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Abstract—The advancement of Internet of Things (IoT) tech-
nologies leads to a wide penetration and large-scale deployment
of IoT systems across an entire city or even country. While
IoT systems are capable of providing intelligent services, the
large amount of data collected and processed in IoT systems
also raises serious security concerns. Many research efforts have
been devoted to design intelligent network intrusion detection
system (NIDS) to prevent misuse of IoT data across smart appli-
cations. However, existing approaches may suffer from the issue
of limited and imbalanced attack data when training the detec-
tion model, which make the system vulnerable especially for those
unknown type attacks. In this study, a novel hierarchical adver-
sarial attack (HAA) generation method is introduced to realize
the level-aware black-box adversarial attack strategy, targeting
the graph neural network (GNN)-based intrusion detection in
IoT systems with a limited budget. By constructing a shadow
GNN model, an intelligent mechanism based on a saliency map
technique is designed to generate adversarial examples by effec-
tively identifying and modifying the critical feature elements with
minimal perturbations. A hierarchical node selection algorithm
based on random walk with restart (RWR) is developed to select
a set of more vulnerable nodes with high attack priority, consid-
ering their structural features, and overall loss changes within the
targeted IoT network. The proposed HAA generation method is
evaluated using the open-source data set UNSW-SOSR2019 with
three baseline methods. Comparison results demonstrate its abil-
ity in degrading the classification precision by more than 30%
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in the two state-of-the-art GNN models, GCN and JK-Net,
respectively, for NIDS in IoT environments.

Index Terms—Adversarial attack, deep learning, graph neu-
ral network (GNN), Internet of Things (IoT), network intrusion
detection.

I. INTRODUCTION

THE proliferation of Internet of Things (IoT) technologies
and systems are growing at an unprecedented rate. The

scale of modern IoT systems goes far beyond the individual
level, with interconnected IoT devices that are widely spread
across the entire cities or even countries. Supported by the
increasing communication speed and bandwidth, IoT devices
are capable of collecting, transmitting, and processing an enor-
mous amount of data [1], [2]. These IoT systems, associated
with the collected data, are offering great opportunities in
designing and providing intelligent services in different appli-
cations, such as intelligent transportation, automated surveil-
lance, and smart cyber–physical systems [3], [4]. However, the
collected IoT data also contain sensitive information and there-
fore require more attention on privacy protection and reliable
data security issues.

To deal with such increasing privacy and security concerns,
modern IoT or distributed systems need to be able to detect
and prevent network intrusions in a more intelligent way. Many
research efforts have been devoted to develop machine learn-
ing or deep learning-based approaches for network intrusion
detection system (NIDS), in order to prevent any deviation or
misuse in IoT systems and infrastructures [5]–[7]. Although
NIDS has been well exploited in detecting malicious network
activities, one of the main vulnerabilities of existing NIDS is
the lack of ability to detect unknown types of network intru-
sion, due to the limited or imbalanced intrusion data during the
model training process [8], [9]. In addition, existing machine
learning approaches are not able to handle multidomain intru-
sion detections, which calls for the further exploration on the
hybrid deep learning architecture [6], [10], [11].

As a typical type of neural network in deep learning
models, graph neural network (GNN) has demonstrated its
promising performance in dealing with a graph or network
data [12]. However, it still suffers when facing limited or
imbalanced training data, and can also be vulnerable to adver-
sarial attacks. In recent years, adversarial attacks or examples
have been proved as one significant tool in analyzing deep neu-
ral networks in terms of their theoretical property and practical
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performance [13]. It can affect deep graph learning algorithms
with small and imperceptible perturbations and lead to inaccu-
rate classifications or wrong decisions [14]. Therefore, further
investigations are necessary in GNN-based NIDS. In general,
adversarial attacks can be classified into three types, namely,
white-box attacks, gray-box attacks, and black-box attacks,
according to how much the attacker knows about the learn-
ing model. In white-box attacks, the entire model structure,
parameters, input data, and labels are completely exposed to
the attacker. While in gray-box attacks, the attacker has par-
tial information of the training model. In black-box attacks,
the attacker knows almost nothing about the network except
the input data, which offers a more realistic representation for
real threat scenarios.

In this study, a new hierarchical adversarial attack (HAA)
generation method is proposed, which can be used to examine
the robustness and generality of an NIDS designed for typical
IoT applications. Considering the black-box attack scenario,
a shadow GNN model is constructed with the intercepted
network packets and extracted input data features to imi-
tate the original model. The saliency map technique is used
to find some critical elements in the feature vector, follow-
ing which adversarial examples can then be generated to flip
the classification labels with minimal modifications on those
identified critical elements. In addition, a random walk with
restart (RWR)-based algorithm is developed to select a set of
nodes with high attack priority based on structural features and
overall loss changes within the targeted IoT network. The main
contributions of this article can be summarized as follows.

1) An integrated framework for the level-aware black-box
adversarial attack strategy is designed and constructed
to compromise the GNN-based NIDS in typical IoT
environments with a limited budget.

2) An intelligent adversarial example generation mecha-
nism is developed based on a constructed shadow GNN
model, which can effectively modify the critical feature
elements identified using saliency mapping with minimal
perturbations.

3) An RWR-based hierarchical node selection algorithm,
which considers both the link analysis and loss change in
initializing and updating the transfer matrix, is designed
to efficiently identify and select a set of more vulnerable
nodes to attack the GNN model.

The remainder of this article is organized as follows.
Section II presents the summary of related works on
GNN-based modeling and adversarial attacks against GNN
in modern IoT systems. Section III introduces the over-
all application scenario and problem formulations, followed
by the proposed HAA generation mechanism explained in
Section IV. Section V presents and discusses the evaluations
using the open-source data set, and Section VI concludes this
study and gives a promising perspective on future research.

II. RELATED WORK

In this section, two emerging research directions related
to this study, including the GNN-based network model and
adversarial attacks against GNN, are addressed, respectively.

A. GNN-Based Network Modeling With IoT

With the rapid evolution of deep learning techniques in var-
ious smart applications for classification or prediction tasks,
GNN has become an emerging learning paradigm when deal-
ing with interdependent data with complex relationships in
network modeling [12]. Several researches have explored the
use of GNN in big data mining, machine learning, and IoT
applications. Zhou et al. [15] introduced a so-called reinforced
spatial-temporal attention GNN model for traffic prediction,
which utilized the diffusion convolution neural network and
a temporal attention mechanism to analyze spatial depen-
dencies and temporal dynamics from traffic sensor networks.
Zhang et al. [16] applied GNN in the modeling of IoT equip-
ment. They reconstructed the input data using a variational
autoencoder to analyze the temporal and inner logic rela-
tions of data. Rusek et al. [17] employed GNN to model the
graph-structured information and designed a message-passing
function to extract complex relationships from network topolo-
gies and routing configurations based on the generalized linear
models, which could be applied for routing optimization and
network planning. Guo and Wang [18] built a recommenda-
tion framework based on deep GNN for future IoT. They
modeled feature spaces into two graph networks and used
matrix factorization to improve the missing rating values in
a user-item rating matrix. Cui et al. [19] presented a deep
learning framework, in which the traffic network was mod-
eled by a graph convolutional long short-term memory neural
network. They designed a graph convolution operator to learn
the spatial and temporal dependency and defined two regu-
larization terms to optimize loss functions in model training.
To identify graph patterns in directed role-based concep-
tual attributed graph, Krleža and Fertalj [20] proposed a fuzzy
GNN for graph matching. They built this model based on
the combination of graph element comparison using fuzzy
logic and graph structure verification using a recursive neural
network. Shen et al. [21] involved GNN into the large-scale
radio resource management as a graph optimization problem.
They designed a so-called message passing GNN, where
agents were considered as nodes and communication chan-
nels were considered as edges, to achieve a low-complexity
neural network operation. Gama et al. [22] introduced two
improvements of GNN architectures. One called selection
GNN replaced the linear time-invariant filter for convolutional
feature generation, the other one called aggregation GNN used
a temporal structure to capture the graph topology. Both of
them were applied in synthetic networks for source localiza-
tion. Zhu et al. [23] constructed a hierarchical unsupervised
model based on cycle adversarial networks for graph align-
ment, in which an optimization module for group structure
aggregation was developed to recognize similar IoT devices
in different networks.

B. Adversarial Attacks Against GNN

Recently, adversarial attacks, especially in wireless com-
munications, have drawn a lot of attention for vulnerability
analysis, using deep learning techniques. Miller et al. [24]
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conducted a survey on adversarial learning attacks in DNN-
based classifications, and compared a series of defenses against
test-time evasion, backdoor data poisoning, reverse engineer-
ing attacks, etc. Krithivasan et al. [25] focused on adversarial
sparsity attacks, aiming to degrade the latency, and energy con-
sumption in DNN. They employed adversarial perturbations to
generate adversarial inputs for sparsity attacks, which could
modify the model input to reduce the activation sparsity, but
not affect the classification accuracy. Takahashi [26] investi-
gated indirect adversarial attacks in graph convolutional neural
networks and discussed a detection method to find one new
attack which could poison node features and lead to the mis-
classification. Yuan and He [27] presented an adversarial dual
network learning model for DNN-based defense. They formu-
lated this problem using a generative adversarial network and
developed a detector with a generative cleaning network to
clean up the attack noise following a randomized nonlinear
image transform. Based on the investigation of gradient-based
attacks in GNN, Lin et al. [28] discussed an exploratory
attack method to add adversarial noise in the graph topology,
in order to avoid the misinformation and improve the semi-
supervised classifications. Ioannidis and Giannakis [29] built
a semi-supervised learning framework to deal with the per-
turbed networked data, in which they applied a link-dithering
method to reconstruct the original neighborhood structure
and used the graph convolutional network to extract features
from unperturbed neighborhoods. Xu et al. [30] introduced an
adversarial training scheme based on DNN. Considering both
the targeted and untargeted attacks, they generated adversarial
examples to improve the resistibility of the learning model,
which could be applied in remote sensing scene classifica-
tions. Apruzzese et al. [31] developed a deep reinforcement
learning scheme to generate realistic attack samples in an
augmented training set, which could be applied to enable
a more resilient detector for cyber security against evasion
attacks. Li and Li [32] introduced a method called “mixture
of attacks,” and evaluated it against 26 evasion attacks for
machine learning-based malware detection. They conducted
the adversarial training based on a mixture of attacks, to
enhance the ensemble of DNN. Sagduyu et al. [33] analyzed
the wireless attack and designed a new type called over-
the-air spectrum poisoning attack based on adversarial neural
networks. They applied it in a wireless communication sce-
nario and showed that the adversarial deep learning strategy
could facilitate the learning of the transmitter’s behavior, so
as to boost the poisoning attacks.

III. PRELIMINARY AND PROBLEM DEFINITION

In this section, a brief introduction of a typical adversarial
attack scenario within IoT networks is given first, followed
by the problem definition and formulation for the adversarial
attack generation in the specific GNN-based NIDS.

A. Application Scenario

In a typical IoT system, such as a surveillance system in a
smart city, numerous smart nodes are interconnected across
different IoT networks, presenting a hierarchical structure.

Fig. 1. Scenario on level-aware black-box adversarial attacks against GNN-
based NIDS.

Each level of IoT network is composed of different kinds
of smart nodes, depending on their functionalities or types
of services. As shown in Fig. 1, the bottom level typically
consists of various sensor nodes, e.g., digital cameras in a
cloud-based surveillance system, or a set of sensors deployed
in the flow line system for smart manufacturing applications,
for the purpose of collecting raw data which will be used
in the higher-level IoT services and applications. The second
level contains several smart devices which may aggregate the
information from the bottom level in an area. For example,
programmable logic controllers (PLCs) for smart manufactur-
ing or roadside units (RSUs) for intelligent transportation are
deployed in the second level to handle specific control tasks in
IoT-based applications. Finally, the topmost level is deployed
with the master processing unit (MPU) to manage the aggre-
gated information from the entire IoT system. Specifically, the
level of a network node vi can be determined by the weighted
correlations from its neighbors similar to PageRank, which
is initially measured according to the corresponding outlink
connection di in this study. In addition, the black-box attack
scenario is adopted to ensure the practicality of the proposed
model, which means the attacker knows nothing about the
model parameters but only the input data.

Referring to Fig. 1, considering a typical adversarial attack
for IoT systems with a hierarchical network structure, an
attacker who has a limited budget can only compromise a lim-
ited group of nodes. When an attack happens, the GNN-based
NIDS may detect it by predicting each node in the network
as a compromised node or normal node. Intuitively, it would
be easier to compromise the entire IoT network by attacking
nodes at higher levels of a network. In this study, with the
IoT network structure presented, an HAA strategy targeting
node selection tasks is designed to confuse the GNN model,
which may lead to the misprediction or misjudgment of a
compromised node as a normal one.

B. Problem Formulation

In this study, we consider a graph model G = (V, E, D, X)

to represent a typical IoT network, where V = {v1, v2, . . . , vP}
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Fig. 2. Overview of HAA generation against GNN-based NIDS.

is a nonempty set of nodes in the network, E =
{e1, e2, . . . , eQ} is the edge set associated with V , and D =
{d1, d2, . . . , dP} denotes a set of measures to quantify the hier-
archical relations based on link analysis among all the nodes
in V . P = |V| and Q = |E| denote the total number of nodes
and edges, respectively. X = {x1, x2, . . . , xP} is the set of fea-
tures that corresponds to each individual node in V , where
each xi ∈ R

L in X is the L-dimensional feature vector for each
node vi ∈ V .

Given an NIDS deployed with a GNN-based classification
model, the GNN model may classify all the nodes into C
classes. We define yi ∈ {1, 2, . . . , C} as the ground truth
class for node vi, and ŷi = f (X; θ) as the predicted result
for vi, where θ indicates the set of parameters in the GNN
model. As we discussed above, a practical black-box attack
scenario is adopted, in which the NIDS’s integrity is pro-
tected thus the attacker cannot directly obtain the detailed
model structure and parameters. Accordingly, the attacker may
attempt to degrade the classification performance of f (∗) by
adding perturbations into the original G, and turn it into a
perturbed graph G′. Specifically, we consider the perturbation
only occurs in nodes of the graph model, which results in a
perturbed G′ = (V ′, E, D′, X′).

The problem definition is given as follows. Assuming an
attacker tries to degrade the classification performance of a
GNN model by adding perturbation to the original G, it is
needed to confuse the GNN model by perturbing the origi-
nal feature vector set X to X′. Therefore, given a predicted
classification result ŷ comparing to the ground truth y, the
goal is to obtain an optimal perturbed X′ based on the loss
optimization [34], [35], which can be described as follows:

argmax
|X′|<h

Lattack
(
f
(
X′; θ∗), y

)

s.t. θ∗ = argmin|X′|<hLpredict(f (X; θ), y) (1)

where Lattack and Lpredict are the cross-entropy loss of attacker
and original GNN, respectively. θ∗ denotes the optimal param-
eters and f (X′; θ∗) denotes the prediction result based on θ∗

using X′. In particular, we set |X′| < h, in which h is the max-
imum number of the nodes to be attacked initially due to the
limited budget.

IV. HAA GENERATION AGAINST GNN-BASED NIDS

In this section, we first introduce the overview of HAA gen-
eration against the GNN-based NIDS. The modeling of
shadow GNN for HAA generation is then addressed. Then,
we discuss how to effectively generate the adversarial exam-
ples and how to efficiently compromise the GNN-based NIDS
using a hierarchical node selection strategy.

A. Overview of HAA Generation

The overview of the proposed HAA generation method is
shown in Fig. 2, which includes three essential parts. To gen-
erate black-box attacks, it is important to imitate the original
GNN model. Thus, the first part is to construct a shadow
GNN model, based on the intercepted network packets and
extracted features from the input data of the original model.
Then, the second part is to select an optimum node to attack.
An RWR-based mechanism is designed to measure each node
in the constructed shadow model, and the node with the higher
weight is more likely to be selected as the attack node due to
the limited budget. Finally, the third part is to generate adver-
sarial examples based on the shadow GNN model, which aim
to perturb critical features and alter the classification labels.
In summary, the adversarial examples are generated based
on the constructed shadow GNN model with the intercepted
network packets, which can efficiently mislead the detection
or prediction result, and ensure the attack damage to the target
system via selecting some more vulnerable nodes.

B. Generation of the Shadow GNN Model

As mentioned previously, in a black-box attack scenario,
attackers can only intercept the network traffic data, and
assume a known GNN structure for training. They have no
access to the actual parameters of the GNN model used in the
NIDS. Therefore, it is necessary to construct a shadow model
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to assist in generating adversarial examples that can confuse
the GNN-based NIDS. In particular, assuming the attacker can
monitor the traffic flow in or out of the target model and col-
lect a certain number of network packets, these intercepted
network packets, including the detailed information of source
IP, destination IP, timestamp, traffic flows, etc., can be uti-
lized to learn a shadow GNN model with an existing GNN
network structure. The process of generating the shadow GNN
model can be split into two parts as: 1) feature extraction and
2) shadow model training.

First, a feature extractor is constructed to extract the critical
information from the intercepted network packets, transform
it into a feature vector xi, and form a feature set X =
{x1, x2, . . . , xP}. A shadow model described as f ′(∗) is then
initialized based on the extracted X and original y, to reproduce
the original f (∗) as much as possible.

Second, we go further to learn the temporary parame-
ters θ ′ in the shadow model, thus it may output the same
or similar prediction results as the original GNN model.
Specifically, given the predicted result of the shadow model
as ŷ′

i = f ′(xi; θ ′), the goal is to minimize the error between
the new ŷ′

i and ŷi in the original GNN model. The root mean
square error (RMSE) is used to measure the error between ŷ′

i
and ŷi, and a classical gradient descent method is employed to
optimize the parameters to make sure that the shadow model
is as close to the original model as possible.

C. Adversarial Example Generation

As the core issue in the HAA model, adversarial examples
are generated by the shadow GNN to modify the feature set
X′ = {x′

1, x′
2, . . . , x′

N} from X, so as to disguise malicious
packets as the normal or vice versa. Thus, the key idea is
to learn the decision boundary from the GNN discriminator,
then modify the features based on the original data packet and
change it across the decision boundary with minimal modifi-
cations. Specifically, the modified feature x′

i for node vi can
be defined as follows:

x′
i = xi + εi. (2)

Obviously, the goal is to minimize ||εi|| which satisfies
f (x′

i) �= f (xi), and how to distinguish the critical feature
elements in the feature space becomes essential to generate
adversarial examples with minimal perturbations to alter the
labels.

In particular, the saliency map [37] is utilized to identify
the critical elements from the feature space in a gradient-based
back propagation process. Based on revising these identified
key elements, adversarial examples are generated by adding
some perturbations according to (2).

To identify the critical feature element with saliency map,
the derivative weight ω for each element z in x is introduced
and calculated based on the back propagation as follows:

ωz = ∂ ŷ

∂x
|z (3)

where ŷ is the corresponding predicted result. Each ωz indi-
cates the sensitivity of the corresponding z in x, in terms of
its influence to the output ŷ.

Accordingly, we can investigate the sensitivity of each fea-
ture element z in x, and obtain the top-k critical elements
according to the rank of ωz. Then, the cross-entropy loss
of attacker can be calculated via (1) based on the perturba-
tion εi which is applied to those identified critical elements
of the original xi. Specifically, we set a trivial perturbation
stride as 0.001 for εi in the maximum 20 episodes to estimate
Lattack(f (X′; θ∗), y) during the training process.

D. Hierarchical Node Selection Strategy

As discussed before, it is impossible for an attacker to com-
promise the whole network by modifying the whole feature set
X for all nodes V . Considering the limited budget, the attacker
usually chooses to compromise a subset of nodes with rel-
atively smaller cost. Thus, an RWR-based algorithm on the
GNN model is employed to capture the hierarchical structure
feature in a weighted graph, which conducts the node selection
task and generate a node set to be attacked with high priority.

RWR has been proved as an efficient way to calculate the
weighting score in terms of the connections among networked
nodes in a constructed graph model [36]. Basically, the RWR
that measures the importance on the edge set E can be defined
and expressed as follows:

HR(t+1) = λM · HR(t) + (1 − λ)HR0 (4)

where λ ranging from 0 to 1 is a damping coefficient for
the random navigation during the iteration. HRt denotes a
score vector in terms of the feature importance at the step t.
Particularly, HR0 = [0, . . . , 1, . . . , 0] is the initial vector
when starting the RWR, in which the element of value “1”
denotes that the corresponding node vi is selected as a target
of attack at the beginning. The transfer matrix M ∈ R

P×P

stores the probability of each node to transfer to the others.
Specifically, each mij ∈ M can be initially measured accord-

ing to the outlink di of vi, as the probability of transfer from
vi to vj, which can be calculated as follows:

mij =
{

1/di, if ∃eij ∈ E, or i = j
0, otherwise

(5)

where di is quantified by the outlink of node vi.
To measure the hierarchical feature of each node, A level-

threshold τ is introduced to empirically evaluate di for each
vi in the network, which can measure and identify the level of
each node as exemplified in Fig. 1. Given a randomly selected
node vi as an initial node, it will iteratively transmit to its
neighborhood node based on M by calculating the correspond-
ing λmij, while it may transmit back to itself with a probability
of (1 − λ)HR0.

Furthermore, the overall loss change is considered and
investigated in terms of the update of transfer matrix M when
we choose to attack different nodes with a limited budget. In
particular, we evaluate the loss based on x′

i when perturbing
a node vi in the graph. Thus, the loss change for a selected
node x′

i can be defined and described as follows:

�i(x) = Lattack(f (x
′
i, y) − Lattack(f (xi, y)). (6)

Specifically, we can measure this loss change
based on the first-order Taylor approximation
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Algorithm 1 RWR-Based Hierarchical Adversarial Example
Generation
Input:Graph G = (V, E, D, X), ground truth class label y
Output:A set of adversarial examples generated according to
the top-n selected nodes

1: Initialize HR0, Max Iteration π , Threshold δrwr, δloss

2: for each eij in M do
3: Initialize mij via Eq. (5)
4: end for
5: for t = 1 to π do
6: Compute HR(t+1) = λM · HR(t) + (1 − λ)HR0

7: Compute error e(t) = HR(t+1) − HR(t)

8: if e(t) < δrwr: break
9: Compute loss change �i(x) via Eq. (6) for the temporal

top-n nodes in M and update M
10: end for
11: Select top-n nodes based on their ranking scores
12: for each vi in the selected top-n nodes do
13: Compute critical features for vi via Eq. (3)
14: Compute loss Lattack(f (X′;θ∗), y) via Eq. (1)
15: While Lattack(f (X

′ ;θ∗), y) < δloss do
16: Generate adversarial examples x′

i by adding pertur-
bation to vi via Eq. (2)

17: end for
18: return adversarial examples {x′

i|i∈{1,2,...,N}}

�̃i(x) � �i(x) + ∇δi
T(x − xi) [13], which can be related

to the column sum of the ith column in the transfer matrix M,
and further be used to update M during the training process.

The RWR-based hierarchical node selection strategy for
adversarial example generation is shown in Algorithm 1.
Given a typical IoT network represented by a graph model
G = (V, E, D, X) with the ground truth label set y, a set of
adversarial examples {x′

i|i∈{1,2,...,N}} can be generated based on
the cooperation of the hierarchical node selection and critical
feature identification. In particular, we initialize the transfer
matrix M based on the outlink of a specific node vi, and iter-
atively update M considering the corresponding loss changes
of the nodes, so as to select a set of nodes with high attack
priority. Perturbations are added to the selected nodes to gen-
erate adversarial examples when the loss criterion described in
(1) is satisfied. Finally, we can efficiently select a set of more
vulnerable nodes and attack the GNN-based NIDS using the
generated adversarial examples.

V. EVALUATIONS AND DISCUSSION

In this section, we evaluate and compare the proposed
HAA generation method with several baseline methods.
Experiments are designed and conducted based on an open-
source IoT data set, to demonstrate the effectiveness and
usefulness of our method.

A. Data Set

An open data set UNSW-SOSR2019, which is collected by
the security laboratory at the University of New South Wales
using the tcpdump tool, is adopted for our evaluations. It
collected packet traces of different kinds of attack and benign

TABLE I
DATA SET DESCRIPTION

traffic from ten IoT devices in total [38]. Table I summarizes
the overall data set, including the used IoT devices, and their
corresponding training, testing, and attack sample sizes.

In addition, a set of preprocesses is conducted on the raw
data set before training the model.

1) Construct the training set with 80% benign traffic and
20% attack traffic.

2) Remove the unreasonable traffics from the training set.
3) Build the graph model with the input data selected

randomly from the training set.

B. Experiment Design

We evaluate the proposed HAA generation method on two
typical GNN models, namely, the GCN [39] and JK-Net [40].
The layer of GCN is set to 3 and JK-Net is set to 7. The other
hyper-parameters follow closely the setups in [33] and [37].
Specifically, to reflect the actual hierarchical network structure
in IoT systems, three levels of the IoT nodes are configured
as low level (outlinks: 0–5), medium level (outlinks: 5–10),
and top level (outlinks: more than 10), with percentages 60%,
25%, and 15%, respectively, according to a typical real-world
embedded Industrial IoT scenario. Experiments are conducted
in a server with CentOS 8, GTX 1070, G39030 Duel Core,
16-G RAM, Python 3.6, and PyTorch 1.4, and all the results
are generated with 40 repeated and independent trials.

The following three strategies are considered as the baseline
methods when compromising the targeted GNN models.

1) Improved Random Walk With Restart (iRWR) [36]: This
method took the time-varying features into consideration
to find a navigation based on the importance score of
nodes across network connections.

2) Resistive Switching Memory (RSM) [41]: This method
used a cross-point array of RSM with a feedback config-
uration to solve the eigenvector calculation and webpage
ranking tasks, which calculated the importance score
similar to the PageRank strategy.

3) Greedily Corrected Random Walk (GCRW) [13]: This
method generated black-box attacks based on analyz-
ing the connection between the backward propagation
of GNNs and random walks, which calculated the
importance score in a greedy correction procedure.

C. Attack Effectiveness Evaluation

We evaluate the proposed method and compare its attack
effectiveness with the mentioned three baseline methods, by
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Fig. 3. Feature saliency map generated for different IoT devices. (a) WeMo motion. (b) Samsung cam. (c) TP-Link plug. (d) Netatmo camera. (e) Chromecast
Ultra. (f) Amazon Echo. (g) Phillips Hue bulb. (h) iHome plug.

Fig. 4. Performance degradation in loss and classification precision in JK-Net and GCN with varying percentages of perturbed nodes and training data.
(a) Loss with varying perturbation in JK-Net. (b) Precision with varying perturbation in JK-Net. (c) Loss with varying perturbation in GCN. (d) Precision
with varying perturbation in GCN. (e) Precision with varying training data ratio in JK-Net. (f) Precision with varying training data ratio in GCN.

measuring the classification performance degradation based on
two different GNN models in IoT environments.

First, we investigate the critical feature identification dur-
ing the adversarial example generation process. The saliency
map is utilized to illustrate the critical features of different
IoT devices. Fig. 3 shows a set of generated feature saliency
maps according to eight network traffic classes, after principal
component analysis (PCA) dimension reduction.

Furthermore, we investigate attack effectiveness for all
the methods. We first evaluate how these methods perform

with different levels of perturbation. The performance of the
GNN models is evaluated based on its classification loss
and precision. A method that has a larger impact (i.e., large
performance degradation) to the GNN models is expected to
result in a higher loss and a lower precision. Fig. 4 presents
the loss and precision results for JK-Net (Fig. 4(a) and (b))
and GCN (Fig. 4(c) and (d)), respectively, under varying % of
the perturbed nodes from 2% to 30%.

In Fig. 4(a) and (b), the expected trends can be observed,
where higher loss and greater precision degradation are
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resulted when more nodes are perturbed (i.e., higher level
of perturbation). Referring to Fig. 4(a), it can be found that
the proposed HAA results in the highest loss in the JK-Net
model in comparison with the other three methods. In addition,
instead of having a linear increment in loss with respect to the
increasing level of perturbation, the HAA generation method
demonstrates a more exponential increase in loss. This indi-
cates that the method is more effective when the number of
perturbed nodes increases. Similar results are also reflected in
Fig. 4(b), where both iRWR and RSM do not demonstrate very
effective attack strength, and hence the precision of the GNN
model remains reasonably well. In comparison, HAA is able
to reduce the classification precision to close to 0.5 at 30%
perturbation, which is a significant reduction and impact on
the model performance. Overall, the proposed HAA method
outperforms the other three methods and is able to achieve a
42.5% reduction in classification precision between 2% and
30% perturbed nodes.

Fig. 4(c) and (d) present the loss and classification precision
for the GCN model, respectively, under the four attack mod-
els. The results follow the general trend, where higher loss
and greater precision degradation will be achieved when more
nodes are perturbed, although it can be observed that the
GCN model offers a slightly better performance under our
targeted scenarios. Similar to the results for JK-Net, the
performance degradation in GCN also exhibit similar behavior.
The HAA can achieve the best loss increment and classifica-
tion precision reduction. Overall, the proposed method has
achieved more than 30% reduction for classification precision
in the GCN model.

We go further to analyze the effectiveness of the attack
methods under varying sizes of training data from 2% to 30%
of the original training data set. Referring to Fig. 4(e) and (f),
which show the model performance with varying sizes of train-
ing data set for JK-Net and GCN, respectively. The general
trend can be observed, where more training data will result in
better GNN model performance. It can also be observed that,
with 30% training data, the model performance has already
reached to a comparable level to the complete training data
set in the cases of iRWR and RSM. This clearly indicates
that the attack strength of iRWR and RSM is not very strong.
With GCRW, the model performance is also reaching close to
0.76, whereas in the case of HAA, the classification precision
remains to be close to or lower than 0.6 when up to 30% of
the training data is used. This gives a strong indication of the
attack strength achieved by the proposed HAA method, which
performs more consistently with varying sizes of training data.

VI. CONCLUSION

Advanced IoT networks and systems are growing at an
unforeseen rate, reaching every corner of our cities and coun-
tries, to collect useful data, and to offer intelligent services.
Considering the amount of data collected and processed by
modern IoT systems, it is of critical importance to make
sure that those systems are secure and not to be misused
for any malicious purposes. To address this issue, tremendous
amount of research effort is devoted to design robust NIDS to

ensure the security of IoT systems. However, existing NIDS
approaches all suffer from the fact that there is only a limited
amount of very imbalanced training data, which leads to the
vulnerability against unknown types of malicious attack.

In this article, we introduced an HAA generation method,
targeting the state-of-the-art GNN-based NIDS in black-box
attack scenarios. Specifically, we presented an integrated
framework for the level-aware black-box adversarial attack
strategy, which could generate adversarial examples based on
the constructed shadow GNN model with a limited budget. The
saliency map technique was utilized to facilitate the generation
mechanism, based on which we could effectively identify those
critical feature elements, so as to modify them with minimal
perturbations. The RWR algorithm was employed to realize
the hierarchical node selection, in which both structural fea-
tures and overall loss changes within the targeted IoT network
were considered to improve the transfer matrix, so as to effi-
ciently select a set of more vulnerable nodes to attack the
GNN-based NIDS using the generated adversarial examples.
Evaluations were conducted using the open-source data set
UNSW-SOSR2019. The results compared with three baseline
methods demonstrate the ability of the proposed method in
reducing the classification precision by more than 30% in two
state-of-the-art GNN models, GCN and JK-Net, respectively.

In the future, we will go further to study more efficient
and effective adversarial attack strategy. More evaluations in
different IoT network application scenarios will be investigated
to improve the adaptability of our method.
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