-powered confusion mechanism to
hide the real locations of workers in MCS. While blockchain
in [30] was mainly introduced to manage the reputation of
workers at the network edge.

B. Blockchain-based Federated Learning

Blockchain applied in FL mainly aims at achieving fully
distributed machine learning without a centralized aggregator.
To coordinate learning procedures among all participated
clients, blockchain stores all learning related information, such
as initial model, local updates, and globally aggregated model.
As blockchain can be classified into two general types, i.e.,
public and permissioned, researchers considered utilizing both



3

blockchains in FL. For public chain based FL, FLChain was
studied in [31]. Majeed et al. [32] proposed another FLchain
for mobile edge combing enabled FL. The work in [33]
utilized the public blockchain to verify the data for FL in
the healthcare industry. Kim et al. [35] designed BlockFL
architecture and analyzed the end-to-end latency. Pokhrel et
al. [36], [37] utilized the public blockchain with proof-of-work
consensus algorithm to facilitate on-vehicle machine learning.
And mechanism design was involved in [38] to guarantee the
honesty of clients in public blockchain based FL platform.
For permission chain based FL, Weng et al. [39] devised
DeepChain to achieve auditability of the whole FL training
process with the help of Algorand consensus protocol. In [34],
a permissioned blockchained FL system with the differential
privacy method was designed to predict the traffic flow. Lu
et al. [40] integrated the FL in the consensus of permis-
sioned blockchain and took advantage of it to realize privacy-
preserving data sharing for industrial IoT. Dynamic weighting
scheme to improve learning performance was investigated in
[41] for the private blockchain powered FL. And Preuveneers
et al. [42] applied the permissioned blockchain based FL on
intrusion detection. To adapt to the Internet of Vehicles (IoV)
scenario with increasing security and reliability of FL, a hybrid
blockchain system consisted of the permissioned chain and the
local Directed Acyclic Graph (DAG) was proposed in [43],
where a deep reinforcement learning based client selection
was also designed to further improve the FL efficiency. Desai
et al. [46] designed a hybrid blockchain-based FL framework
to automatically prevent the system from being attacked by
malicious users via smart contracts.

The blockchain was also employed to operate independently
to enhance FL. In [44], blockchain was employed to realize
reputation management for FL clients in a reliable manner.
And Awan et al. [45] utilized the blockchain technique to
guarantee provenance of model updates in FL so as to avoid
intentional malice from clients.

It is clear that the existing studies are not applicable to MCS
learning. In detail, blockchain-based MCS still fails to address
main challenges of serving resource-limited requestors, while
blockchain-based FL cannot be directly adopted since the
involvement of requestors and mobile workers may hamper
data privacy protection. In this paper, we design specific
schemes based on mechanism design and game theory to solve
these challenges, thus facilitating the function of the MCS
learning system.

III. SYSTEM MODEL

With the pervasive wireless network access opportunity,
there is an increasing demand for mobile crowdsensing, where
mobile devices (e.g., smart phones with embedded sensors)
can collect sensing data from various locations all over the
world as required by the requestor. On the one hand, the huge
amount of sensing data can make the data processing and anal-
ysis a big challenge for potential MCS requestors with limited
computation resource, hindering the large-scale application of
MCS. On the other hand, nowadays, workers in MCS become
increasingly concerned about the privacy leakage during the
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Fig. 1. The proposed MCS learning framework, consisting of requester,
consortium blockchain, edge servers, and mobile devices. After the requester
publishes the MCS task to the blockchain network, mobile devices will be
recruited as workers to collect data and send them to the nearest edge servers,
where the raw data stored at the edge servers will be proceeded via federated
learning; appropriate rewards will be distributed to all participates once the
learning process finishes.

sensing data submission process, discouraging their active
participation. To solve these challenges, we propose an MCS
learning system with privacy preservation based on federated
learning and blockchain, by which any requestor can easily
obtain the MCS data analysis results online without worrying
about the sequel data processing cost while mobile devices as
workers can be assured to participate in data sensing with a
certain degree of privacy protection.

As shown in Fig. 1, our proposed MCS learning system con-
sists of four main parts, i.e., requestor, blockchain system, edge
servers, and mobile devices as workers, where the blockchain
is maintained by a predefined group of consortium members
while all other entities connect to the blockchain system
as clients via an interface. To accomplish an MCS learning
request, we consider four general procedures as follows:

(1) Task publication. The requestor sends an MCS learn-
ing request to the blockchain network, which will be
recorded on the main chain with necessary task infor-
mation, such as the requestor’s identity, task description,
and performance requirement. This on-chain record will
trigger a smart contract to recruit appropriate workers.

(2) Data sensing and submission. After workers receive
the MCS task, they collect the required data in their
convenience and submit sensing data to the nearest edge
server so as to alleviate its own storage burden and
accelerate the whole MCS process. All sensing data
collected at the edge server constitutes a private dataset,
which will be locally processed during the next stage.
By this means, the private information of mobile devices
(e.g., location) can be preserved to some extent as the
raw data will only be visible to their local edge servers
rather than the centralized platform in the conventional
MCS. Besides, workers can receive sensing reward from
edge servers in a timely manner.

(3) Learning to return final results. To avoid privacy
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leakage, edge servers with local datasets will collabora-
tively conduct machine learning based on the federated
learning (FL) framework to derive the required model
for the requestor.

(4) Payment settlement and allocation. Once the FL
achieves the performance requirement, the requestor
can easily obtain the final learning results from the
blockchain system. To motivate continuous contribution
from all participants during the whole MCS learning
process, an appropriate payment will be charged from
the requestor to cover sensing rewards for mobile de-
vices, learning rewards for edge servers, and block
rewards for blockchain nodes.

However, within the above working process, there exist
several problems threatening the implementation of the MCS
learning system. First, whether the edge server can keep the
promise of protecting the data privacy for mobile devices
remains an uncertainty; second, the centralized parameter
aggregator in FL is prone to be attacked by both inside
computation clients and outsiders, leading to the risk of
inefficient learning or model breaches; third, given potential
malicious requestors, it is challenging to successfully elicit
enough payment from the requestor so that all contributors can
be rewarded properly. All these concerns need to be carefully
considered and well addressed in the detailed design of the
MCS learning system, which will be discussed in the next
section.

IV. DESIGN OF MAIN PROCEDURES

In this section, we detail the design of our proposed MCS
learning system via specifying the aforementioned main steps
and solving the aforementioned challenges. For reference, we
summarize key notations used in this section in Table I.

TABLE I
KEY NOTATIONS.

Notation Meaning
θ The data privacy leakage degree of the edge server

v
The self evaluation of device on the value regarding
the sensing data

s The amount of profit paid by the server to the device

Us
The expected utility of the edge server with respect to
the device’s sensing data

R The amount of reward obtained from the requestor
r(θ) The extra reward of leaking the sensing data

g(v, s)
The successful data collection probability between
the device and the edge server

Ud The expected utility of the mobile device
C The overall cost of the device
W The total amount of incentive each requestor needs to pay
ar The action of the requestor finalizing the ML in blockchain
ab The action of the leader finalizing the ML in blockchain
p The mixed strategies of the leader
q The mixed strategies of the requestor

A. Task Publication

Since there exists no centralized MCS platform in our
proposed MCS learning system, the task publication step will
be accomplished by the decentralized blockchain system. In

detail, when the requestor needs to finish an MCS learning
task, a request following the predefined format will be sent
to the blockchain system as a transaction via the blockchain
interface, which can uniquely characterize this request with
task-related information, such as the requestor’s identity, task
description, and learning performance requirement1. Once en-
tering the blockchain network, this request will be verified and
widely forwarded to reach most of the consortium members
so that it can be efficiently recorded on the main chain.

After the request is visible on the main chain to all
blockchain nodes, the smart contract for worker recruitment
will be triggered, which is a piece of program stored on
the blockchain with a specific address. To invoke this smart
contract, the requestor sets the recipient of the request as the
address of the smart contract and then the information included
in this request will be processed as input of this worker
recruitment program. Note that the logic of this smart contract
can directly follow the ideas of existing worker selection
and assignment algorithms for MCS [5], [6], where the only
difference is that via using the smart contract, the worker
recruitment process is executed by peering blockchain nodes
in a decentralized manner.

B. Mechanism Design for Data Submission

After the determination of worker recruitment in the previ-
ous stage, selected mobile devices can start collecting required
sensing data at specific locations and then submit the sensed
data to the nearest edge server for further processing. By doing
so, devices can expect to achieve local privacy preservation
at the level of edge servers as their submitted data will be
processed and analyzed by the server locally, along with the
collected sensing data from other connected mobile devices,
instead of being directly submitted to a global platform.
Nevertheless, even with this computation paradigm, devices
may still have the concern about whether edge servers can
really keep the local privacy protection expectation in practice
without leaking the received sensing data to other parties,
which is also a private behavior for the edge server and
thus can never be explicitly known to devices. To solve this
concern, we take advantage of the mechanism design theory
[48] which empowers devices to utilize the market power
to restrain potential data privacy leakage behavior of edge
servers.

As indicated by revelation principle in mechanism design,
any Nash equilibrium of a Bayesian game (i.e., incomplete-
information game) can be identically achieved in another
incentive-compatible direct mechanism where game players
report their private information truthfully. In the sensing data
submission scenario, as mentioned above, we define the data
privacy leakage degree of the edge server as its private
information and denote it as θ ∈ [0, 1], while the objective
of the mobile device is to design a mechanism, or a game
rule in other words, which can push the rational server to

1Other information can also be defined to describe an MCS learning request
but cannot be fully listed here. For example, the requestor may also submit
a test dataset for accuracy evaluation, which can be stored on the blockchain
with an address based on InterPlanetary File System (IPFS) [47].
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behave based on its real private information θ for obtaining
the optimum payoff.

To maintain the long-term participation enthusiasm of work-
ers in MCS, mobile devices should be compensated with
sensing rewards. Since mobile devices accomplish sensing
tasks with highly random trajectories, making it impractical
for some devices to return to the previously connected edge
servers for obtaining sensing rewards, we consider that edge
servers pay devices for the submitted sensing data in an im-
mediate manner. Specifically, the device has a self-evaluation
on the value of the sensing data, denoted by v, to cover at
least the sensing cost; and the server will decide how much
profit it likes to pay to the device, denoted by s, which leads
to a total payment of v + s for the sensing data.

During a period of time [0, T ], the expected utility of the
edge server with respect to the device’s sensing data can be
defined as

Us =

∫ T

0

(R+ r(θ)− v − s) · g(v, s)dt, (1)

where R is the amount of reward obtaining from processing it
for the requestor, and r(θ) is the extra reward of leaking the
sensing data, defined as r(θ) = αsθ + βs with coefficients
αs, βs ≥ 0. Besides, g(v, s) indicates the successful data
collection probability between the device and the edge server,
which is defined as

g(v, s) = ε
v

v̄
+ (1− ε)s

s̄
. (2)

In the above equation, ε ∈ [0, 1] is a scalar; v̄ and s̄ are
the maximum values of v and s, respectively. In detail, the
successful probability is positively related to both the server’s
decision on the profit it willing to offer to the device and the
device’s self-assessment of data value. It is worth noting that
the above definition of g(v, s) is known by both sides prior to
the mechanism design process.

At the same time, the expected utility of the mobile device
can be calculated by

Ud =

∫ T

0

(v + s− C) · g(v, s)dt, (3)

where C = cd + ηcs is the overall cost of the device with
cd denoting the sensing cost, cs representing the expected lost
caused by the privacy leakage behavior of the server, and η
being a positive scalar. Considering that the privacy-leaking
lost is related to the value of the device’s sensing data, we
define cs = ξv where ξ > 0.

According to mechanism design theory, v and s are the
strategies of the device and the server, respectively, where v
is a function of s, acting as a game rule derived by the device
for guaranteeing the privacy protection behavior of the server.
In particular, the delicately designed game rule v∗(s) can push
the server to select the strategy s based on its real private
information θ. The overall process is summarized in Algorithm
1 and can be described as follows:

1) The device proposes a game rule v∗(s) to maximize the
expected utility Ud and sends it to the server.

2) After receiving v∗(s), the server calculates the best
strategy s∗ maximizing the expected utility Us based on

the hidden private information θ. With s∗ and further
derived v∗(s), the server can determine whether it is
profitable to accept the game rule or not. If the answer
is yes, the server will send s∗ back to the device.

3) If the device receives the returned s∗ from the server
within a certain time limit, v∗ can be calculated accord-
ingly; otherwise, the device will terminate the sensing
data submission process.

Specifically, v∗(s) and s∗ can be calculated by maximizing
Ud and Us, respectively. To maximize Ud in (3), we denote
the integrand as Fd = (v + s − C) · g(v, s). Employing the
calculus of variations method, we can derive v∗(s) via solving
the associated Euler-Lagrange equation ∂Fd

∂v −
d
dt
∂Fd

∂v′ = 0

under the constraint ∂2Fd

∂v2 < 0. Accordingly, we can obtain
that under the condition of ηξ > 1, the optimal game rule of
the device is

v∗(s) =
(1− ε)(ηξ − 1)v̄s− εs̄(s− cd)

2ε(1− ηξ)s̄
. (4)

With the above v∗(s), we can obtain s∗ through maximizing
Us in (1) using the similar method. To avoid redundancy, we
omit the detailed calculation process of s∗ and report the result
as follows. Let

A0 =
ε

v̄
+

(ηξ − 1)(ε− 1)

s̄
,

A1 = 2(ηξ − 1),

then we can have the optimal strategy of the edge server as

s∗ =
R+ αθ + β + cd

A1

2( v̄A0

εA1
+ 1)

+
cdε

2v̄A1(A0

A1
− ε−1

s̄ )
.

In fact, our proposed mechanism satisfies the incentive
compatibility constraint, which can be demonstrated by the
following theorem.

Theorem IV.1. The game rule v∗(s) proposed by the device
is incentive-compatible.

Proof. Let θ̂ be the fake private information of the server. Then
the optimal strategy of the server based on this θ̂, denoted
as ŝ∗, will be sent to the device. As θ̂ is different from the
real θ, we have ŝ∗ 6= s∗(θ). On the other hand, since s∗(θ)
is calculated via maximizing Us, we have Us(ŝ∗) < Us(s

∗),
which makes the server’s behavior of submitting the optimal
strategy based on its fake private information not beneficial.
Thus, any profit-driven and reasonable server will choose to
respond with the real private information, which demonstrates
the incentive compatibility of our proposed mechanism.

Since the payment of v + s for each device is covered in
advance by the edge server, the total amount of payment for
all locally connected devices accomplishing a specific MCS
learning task should be reported to the blockchain system
during the following FL step so that the edge server can
be appropriately compensated finally from the requestor’s
payment. The specific allocation of compensation will be
elaborated in Section IV-D.
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Algorithm 1 Mechanism Design based Data Submission
1: Raw data ← Mobile devices collect data
2: v∗(s) ← The device determines the optimal game rule

according to (4)
3: The device sends v∗(s) to the edge server
4: Us ← The edge server calculates Us based on v∗(s)
5: s∗ ← max(Us)
6: if Accepting v∗(s) is profitable then
7: The edge server sends s∗ to the local device
8: v∗ ← max(Ud)
9: The device submits the raw data to the edge server

10: else
11: The edge server keeps silent
12: The device terminates the sensing data submission

process
13: end if

C. Blockchain-based Federated Learning at Edge

With the received sensing data from mobile devices, edge
servers can construct their local datasets so that they can
further collaboratively conduct FL to derive the global learn-
ing results for requestors. However, there always exists an
aggregator, such as a central server, to coordinate the FL
process among all participated computing parties. Although
some research suggest multiple servers to take the work of
aggregation, the logical topology is still centralized, suffering
from lots of weaknesses, such as single point of failure.

To fundamentally address these problems, the concept of
fully decentralized FL is proposed where FL participants
communicate with each other via the peer-to-peer channels.
As an exemplary implementation of this concept, blockchain
[32], [40] based FL is widely studied recently as discussed in
Section II. Thus, in our proposed MCS learning framework, we
also consider to employ the decentralized ledger to replace the
centralized aggregator in FL, where a set of blockchain nodes
undertake the coordination jobs. Specifically, the consortium
blockchain is used here, which is maintained by a group
of consortium members responsible for validating all content
waiting to be included on the main chain as permanent records.

For the reason of using a consortium blockchain instead of a
public or private one to achieve distributed FL in our proposed
MCS learning scenario, it is quite straightforward. On the
one hand, either the FL model updates or MCS task related
records on the blockchain are not supposed to be unlimitedly
available to anyone from the public; on the other hand,
blockchain nodes are not authorized by one centralized entity
but several predefined members, such as trusted edge servers,
and they need to be general and scalable enough to achieve
a certain level of decentralization of the blockchain system.
It is worth mentioning that although the blockchain system
is mainly introduced here for FL implementation, records
on the blockchain are not limited to ML model parameters
and updates but also including MCS task related information
defined in Section IV-A.

Further, with the consortium members maintaining the
distributed ledger, there are a lot of consensus protocols
applicable to the consortium blockchain, such as PBFT and

Blockchain system

Edge servers

（1）（6） （3）

（2）

（4）（6）

（5）

Leader

FollowerFollower

Fig. 2. The working process of blockchain-based FL, including six main
steps: (1) initialization of ML model; (2) local training on edge servers; (3)
submission of local model updates to the blockchain; (4) signature verification
for the local model updates; (5) global model aggregation by the leader; (6)
updating the aggregated model with edge servers.

HotStuff [49]. In our proposed system, we adopt PBFT as
the consensus protocol in the consortium blockchain since it
can improve the efficiency of reaching consensus and reduce
time consumption. PBFT is one of the classical consensus
protocols in blockchain, and its working process in our pro-
posed blockchain can be described as below: at the beginning,
the leader creates a block containing transactions, e.g., the
local model updates, and then the leader broadcasts the block
to other nodes in the blockchain, i.e., followers; next, all
followers conduct the requested service (i.e., verifying the
received block) and send back replies to the leader; in the
end, if the leader receives f + 1 replies from followers with
the same result, where f represents the maximum number of
faulty nodes allowed, it means consensus has been reached in
the blockchain system. For stability and sustainability of the
blockchain system, we consider that all blockchain nodes will
receive incentives based on the information recorded on the
main chain. In particular, any node generating a valid block
will be finally rewarded by the payment from the requestor.
This can be achieved due to the following three-aspect reasons:
1) the identity of blockchain node who generates a valid
block is clearly indicated on the block; 2) the information
records included in the block body can be indexed by the
requestor identity or a unique task number assigned when the
request is recorded on the blockchain; and 3) the payment
settlement with the requestor and the specific reward allocation
will be guaranteed by a well-designed scheme which will be
introduced in the next section.

In Algorithm 2, we present the process of blockchain-based
FL at edge. To clearly illustrate the work flow of this process,
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we present it in Fig. 2 and describe main steps as follows:
(1) Initialization. If the requestor has a clear sense or

requirement on the ML model, the initial model can be
sent to the blockchain system during the task publication
process as introduced in Section IV-A, which will be
included on the blockchain for reference (Lines 1-2).
While if the requestor has no idea on initial model
selection, the blockchain system, especially the leader
packaging the MCS learning request, can decide one via
comparing the received task with the historical tasks2

(Lines 3-4).
(2) Local learning. Edge servers with local sensing datasets

can obtain the ML model from the blockchain and then
conduct the local training (Lines 6-8).

(3) Updates submission. Once edge servers accomplish
the local learning process, they submit model updates
signed with their private keys to the blockchain with the
corresponding task index for the convenience of model
aggregation (Line 9).

(4) Signature verification. After receiving local model up-
dates from edge servers, blockchain nodes will verify the
signatures to check whether the participants are legal or
not (Line 11). If yes, these submissions will be broadcast
to reach as many blockchain nodes as possible so as
to be included in a valid block timely (Lines 12-13);
otherwise, they will be discarded immediately (Lines 14-
15).

(5) Model aggregation. Due to the function of the con-
sensus protocol, there will be one blockchain node, i.e.,
leader, in charge of generating a valid block each time,
who is generated by Leader Election process [50] (Line
18). In this case, we consider that the leader is also
responsible to calculate the aggregated model according
to all submitted local model updates in the current round
of FL as received in the blockchain system, which
can avoid redundant or conflicting calculation to save
computing resources, and then generate a new block
including the aggregated model (Lines 19-20).

(6) Model updating. If the global model is converged, the
federated learning process can be terminated (Lines 21-
22); otherwise, the above aggregated model recorded
on the blockchain can be accessed by edge servers for
updating their local models and begin the next round of
FL (Lines 23-24).

The above process from (2) to (6) will be conducted repeatedly
until the required model performance is realized, where the
leader will explicitly associate the requestor identity with the
finalized global model so as to be saved on the blockchain.
Then the requestor can easily obtain the final result via the
blockchain client.

D. Payment Settlement and Allocation

With the joint effort of mobile devices, edge servers,
and blockchain nodes, the whole MCS learning system can

2Since the size of model parameters can be too large to fit in a block, we
may employ the IPFS to store the model data, by which the records on the
blockchain are referring to the address of the data.

Algorithm 2 Overall Process of the Proposed Blockchain-
based FL at Edge
Require: Initial model G(w), local model updates f(w)
Ensure: Final model G∗(w)

1: if Initial model G(w) is specified by the requester then
2: G(w) is recorded on the blockchain
3: else
4: G(w) will be determined by comparing the received

task with the historical tasks
5: end if
6: while Not reaching the required model performance do
7: Edge servers obtain G(w) from the blockchain
8: Local model updates f(w) ← Edge servers conduct

local training to improve G(w)
9: Edge servers submit f(w) with signature to the

blockchain system
10: while Blockchain node do
11: Verify the signature of f(w)
12: if f(w) is valid then
13: f(w) will be broadcast to others
14: else
15: f(w) will be discarded
16: end if
17: end while
18: Leader i ← Leader Election
19: New global model G′(w) ← Leader i conducts model

aggregation
20: New block ← Block generation
21: if G′(w) is converged then
22: G∗(w) ← G′(w)
23: else
24: G(w) ← G′(w)
25: end if
26: end while
27: return G∗(w)

function to meet the demand of the requestor. However, this
system cannot work in the long term unless the incentives for
all participants are guaranteed and allocated appropriately. In
this section, we design a scheme for payment settlement and
allocation, dealing with how to enforce requestors to pay for
the accomplished MCS learning tasks.

All the payment from the requestor is used to cover the
incentives for data sensing of mobile devices, local learning
of edge servers, FL model aggregation and block generation of
blockchain nodes. In particular, the incentive for any mobile
device has been immediately covered as v + s by the edge
server as introduced in Section IV-B; while the incentives for
FL local training, model aggregation, and block generation can
be designed as flat rates for fairness consideration, denoted by
wl, wa, and wb, respectively. Note that all the above incentives
can be calculated by tracking the recorded information on
the blockchain, and thus the total amount of incentive each
requestor needs to pay can be easily calculated out by the
leader who aggregates the final model, denoted by as W .

Here we consider that the requestor will use the MCS learn-
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ing service repeatedly via interacting with the blockchain sys-
tem. To provide better user experience to requestors, our pro-
posed system updates the MCS learning result on blockchain
first and then conducts the payment settlement and allocation.
This sequential interaction process makes room for malicious
requestors rejecting to fully pay the total amount of incentive
W . To alleviate this problem, we propose to take advantage
of zero-determinant (ZD) game theory [7] to safeguard the
interests of all participants in the MCS learning system. Since
the leader finalizing the global model works as the last step
determining whether the requestor can successfully obtain the
final MCS learning result, we consider to deploy the payment
enforcement scheme there with a smart contract implementing
the detailed strategy. Note that the smart contract is stored on
the blockchain as a record so that any blockchian node being
the leader can run this program if the finalized global model
satisfies the requested model performance.

With ar and ab respectively denoting the actions of the re-
questor and the leader finalizing the ML model in blockchain,
we define the requestor not paying the full amount of incentive
W as defection, denoted by ar = d, and the action of
paying W as cooperation with ar = c; while as the key
point serving the requestor, the leader can opportunistically
choose to update the final learning results to the main chain
or not, denoted as ab = c and d, respectively. With each
having two actions, there exist four combinations of game
states, i.e., abar = {cc, cd, dc, dd}. And their payoffs under all
cases can be expressed as x = (x1, x2, x3, x4) for the leader
and y = (y1, y2, y3, y4) for the requestor. Referring to the
practical outcomes of these four cases, we can observe that 1)
the defector in cd and dc states can gain the highest payoff
while the cooperator receives the lowest payoff; 2) cc leads to
the second highest payoffs for both since they cost and gain
normally; and 3) dd brings the second lowest payoffs for both
as nobody in this case loses anything. Thus, there exist the
relationships x3 > x1 > x4 > x2 and y2 > y1 > y4 > y3.

For the game being repeated, we define the mixed strategies
of the leader and the requestor as p = (p1, p2, p3, p4) and
q = (q1, q2), respectively, where pi, i ∈ {1, 2, 3, 4} is the
probability of ab = c given each game result in the last round,
while qi, i ∈ {1, 2} is the probability of ar = c when ab = c
or ab = d in this round. Note that the difference between
the definitions of p and q lies in their action order, where the
leader performs according to the action result in the last round
while the requestor behaves based on the leader’s action in the
current round.

According to the extended version of ZD strategy we
previously proposed in [7], we can see that it becomes
beneficial for the leader to be the first mover if we empower
the leader to use the ZD strategy. By this means, the leader
can unilaterally control the relationship between the expected
payoffs of both sides and thus enforce the desired game result.
To be specific, when the strategy of the leader p satisfies
p̃ = (p1 − 1, p2 − 1, p3, p4) = αx + βy + γ1 with 1
denoting a vector of four ones, a linear relationship between
their expected payoffs can be enforced as

αEb + βEr + γ = 0,

where Eb and Er are respectively the expected payoffs of the
leader and the requestor in the long term.

In our case, as the leader desires to enforce the long-term
cooperation from the requestor, mutual cooperation becomes a
feasible and stable solution, where their expected payoffs are
x1 and y1. Thus, inspired by the cooperation-enforcing control
in [51], the leader can set a specific linear relationship as Eb−
x1 = χ(Er−y1) with χ ≥ 1 to drive the full cooperation of the
requestor, which yields the strategy of the leader p satisfying
p̃ = (p1 − 1, p2 − 1, p3, p4) = γ((x − x11) − χ(y − y11))
(γ 6= 0). The effectiveness of this scheme can be demonstrated
in the following theorem.

Theorem IV.2. When the leader sets the strategy p to meet
p̃ = γ((x−x11)−χ(y− y11)) where γ 6= 0, the stable state
is mutual cooperation.

Proof. As a utility-driven player, the requestor usually hopes
to maximize the payoff. With the leader setting the strategy p
to meet p̃ = γ((x−x11)−χ(y−y11)), there exists Eb−x1 =
χ(Er−y1). In this case, if the requestor gains Er higher than
y1, leading to Eb−x1 with a value of χ times Er−y1, both can
gain payoffs higher than those at the mutual-cooperation state,
i.e., y1 and x1, at the same time. This cannot be true since the
requestor can obtain the payoff larger than y1 only if the leader
gets the payoff less than x1, while the leader with the payoff
larger than x1 leads to the requestor obtaining the payoff less
than y1. Thus, the highest expected payoff that the requestor
can obtain is Er = y1, which leads to Eb = x1, corresponding
to the mutual-cooperation state in the long term.

With the function of the above ZD-based payment enforce-
ment scheme, the total amount of incentives W will be sent to
the MCS learning system and recorded on the blockchain. All
blockchain nodes and edge servers can fetch their respective
rewards in a transparent and honest way according to the task
accomplishing records on the blockchain, which will also be
included on the main chain for potential error tracking.

V. EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments to eval-
uate our proposed MCS learning framework via investigat-
ing the performance of specific schemes designed for main
procedures. Since the first procedure in Section IV-A mainly
introduces the input of the MCS learning system without
algorithm design, we only present the experimental results of
the procedures from Section IV-B to Section IV-D.

A. Data Submission Mechanism Design

As proved in Theorem IV.1, given the mechanism design
for data submission process where the mobile device releases
the game rule v∗(s), the edge server can obtain the maximized
utility only when the real data leakage degree θ∗ is indicated
to form the best response strategy s∗. Since the private θ∗ of
the server is not available for the device to observe, we cannot
evaluate its impact. Instead, we study the impacts of three ob-
servable parameters, i.e., η, ξ and ε, on the maximized utilities
of both sides. In detail, we set η, ξ ∈ [0, 15], ε ∈ [0, 1], and
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R = 10, αs = 3, βs = 2, v̄ = 50, s̄ = 500, cd = 2, θ = 0.5.
Note that other parameter settings are also evaluated, which
present similar trends and thus are omitted here.

We first investigate the impacts of the device’s cost pa-
rameters η and ξ when ε is set as 0.9. As shown in Fig. 3,
with the increase of η and ξ, the maximized utility of the
device will decrease sharply to a stable value while that of
the server presents different trends. With the increasing η and
ξ, the server’s maximized utility increases from zero to the
largest point firstly and then gradually decreases to a stable
value. This is because the increase of cost parameters directly
affect the utility of the device, where the higher the cost, the
lower the utility; while for the server, the maximized utility
Us is impacted indirectly through the optimal strategies s∗ and
v∗(s).
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Fig. 3. Impacts of η and ξ on the maximized utilities.

Then we evaluate the impacts of ε which is the main pa-
rameter determining the successful data collection probability.
As presented in Fig. 4, the impact of ε on the server differs
from that on the device. For the server, the maximized utility
increases first and then decreases to almost zero; while the
device’s maximized utility decreases all the way to zero.
According to (2), the increase of ε implies that the optimal
strategy of the device v∗ matters more for the successful
probability. While referring to the expression of v∗ in (4), one
can see that the larger the ε, the lower the v∗, which leads
to the decrease of Us according to (3). But for the server,
the increasing ε makes the decreasing v∗ result in a larger Ud
according to (1) at the initial stage; when v∗ decreases to a
certain degree, the decreased successful probability g gradually
functions to decrease Ud.
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Fig. 4. Impacts of ε on the maximized utilities.

B. Blockchain-based Federated Learning at Edge

Considering that the consortium blockchain system for
model parameter coordination has limited impact on the FL
performance, we conduct the simulation of FL first and focus

on investigating the influences of available data size and edge
servers’ participation on learning results during the FL process.
To simulate the FL process conducted among edge servers, we
utilize a benchmark named LEAF [52] to execute federated
learning using a 2-layer convolutional neural network (CNN)
classifier for the FEMNIST dataset with 805,263 samples in
total and 3,550 available participants for local computing. In
our experiments, we first change the total data size used for
FL indicated by the varying dataset fraction as 0.001, 0.005,
and 0.05, with the fixed ratio between training and test dataset
sizes as 9:1 and 35 FL participants; and then the number of
participates is changed when the total amount of data used
for FL keeps constant, where the participant fraction is set as
0.01, 0.03, and 0.05 to approximately simulate the number of
participated edge servers as 35, 105, and 175, respectively.

The learning results under two parameter settings are re-
ported in Fig. 5. It can be seen from the left figure that given
the same number of FL participants, the higher the dataset
fraction used for FL, the better the learning performance with
respect to the testing accuracy. With too few data samples
(blue), the global model cannot even converge after 2,000
rounds of FL. While from the right figure, one can see with the
same amount of data used for FL, the more the participants,
the slower to reach convergence. This is reasonable since more
participants splitting the total dataset will result in fewer data
samples available for each one, leading to the longer training
time. Corresponding to the MCS learning scenario, given the
fixed amount of mobile devices to collect sensing data, the
more edge servers involved, the smaller the local dataset of
each edge server, and thus the slower the learning process.
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Fig. 5. Impacts of data size and the number of edge servers on the learning
accuracy.

After the edge servers submit the local model updates to
the blockchain, blockchain nodes generate a new block to
include all updates and the aggregated model, which has to be
supported by the predefined consensus protocol. To explore
how the blockchain works in our framework, we design
experiments to simulate the PBFT consensus process based
on the framework in [53] as an example. For convenience, we
assume that each edge server submit the local model updates
with a fixed data size of 300 KB. We implement this set of
simulations using Python 3.8.5 in macOS 11.0.1 running on
Intel i7 processor with 32 GB RAM and 1 TB SSD.

First, we explore the relationship between the consensus
efficiency in the blockchain system and the number of edge
servers as FL clients given 10 nodes in the consortium
blockchain. From Fig. 6, we can see that the time cost to
reach consensus is linearly correlated to the number of edge
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servers. This is because increasing the number of edge servers
will lead a larger amount of data that need to be packed into
blocks, resulting in more time to synchronizing the data on
blockchain.

Then we examine how the number of blockchain nodes
affects the consensus efficiency when the number of FL
participants (i.e., edge servers) is 10. The experimental results
are shown in Fig. 6. It is clear that the time consumption
increases as the number of blockchain nodes grows. The
underline reason is that in the blockchain system running on
a peer-to-peer networking structure, more nodes will lead to
a larger increase in the communication times among them,
and thus making the time consumed for reaching consensus
increase near-exponentially.
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Fig. 6. Impacts of the numbers of edge servers and blockchain nodes on the
efficiency of the blockchain consensus.

C. ZD-based Payment Settlement

To figure out whether the proposed ZD-based payment
settlement strategy can function effectively, we compare it
with other two classical strategies, named tit-for-tat (TFT)
and win-stay-lose-shift (WSLS). With the TFT strategy, the
leader will choose the action that the requestor adopted in
the last round; with the WSLS strategy, the leader keeps
performing an action if it brings a high payoff while changes
to the other one if it results in a low payoff in the last
round. Besides, we set the initial cooperation probability of the
requestor as different values to further indicate the robustness
of the proposed scheme. Specifically, we denote the requestor’s
initial cooperation probability as q0 and study the evolution of
the requestor’s cooperation probability with respect to q1 or
q2 according to the action of the leader in the current round.
Main parameters in this scheme are payoff vectors of two
player, which are set as x = (6, 3, 8, 5) and y = (6, 8, 3, 5) in
the simulations.

From Fig. 7, one can see that the proposed ZD strategy
can enable the cooperation probability of the requestor to
gradually approach 1 and stay cooperative. While the other two
classical strategies fail to achieve this job. Further, as presented
in four subfigures, no matter how the initial cooperation
probability of the requestor changes, the ZD-based scheme
can always function successfully with respect to enforcing
its full cooperation behavior, i.e., paying the full amount of
incentive to the blockchain system. Thus, the effectiveness and
robustness of our proposed scheme are validated.

Next, we explore the utilities of both the leader and re-
questor under the function of the proposed ZD-based scheme.
As shown in Fig. 8, we present the utilities at the stable state in
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Fig. 7. Cooperation probability of the requestor given different strategies of
the leader.

the left bar graph and the evolution of utilities in the right-side
line graphs. Similar to the previous experiment, we examine
the results with different initial cooperation probabilities of
the requestor. As can been seen from the left subfigure of
Fig. 8, at the final state with stable strategies of the requestor
and the leader, both can obtain similar utility around 6 no
matter how cooperative the requestor is at the beginning, which
is exactly the utility at the mutual cooperation state. This
implies that the proposed scheme is fair with respect to the
final utility. From four line figures, one can observe that with
different initial cooperation probabilities of the requestor, the
dynamic evolution paths of both the leader and the requestor
are generally similar with slight difference, where the higher
the initial cooperation probability, the faster both sides to
achieve the maximized utilities at the stable state. This is
consistent with the fact that the more cooperative the requestor,
the easier to drive its full cooperation at the stable state.
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Fig. 8. Utilities of the leader and the requestor at the stable and dynamic
states with the leader adopting the ZD strategy.

VI. CONCLUSION AND FUTURE WORK

Although MCS has been applied to various fields and
brings significant benefits to the whole society, the current
MCS paradigm has high requirements on the communication,
storage and computing capabilities of requestors, limiting the
widespread application of MCS to go a step further. To
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overcome this challenge, we propose a new MCS learning
framework based on the consortium blockchain and the edge-
participated FL, functioning among four major entities, i.e.,
requestors, blockchain, edge servers and mobile devices. De-
spite existing studies on blockchain for MCS and blockchain-
based FL, they fail to lower the requirements on requestors’
capabilities or cannot be directly applied to MCS. Thus,
our proposed MCS learning framework fills the gaps with
four main procedures, i.e., task publication, data sensing and
submission, learning to return final results, and payment settle-
ment and allocation. We design specific schemes in main steps
to address challenges resulted from malicious edge servers,
dishonest requestors, and even outside attacks. Experimental
results demonstrate the effectiveness of our designed schemes.

In our future work, we will make efforts to extensively
study the employed blockchain in our proposed MCS learning
framework to further improve the efficiency, scalability and
reliability; besides, we will also investigate security challenges
in blockchain-based distributed learning during the model
training process, which may benefit not only our proposed
MCS learning system but also other applications involving
extensive data collection and analysis.
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