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Abstract—The Internet of Things (IoT) is a paradigm charac-
terized by a network of embedded sensors and services. These
sensors are incorporated to collect various information, track
physical conditions, e.g., waste bins’ status, and exchange data
with different centralized platforms. The need for such sensors
is increasing; however, the proliferation of technologies comes
with various challenges. For example, how can IoT and its asso-
ciated data be used to enhance waste management? In smart
cities, an efficient waste management system is crucial. Artificial
intelligence (AI) and IoT-enabled approaches can empower cities
to manage the waste collection. This work proposes an intelli-
gent approach to route recommendation in an IoT-enabled waste
management system given spatial constraints. It performs a thor-
ough analysis based on Al-based methods and compare their
corresponding results. Our solution is based on a multiple-level
decision-making process in which bins’ status and coordinates are
taken into account to address the routing problem. Such Al-based
models can help engineers design a sustainable infrastructure
system.

Index Terms—Artificial intelligence (AI), evolutionary algo-
rithms, optimization, route recommendation, smart cities, waste
management.

I. INTRODUCTION

HE WORLD’S population living in urban areas is
Texpected to continue to grow at a fast pace. Such pop-
ulation growth can lead to an increasing waste generation.
Today, big cities worldwide face various waste management
challenges due to rapid growth in population and consumption.
Generally speaking, waste management consists of different
procedures, such as garbage collection, transport, processing,
waste disposal, and monitoring [1]. The challenges in this field
include insufficient infrastructure for waste collection, lack of
financial resources, health issues, and proper waste manage-
ment planning [2]. In this work, we deal with waste collection
and route optimization. A waste management process is explic-
itly identified as a service. It consumes a significant portion
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of a municipality’s operating budget. A considerable amount
of this budget goes on garbage collection and transporta-
tion. The scenario seems to be an unreasonable wastage of
resources if bins are collected while partially filled up. To deal
with this situation, bins should be built on a microcontroller-
based platform to be monitored effectively. In this way, the
information about the status of bins (i.e., the level of garbage
in bins) can be obtained before dispatching garbage collec-
tor vehicles for garbage collection. The conventional way
of collecting garbage is a cumbersome procedure requiring
much individual effort, time, and cost [3]. Developing new
enabling technologies can help alleviate the situation. Artificial
intelligence (AI) has made its way into different areas, e.g.,
engineering [4], [5], urban planning [6], and management [7].
Al-based models are incorporated in different fields of study,
such as manufacturing, to solve various problems, such as
process planning, route optimization, and extracting insights
from sensor data [8]-[11]. Al and Internet of Things (IoT)
technologies can pave the way to develop an efficient system
and automate waste management practices. They offer new
strategies for reducing the cost, and the complexity of waste
management [12].

Al-based approaches, such as the genetic algorithm (GA)
can be adopted to increase efficiency and reduce cost [13].
Their applications to waste management can make garbage
collection processes smart. Such methods can substitute tra-
ditional ones for planning routes for waste collection while
using fewer resources in transportation. Route planning in the
context of waste management is defined as the process of iden-
tifying and evaluating the feasibility of routes for collecting
garbage efficiently. This process includes different phases, e.g.,
identifying pickup locations, clustering locations/bins, mea-
suring the amounts of waste to be collected, and planning a
route [14]. Proposing an efficient and practical waste collec-
tion approach is consistent with the characteristics of a given
problem. In this work, we develop our solution based on the
inherent properties of the concerned problem using evolution-
ary algorithms. The problem is formulated and modeled based
on two different scenarios, i.e., discrete optimization [15] and
continuous one [16]. Spatial constraints are integrated into
the implemented models. They are employed to address prox-
imity issues to be explained later. First, we explain how a
routing problem is modeled based on both approaches. Then,
we compare them and show the former (i.e., the proposed
discrete optimization model) can provide a much better solu-
tion than the latter. Finally, different discrete algorithms are
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compared with the proposed discrete model to validate the
result.

All bins are built on a microcontroller-based platform,
embedded with sensors informing about the level of garbage
using an application programming interface (API). Our solu-
tion includes several phases. The first phase deals with defining
different fullness levels, e.g., 60% capacity of a given bin.
Whenever bins come to this predefined level, they are given
a priority upon their collection. Moreover, those bins whose
capacity does not reach a minimum level (e.g., 20% capac-
ity) are not considered in the second phase of the algorithm.
It should be mentioned that considering this flexibility can
reduce the complexity of the algorithm significantly. The sta-
tus of bins is obtained by querying the interface using APIL.
The second phase concerns planning the best path given the
bins’ status determined in the prior phase. Dealing with spa-
tial optimization problems is more challenging than nonspatial
ones. Topological constraints should be considered when solv-
ing a spatial optimization problem; in other words, the physical
properties of spatial points and their neighbors should be
considered. The main contributions of an efficient spatial
optimization method include computational efficiency, flexi-
bility, and optimization quality. In line with the mentioned
goals, we propose an approach that improves computational
efficiency and achieves much higher optimization quality than
existing ones. The contributions of this work are as follows.

1) An optimized IoT-based model including intelligent

vehicle routing strategies coupled with spatial con-
straints is proposed to offer promising search capa-
bility in a discrete and continuous domain for waste
management.

2) The model can maintain diverse solutions given different

decision-making constraints for sustainability concerns.

The remainder of this article is organized as follows. Some
related work about the models that have been designed for
waste collection is described in Section II; both implemented
models are discussed in Section III; the experimental settings
and the comparison results are shown in Section IV; and the
future work and conclusions are presented in Section V.

II. RELATED WORK

Recent studies have been focused on different ways to
exploit the opportunities offered by AI and machine learn-
ing due to the limitations of conventional computational
approaches [17]. In environmental engineering, leveraging IoT
sensors has enabled access to data that can be traced through-
out various planning phases, from higher level strategic plan-
ning processes to lower level operational planning. Al-based
techniques, such as artificial neural network (ANN), multilayer
perception, adaptive neuro-fuzzy inference system, and evo-
lutionary algorithms have been implemented to address air
pollution and emissions reduction [18]-[20]. Moreover, differ-
ent technologies, such as cloud and edge computing [21]-[25],
are also embedded in today’s urban infrastructures [26]—[29].
These technologies are used to store and process data from
almost anywhere. They are being adopted across various enter-
prises to improve operations and develop better analytics to
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enhance decision-making ability. Given these technologies,
intelligent data-driven mechanisms can be developed to enable
authorities to manage waste effectively.

Broadly speaking, route optimization is referred to as an
NP-Hard problem. Therefore, most studies in this context are
based on heuristic and metaheuristic algorithms [30]-[34].
However, metaheuristics can provide more robust, effective,
and cost-efficient solutions to multiobjective problems. The
quality of solutions provided by these algorithms is much
higher than those obtained by conventional heuristic ones [35].
Hence, metaheuristics have received considerable attention for
solving problems. Wy and Kim [36] developed a heuristics
method to model a rollon—rolloff waste collection vehicle
routing problem. To do so, they propose a neighborhood
search-based iterative heuristic approach. In [37], a parallel
metaheuristic approach based on simulated annealing (SA)
is proposed to incorporate asynchronous and synchronous
Markov chains. A residual capacity and radical surcharge algo-
rithm have been considered to generate an initial solution for
the model; then, local search methods are implemented to
optimize the obtained solution. These models can be computa-
tionally expensive since heuristic and metaheuristic algorithms
are integrated. Wang and Lu [38] have introduced a memetic
algorithm with competition to solve the routing problem.
Their solution is based on a k-nearest neighbor approach cou-
pled with an SA strategy. First, they have implemented a
permutation-based method to encode the solution. Then, an
effective decoding method has been constructed. Finally, SA
has been used to find optimal routes. Different variants of
the classical SA algorithm have also been adopted for route
optimization in [39] and [40]. However, a sequence of col-
lection tasks has not been considered in these studies. To
alleviate this concern, an optimization problem is solved by
using metaheuristics such that the number of collection trips is
minimized [41]. The work [41] provides a theoretical model
for a routing problem with the characteristics of full loads
and multiple trips. A traveling salesman problem [42], as a
combinatorial optimization problem, has been considered to
model vehicle routing problems [43], [44]. For these prob-
lems, diverse optimal solutions should be provided. GA has
been used in waste management planning to model waste accu-
mulation, facility siting, and generation [45]. Amal et al. [46]
have proposed a GIS-based GA for optimizing the route of
solid waste collection. They use a modified version of the
original Dijkstra algorithm in GIS to generate optimal solu-
tions. They have also conducted a case study at Sfax city in
Tunisia to validate the performance of their method.

Several approaches to route planning for waste manage-
ment have been proposed in the literature. Some of them
are based on periodic collection [36]; while in some others,
the collection procedure is done within a specific time win-
dow [39]. Collection approaches can vary according to urban
characteristics, i.e., residential or commercial/industrial areas.
In residential areas, the collection is primarily on a door-to-
door basis and carried out by vehicles passing along the streets
to collect accumulated garbage from households. In commer-
cial districts, trucks visit different locations, e.g., designated
business locations, such as hotels and shopping malls or waste
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containers in industrial regions, to collect garbage. Despite the
advantages of the existing models, they are not efficient if used
to solve our concerned problem. They cannot appropriately
model the associations among spatial objects. Effective solu-
tions are highly dependent on the characteristics of problems
to be solved. For example, we deal with proximity issues in
this work. To address such concerns, spatial constraints should
be integrated into our approach. This work aims to present
an efficient approach, given the problem characteristics while
addressing all related concerns. It also compares its results
with other methods.

III. WASTE COLLECTION MODELS

The proposed IoT-based model is based on integrated algo-
rithms, including GA and an ANN. The associated cost of the
model is calculated by incorporating ANN into the model.
Generally speaking, GA consists of different phases, i.e.,
parent selection, crossover, mutation, and creating the final
population [9]. Parent selection is a vital phase, consisting
of a finite repetition of various procedures, such as selecting
parent strings, recombining strings, and mutation operations.
The reproductive phase’s goal is to choose cost-efficient indi-
viduals from the population and produce new offsprings for
the next generation. An effective mechanism should be con-
sidered to deal with the exploration and exploitation of an
algorithm and avoid premature convergence. The mentioned
concerns can lead to a loss of diversity. An efficient solution
should also eliminate the cost scaling issue and adjusts the
selection procedure. All related concerns have been addressed
in this work. We consider a selection pressure approach and
adjust the balance between exploration and exploitation by
recombining crossover operators to adjust their probabilities.
Consequently, individuals are produced throughout the mat-
ing pool by establishing a hybrid roulette tournament pick
operator. A discussion for determining the exploration and
exploitation rate is presented throughout this article. Given
the proposed model, garbage collectors can be sent to respec-
tive locations to collect garbage based on all bins’ status.
The implemented approach is practicable for different route
planning.

A. Spatial Constraints

The information about bins is obtained by querying API
of a waste management company (i.e., Bigbelly bins and
Futurestreet) based in Dublin, Ireland. The model interac-
tively submits hypertext transfer protocol (HTTP) requests,
and the server returns responses. The response contains spatial
and nonspatial information, coordinates of bins in Docklands
(i.e., a vibrant area in Dublin), and their corresponding full-
ness status (Fig. 1). The parameters of HTTP requests, such
as API Token, Station IDs, StartTime, and EndTime are also
contained. We deal with spatial characteristics and associated
complexities in this work. Spatial analysis can be much more
challenging than traditional data processing due to the com-
plexity of possible patterns. In such an analysis, observations
should be defined based on spatial relationships, e.g., spa-
tial adjacency [47]. Different methods (e.g., graph-based, grid
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Fig. 1. Querying API to check the status of waste bins.

[rusf
College Park
Rings
Par
friss] ¥ Shelbourne
Merrion =3 9 Park
Square ‘e
Saint rass Jo I

Stephen’s: [}
Leafiet | Map tes by Stamen Design, under CC BY. 3.0, Data by & OpenSteetiiap, under CC BY SA

Green

Fig. 2. Distribution of bins in Docklands, Dublin.

neighbors, K-nearest neighbors, distance-based, and higher
order methods) define adjacency for a point or areal data. Some
of these techniques are based on interpoint distances, such as
k-nearest neighbors, while others are based on neighbors of
areal units. As explained, an effective spatial analysis should
be developed based on such proximity measures. However,
defining adjacency criteria depends on the characteristics of a
given data and relies on the spatial distribution of observations
(e.g., bins together with all related features). The distribution
of bins in Docklands (the area where our concerned bins are
located) is demonstrated in Fig. 2. As can be seen, a river runs
through the area where the bins are located. In this scenario,
defining a neighborhood list is challenging as finding shared
boundaries among different areal units does not account for
cross-area relationships segregated by bridges. Those units that
are connected by bridges cannot be considered as neighbor-
hood links. Therefore, we have implemented the neighborhood
list used in the proposed algorithm based on a graph-neighbor
approach to overcome such shortcomings. To that end, two
different graph-based techniques, i.e., Delaunay triangulation
and Gabriel graph methods [48], are used. We have found that
the former results in a more robust outcome. By defining this
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proximity measure, bins are automatically divided into two
groups. As illustrated in Fig. 2, two groups of bins can be
separated automatically.

B. Spatial Objective Function

Suppose that at n spatial data points (bins) b;,i €
1,2,...,n, we observe y; = y(b;). y(b;) is the status of the
ith bin. This vector can be defined as

Y =[viya o] - (1)

Then, each b; is defined as: b; = (longitude; latitude; Y;;
C;), including the coordinates of all bins in Docklands, Y; is
the associated percentage of fullness of the ith waste bin b;,
and C; represents the cluster that the ith bin belongs to. It
is worth mentioning that each b; is implemented as a spatial
data point, consisting of different slots, such as projection-
string, plot-order, and bounding-box. These features are used
for projection purposes. The defined spatial data points are the
objects of coordinate reference systems.

The spatial-weights-matrix W is also defined by considering

all nearby bins as
W = [wy] @)

the weights between pairwise adjacent bins b; and b; satisfy

nxn

w;; > 0 for any adjacent bins, and w; = 0 for any i. (3)

Let G = (V,E) be an undirected weighted graph with n
bins, where V = {V1, V»,...,V,} is a set of spatial nodes,
and E is a matrix representing connecting edges (indicating
the path between two nodes), i.e.,

E = [Ej],. )

where i and j represent bins i and j. The distance among bins is
also considered as the edge’s length (e.g., the weight value of
edge (i, j) is denoted as d;j). The desired path (the algorithm’s
objective function) can be formulated as the permutation ®

n—1
minf(®) = Z dewek+1) + domen) (5)
k=1
where ® (k) is the kth element of permutation ©.

Based on the defined list of bins and their pairwise dis-
tances, the aim is to search for the shortest path in a weighted
graph such that each bin is visited exactly once. This problem
is an NP-hard optimization problem and computationally
expensive since the number of permutations of n nodes grows
exponentially with n. Given the nature of this problem, it is
challenging to propose a solution based on deterministic algo-
rithms. Hence, we propose two different approaches based on
metaheuristic techniques to obtain near-optimal solutions. The
implemented techniques are population-based models cou-
pled with metaheuristic search algorithms. Such approaches
enable us to find a near-optimal solution within a reasonable
time while avoiding the need for exhaustively exploring the
input space. It should be mentioned that most studies have
been focused on proposing solutions based on a continuous
optimization domain. We aim to find an appropriate algo-
rithm so that it can offer promising search capability and
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maintain diverse solutions. Since we deal with a combinatorial
optimization problem, a GA is selected. It should be noted that
some of the evolutionary algorithms, such as particle swarm
optimization (PSO) or covariance matrix adaptation evolution-
ary strategies, are originally proposed for a continuous search
space [49].

GA includes a repetition of different operations sequences,
i.e., parent selection, recombination, and mutation. We imple-
ment two variants of GA (with different genetic operators) in
continuous and discrete cases. We show that the one conduct-
ing for the discrete space performs much better. The models
treat all bins (chromosomes in GA terminology) as bit-strings.
Both models rely on a population of individuals (candidate
solutions) to explore a search space. These candidates are a
set of chromosomes and encoded as strings. The models use an
initial population and genetic operators, such as crossover and
mutation. These operations are implemented to produce a new
generation by recombining a population’s chromosomes. Then,
fitter individuals are chosen, given an objective function. The
operators are also utilized for exploring and exploiting search
space. It is of great importance to balance the exploration and
exploitation of an algorithm. Exploring the input space is done
to find an optimal solution by using a crossover operation.
Besides, a mutation operator is considered to avoid the pre-
mature convergence of the algorithm. We have controlled the
exploration/exploitation level by a selection pressure parame-
ter (B in this work). This parameter B is used in the parent
selection phase. All the procedures, iteratively, are repeated
until some termination criteria are met. The best solution (the
one with the minimum cost when the algorithm ends) is then
selected.

As explained, the goal is to find the best route for waste col-
lection. The first step is to define an initial population. Then,
dynamic crossover and mutation operators are developed. The
defined spatial objective function is used to minimize the
total traveled distance. The procedures are described for both
scenarios next.

C. Implemented Model: Discrete Scenario

In this scenario, a discrete GA coupled with the defined
spatial objective function is implemented. To that end, an ini-
tial population is randomly generated (given the algorithm’s
population size). The cost associated with each chromosome
is measured based on the defined objective function. These
costs should be minimized. The initial population is defined
as individuals, including n-dimensional chromosomes. A path
set (¢) can be defined as a permutation of #n bins

¢ =(b1,ba, ..., by). (6)

Algorithm 1 represents the way in which the initial popu-
lation is created.

Then, cost-efficient chromosomes from the population are
sorted and selected. A parent selection phase is employed for
creating a new population at each iteration. In the reproduction
phase, permutative crossover and permutative mutation oper-
ators are implemented. These operations are to be explained
later. All the procedures are repeated until a termination cri-
terion is met. A feasible solution to the problem satisfies the
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Algorithm 1: Pseudocode for Creating Initial Population
Given Their Cost (Discrete Scenario)

Algorithm 2: Pseudocode for Finding an Optimal Path
(Discrete Scenario)

Input : Spatial-Data-Frame (b{, b,
Dist < distance function
Output: cost < fitness of each permutation
n < number of bins
P <]
np < Size of population
L<+0
Select bins given their level of fullness
# CostFn
fori < 1,...,np do
P;.position < a random permutation
P;j.cost < calculate cost given:
fori < 1,....n—1do
cost.append < cost of each permutation:
L = L+ Dist(P;, Pi1+1)
end
end
P < Sort population (P);
return initial individuals;

..o bp)

D-I-CIEE B N N N

R S~ S S U R
AR W N =D

discussed constraints. Let F' be the set of all solutions; the aim
is to find an optimal one (f* € F) given the cost function. In
another word, we are looking for a permutation ®* of n bins
(b1, by, ..., by) such that

n n
Zd(b(a*(k)ab@*(kJrl)) < Zd(b@)(k>,b®(k+1))- (7N
k=1 k=1
The cost of each solution is calculated by using an ANN
model. These costs are used for different purposes like parent
selection and then the solution. The objective in the parent
selection phase is to select two solutions (with lower costs)
from the population such that newly created offsprings would
inherit their parents’ characteristics. There are different meth-
ods to select parents, e.g., random selection, rank selection,
stochastic universal sampling (SUS), tournament selection, and
Boltzmann selection. We do not adopt the random selection
since it has no selection pressure parameter. Rank selection
and SUS suffer from premature convergence. Applying these
methods can easily lead to a local optimum. Instead, we have
employed Boltzmann selection. This method is inspired by
SA and can help maintain a good diversity. The probability
of a solution being chosen is measured, given the following
Boltzmann probability:

e BLi
Np —BL
Zk:l e ﬁ k

where 7, is the size of the initial population, and L is the
defined cost function. B is the selection pressure. Parents are
determined according to probabilities, which are proportional
to the costs calculated earlier. In other words, solutions with
a lower cost are more likely to be selected than those with
a greater one. It is worth mentioning that § is selected, such
that ),y pi = 0.7, where H is the set of half of the best
solutions (population is sorted according to their cost values,
and 7,/2 of them are selected). Consequently, the Roulette
Wheel mechanism is implemented for sampling. This process
is repeated until a predefined number of parents are selected.

Pi) = ®)

Input : CostFn,
P < Initial Population
Output: Optimal Path
Ma¥  Maximum Iterations
6 <« Crossover rate
ne < Size of crossover (based on )
nm < Size of mutation
for i < 1, .., IM% do
# Crossover operation

Y N N A

L
(B)* Taraesasi
gestCost
7 Pr(se P) = —2

Lg
np (—B)* i —
r—1 €XP LargestCost

8 fori < 1,..,nc do
9 Select two parents (y) based on the RW function;
10 Generate two offsprins (a);
1 (i, 1).position, a(i, 2).position] <
CrossoverFn(y 1.position, y2.position)
12 [a(i, 1).cost, a(i, 2).cost] <
CostFn(y 1.position, y2.position)
13 end
14
15 # Mutation operation
16 fori < 1,...,n, do
17 Select one parent (y) based on the RW function;
18 [ (i).position] < MutationFn(y .position)
19 [a(i).cost] <— CostFn(y .position)
20 end
21 P < [P, Offsprings, and Mutants];
22 P < Sort and select first 1, individuals;
23 S§* <« P(1).position;
24 Cost*(i) < P(1).cost;
25 end

26 return optimal path;

Therefore, solutions with the greatest cost have a minimal
chance of being chosen. These procedures are described
in Algorithm 2.

After selecting parents, a crossover operation should be
employed. On this basis, the chromosomes of selected par-
ents are combined to create new offspring. We deal with a
combinatorial problem; hence, traditional methods (such as
one-point, two-point, and uniform crossovers) for conducting
the crossover operation are not suitable. Two cut points on
each pairwise parent have been considered in order to create
a permutative crossover. The portion after each cut point has
been selected and exchanged (the selected bit strings of the first
parent are mapped onto the other parent’s string). All bits are
then checked to ensure there are no conflict bits to guarantee
each chromosome is permutation without repetition. In this
way, new offsprings are created. To avoid being trapped in a
local minimum, a mutation operator has been considered. It also
maintains a good diversity in a newly generated population.
Different types of mutation operations (e.g., insertion, inversion,
and swap) have been considered in our model. Generally, one
or more bits of chromosomes are replaced, such that generated
offsprings also maintain permutation patterns. The pseudocode
realizing the algorithm operators is given in Algorithm 3.

As stated, the goal is to minimize cost function L. To that
end, an ANN has been integrated into the model. The model
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Algorithm 3: Pseudocode for Defining the Algorithm’s
Operators (Discrete Scenario)

Algorithm 4: Pseudocode for Creating Initial Population
Given Their Cost (Continuous Scenario)

Input : Two parents, (y)
Output: Offsprings

1 Function [O1, 02] = CrossoverFn(y1, y2)

2 CrossoverMethod < {One-Point Crossover}

3 return two offsprings;

4 end

5 Function M = MutationFn(y)

6 Apply three mutation operators (Swap, Inversion, and
Insertion);

7 Prswap < probability of using Swap operator;

8 Prinsertion < probability of using Insertion operator;

9 Prinversion < probability of using Inversion operator;

10 Method < RW (Prswap, Prinsertion, Prinversion);

11 switch Method do

12 case / do

13 | Swap(y)

14 end

15 case 2 do

16 | Insertion(y)

17 end

18 case 3 do

19 | Inversion(y)

20 end

21 end

22 return mutant;

23 end

gets the objective function (i.e., L) as an input. Then, the
ANN is used to measure corresponding cost values in dif-
ferent iterations. Iteratively, different solutions (permutations)
are generated and evaluated by GA’s operations. A Levenberg—
Marquardt training algorithm consisting of two layers (15
neurons in the hidden layer) is utilized. It enjoys adaptive
weights with full connectivity among neurons in the input and
hidden layers. All costs are calculated, and the path is selected
such that the corresponding cost is minimized.

D. Implemented Model: Continuous Scenario

In this scenario, we implement GA that leverages random
keys to encode solutions. Despite the method used above
(where a stream of integers is used to represent the order in
which bins are to be visited), in this model, each bit string in
a chromosome is assigned with a random number drawn uni-
formly from [0, 1) and sorted in the ascending order. Hence,
each solution has two different parts, i.e., an integer part and a
fractional one. The former refers to what we used for permu-
tation, while the latter indicates random key numbers assigned
to bit strings. The initial population is generated by creating
n chromosomes, where n is the number of bins. Then, a real
number drawn randomly from [0, 1) is given to each bin. New
individuals are spawned in the algorithm’s reproduction phase
given a predefined crossover rate and mutation one. The pro-
cedure realizing the initial population generation is presented
in Algorithm 4.

After the initial population is generated, different operators
are performed for passing the best solutions in the population
to the next generation based on an elitist strategy. First, two
parents are selected, and a parameterized single crossover is

Input : Spatial-Data-Frame (by, by, .
Dist < distance function

Output: cost < fitness of each solution

1 Select bins given their level of fullness

2 n < number of bins

3 np < Size of population

4 S < n uniformly random numbers in the interval (0,1)

5 # Turn a real vector into a permutation

6

7

8

9

. by)

S <« sorted(S)
L<+0
# CostFn
fori<1,....n—1do
10 cost.append < cost of each permutation:
11 L =L+ Dist(S;, Sit+1)
12 end
13 return solutions and costs;

Algorithm 5: Pseudocode for Finding Optimal Path
(Continuous Scenario)

Input : CostFn,
P <« Initial Population
Output: Optimal Path
i< 0
Randomly initial population (P;)
Evaluate each solution in P;
np < Size of population
Repeat
for j < 1,...,mp do
Select two parents from (P;)
Pj = CrossoverFn(Py, P7)
Pj = MutationFn(Pj)
Pip1 < Pj
end
i<—i+1
return optimal path;

D-T-REE B N7 N7 I ST

-
W N =D

considered for producing two new offsprings. In the defined
crossover, one random position in the array of bits is selected
and exchanged. As discussed earlier, after the initial population
is generated, the parent selection operation should be con-
ducted in the reproduction phase. The objective is to choose
solutions with minimal cost. The cost function and the ANN
used for calculating costs are both the same as those described
in the previous section. The newly added offsprings inherit
bits based on a probability measure discussed earlier. Second,
a mutation operator is implemented to ensure a diverse popu-
lation. It should be mentioned that each time a new solution
is generated, it is compared to previous solutions in the pop-
ulation to make sure no duplicate individuals are maintained.
The maximum number of iterations (the algorithm termination
criterion) is also set to 1000. Algorithm 5 realizes the elitist
strategy in the random-key approach.

IV. RESULTS

In this work, we have proposed an optimized IoT-based
waste collection model, including intelligent vehicle routing
strategies coupled with spatial constraints. The goal is to
present an efficient and practical waste collection approach
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TABLE I
RESULTS OF THE DISCRETE OPTIMIZATION MODEL, GIVEN DIFFERENT PARAMETER SETTINGS

Crossover Rate  Population Size ~ Neurons Corresponding cost for selected solution in different iterations
6 1.2031 1.2009 1.1702 1.1699 1.1664 0.3212 0.3212 0.3178  0.3178 0.3178
0.6 70 10 1.2102 1.1002 1.1002 1.1002 1.0847 0.2915 0.2905 0.2833  0.2830 0.2765
15 1.3202 1.2723 1.2721 1.2621 1.2586 0.3082 0.3080 0.3003  0.3003 0.3003
6 1.3124 1.3012 1.2731 1.1974 1.1844 0.2523 0.2475 0.2378  0.2378 0.2370
0.6 80 10 1.3012 1.1302 1.1922 1.1804 1.1543 0.2814 0.2805 0.2805 0.2805 0.2711
15 1.2952 1.2653 1.2653 1.2653 1.2641 0.3051 0.3050 0.2976  0.2976 0.2936
6 1.4142 1.3839 1.2943 1.2602 1.2461 0.2903 0.2785 0.2785 0.2785 0.2785
0.6 90 10 1.3772 1.1372 1.1362 1.1361 1.1347 0.2664 0.2508 0.2508  0.2449 0.2443
15 1.3912 1.3644 1.2983 1.2703 1.2699 0.3001 0.2751 0.2707  0.2707  0.2700
6 1.0921 1.0622 1.0613 1.0613 1.0509 0.2071 0.2054 0.2054  0.1963 0.1963
0.7 70 10 1.0903 1.0741 1.0608 1.0573 1.0491 0.2121 0.2004 0.1864 0.1664 0.1663
15 1.0873 1.0873 1.0871 1.0776 1.0601 0.2215 0.2215 0.2035 0.1914  0.1843
6 1.0801 1.0801 1.0773 1.0654 1.0491 0.2005 0.2001 0.1803 0.1704 0.1703
0.7 80 10 1.0691 1.0685 1.0611 1.0464 1.0459 0.1822 0.1820 0.1820 0.1614 0.1612
15 1.0673 1.0572 1.0417 1.0417 1.0417 0.1726 0.1710 0.1703  0.1702 0.1702
6 1.0734 1.0732 1.0549 1.0567 1.0501 0.1819 0.1810 0.1753  0.1715 0.1711
0.7 90 10 1.0601 1.0579 1.0449 1.0447 1.0441 0.1603 0.1602 0.1602 0.1602 0.1602
15 1.0626 1.0567 1.0549 1.0402 1.0402 0.1653 0.1649 0.1644  0.1621 0.1621
6 0.8832 0.8803 0.8773 0.8672 0.8563 0.1321 0.1304 0.1304 0.1301 0.1301
0.8 70 10 0.8737  0.8705 0.8705 0.8644  0.8578 0.1316 0.1294 0.1293  0.1281 0.1280
15 0.8839 0.8812 0.8752 0.8638  0.8557 0.1325 0.1311 0.1311 0.1311 0.1311
6 0.8124  0.8049 0.7991 0.7985 0.7961 0.1104 0.1101 0.1095 0.1095 0.1094
0.8 80 10 0.7856 0.7819 0.7751 0.7685 0.7661 0.1024 0.1024 0.1022 0.1021 0.1021
15 0.8094  0.8091 0.7977  0.7881 0.7763 0.1088 0.1081 0.1075 0.1075 0.1068
6 0.8211 0.8026 0.8026 0.7988  0.7981 0.1164 0.1143 0.1121 0.1121 0.1120
0.8 90 10 0.8193 0.8109 0.7966 0.7965 0.7953 0.1105 0.1105 0.1086  0.1086 0.1086
15 0.8214  0.8052 0.7888 0.7885 0.7883 0.1109 0.1107  0.1095 0.1095 0.1091
6 1.0874 1.0838 1.0775 1.0663 1.0661 0.1578 0.1575 0.1572 0.1572 0.1571
0.9 70 10 1.0893 1.0882 1.0725 1.0653 1.0565 0.1562 0.1561 0.1561 0.1559 0.1559
15 1.0843 1.0832 1.0819 1.0817 1.0811 0.1616 0.1610 0.1608  0.1608 0.1608
6 1.0876 1.0775 1.0775 1.0696 1.0672 0.1408 0.1407  0.1407  0.1388 0.1388
0.9 80 10 1.0802 1.0801 1.0795 1.0763 1.0697 0.1475 0.1475 0.1472 0.1472 0.1471
15 1.0818 1.0808 1.0784 1.0678 1.0645 0.1463 0.1460 0.1460  0.1457  0.1457
6 1.0823 1.0821 1.0805 1.0766 1.0751 0.1474 0.1462 0.1462 0.1458 0.1458
0.9 90 10 1.0831 1.0812 1.0705 1.0693 1.0651 0.1398 0.1398 0.1397  0.1395 0.1394
15 1.0794 1.0764 1.0744 1.0701 1.0688 0.1418 0.1416 0.1415 0.1412 0.1411
0.8 0.83% T T T T T
' ‘i The proposed discrete approach
07 Continuous approach =— | & Discrete Particle Swarm Optimization [l 1
Discrete approach s 07 Discrete Tabu Search [N |
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Fig. 3. Comparing the costs of both models in different iterations.

given the characteristics of the concerned bins data. Dublin
City Council has partnered with Big Belly Bins to install
110 smart bins across the Dublin Docklands area. All bins
are built on a microcontroller-based platform, embedded with
sensors informing about the level of garbage. These sensors
provide real-time information showing the capacity of each
of the bins. This allows us to see how much waste each
bin contains in terms of percentages, i.e., 60% or 80%. The
proposed IoT-based solution defines the level of fullness, and
the optimal path is determined. We have proposed two dif-
ferent scenarios based on a hybrid approach. All experiments
are conducted on an 18-core system with 192-GB memory.
Two implemented hybrid metaheuristic methods (integrated
with ANN) evaluate various solutions to optimize the defined

Number of Iterations

Fig. 4. Comparing different discrete algorithms.

objective function. The volume of the data set and the num-
ber of bins are considered for defining the initial population
rate. The number of neurons is designated based on a trial-
and-error method. Moreover, the volume of the concerned data
set has been considered in defining the initial population rate.
As stated, the cost of each solution is calculated by using
an ANN model. These costs have been used for different pur-
poses like parent selection. To that end, a multilayer perceptron
with the Levenberg—Marquardt training algorithm has been
used (since it converges faster and more accurately toward
our problem) consisting of two layers of adaptive weights with
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Results of two implemented models after 1000 iterations, i.e., (a) optimal path, given the discrete optimization model and (b) optimal path, given

TABLE II
RESULTS OF THE CONTINUOUS OPTIMIZATION MODEL, GIVEN DIFFERENT PARAMETER SETTINGS

Crossover Rate  Mutation Rate ~ Population Size ~ Neurons Corresponding cost for selected solution in different iterations
80 10 1.1171  1.1164 1.1153 1.1144 0.5383  0.5383  0.5381  0.5381
0.6 0.2 100 15 1.1124 1.1102 1.1014 1.1003 0.5221 0.5217 0.5211 0.5211
120 20 1.2134  1.2117 1.1137 1.1034 0.5761  0.5703  0.5703  0.5703
80 10 1.1106  1.1104 1.1093 1.1054 0.4987  0.4871 0.4854  0.4853
0.6 0.3 100 15 1.1102  1.1088  1.1075  1.1028 0.4761  0.4754  0.4701  0.4680
120 20 1.1113  1.1096  1.1095  1.1053 0.4786  0.4784  0.4784  0.4783
80 10 1.1152  1.1098 1.1082  1.1066 0.4996  0.4982 0.4982  0.4981
0.6 0.4 100 15 1.1151 1.1062 1.1043 1.1003 0.4683 0.4681 0.4677 0.4674
120 20 1.1161  1.1102  1.1084  1.1068 0.4799  0.4799  0.4799  0.4799
80 10 0.8501  0.8471  0.8432  0.8301 0.3919  0.3886  0.3844  0.3842
0.7 0.2 100 15 0.8314 0.8311 0.8011  0.7804 0.3654  0.3634 0.3634  0.3633
120 20 0.8332  0.8252 0.7962  0.7492 0.3493  0.3486  0.3484  0.3483
80 10 0.7511  0.7510  0.7432  0.7402 0.3413  0.3411  0.3411  0.3411
0.7 0.3 100 15 0.7301 0.7255 0.7032 0.7024 0.3215 0.3214 0.3210 0.3210
120 20 0.7577  0.7431  0.7355  0.7207 0.3449  0.3446  0.3443  0.3443
80 10 0.7985  0.7742  0.7651  0.7554 0.3816  0.3796  0.3776  0.3776
0.7 0.4 100 15 0.7921  0.7523  0.7501 0.748 0.3843  0.3842  0.3842  0.3841
120 20 0.7935  0.7746  0.7653  0.7512 0.3821  0.3812 0.3812  0.3810
80 10 0.8321  0.8244 0.8201  0.8107 0.3919  0.3919 0.3919  0.3918
0.8 0.2 100 15 0.8113 0.8018 0.8003 0.7982 0.3893 0.3852 0.3842 0.3838
120 20 0.8214 0.8112 0.8014  0.8004 0.3896  0.3896  0.3895  0.3894
80 10 0.8127  0.8105  0.8077  0.8017 0.3931  0.3911  0.3911  0.3910
0.8 0.3 100 15 0.8121  0.8028  0.7984  0.7975 0.4013  0.3991  0.3987  0.3982
120 20 0.8201  0.8201 0.8103  0.7953 0.3924 0.3924 0.3924 0.3924
80 10 0.8654  0.8444  0.8259  0.8233 0.3991  0.3991  0.3990 0.3989
0.8 0.4 100 15 0.8626  0.8611  0.8527  0.8422 0.3952  0.3948  0.3947  0.3943
120 20 0.8427  0.8412 0.8410  0.8410 0.3892  0.3887 0.3885  0.3883

full connectivity among neurons in the input and hidden lay-
ers. Note that ANN is only used for cost calculation; hence,
we have not included much information about this phase. The
model queries API, and the information of bins (including
their locations and level of fullness) is obtained. The optimal
route is then detected after a series of iterative computations
(given the termination criterion, e.g., the number of itera-
tions or computation time). Fig. 3 displays the cost values in
each iteration for both models. As can be seen, the algorithm
based on discrete optimization converges much faster than
the continuous one. The experimental results and the impacts
of different parameter settings for the discrete and continu-
ous methods are presented in Tables I and II, respectively.
We have also implemented several discrete evolutionary algo-
rithms and compared their results with the proposed discrete
approach. Fig. 4 reveals the results obtained from different
discrete evolutionary algorithms and shows the effectiveness
of our approach. The suggested paths resulting from both
algorithms are demonstrated in Fig. 5. As can be seen in

this figure, the second approach [Fig. 5(b)] is trapped in an
optimal local solution. As discussed throughout this article,
the level of fullness of bins has also been taken into account.
When collectors are dispatched to collect waste, the level
of fullness of bins is monitored. Fig. 6 illustrates the result
given such consideration at a certain time. The level of full-
ness of bins depicted in blue in Fig. 6(a) is less than 20%,
and 30% for those in Fig. 6(b). Given all results, we can
conclude that the proposed discrete model is superior to the
continuous one.

V. CONCLUSION AND FUTURE WORK

We have proposed an IoT-based model coupled with spatial
constraints to solve a route recommendation problem in this
work. We have modeled and solved the concerned problem
through two different scenarios, i.e., discrete and continuous
optimization approaches. Both methods were validated on a
case study, and the results were compared. Although most
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Fig. 6.

studies have focused on continuous optimization methods, we
have shown that a discrete algorithm is more efficient in deal-
ing with the problem. The latter can be easily trapped into the
local optima. Different types of operators (e.g., permutation-
based crossover and mutation operations) were designed to
maintain diverse candidates during a search operation. We
have also implemented some specific measures to control the
balance between the exploration and exploitation of both algo-
rithms. An ANN was utilized to calculate the associated cost
in each iteration of the algorithms. Different discrete meth-
ods were also compared with our proposed discrete approach
to validate the efficiency and effectiveness of the proposed
model, and the results were illustrated. The main drawback
of the state of the art was that it cannot appropriately model
the associations among spatial objects, consequently find an
optimal route. The proposed model can enable us to find an
optimal solution within a reasonable time. It should be men-
tioned that the model can recommend multiple routes. A driver
can then select the most favorable route from the suggested
ones. In this work, we only obtained information about bins
that are located in Docklands. As a part of our future work,
we plan to consider all bins in Dublin.
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