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Reinforcement Learning for Security Aware
Computation Offloading in Satellite Networks

Saurav Sthapit, Subhash Lakshminarayana, Ligang He, Gregory Epiphaniou and Carsten Maple

Abstract—The rise of NewSpace provides a platform for small and medium businesses to commercially launch and operate satellites

in space. In contrast to traditional satellites, NewSpace provides the opportunity for delivering computing platforms in space. However,

computational resources within space are usually expensive and satellites may not be able to compute all computational tasks locally.

Computation Offloading (CO), a popular practice in Edge/Fog computing, could prove effective in saving energy and time in this

resource-limited space ecosystem. However, CO alters the threat and risk profile of the system. In this paper we analyse security

issues in space systems and propose a security-aware algorithm for CO. Our method is based on the reinforcement learning

technique, Deep Deterministic Policy Gradient (DDPG). We show, using Monte-Carlo simulations, that our algorithm is effective under

a variety of environment and network conditions and provide novel insights into the challenge of optimised location of computation.

Index Terms—Computation Offloading, IOT, Cyber-Security, NewSpace, Reinforcement Learning, LEO satellites.

✦

1 INTRODUCTION

THe space industry is experiencing rapid growth
currently, thanks to lowering technological and eco-

nomic barriers to entry. Commercial Off-the-Shelf (COTS)
hardware such as Nvidia Jetson 1 and Xilinx Virtex
FPGA are readily available along with the plethora
of software and support [1], [2], [3]. Similarly,
Software Defined Networking (SDN) [4], [5] is continuing
to revolutionise the way we connect, making it easier,
more flexible and cheaper. Advances such as these
have led to new commercial companies, including
relatively Small and Medium Enterprises (SMEs),
entering a space industry that has previously been
restricted to large non-commercial organisations such as
National Aeronautics and Space Administration (NASA).
This new environment has been coined as the ‘NewSpace’
[6]. The NewSpace ecosystem comprises of thousands of
satellites of all sizes and contrary to traditional satellites,
Cubesats [7] can be as small as 10 × 10 × 10 cm3. In this
new paradigm, instead of acting solitary, the satellites may
form a cluster or a constellation, communicate with each
other, and jointly serve the users on the earth surface.

In terms of applications, satellites used to be limited
to relaying information from one point to another. Such
architecture is commonly referred as bent-pipe architecture
[8]. However, modern satellites are intelligent; instead of
being simple relays, they can sense, process and act intelli-
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gently [9]. For example, a satellite can autonomously collect
space debris or dock itself without human intervention
[10]. Satellites are also able to continuously monitor the
environment using multiple sensors. In such cases, it is
desirable to process the raw data in the orbit itself rather
than transferring all of the data to Earth [11]. However,
this extra computation will add to the existing sensing and
processing of the sensor data and not all of the satellites may
be able to handle them [12] due to limitations in energy and
computational power.

Satellites, such as Cubesats will have to rely on other
nearby satellites or space stations for processing their sensor
data. Attempts have already been made to address these
challenges. Recently, super computer satellites as small
as kitchen microwaves are being launched in space [13].
The objective of such super computer satellites is to of-
fer ‘computing as a service’ to other satellites in order
to process the sensor data while in orbit. This process of
offloading computation is already common in terrestrial
computations for edge devices and is commonly referred
to as Computation Offloading (CO). While CO in space is
similar to CO on Earth in many respects, there exist some
unique challenges. These include, (1) the server in space
may not be as powerful as the server on Earth. This implies
that there is a non-trivial queuing and computation delay
at the server, which is not present in terrestrial applications.
(2) The satellite network is very dynamic, especially in the
Low Earth Orbit (LEO) orbit. Hence, the topology of the
satellite network will be changing rapidly. (3) CO in space
requires data to be transmitted to a different platform (satel-
lite). This additional communication requirement will raise
security risks, such as eavesdropping (from nearby satel-
lites), data modification, and/or preventing the offloading
satellite from accessing such service. Decisions regarding
whether to offload and the level of security measures to
be used in exchanging the data (between the server and
the client satellite) are not trivial decisions. Careful con-
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sideration of the environment is required to assess if such
offloading is beneficial in terms of time, energy, and the
security risks incurred.

In this work, we explore CO in the context of satellites
and NewSpace with the awareness of security threats in
space. We formulate the security-aware CO problem as a
multi-objective optimisation problem and jointly minimise
the time, energy and security cost of the system using
a Reinforcement Learning (RL) framework. Since our for-
mulation involves decision variables that are continuous,
we use the Deep Deterministic Policy Gradient (DDPG)
method to solve the RL problem, since it can be directly
applied to continuous action spaces, and avoids the need
for discretisation [14]. Our results show that even in the
presence of wireless communications security threats, it is
possible to offload computation and increase the efficiency
of the system. The main contributions of the paper are as
follows:

• A new examination of the space landscape for com-
munications security.

• The formulation of the security-aware CO problem
within New space as a multi-objective problem.

• The development of a new DDPG-based solution to
solve the problem and analysis of its efficacy in com-
parison to an state of the art Deep Q-Network (DQN)
based solution.

We note that while there is extensive literature
in wireless communications related to resource alloca-
tion/scheduling [15], [16], [17], security [18], [19], compu-
tational offloading [20], [21], [22], [23], [24], [25], etc., the
focus of all these works is on terrestrial mobile networks.
In contrast, our work considers inter-satellite communi-
cations while incorporating the aforementioned domain-
specific features. To the best of our knowledge, this work is
the first to consider security-aware offloading in a satellite
environment, and this is one of our important contributions.

The paper is structured as follows. Section 2 describes
the satellite architecture, inter-satellite communication and
various security risks in space applications. In Section 3,
we define the basics of CO including the local execution
and remote execution. Section 4 presents an overview the
system, formulates the problem and presents our solution.
In Section 5, we present the experimental results. Finally, we
conclude in Section 6.

2 SATELLITE ARCHITECTURE

In this section, we present a brief overview of the satellite
architecture, the communication requirements, and present
the current and future applications for satellite networks.

2.1 Constellations

Traditionally, satellites were designed to operate in a soli-
tary environment and their data flow followed a bent-pipe
architecture where an earth station transmits the data to the
satellite in the uplink. The satellite amplifies the signal and
transmits it to another Earth station in the downlink. An
example is the usage of geo-stationary satellite for voice calls
[26]. Due to their high altitude (36,000 km), the area covered
by a geo-stationary satellite can be large. Hence, only a few

of them are necessary to cover the entire earth. However,
as their distance is large, the communication delay is large
as well. Typical Round Trip Time (RTT) for a geo-stationary
satellite can be more than 600 ms [27]. To minimise this
delay, the satellites have to orbit the earth at a much lower
altitude. However, this means only a fraction of the earth’s
region can be covered at any time and many satellites would
be necessary for global coverage. For example, Iridium
network system operating at 760 km (LEO) requires 66
satellites to cover the entire earth’s surface [28]. Such a
satellite formation can work solitary or in a constellation.
According to [26], [29], there are three common types of
formations of satellites namely:

• Trailing: In this formation, satellites share the same
orbit, but are separated by a specific distance.

• Cluster/ Swarm: Satellites in this formation fly in
close proximity to each other but in their own orbits.

• Constellation: A set of satellites organised in different
orbital planes that cover the entire earth. Reference
[30] presents a large scale constellation design frame-
work for Internet of Space Things (IOST).

2.2 Communication

The wireless communication refers to the transmission and
reception of the data between a satellite and other entities.
A satellite may communicate with

1) other satellites and space station,
2) earth bound entities, and
3) planetary rovers.

The satellites may not only communicate to other satel-
lites in the formations described above but also be-
tween the satellites in LEO, Medium Earth Orbit (mEO) and
geo stationary (GEO) orbits [31], [32]. The reader may refer
to [29], [31], [33], [34] for a comprehensive surveys on inter
satellite communication system.

2.3 Computing in space

The small and nano satellite constellations can be used for
various applications. For example, the satellite mesh can
be used as a backhaul network providing high-speed, low
latency communication links [9]. It could be particularly
useful in remote areas where the terrestrial network does
provide coverage. Reference [28] shows how the network
load can be anticipated based on the geographical loca-
tion and uses communication links between LEO satel-
lites, as well as LEO and GEO satellites to improve the
Quality of Service (QOS) for the end users in their commu-
nication needs.

The small and nano-satellites can provide a computa-
tional platform in space [35], [36]. It could process data
generated by itself. For example, satellites and their net-
works can be used for sensing the earth. [9] referred to
monitoring and reconnaissance capabilities of satellite net-
works as “Eyes in the sky”. Satellites equipped with sensors
such as cameras can monitor the earth’s surface 24 × 7.
However, not all data that is acquired is useful due to
various reasons. For example, if the interest is monitoring
assets in an urban area, images of rural areas or oceans are
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of little interest. Also, if the images acquired are occluded by
the clouds it could render them useless [11]. Transmitting all
the acquired images to the earth station can put a strain on
the communication links as well as on the earth station. The
problem would only exacerbate in the future when more
satellites are launched. If the satellites could pre-process the
images and only retain and transmit the useful images, the
resources could be more manageable. [11] used various deep
learning algorithms to filter out the images that are occluded
by the clouds.

In a different scenario, the authors in [37] describe using
satellites to provide continuous Internet of Vehicles (IOV)
services. In this case, the data generated by the vehicles
on the surface of the earth can use edge-computing and
communication services provided by the satellites to com-
municate with other vehicles in the IOV. The satellites
not only act as a low latency communication medium but
also a computing platform. In this work, we assume the
satellites to be resource-limited computation platforms and
the proposed algorithms would benefit such systems.

2.4 Security risks in Space

In space, attacks can be physical/kinetic or cyber [38], and
the impact caused by such attacks depends on the sophis-
tication of the attackers. If the attacker is an individual
with limited capabilities like a hacktivist or an insider with
limited capabilities, the impact may be limited. If the threat
actor is a hostile nation-state or a privileged insider, the
impact will be significantly higher [39]. Consider a defunct
satellite that is out of service but still in orbit. If a hacker
gains access to such a satellite, they may launch an attack on
other satellites and services. The major reasons for concerns
are the following:

• COTS hardware and software may have reported
flaws and threats. Satellites may be in orbit for a long
period of time (years) by which time new vulnera-
bilities could be discovered. It may be impossible or
financially infeasible to apply the patch or update the
software in the orbit,

• SMEs may overlook security in favour of cost-saving,
• hackers and activists also have access to the same

technology (hardware and software) as it is readily
available.

Reference Architecture (RA) is often used to understand
and mitigate the security risks. They can be used in con-
junction with attack trees for security-minded verification
[10]. Figure 1 shows a functional RA of a satellite operat-
ing in an orbit. It shows the functional blocks within the
satellite and interfaces for it to interact with the external
world. It also highlights the attack surface of the satellite
such as the Input/Output ports that may be targeted in
an attack. In this work, however, we focus our study on
the attacks that may be directed toward wireless com-
munication. In general, cyber attacks affect one or more
of the three aspects of security collectively known as the
Confidentiality Integrity Availabilty (CIA) triad.

2.4.1 Confidentiality

Data confidentiality refers to the protection of transmitted
data from passive attacks such as eavesdropping [40]. If

TABLE 1
Encryption algorithms in literature, their security level and process rate

[45]

Encryption Confidentiality (Sconf ) Process Rate (Mb/s)
IDEA 1.0 11.76
DES 0.85 13.83
Blowfish 0.56 20.87
AES 0.53 22.03
RC4 0.32 37.17

TABLE 2
Different hashing algorithms, their security level and process rate [45]

Encryption Integrity (Sint) Process Rate (Mb/s)
TIGER 1.0 75.76
RipeMD160 0.75 101.01
SHA-1 0.69 109.89
RipeMD128 0.63 119.05
MD5 0.44 172.41

confidential information is being shared without encryption
or poor encryption, a passive attacker may listen to the
communication or use data sniffing techniques to learn the
victim’s secrets [41]. Table 1 details various encryption algo-
rithms ranked such that the strongest and slowest algorithm
has the confidentiality score of one and other encryption
algorithms are relative to it [42], [43], [44]. We assume
the confidentiality score (Sconf ) to be directly proportional
to the process rate (i.e. stronger encryption algorithm has
higher security overhead on the processor). In Section 5
we base our decision to select the appropriate encryption
algorithm based on this table.

2.4.2 Integrity

The integrity of the data is compromised when the attacker
modifies the data from the sender to the receiver. Attacks
such as the man-in-the-middle attack can modify the data,
and the receiver satellite may have no knowledge about it.
In an extreme scenario, if the receiving satellite has a propul-
sion system, the attacker may modify control messages to
move away from their orbit, burn its fuel unnecessarily, or
fatally crash with other nearby satellites [39]. Table 2 details
a number of hashing algorithms to ensure the data has not
been falsified. We used these values in Section 5 to select the
appropriate hashing algorithm.

2.4.3 Availability

Attackers and hackers may try to disrupt the
service provided (by the servers) by employing
Denial Of Service (DOS) attacks or jamming the
communication channel. Similar to attacks on the Earth’s
surface, attackers can affect the availability of wireless
channels by transmitting at the same time as the legitimate
satellite. Satellites sharing the same channel would be
affected. Similarly, the attacker may target the server by
making too many requests so that the legitimate node
cannot be served. We simulate such attacks on availability
in Section 5 by degrading the channel (–see Figure 2).

3 COMPUTATION OFFLOADING

To understand and mitigate the attacks on communication
systems of satellites and space systems, we study a pro-
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Fig. 1. Functional reference architecture of a satellite detailing its attack surface [39]

TABLE 3
List of important symbols.

D Job data size.
Eexec Total energy usage for executing the job.
Eoff Total energy usage for offloading the job.
Im Number of instructions a device can execute per second.
Is Number of instructions the server can execute per second.
J Maximum number of jobs in an interval.
Nm Number of servers in queuing model equals number of cores

in the satellite.
Ns Number of servers in queuing model equals number of cores

in the space station.
Pm Instantaneous power of satellite while executing the job.
R Data Rate.
SD Desired security level.
SP Selected security level.
X Number of instructions to execute a job per bit.
Λ Job generation rate.
A set of actions for the Markov Decision Process (MDP).
R Reward function for the MDP.
S set of states for the MDP.
T Transition function for the MDP.
τd Maximum allowed time for completion of a job.
τm Time taken by satellite to execute the job.
r Risk.
u Central Processing Unit (CPU) utilisation.
µ Service rate of the node.

cess called Computation Offloading (CO). In Section 2.3,
the application of satellites as a computing platform was
described. However, in NewSpace systems, satellites may
be constrained in terms of their computation and energy
resource, CO will be very useful. CO is a process of
delegating a computationally intensive task to an alterna-

tive device rather than on its own computing platform.
This delegation may be done for achieving various goals
such as improving latency, conserving energy, or both.
Many CO algorithms have been proposed to offload al-
gorithms from the edge devices to the cloud known as
Mobile Cloud Computing (MCC) as well as to the edge
servers known as Mobile Edge Computing (MEC) [20], [21],
[22], [23], [24], [25]. In the context of NewSpace, a satellite
may be considered as a resource-limited device that offloads
some of its computation to the neighbouring satellites, space
station or ground station to save resources. On the other
hand, in the future, satellites may offer such computing
services to User Equipment (UE) such as smartphones and
vehicles, similar to services currently offered by cloud and
edge servers. Especially with LEO satellites constellations
such as OneWeb2. and Starlink3 providing high-speed low-
latency internet connectivity to worldwide coverage includ-
ing remote areas not covered by cellular services.

Consider a resource-limited satellite such as Cubesats
equipped with a sensor that is operating in the orbit. The
sensor senses its surroundings and readings are sent to the
processor periodically. The readings have to be processed
by a computationally intensive algorithm which requires
computing and energy resources. The satellite can, however,
offload the computing to a nearby satellite or space station
which has a significantly higher computational capability as
well as energy resources. Also, for simplicity consider both
satellite and the space station are static in position relative

2. www.oneweb.world
3. www.starlink.com

www.oneweb.world
www.starlink.com
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to each other for the duration of offloading. However, the
offloading is not always fruitful and depends on the con-
nection quality to the space station. If the wireless channel
is used by other satellites in the vicinity, transmitting sensor
data can be a lengthy process. Similarly, if the space station
is already busy with other algorithmic jobs, it may take
a long time to service the satellite. Both of these delays
may mean that the satellite misses the threshold time for
completion of the algorithm. Missing the threshold is not
desirable for the satellite and should be avoided as much
as possible. Additionally, the communication between the
satellite and the space station may not be secure. If there
is a rogue (compromised) satellite in the vicinity trying to
attack either passively or actively, they may launch attacks
described in the Section 2.4.

3.1 Job

A job is a computationally intensive algorithm that the
satellite is trying to offload. For example, a pose estimation
algorithm using camera images can be an offloading job. We
define it as a tuple < X,D, τd > where X is the number of
computation cycles per bit required to complete the job, D
is the data requirement of the job, τd is the latest time to
complete the job [21]. Such a job may have a large value
for X and need significant time and energy resources to
complete. In literature, jobs are considered to be offloadable
or not offloadable as well as full or partial offloading [21].
However, for simplicity, we consider all the jobs to be
offloadable and only full offloading is considered. The jobs
are generated on a regular basis as a Poisson process with a
mean arrival rate Λ.

3.2 Local Computation

A job can be processed locally using the satellite’s own
computing platform. In terms of security risk, as it does
not involve any communication. Thus, we assume that such
local computations are risk-free. However, if the device is
already busy, each job has to wait for its turn. We model
the local computation using Queuing Theory. We consider
jobs to be processed on a First Come First Service (FCFS)
without pre-emptive scheduling. The service times are de-
pendent on the job itself. Also, when the job is offloaded
with a certain security level (–see Tables 1 and 2) it will
impact the processing resources depending on the security
level selected. As the service times for job and security levels
can be significantly different, they can be modelled as hyper-
exponential distribution [46]. Lastly, the number of queue
servers (Nm) is the number of cores in the device.

3.2.1 Time

Time taken by a satellite to execute a job is given by

τm =
X ×D

Im
(1)

where Im is the capability of the satellite
to execute instructions usually measured in
Million Instructions Per Second (MIPS). Before execution,
there is a waiting time due to queuing which can
be estimated using Little’s law. Although, Im may
change depending on several factors including

Dynamic Voltage and Frequency Scaling (DVFS) we
consider a fixed policy such that the Im does not change
over the time.

3.2.2 Energy

The Central Processing Unit (CPU) power is made up of
two parts, the idle power and the running power, as follows:

Pm = u ∗ Pmax + (1 − u) ∗ Pidle (2)

where, u, Pmax, Pidle are the utilisation, maximum power
and idle power consumption of the CPU respectively. So,
energy consumed to execute a job can be calculated as

Eexec = Pm × τm. (3)

3.3 Remote Execution

The remote platform could be the other satellites, space
station or ground station. We assume the server has Ns cores
available for computing, each core capable of executing Is
MIPS. Before an algorithm can be executed on the remote
platform, however, the data (possibly code as well) has
to be transferred to the remote platform. However, there
is a risk that one of the CIA aspects is breached while
communicating. So, appropriate levels of security have to be
put into place. Depending on which encryption algorithm
and hashing algorithm is selected (–see Tables 1 and 2),
different levels of security can be maintained. Also, different
algorithmic complexity of the algorithm means they will
incur different times and energy costs which are described
below. Similar to other algorithms in the literature, we
ignore the cost of sending the result back to the device as
the data is of relatively lower size in most cases.

3.3.1 Time

The total time for executing a job on a remote platform can
be estimated as follows:

τs = τsecurity + τcomm + τw (4)

where τsecurity , τcomm, τw represent the times taken by the
offloader to secure, packet, send the data, and wait for
receiving the result respectively. In space, the server may
not be as powerful as the cloud on Earth. Hence there may
be queuing as well. We model the delay in queuing with a
queue similar to the queue in satellite. This is represented by
τw . Similarly, if D is the data size to be transferred/received,
the communication time is given by:

τcomm =
D

R
(5)

where R is the available data rate. However, R may be
shared between other users and effective bandwidth de-
pends on other users’ action. For a device k within N users
sharing the communication channel, effective data rate can
be calculated as

Rk = Bw log2

(

1 +
Gk,k.Pk

σ2 +
∑N

i=1,i6=k Gi,k.Pi

)

(6)

where, Bw is the bandwidth, Gi, Pi are the channel gain
and transmit power for user i. As evident from Equation (6),
communication data rate depends on the channel gain and
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transmission power, as well as other users transmitting
simultaneously. Herein, ‘other users’ may include any de-
vices trying to communicate on the channel. However, they
could also be jammers trying to disrupt the communication
between a user and the base station. In that case, the
availability is affected. We account for the availability by
considering the jammed channel as poor network condition.
Instead of calculating the communication rates using the
transmit power and the channel gain, we use a simpler
version based on arbitrary values in [47]. It only depends
on the number of users actively using the channel and drops
off exponentially as the number of users increases. The rates
for different numbers of users are visualised in Figure 2.
The actual number of satellites in the vicinity in space is
random at any point in time. However, if we consider the
satellites are uniformly distributed around the globe, choos-
ing a smaller satellite formation means a lower number
of satellites actively communicating on average. Similarly,
if we consider a larger satellite constellation, the average
number of satellites actively involved in communication
may be higher.

3.3.2 Energy

The energy consumed for offloading can be calculated as:

Eoff = Pc × τcomm + Pmax × τsecurity . (7)

3.3.3 Security Risk

The security risk increases when CO is implemented be-
cause the system is relatively more vulnerable than if the
computation is done locally. Some risks can be mitigated by
choosing appropriate security measures such as encryption.

Similar to [45], [48] we model the risk as Poisson distribu-
tion.

Pk =

{

0, if SD ≤ SP

1− exp−λk(SD−SP ) if SD > SP
(8)

where k ∈ {C, I} is the particular security concern, SD

is the security demand of the job, and SP is the chosen
security level. If the security provided is greater than or
equal to the security demand, then the risk is zero. However,
if the chosen security is less than the required level, it is
prone to security breaches. The exact probability of risk
depends on λk which can be different for each server as well
as for confidentiality and integrity. The total probability of
risk such that either confidentiality or integrity is violated is
then given by

Pr = 1−
∏

k∈{C,I}

(1− Pk). (9)

4 PROBLEM FORMULATION

Recall that the state of the system in our problem corre-
sponds to the number of jobs waiting in the queues at the
local queue (at the satellites) and the number of jobs waiting
at the server. For both these queues, the number of jobs
in the next time slot will only depend on the number of
jobs awaiting during the current time slot and the decisions
(offloading/ local computation) taken during the current
time slot. Note that for the local queues at the satellites, the
number of jobs departing the task queue will depend on the
decision taken during the current slot, whereas the number
of new jobs arriving is assumed to be an independent and
identical Poisson process (memoryless). Similarly, for the
queue at the server, the number of new jobs arriving will de-
pend on the decision taken during the current slot, whereas
the departure process only depends on the computational
time at the server. Note that splitting a Poisson process ran-
domly with a fixed probability creates two separate Poisson
processes. Similarly, if two Poisson processes are combined
(for example two satellites may offload to the server in the
same time slot) it results in a Poisson process [46]. Based on
these observations, we note that, given the current state and
action, the next state of the decision process is conditionally
independent of all previous states and actions; in other
words, the state transitions satisfy the Markov property. A
Markov Decision Process (MDP) is a tuple < S ,A,T ,R >

where S is a finite set of states, A a finite set of actions, T a
transition function defined as T : S × A × S → [0, 1] and
R a reward function defined as R : S × T × S → R [49].
We also note that our setup is similar to existing works on
computational offloading [50], [51], [52], which also model
the problem as a MDP and solve it using RL methods. An
RL agent observes the states at discrete intervals and makes
the decision for the next time interval.

Recently, there has been a growing interest in apply-
ing RL to the data and CO problem in terrestrial mo-
bile networks. For instance, the problem of minimising
the mobile user’s cost, energy consumption and computa-
tion delay by offloading tasks to a mobile-edge comput-
ing server was considered in [53] and [54], and solved
using Deep RL techniques. RL has been used to solve
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CO problem in Internet Of Thing (IOT) devices with energy
harvesting as well [25], [55]. The problem of allocating
computing and network resources under varying MEC
conditions was considered in [56]. Reference [57] applied
DRL to solve the network utility maximisation problem in
a Virtualised Network Function (VNF) environment. For a
detailed survey on the application of RL in CO in wireless
networks, we refer the reader to [58]. However, none of
these works focus on CO in a satellite environment and the
corresponding domain-specific features.

For this problem, we consider the number of jobs in
the queue of the satellite, the number of jobs in the server,
the number of satellites communicating in the current time
slot, and the number of jobs arriving in the time slot as
the observations of the system. The satellite will not always
know the exact number of jobs the space station is serving.
However, when the server may agree to serve the satellite,
it may send regular updates on its state. In our previous
work we used a proactive and reactive algorithm to send
this information (Node State Information (NSI)) about one’s
state to neighbours [59]. The number of satellites commu-
nicating in a given time slot provides an inclination to
the available bandwidth similar to the feedback channel
gain. For the simulation, we assume that the number of
satellites using the channel is random and independent of
the previous interval but constant throughout the interval.
Let Poff be the probability of offloading to the server. Then,
the time consumption to execute a job can be estimated
using Equations (1) and (4) as follows:

τ = Poffτm + (1 − Poff )τs. (10)

Similarly, energy consumption can be estimated as

E = PoffEm + (1− Poff )Es. (11)

While the time and energy consumption can be estimated
from the system state such as the number of jobs in the CPU,
communication, and the server queues, security risk cannot
be observed directly or in advance. However, given enough
data on previous observations and cost, we can estimate
the risk conditions if it is time-invariant. The overall cost of
executing is then given by

Ct =
J
∑

j=1

(wtτj + weEj + wrrj)

subject to τ ≤ τd,

(12)

where, J is the maximum number of jobs in an interval,
τj , Ej , and rj are time, energy and risk while executing
job j. rj is the random value sampled using Equation (9)
to represent the risk. wt, we, wr are the weights for time,
energy and risk components. Next, we relax the hard con-
straint on the time deadline to a soft constraint such that
if the constraint isn’t met, we add a large cost to the cost
function whereas when the constraint is met the weight is
zero. Also, as we propose a generic solution, we do not
set these weights to custom values. Instead, we set them
to equal weights. For applications that are specific, the
weights could be adjusted to the application. For example,
in a satellite communication network, when there are not
enough satellites, the destination may not reachable and

the data packets may be dropped. For such applications
Delay Tolerant Network (DTN) routing protocols are used
[60]. When CO used on such protocol, the weights on time
can be set to zero.

Ct =
J
∑

j=1

(wtτj + weEj + wrRj + wd(τd − τ)) (13)

where,

wd =

{

0, if τd > τ

non negative number, if τd ≤ τ.
(14)

Our objective is to minimise Equation (13) in the long
term.

argmin
Poff ,SLC,SLI

E

[

∞
∑

t=0

γtCt

]

(15)

where, γ is the discount factor. Our action is a three dimen-
sional vector [Poff , SLC , SLI ] consisting of the probability
to offload a job and the security levels to select to maintain
the confidentiality and integrity of the offloaded data. Simi-
lar to [59], we select the execution platform probabilistically.
The benefit of making such a decision is that the system
does not need to know the exact number of incoming jobs.

4.1 Deep Deterministic Policy Gradient (DDPG)

We use DDPG [61] to solve the optimisation problem stated
in Equation (15). DDPG is a actor-critic based offline method
that uses two separate Deep Neural Networks (DNNs) to
approximate the Q-value network. Its main advantage over
DQN is its ability to work on a continuous action space
[14]. So the probability to offload Poff can be any value
ranging from 0 − 1 and need not be discretised. We trained
our reinforcement agent on episodes of simulated data with
each episode lasting 40 seconds. We used the experience
replay method for batch training and ADAM optimiser for
the training purpose [62]. We trained the network for a
maximum of 1000 episodes. To stop the agent from being
greedy and making sub-optimal decisions, we use the ǫ-
greedy approach whereby the agent makes a random action
with a small probability ǫ and the rest of the time take
the best (or greedy) action. To balance the exploration and
exploitation for the agent, we gradually lowered the value
of ǫ.

4.2 Deep Q-Network (DQN)

DQN [63] is the first reinforcement learning algorithm to
demonstrate human level performance on Atari games. [45]
used DQN based algorithm to create security aware CO
algorithm. In order to compare the performance of our pro-
posed DDPG based algorithm, we implemented a similar
DQN based solution for our problem. As DQN works with
a discrete action space, we quantised Poff with a resolution
of 0.2 ranging from 0 to 1. Otherwise, the other training
parameters were left same as the DDPG algorithm described
below.

4.3 Static policies

We compared our proposed DDPG algorithm against three
static policies defined below.
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4.3.1 Local Only (LO)

As the name suggests, it cannot offload any job and is
oblivious to network changes and risk states.

4.3.2 Server Only No Security (SONS)

This policy offloads all the jobs to the server without follow-
ing any security guidelines. So when the risk is high, attacks
are always successful.

4.3.3 Server Only Maximum Security (SOMS)

Similar to the previous policy, it offloads all the jobs. But, it
uses the highest security measures regardless of the network
conditions.

5 SIMULATION RESULTS

In this section, we briefly explain our simulator,
parameter selection and their results. We created our
own simulator; all the code and environment are available at
https://github.com/sausthapit/ComputationOffloadingRL.
We used Matlab and Simulink environment which provides
toolboxes for Reinforcement Learning (RL) and event-based
simulations. The simulator also supports RL agents with
discrete action spaces such as Deep Q-Network (DQN).

We assume the maximum number of satellites will be
different in the three formations due to the physical setup. In
particular, the trailing formation occupies the least space (as
the satellites share the same orbit) and has the least number
of satellites. In comparison, the swarm formation has more
satellites (as it involves satellites in different orbital planes).
Lastly, the constellation formation has the largest number
of satellites taking part in the communication (to cover the
entire earth). According to [26], the transmit power for inter-
satellite communication, Pk, is in the range 0.5 W to 2 W. In
the trailing formation, since the satellites are in the same
orbit (and hence close to each other and less interference),
we assume a lower transmit power and set Pcomm = 0.5 W
for the trailing formation. As the swarm and constellation
formations occupy progressively larger areas of space, we
assume Pcomm = 1 W for the swarm formation, and
Pcomm = 2 W for the constellation formation. By default,
we chose the swarm formation for the rest of the simulation
unless specified and we set the following parameters for
the simulation. The idle power (Pidle), execution power
(Pmax) of the satellite is set to 0.1 and 5 watts respectively,
processing capability of the satellite (Im) is set to 2.5 × 109

Million Instructions Per Second (MIPS) with Nm = 4. Simi-
larly, we set the processing capability of the server satellite
to be twice that of the satellite. Also, the number of cores
in the server is higher than the number of cores in the
satellite (i.e. Nm < Ns = 16). The job size is chosen to
be 0.2 MB, and it takes one second to process on the satellite
without the waiting times. For stability, the queues are
limited to finite buffers. The maximum queue length for the
Central Processing Unit (CPU) and communication buffer is
set to 20 whereas, for the server, the computation buffer is
set to 10. Also, τd is set to 5 seconds. This means if a job has
to wait more than 5 seconds to process it is not useful and
is considered a dropped job. Similarly, if any of the queue
buffers are full when a new job arrives, it is lost as well. In
default settings, we consider on average three jobs arriving

per second and best network setting and lowest risk level.
For the training purposes, we set the weights wt, we, wr, wd

to 1, 1, 10 and 10 respectively. This implies whilst we would
like to improve on execution times and energy, we would
like to avoid losing jobs and minimise the security attack. In
fact, setting wr and wd to the same large value suggests that
a successful attack is as bad as dropping a job. However, the
weight selection is done arbitrarily and can be tailored to
the application requirement. For applications that are super
sensitive to security threats, it could be even higher. Also,
when measuring the performance instead of evaluating the
actual time elapsed for each job, we count how many jobs
were completed within the time threshold. Once the agent
is trained, we ran 10 Monte-Carlo simulations with random
seeds for each of the settings described below.

5.1 Incoming job rate

We simulated various job rates ranging from three jobs per
second to seven jobs per second. If the satellite is equipped
with a quad-core processor with a service rate of one job per
second, when processing locally, its utilisation is given by

u =
Λ

Nmµ
=

4

4× 1
= 1. (16)

Hence, it is only stable for Λ < 4. Otherwise, the queue
length will continue to grow indefinitely; in this case, as
the buffer is limited, lost. The device is forced to offload
or drop some of its jobs to maintain stability when the job
rate is higher. The network condition is set to the best, risk
level to the lowest, and data size to 0.2 MB. Figure 4 shows
the averaged results for our experiments. The top left figure
shows the overall cost achieved by each of the four policies.
It is evident that the cost is growing for all the policies and
Server Only No Security (SONS) fared the worst. This is
due to the security attacks it has suffered the most which are
seen from the bottom right image. In terms of jobs dropped
(– see Figure 4, top-right), all algorithms were able to process
all the jobs at λ = 3. However, as the arrival rate started
to increase, the local computation suffered and dropped
the most jobs averaging more than two jobs per episode.
Both DQN and Deep Deterministic Policy Gradient (DDPG)
have similar results with DQN using slightly more energy
at lower job arrival setting.

5.2 Network Environment

We considered three network settings, namely best, medium
and poor represented by green, yellow and red area in
the Figure 2. In the best setting (which is the default set-
ting), only a few users simultaneously communicate at a
given time slot, whereas in the medium setting, consid-
erably more users communicate at the same time. Poor
settings may represent a large number of satellites com-
municating at the same time or a malicious attacker try-
ing to deliberately jam the channel. To simulate these set-
tings, we simply use a uniform random number genera-
tor with boundary limits. Results for a varying network
environment is presented in Figure 5. As expected the
Local Only (LO) policy is not affected by the varying net-
work condition evident by the horizontal solid red line. Both
SONS and Server Only Maximum Security (SOMS) policies

https://github.com/sausthapit/ComputationOffloadingRL
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Fig. 4. Performance for different job arrival rates. Clockwise from top left:
average overall score, average dropped jobs, lost jobs due to security,
and energy consumed.
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Fig. 5. Performance for different network conditions; 1, 2, 3 represents
best, medium and worse conditions. Clockwise from top left: average
overall score, average dropped jobs, lost jobs due to security, and
energy consumed.

dropped similar amount of jobs per episode as seen in
the Figure 5 top right. This is because the satellite is un-
able to reach the server as the network condition worsens.
However, the cyan dashed line for the DDPG algorithm
shows that even it performed better than the LO algorithm
suggesting that it used both local and remote resources in an
efficient manner. This is evident from the bottom-left figure
where the cyan line is using the most energy (up to 5J at the
worst network condition). In theory, the DQN should also
follow a similar pattern as DDPG but in this case, when the
network worsened, DQN only used the local resources.

5.3 Risk Levels

In this work, we modelled and simulated risk to emulate the
real scenario of security attacks. In doing so, we changed the
security desired (SD) parameter. The SD sets the security
threshold that needs to be fulfilled to save from attacks.
While SOMS is helpful to prevent unwanted security at-
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Fig. 6. Algorithm Performance for different risk conditions. Clockwise
from top left: average overall score, average dropped jobs, lost jobs due
to security, and energy consumed.

tacks, it uses vital computational resources, time and energy.
While this may not be a problem when the resources are ad-
equate for example on the Earth’s surface with a substantial
processor and mains-powered device. It can be significantly
crucial to save energy and resource in space. Using remain-
ing resources like batteries may mean the satellite or rover
is completely out of service. In order to avoid this scenario,
it is crucial to save as much energy as possible. Our DDPG
algorithm in this instance is able to adapt to the varying
security level in the environment without directly sensing it
and only based on the previous results. Figure 6 shows the
performance of all four policies. As usual, SONS is the only
one subject to successful attacks. The DDPG algorithm used
less energy than the SOMS algorithm when the security
threat is pretty low (≤ 0.5) as seen in the bottom-left image.
However, we also notice that when the threat is significantly
high (0.9) the proposed DDPG algorithm did not offload to
the server and did most of the work itself using significantly
higher energy than the SOMS algorithm. DQN algorithm
on the other hand was able to handle more jobs even when
risk was the worst (– seen in Figure 6 top left) although
more jobs were subject to security attacks. Cases such as
these can be investigated further to reason why a particular
agent is taking such action. One way of teaching the agent
would be by changing the we. Furthermore, the weights
could be adjusted or different agents could be combined
at different environmental settings. For instance, including
the remaining fuel or battery resources into the agent’s
observation. This way the agent can act intelligently and
decide whether to prioritise security or energy resources.

5.4 Data size

The size of data has multiple effects on the performance
of the simulation. As the communication time is directly
proportional to the data size, doubling the data size at least
doubles the transmission time. In addition, our execution
time is also proportional to the data size –see Equation (1).
So, the service rate of the satellite is halved when the data
size is doubled. We present the results in Figure 7. We set the
default data size of the algorithm to be 0.2 MB which could
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Fig. 7. Algorithm Performance for different data sizes (1, 2 or 3 times
the default size). Clockwise from top left: average overall score, average
dropped jobs, lost jobs due to security, and energy consumed.

be the image data that the satellite is transmitting to the
server for further computation. We see from the results that
even under the same network and risk conditions, plenty
of jobs are dropped when the data size is doubled. The LO
policy dropped on average 2.2 jobs per episode followed
closely by SOMS, then by the SONS. Our DDPG algorithm
dropped the least with an average of only 0.5 jobs per
episode. This improved performance came at a higher cost
of energy. However, it still used less energy than the LO with
had the maximum energy consumption at all data sizes.
However, when the data size is tripled, DDPG algorithm
dropped as many as the 2.7 jobs per episode which were the
worst jointly with the local computing. In terms of overall
cost, SOMS was best at the triple data size.

5.5 Satellite Formations

In Section 2.1, we described three different satellite for-
mations namely leader/ follower, cluster and constellation.
However, in previous sections, we experimented using the
swarm/cluster formation only. The Round Trip Time (RTT)
and the energy consumption can vary relative to the spe-
cific satellite formation [26]. We capture the dynamics of
this offloading scenario in our simulation by considering
different transmission energy costs and varying the number
of satellites in the communication (which in turn varies the
communication data rate and time delay). For the satellites
in the same orbit, the number of satellites would be limited
which would mean the communication delay, as well as
the energy cost, is lower. Similarly, in a cluster of satellites,
the number of satellites transmitting simultaneously can be
higher resulting in lower data rate and higher energy con-
sumption. Finally, in a constellation, the number of satellites
communicating would be still higher due to the larger area
involved.

Figure 8 and Figure 9 shows the results of the simulation
for low and high incoming job rate cases respectively. In the
low job rate case, none of the algorithms dropped any jobs
for the trailing and cluster formation. For the constellation
formation SOMS and SONS policy both dropped approxi-
mately 0.2 jobs per episode. Only SONS algorithms were

Formation Power (Watt) Maximum Satellites
Trailing 0.5 20
Cluster 1 50
Constellation 2 100

TABLE 4
Simulation parameters for different satellite formations
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Fig. 8. Algorithm Performance for different satellite formations for low in-
coming job rate. Clockwise from top left: average overall score, average
dropped jobs, lost jobs due to security, and energy consumed.

subject to successful attacks as seen in the bottom right
figure. However, from the bottom left figure, we see all
the policies saved energy in comparison to the LO policy.
But the savings decreased as the formation changed from
trailing to swarm and constellation. In the simulation setting
when there were significantly more jobs present at the satel-
lite (–see Figure 9, we see the proposed algorithm DDPG
and DQN was able to save energy as well as drop fewer
jobs in comparison to the LO case. The DDPG was superior
to the DQN and others even in the constellation case where
it dropped the least number of jobs.

From Figure 8 and Figure 9, it is also evident
that DDPG is superior among all the policies. Also,
it is evident that trailing formation is beneficial than
local only, cluster, and the constellation formation for
Computation Offloading (CO). This is because the commu-
nication channels are better than other formations. How-
ever, for all three formations, we simulated the same server
capacity. As the formation grows larger in size, it may be
possible to scale the server as well.

6 CONCLUSIONS AND FUTURE WORK

In this work, we studied wireless communications se-
curity for space applications. In addition, we ap-
plied a useful tool for future space applications called
Computation Offloading. We then solved the CO problem
using a DDPG algorithm which is a robust method for solv-
ing optimisation problems in real-time. Through extensive
Monte-Carlo simulations, we show that our algorithm can
increase the performance of space applications. The simu-
lations also show that the added performance comes with
increased energy consumption. We compared the proposed
algorithm with not only static policies but with previously
published DQN method [44]. In general, the experiments
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Fig. 9. Algorithm Performance for different satellite formations for high
incoming job rate. Clockwise from top left: average overall score, aver-
age dropped jobs, lost jobs due to security, and energy consumed.

showed that the DDPG is superior to DQN based method in
addition to static policies. We also experimented on different
satellite formations and show that the proposed algorithm
is superior to the baselines. However, in some settings, such
as when the risk was very high, the DQN agent performed
better. Further study is necessary to understand the cause
and to understand if multiple agents can be combined to
develop an even better algorithm. For NewSpace system
where nano-satellites could work in swarms and constel-
lations with substantial autonomy, it is vital that satellites
and rovers can trust each other and depend on each other.
The algorithm presented in this paper can find applications
in this new environment. In the future, we would like to
incorporate further contexts such as the remaining energy
resource of the satellites as well as the movement of satellites
and authentication issues.
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