
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

A Smart Meter Infrastructure for Smart Grid IoT
Applications

Matteo Orlando, Abouzar Estebsari, Enrico Pons, Marco Pau, Stefano Quer, Massimo Poncino,
Lorenzo Bottaccioli and Edoardo Patti

Abstract—Electric infrastructures have been pushed forward
to handle tasks they were not originally designed to perform.
To improve reliability and efficiency, state-of-the-art power
grids include improved security, reduced peak loads, increased
integration of renewable sources, and lower operational costs.
In this framework, “smart grids” are built around bidirectional
communication technologies, where “smart meters” communicate
with all other entities and collect data from the power grid,
offering specific features to each actor playing in the energy
marketplace. In this paper, to overcome some of the challenges
raised by smart grids and smart meters, we propose a
distributed metering infrastructure which provides bidirectional
communication, self-configuration, and auto-update capabilities.
Our 3-phase smart meters follow the basics Internet-of-Things
principles and have the ability to run, either on-board or
distributed on the network, multiple algorithms for smart grid
management. These algorithms can be freely added, updated,
or removed on-the-fly thanks to the auto-update feature of
the system. Moreover, to reduce costs and improve scalability,
we prove that it is possible to implement our smart meters
using only off-the-shelf and inexpensive hardware devices. A
digital real-time simulator (i.e., Opal-RT) has been used to assess
the capabilities of both the infrastructure and the meter. Our
experimental analysis shows that the latency introduced by the
data transmission over the Internet is compliant with the limits
imposed by the IEC 61850 standard. As a consequence, our
architecture does not affect the operational status of the smart
grid, making it a viable solution to support the deployment of
novel services.

Index Terms—Smart Grid; Smart Meter; Distribution
Systems; Advanced Metering Infrastructure; Multi-Model Co-
Simulation; Co-simulation Platform; Outage Management

I. INTRODUCTION

POWER Networks have evolved in the last decade to
reach a new level of efficiency and reliability, and to

include new and pervasive Renewable Energy Sources (RES).
To achieve these targets, smart grids are now implemented at
all levels, from the power plants down to end-user networks.
A modern grid does not only include wires, substations,
transformers, and other electrical devices, but it also exploits
the Internet to better manage the energy. In other words, a
modern smart grid is an electrical grid that adopts strategies
coming from the Information and Communication Technology

M. Orlando, E. Pons, S. Quer, M. Poncino, L. Bottaccioli and E. Patti are
with Politecnico di Torino, Turin, IT. E-mails: {name.surname}@polito.it.
A. Estebsari is with the London South Bank University, London, UK. E-mail:
estebsaa@lsbu.ac.uk.
M. Pau is with RWTH Aachen University, Aachen, Germany. Email:
mpau@eonerc.rwth-aachen.de

(ICT) area to autonomously gather information and improve
its efficiency, reliability, economics, and sustainability. Smart
grids also enable new actors (such as aggregators, virtual
power plants, and energy service companies) to participate
in a fast-evolving and distributed marketplace, providing new
services for smart energy management.

In this rapidly evolving scenario, ICT and the Internet-
of-Things (IoT) play a crucial role. Indeed, IoT aims at
connecting over the network everyday devices, to enable them
to exchange information [1]. This paradigm allows developers
to design new algorithms and autonomous systems that can
collect data, process them, and take autonomous decisions [2]
to improve the management of the grid.

Among the different devices that are possible to connect to
a power grid, next-generation meters (also known as smart
meters) implement IoT functionalities to collect data from
the power grid and to communicate with other hardware
and remote software entities over the Internet. The resulting
Advanced Metering Infrastructure (AMI) [3] offers different
features to each actor playing in the energy marketplace [4].
For example, Distribution System Operators (DSOs) can use

smart meters to increase the efficiency of the distribution
network and to improve its capability and reliability. Retailers
can use smart meters to forecast the variations of the network
load to create adequate policies to reply to demand. Prosumers
can use smart meters to control their energy production (highly
variable due to the intermittent behavior of renewable sources)
and utilization and they can reduce the cost of their electricity
bills [5].

Unfortunately, modern metering infrastructures have to face
multiple challenges to be cost-effective, scalable, and reach
the desired penetration on the market. Among these hurdles,
we would like to recall the cost of the communication
infrastructure [6], the price of the hardware devices [7], and
the extremely high intricacy of modern networks. To propose
cost-effective and scalable solutions, we thus need to deploy
low-cost devices and to be able to configure, control, and
update all units of the network remotely. For example, a
self-healing grid should be able to automatically reconfigure
itself in case of an outage, automatically performing fault
location and service restoration [8]. Unfortunately, this process
is still partially executed manually nowadays. This approach
reduces the reliability of the network, increases the outage
time, augments the network dependability from human
intervention, and often results in customer dissatisfaction and
extra costs for the system operators. To design a true self-
healing grid, all previous process steps should be automated,
minimizing human intervention. Distributed RES also need



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

particular attention. RES breaks the traditional schema of the
unidirectional energy flow as they can be installed by end-
users (the so-called prosumers), which can both consume
and produce energy, and are also quite unpredictable. For
these reasons, State Estimation (SE) algorithms are required
to help the operators to monitor the state of the grid. SE
strategies evaluate the electrical parameters of each node and
build a comprehensive picture of the grid to prevent possible
contingencies,

In this paper, to overcome some of the above challenges,
we propose two main contributions:

• We describe a distributed software infrastructure,
including an advanced metering technology, providing
several benefits. This infrastructure admits bidirectional
communication for the smart units and it enables the
devices deployed on the grid to self-configure and auto-
update themselves. Moreover, it allows the information
related to the deployed devices to be used by the remote
services included in the system. In this way, we enable
interoperability with third-party software, which could
facilitate further general-purpose services and business
cases.

• A design pattern for an IoT-enabled 3-phase smart meter.
Our design defines a 3-phase meter with the capability to
run multiple algorithms, either on-board, on-fog, or on-
cloud. Thanks to the self-configuration and auto-update
procedures, any algorithms can be added, updated, or
removed on the fly without affecting the rest of the
system. This makes the whole solution flexible and opens
it to future improvements of the smart grid technology. In
our view, this feature is essential to unlock new services
and to foster new business opportunities for the actors
playing in the energy marketplace.

During our design process, we pay particular attention to
the software engineering phase and to the meter (hereinafter,
referred to as 3SMA) design stage. We present an evaluation
of our distributed infrastructure, and more specifically of our
3SMA, based on real-time simulations. Our simulations proved
that our architecture imposes very low requirements for the
device needed to build the 3SMA, thus reducing the cost and
making the entire structure highly scalable.

A. Contributions

To summarize, our work includes the following novelties.
We design and develop a scalable distributed software
infrastructure for advanced metering presenting the following
features:

• It provides bidirectional communication between smart
devices and novel services.

• It enables cloud, fog, and edge computing to support new
smart services to manage the grid.

• It unlocks new decentralized services and improves the
quality and the performances of those already existing.

• It allows the self-configuration and the auto-update of the
smart devices installed across the smart grid.

• It provides remote services with (near-) real-time
information about both the smart devices and the smart
grid status.

• It integrates third-party software and enables their
interoperability with all the entities, either hardware or
software, in our solution.

We also propose a novel design pattern to develop our
3SMA, i.e., a new 3-phase meter, which:

• Embeds IoT functionalities.
• Is compliant with the requirements of the proposed

distributed software infrastructure.
• Provides bidirectional communication with the other

actors in the infrastructure, either hardware or software.
• Allows remote grid data samplings and transmissions in

(near-) real-time.
• Runs custom algorithms for advanced smart grid

management, either on-board or distributed, thus,
exploiting the offered cloud, fog and edge computing
capabilities.

B. Roadmap

The paper is organized as follows. Section II focuses on
related works and their main differences from the approach
proposed in this paper. Section III first describes the proposed
distributed software infrastructure for advanced metering,
introducing both the identified actors, and the technologies
adopted to enable the communication and the data exchange
among them. Then, it presents the proposed IoT-based 3-phase
smart meter (i.e., our 3SMA) with its main characteristics and
interactions with the other entities in the distributed software
infrastructure. Finally, Section III reports the on-cloud, on-
fog, and on-edge applications used to test and assess both
the 3SMA and the infrastructure. Section IV concentrates on
the communication flows among the identified actors, either
hardware or software, in our solution. Section V describes the
case study and the experimental setup we used to evaluate our
infrastructure. Section VI includes our experimental analysis
of the metering infrastructure. To conclude, Section VII reports
our final remarks and some hints on possible future works.

II. RELATED WORK

As introduced in Section I, advanced metering
infrastructures for smart grids enable bidirectional
communications to monitor the energy transmission and
distribution process [9]. The last few years have seen growing
attention on the area, focusing on different approaches
and distinct technologies to reach advanced management
architectures. Different standards and protocols are diffused
and have been proposed such as DLMS/COSEM [10],
SML [11] and IEC 61850 [12][13][14], these solutions aim
to address different challenges of the Smart Grid scenario
and are designed for different actors according to their needs.
Thus interoperability plays a crucial role in the design of
AMI and smart meters that need to offer multiple ways to
communicate with the grid.

Meloni et al. [15] introduce a new infrastructure to
guarantee device interoperability. They also introduce the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

possibility to develop additional cloud services by providing
proper API to obtain information from the meters. However,
the suggested infrastructure manages only the distribution
network and not the transmission one. Moreover, the authors
design their meters as sensing devices able to collect and send
data, but unable to perform any sort of data processing.

Chen et al. [16] illustrate a smart-metering architecture
for IoT-based meters. They design it using edge computing
to overcome the problems related to the latency and the
bandwidth, typical of cloud computing. However, their
architecture does not provide cloud or fog computing, which,
in our opinion, are crucial to unlocking advanced and third-
party services, for smart grid management.

Yan et al. [17] implement their infrastructure adopting
fog computing. They perform data processing on clusters
composed of a single board computers and located between
the edge and the center of the metering infrastructure. In this
way, they can reduce the amount of data exchanged. However,
they do not support edge-computing features nor provide self-
configuration and auto-update functionalities.

Ou et al. [18] describe a metering system for transmission
networks using wireless technologies. They receive measures
from the transmission line and communicate them to a central
monitoring service. Unfortunately, their infrastructure does not
support third-party applications and the meters are used only
to transfer data without performing any data processing.

Lloret et al. [19] introduce a centralized architecture
supporting different smart devices by using distinct
communication protocols. Their infrastructure includes
cloud services using big-data techniques to provide different
types of services to users and DSO. However, their approach
is not scalable enough for large smart grids. With thousands
of devices, a centralized infrastructure implies the necessity
to transfer and collect a huge amount of information. This
process can cause latency, reduce the bandwidth, and increase
network costs.

The previous analysis shows that the most promising
approaches are the ones adopting fog and edge computing. Fog
computing takes advantage of data collectors distributed across
the grid to perform data pre-processing. Edge computing
performs data processing directly on the smart meters.
Unlike the previous works, i.e., [15], [18], [19], where the
computation is performed in centralized form, with fog and
edge computing the computational load is distributed among
different devices. This strategy reduces, especially for critical
applications, the latency and the bandwidth required to transfer
information [20]. Forcan et al. [21] locate fog servers close to
the metering devices. Servers perform data processing whereas
the metering devices are just used for sensing. Liu et al. [22]
use edge computing to support multiple network management
algorithms, reduce the computation time, and decrease the
bandwidth required for data transmission. Their infrastructure,
as in all other works mentioned above, makes use of IoT to
gather data from the Smart Grid. As [15], [19], and [22], they
support the execution of different algorithms to improve and
simplify smart grid management, and to increase its reliability.

Another key element of state-of-the-art metering
infrastructures is the meter architecture. To have distributed,

or even fully delocalized algorithms, and to reduce the
necessity to communicate a huge amount of data [23], smart
meters should be able to communicate through the Internet
and to perform data processing. Unfortunately, the majority
of the works designing smart meters mainly concentrate on
the performance [24], [25], [26] of the physical device. On
the contrary, there are relatively few works focusing on the
development of smart meters using IoT technologies to enable
new features for grid management.

Gallano et al. [27] design an IoT meter supporting a mobile
application able to display the energy consumption. However,
the meter is not included in a metering infrastructure, and it
offer the possibility to run neither on-board nor distributed
algorithms.

Using a single board computer, Sirojan et al. [28] develop a
3-phase meter able to collect the values of the current on each
phase. The meter is also capable of performing simple data
analysis, but it does not offer the possibility to run custom
algorithms.

Chen et al. [29] test an IoT-enabled single-phase smart
meter for demand-side management in smart homes only. Even
if the meter is used as an edge computing device, only a
few predefined algorithms can be executed on it without any
possibility of customization.

Pegoraro et al. [30] illustrate a 3-phase smart meter
prototype capable of running distributed state estimation. Their
meter adopts IoT-based cloud systems for data exchange.
Pignati et al. [31] suggest a similar solution in which the
meter exploits the ICT system of a university campus. In both
these works, the meters are used to collect information and
to transfer it to concentrators located toward the edge of the
communication network. These concentrators run the first step
of a distributed algorithm performing data processing.

As mentioned before, both interoperability and flexibility
need to be taken into account during the development of a
smart device or an AMI. Protocols such DLMS [10] only offer
the possibility to securely exchange metering data across the
network and to update the meter. However, since it is designed
for reading consumer data it could be unfeasible or hard to
use it by the multiple concurrent applications for smart grid
management.

One of the advantages of our approach, with respect to the
ones described so far, is the possibility to use the meter to
execute stand-alone or distributed applications. In addition,
it is possible to completely customize the smart-meter, both
in terms of hardware and software. Thus, the user is free
to select the desired target accuracy and the applications to
deploy on the meter. Moreover, our infrastructure supports
self-configuration and auto-update strategies. In this way, our
meters can automatically discover newly installed devices and
we can change settings and software applications on the fly.
As a consequence, we can deploy on the grid at run-time
smart devices which differ from the designed meter and offer
innovative and previously unforeseen services.

To summarize, Table I shows the main similarities and
differences between our approach and the works previously
described.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Onboard intelligence ComputingInfrastructure Meter
prototype Data processing Custom algorithm IoT on Cloud on Fog on Edge

Self
configuration Auto update Third party

services
Proposed X X X X X X X X X X

Gallano et al. [27] X - - X - - - - - -
Sirojan et al. [28] X X - X - - - - - -
Chen et al. [29] X X - X - - X - - -

Pegoraro et al[30] X - - X - - - - - -
Pignati et al. [31] X X - X X - - - - -

A. Meloni et al. [15] - - - X - - - - - X
Q. Ou et al. [18] - - - X - - - - - -
Chen et al. [16] - - - X - X - - - -
Yan et al. [17] - - - X - X - - - -

J. Lloretet al. [19] - - - X X - - - - X
M. Forcan et al. [21] - - - X X X - - - -

Y. Liu et al. [22] - - - X X - X - - X

TABLE I: A synoptic table comparing our approach with several state-of-the-art similar works. The table considers both the
infrastructure architecture and the 3SMA design.

III. METERING INFRASTRUCTURE AND SMART METER

This section describes our metering framework. It first
details our distributed software infrastructure, defining the
actors involved and the technologies adopted to enable the
communication among them. After that, it presents the design
of our internet-connected 3-phase smart meter (the 3SMA)
highlighting its main characteristics and its interactions with
the other units. Finally, it reports the decentralized applications
used to test both the 3SMA and the infrastructure. We focus
on auto-reconfiguration for self-healing and state estimation
capabilities. Notice that the system supports both on-board
(deployed and executed directly on the 3SMA) and remote
(deployed and executed on-fog or on-cloud) applications.
Moreover, note that the algorithms presented in this work are
just a mere example of the ones that could be used on our
infrastructure. Indeed, thanks to the auto-update feature, both
the infrastructure and the 3SMA meter have been designed
to be flexible in terms of updating, adding, and replacing the
application at run-time, without the necessity to reboot the
whole system. Thus, our infrastructure will also trigger the
possibility to use other innovative services in the future.

A. Distributed Metering Infrastructure

One of our targets is to design a highly scalable,
distributed, and decentralized metering infrastructure to
manage and monitor a high number of devices and services
over the grid. As shown in Figure 1, the principal
entities of this infrastructure are the Message brokers, the
Device Catalog, the 3-phase Smart meter (3SMA), and the
Remote service applications. These units talk to each other
by exploiting two communication paradigms, namely the
request/response through the REST Web Services [32] and
the publish/subscribe [33] through the MQTT protocol [34].

The Device Catalog (DeC), at the center of Figure 1, is an
essential software component of our infrastructure as it acts as
both service and device register. It is in charge of registering
all active devices and software entities managing the smart
grid. It also keeps track of the active units connected to the
Internet, thus enabling service and device discovery. When,
for any reason, a hardware device or a software entity cannot
communicate with other units, the DeC marks it as unavailable

and propagates this information to all other units connected
to the infrastructure. This procedure makes the unavailability
of a device known on the entire network. The DeC also
stores the metadata for each 3SMA. Metadata includes the
algorithms run by the meter and the topology of the portion
of the grid that it has to monitor. The DeC can eventually
provide this information to the remote service applications,
such that these services are able to perform the right set-up
to retrieve the required data. The DeC is also responsible for
the self-configuration and auto-update of the 3SMA units. In
other words, the DeC provides to each meter the endpoints
of the message brokers, the metadata, and all the necessary
information to keep the meter updated. Moreover, it provides
to each remote service application a complete list of both
3SMA and other services’ endpoints, and all the necessary
information to manage the smart grid. As mentioned before,
two communication protocols, REST and MQTT, are used
in this framework. REST is a synchronous architectural style
used to build web services exploiting the HTTP protocol [32].
It is widely supported and used for 1-to-1 communications. On
the contrary, MQTT is an asynchronous protocol implementing
the publish/subscribe paradigm [33]. It is quite common in
the IoT world and it is optimal for 1-to-many and event-
driven communications [34]. Due to their differences and their
specific characteristics, these two protocols have been selected
to perform different tasks. REST is mainly used for the self-
configuration and auto-update of the IoT devices deployed
over the grid. MQTT is adopted to exchange data with the
meters and on remote service applications. More details on
these protocols are reported in Section IV.

The two message brokers of Figure 1 manage the
publish/subscribe communication among hardware and/or
software components exploiting the MQTT protocol. We
decided to use two different message brokers to separate
the two main communication contexts. The first broker
manages data exchange over the grid (i.e., topology
changes, reconfigurations, etc.). The second broker monitors
information. We adopt this configuration to minimize the
delay of the MQTT messages related to device management.
Indeed, depending on the amount of information we need
to exchange and on the implementation of the message
broker, a single broker might constitute a bottleneck for



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

our infrastructure, thus increasing the overall communication
latency. As communication latency is a crucial factor in smart-
grid management, we appropriately considered it and we
minimized it by resorting to two message brokers in our
configuration.

B. Our 3-phase Smart Meter Architecture

We designed our 3SMA to operate in our distributed
infrastructure, described in Section III-A, and to fully exploit
its features. Essentially, we optimized our 3SMA to perform
three different tasks: self-configure, collect electric measures
from the power grid, and run user-defined network algorithms.
These tasks are logically performed by different units, as
graphically illustrated in Figure 2. The tasks performed by
each unit are the following.

The first unit, i.e., the communication interface, is
represented on the left-hand side of Figure 2 and it is
in charge of enabling the communication over the Internet
among 3SMA and the other actors in the platform, either
hardware or software.To be compliant with the infrastructure,
we exploit both the communication protocols introduced in
Section III-A, namely REST and MQTT. We use REST,
i.e., the request/response approach, to gather the initial
configuration of the 3SMA from the DeC unit. We also use the
REST protocol to notify the DeC device that it is reachable and
it is properly connected to the network. Finally, we use REST
to update the 3SMA in terms of the endpoints, the MQTT
broker that must be used, and the algorithms that must be
run. On the other hand, we adopt the MQTT protocol, i.e.,
the publish/subscribe approach, to receive updates from the
DeC unit concerning the status of the grid and the settings
of the metering infrastructure (such as modifications on the
topology of the grid, changes of the endpoint, etc.). Moreover,
we also use the MQTT protocol to transfer the data collected
by the 3SMA unit and the results computed by the on-board
algorithms to the remote service applications.

The second logic unit of our 3SMA device, i.e., the self-
configuration and algorithm unit at the center of Figure 2,
is in charge of executing three main different tasks: Self-
configuration, auto-updating, and data-processing. We stress
the terms “self” and “auto” because one of the main features
of our meter is that it can potentially run any algorithm, at least
as far as it has the computational power to execute it. When
we need to execute a new algorithm on the meter, we start
by updating the algorithm inside the DeC device. Once done

Fig. 1: Infrastructure schema.

Fig. 2: Conceptual scheme of the 3SMA on-board software.

this, the 3SMA will receive all updates from the DeC, it will
retrieve the new algorithm, and it will start executing it. This
strategy can then be used to replace any existing algorithm on-
the-fly, without affecting the rest of the system, and enabling
our infrastructure to be ready for future extensions.

The third, and last, logic function performed by our 3SMA,
i.e., the data acquisition part, is performed by the rightmost
block of Figure 2. This unit collects all electrical quantity
measures on the power grid and it makes them available for
the algorithmic manipulation performed by the computational
unit.

Obviously, the three logic units previously described can
be realized, i.e., implemented, adopting different hardware
devices. Our current hardware prototype combines a Raspberry
Pi 3 Model B unit with a Data Acquisition board (DAQ)
provided by Measurements Computing™ [35]. The Raspberry
Pi unit is a small embedded computer and it is connected
with the DAQ using a USB port. We selected these hardware
devices because using open-source and relatively cheap units
drastically reduces the costs of the entire infrastructure and
improves its adoption in large networks improving our design
scalability. As mentioned before, indeed scalability is one of
the main challenges faced by modern infrastructures. With
this hardware configuration, our DAQ is able to collect six
channels, each one with a frequency that is limited to 6.4 kHz
but it can be customized according to the necessity of our
application. For example, for our initial tests, we limited
the sampling rate to 3.2 kHz, i.e., to 50% of the maximum
possible frequency. Anyway, this value was not only more than
sufficient to perform our acquisition phase but it also allowed
us to dedicate the remaining computational power to run our
algorithms more efficiently.

Using this configuration, the measures are collected through
the DAQ by the Raspberry Pi. The Raspberry Pi is also in
charge of running the self-configure and auto-update routines,
of executing the different algorithms, and of exchanging
information with the remote service applications and the DeC.
Thus, it is essentially the hardware unit making “smart” our
3SMA architecture.

C. Algorithm and remote service applications

As mentioned in Section III-B, our 3SMA supports on-board
applications deployed and executed directly on the device. In
general, these applications can be seen as a part of a more
complex and complete software suite running in a distributed
way over the network, thus offering on-edge, on-fog, and
on-cloud features. To evaluate the computational power of
our infrastructure, we tested it with two different and well-
known applications: A Fault Location, Isolation and Service



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Restoration (FLISR) algorithm and a State Estimation (SE)
one.

Given a network fault, a FLISR procedure automatizes the
localization and the isolation of the portion of the grid affected
by the fault and, wherever possible, it reconfigures the power
grid to minimize the number of disconnected customers [36].
This is a combination of fault location algorithms with
Fault Detection, Isolation and, Restoration (FDIR) schemes
to improve the performance of fault management. The aim
is to restore most of the interrupted customers as quickly as
possible.

To reach these targets, we deployed the algorithm proposed
by Estebsari et al [36] on our 3SMA (i.e., on-edge). Their
approach combines an impedance-based algorithm with a
sparse voltage measurement-based strategy. Their procedure
detects the bus pair affected by the fault and evaluates the
distance between the fault and the first bus of the pair. The
bus pair defines the secondary substations (i.e. bus) and the
branch on which the fault occurred. When a fault occurs,
the protection relays at the beginning of the feeders trip, and
the circuit breakers disconnect the feeder from the supply.
The required measurements to run the above-mentioned fault
location algorithm are sampled by 3SMAs and sent to the one
with the activated algorithm and installed at the beginning
of the feeder. Once the measurements are received by this
3SMA, it runs the fault location algorithm. The results
of this computation are then sent to the remote service
application running on the cloud. This application reconfigures
the network, providing a new grid topology to isolate the faulty
portion of the network and to restore the power supply for the
rest of the grid. To obtain the new network configuration, the
procedure sends an actuation message to open or close every
smart switch that needs to be switched. The new topology is
also communicated to all entities (both hardware and software)
that can be affected by the changes. Additional details on
the communication phase of the FLISR process are given in
Section IV-B.

The main target of a SE procedure is to provide an
estimation, over the entire network, of some electrical values
(such as voltages, powers, and currents), given the available
local measures. This task is of paramount importance to
promptly identify any critical problem in the grid, especially
when distributed or renewable energy sources are connected
to the system, as the energy production of those sources is
largely unpredictable and volatile. Usually, system operators
estimate the state of the network by adopting a centralized
application collecting all the measures coming from the
meters spread across the grid. Unfortunately, this process
can be unfeasible on smart grids, or at least it can
be very expensive, due to communication bottlenecks and
unpredictable delays. Therefore, to distribute the computation
on-edge and on-fog, we adopted the hierarchically and
distributed SE algorithm introduced by Pau et al. in [37],
[38]. This algorithm is based on the weighted least squares
approach. Its target is to filter out the errors on the measures
to provide the most probable operational state of the grid,
exploiting the redundancy of the input measures (please,
see [38] for more mathematical details on the algorithm).

Fig. 3: Conceptual scheme of the distributed State Estimation
algorithm.

The distributed implementation of the algorithm divides the
estimation problem into multiple hierarchical SE levels, which
are sequentially executed following a bottom-up process. In
our implementation, the estimation process is divided into
three different levels: The Concentrator, Low Voltage, and
Medium Voltage level. This partition reflects the hierarchy
existing on the grid and illustrated in Figure 3. In this
representation, multiple concentrators C are connected to
a single LV substation, and multiple LV substations are
connected to a single MV substation. These connections can
be easily represented with a tree structure which can also be
exploited for the logical partition of the SE process. The first
computation is made at the concentrator level. At this level,
the state is estimated for all customer nodes subtended by the
feeder bus to which the concentrator is associated. The LV
level estimators use the results provided by the concentrators
(voltage and total power at the feeder bus) to estimate the
operating conditions of the low voltage grid feeders. Similarly,
the MV level estimator uses the result of the MV and LV
level (i.e., voltage and overall power) as input to evaluate the
operating conditions of the subtended medium voltage grid.
Differently from the conventional implementation of the SE
algorithm, in our architecture both the LV level and the MV
level state estimation algorithms are deployed on a 3SMA
entity. Each 3SMA, in charge of the execution of the SE
service, executes one of the two algorithms (namely, either
the LV level or the MV level) according to the settings that
it has received during the self-configuration and the auto-
update procedure. These are two on-fog algorithms. More
details on the communication flow and the coordination among
the different actors running the distributed SE are provided in
Section IV.

IV. COMMUNICATIONS FLOW

As analyzed in Section III, we adopt both the
requests/response and the publish/subscribe communication
paradigms [33]. We use REST during the initial
communication phase. In this step, we define the settings of
the DeC and 3SMA units, and we respect the client-server
approach required by the protocol. On the contrary, we adopt
the MQTT protocol every time an actor of the infrastructure
needs to transfer information, even in (near-) real-time,
to more than one unit. In this case, the publish/subscribe
functionalities offered by MQTT completely satisfy multi-
point communication requirements. Given this framework,
this section describes the communication scheme used



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

between the units of our infrastructure. More specifically, we
detail how REST has been used for the self-configuration and
auto-update phases, and how the MQTT protocol has been
exploited to manage faults (i.e., the FLISR service) and to
coordinate the state estimation process.

A. Self-configuration and auto-update

Figure 4 illustrates the main steps of the self-configuration
process, which is also the first phase running within the
infrastructure every time a new 3SMA is installed or
(re-) booted on the grid. The self-configuration capability
avoids the necessity to manually configure each 3SMA and
it also enables remote reconfigurations. These possibilities
increase the scalability and maintainability of the whole
infrastructure. As stated in Section III, the DeC stores all
settings required by each 3SMA. As soon as a 3SMA is
deployed and turned on, it sends a configuration request to
the DeC, specifying its unique (device) identifier. Once this
request is received, the DeC performs two tasks. First, it adds
the specific device to its list of active units. Then, it sends
back to the 3SMA the full list of settings. When the 3SMA
receives its configuration setting back, it initializes its status
following the procedure specified by the settings. Immediately
after that, it starts collecting and sending data, running the
specified algorithms and it publishes and/or subscribes to the
MQTT topics indicated in the settings.

The other major feature of the 3SMA is its auto-update
capability. Auto-update is illustrated in the bottom frame of
Figure 4. The first step of this phase is similar to the self-
configuration process. However, in the auto-update phase, the
3SMA periodically inquires the DeC to receive its settings
and the DeC replies by updating its configuration. In addition,
every time it receives a request from a 3SMA, the DeC stores
the time-stamp of such a request, which is needed to keep
the list of active and online devices up-to-date. Indeed, if the
DeC does not receive an auto-update request from a specific
3SMA, after a certain amount of time (configurable by the
user), it marks the 3SMA as “disconnected” until the next auto-
update request. It is worth noticing that the self-configuration
and the auto-update features increase the flexibility and the
configuration and re-configurations speed of the whole system.

Fig. 4: Self-configuration and the auto-update: The main
operational steps of our infrastructure.

B. Fault Location Isolation and Service Restoration

As illustrated in Figure 5, when a fault is detected, the
3SMA seeks the bus pair on which the fault occurred. Once
the search is finished, the identifiers of these 2 buses, and
the distance of the fault from the first bus of the pair, are
published using the MQTT protocol. At this point, the remote
service application in charge of the network reconfiguration,
which is subscribed to the MQTT protocol, receives these
identifiers and computes the new configuration of the network.
While doing that, this application also takes into account the
detected fault, so that the line between the two faulted buses
is not included. Once this step is performed, the network
configurator sends a command to the switches that need to
open or close the connection to reconfigure the grid. In our
tests, all open switches that could receive this kind of actuation
commands were simulated on the real-time simulator. At the
same time, the information related to the new topology of
the grid is transferred to the DeC. When the DeC receives
the updated topology, it uses MQTT to store and forward
this information to all 3SMA units that are affected by the
configuration change, such that these 3SMAs can update their
settings accordingly. If, for any reason, a 3SMA device does
not receive such update settings in (near-) real-time, it will
receive them when it runs its auto-update routine (please, see
Section IV-A). Notice that updating the setting is particularly
important for the correct execution of the SE. When a network
reconfiguration occurs, a 3SMA may need to run the algorithm
for a different portion of the grid. In this case, the new settings
are needed to reconfigure both the SE algorithm and the
MQTT communication protocol.

C. State estimation

As mentioned in the section above, our distributed SE
algorithm includes three layers: The concentrator-level, the
LV grid-level, and the MV grid-level. Figure 6 describes how
the MQTT protocol communicates results between different
layers. Each concentrator-level SE is an MQTT publisher
and uses the data coming from the downstream of an LV
grid node as input data. Once the computation is finished,
the results are published through the MQTT protocol with
a topic that identifies the associated LV node. The LV grid-
level SE algorithm is subscribed to the MQTT topics that
identify each concentrator of the corresponding portion of

Fig. 5: Fault detection and restoration process:
Communication flow among the different units of the
grid.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

the grid to receive their SE results. These results are used
as input to evaluate the status of the low voltage grid. After
the previous evaluation, the new results produced by each LV
state estimation are published using the MQTT protocol that
identifies the corresponding MV portion of the grid. Therefore,
they are received by the MV grid-level SE. In turn, this
level executes the last part of the distributed algorithm. The
overall results are then published, using, again, the MQTT
protocol. Each potentially interested remote service for grid
management can obtain this information by subscribing to the
related topic.

V. CASE STUDY AND EXPERIMENTAL SETUP

In this section, we describe our testing methodology for
the 3SMA unit and the distributed metering infrastructure
defined in Section III. To perform the verification phase, we
exploit the multi-model co-simulation platform introduced by
Barbierato et al. [39]. This platform provides an environment
to realistically simulate different smart grid scenarios. We
focus on the simulation performed with Hardware- and
Software-in-the-Loop.

To perform our simulations on different configuration
scenarios, we model a small portion of an urban distribution
grid with two feeders and one normally open switch. With this
network, we simulate a small portion of the real distribution
grid of Turin, a large city in the northwest district of Italy.
Figure 7 represents the topology of the case study and the
location of the fault. Overall, the grid is composed of two
primary and twelve secondary substations, with a high voltage
of 220 KV and a medium voltage of 22 KV. All twelve
secondary nodes supply residential LV grids. In our tests,
we also consider a constraint on the radial operation of the
grid. It is important to notice that the switches are modeled
as IoT devices simulated on the Opal-RT. Once the fault
is isolated, we use this framework to send the necessary
actuation messages (adopting the MQTT protocol) to all
involved switches to restore the power supply.

To run the simulations of the power network, we use the
Opal-RT© Digital Real Time Simulator. The model of the
grid, implemented in MATLAB© Simulink using the RTLab©

software provided by Opal, can be compiled and uploaded in
the simulator. The simulator is able to execute the simulation
with a fixed time step of 250 µs. During the simulation, the
Opal-RT can provide up to 16 analog outputs. During our
tests, we also simulate all sensing devices that are required
on a real-world network. The output signals of the Opal-
RT are scaled in the range [0,+10] V to respect the input

Fig. 6: Estimation process: Communication flow among the
different layers and units of the grid.

Fig. 7: Our simulated grid: Its topology with the location of
all 3SMA prototypes and all other simulated devices.

range of the DAQ. Thus, the DAQ is directly connected to
Opal-RT via the analog outputs. Figure 7 shows the topology
of the grid implemented in the simulation, the location of
the 3SMA units, and the location of the simulated devices
(both smart meters and switches). To perform our test with
Hardware-in-the-Loop, we substitute 2 out of the 14 smart
meters by our real 3SMA prototypes. On the one hand, our
3SMAs are connected to the Opal-RT with their DAQs to
sense and collect power measurements from a primary and a
secondary substation (respectively, M1 and M2, in Figure 7).
On the other hand, they are connected to the Internet to be
automatically configured and to periodically send information
(as described in Section IV). To perform more realistic
simulations, the simulated devices (i.e., the remaining smart
meters and switches) send and receive information via the
Ethernet connection of the Opal-RT. Among the simulated
devices, we also include those deployed at the low voltage
level running the state estimation.

As described in Section II, one of the crucial aspects for any
service implemented on a smart grid is the communication
latency required to fulfill a request (measured as the time
passed from the moment in which the event has been
discovered and the final actuation). To take into account
the Internet congestion during our evaluation, we use some
of the features provided by our multi-model co-simulation
platform [39]. Indeed, this platform integrates different
network simulators to realistically simulate a Metropolitan
Area Network (MAN). For our simulations, we choose
Mininet [40]. Figure 8 reports the schema of our MAN
backbone model. Nowadays, MAN backbones typically
leverage upon fiber-optic links deployed across our cities
that interconnect different backbone routers forming a ring
configuration. Fiber optic links usually guarantee 100 Mbps
connections and, in our model, they are full-duplex with a
maximum length of about 10 Km and zero losses (Figure 8
represents these links with red edges). In Figure 8, we
supposed that all smart devices, simulated in Opal-RT, and the
two 3SMAs prototypes are connected to the same backbone
router R1.

The remote service for Network Reconfiguration, the DeC,
and the two MQTT message brokers, are connected to routers



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 8: Our MAN backbone model.

R2, R3, and R4, respectively. R1, R2, R3, and R4 are
connected to their respective sub-networks through a 10 Mbps
full-duplex link, with a maximum length of about 1 Km,
and zero losses (Figure 8 represents these links with green
edges). Finally, routers R5, R6, and R7 serve three other
different sub-networks that generate background traffic with
different rates to realistically congest the MAN by exploiting
iPerf [41]. To avoid bottlenecks, the links between these last
three routers and their traffic generators are 200 Mbps full-
duplex, with a maximum length of about 1 Km, and zero
losses (Figure 8 represents these links with black edges).
Thus in our simulations, the 3SMAs, Opal-RT, DeC, network
reconfiguration service, and message brokers are in different
locations in the same metropolitan area and communicate over
the internet.

Using this framework, we have been able to run a test
for two scenarios: One including normal operations and one
with some fault occurrences. In the first case, each 3SMA
collects the data coming from the analog output of the Opal-
RT, namely the 3 voltage and the 3 current values of the 3-
phase signal. The data collected are continuously analyzed to
check whether a fault has occurred and the state estimation
algorithm is executed every minute. In the second scenario,
whenever a fault (triggered using the graphical user interface
of the real-time simulator) is identified by a 3SMA, the FLISR
routine is automatically started to find the location of the fault,
isolate it, and restore the service.

In our laboratory set-up, we employ, together with an Opal-
RT and the two 3SMA prototypes, four different desktop
computers to run the network reconfiguration services, the
DeC, the two MQTT message brokers (we choose the Eclipse
Mosquitto [42]), and the Mininet Network Simulator. It is
worth noting that we implemented two different versions of
our 3SMA. The first one follows the hardware specifications
discussed in Section III-B, i.e., it uses a Raspberry Pi 3

Model B connected via USB with the DAQ provided by
Measurements Computing™ [35]. Hereinafter, we refer to this
3SMA as 3SMA-RPi. The second version of 3SMA is used to
assess the performance of the first one, and we implement it
with a Laptop computer connected with a more precise (and
expensive) data acquisition board, namely the BNC-2120[43]
and the DAQCard-6062[44]. These boards support a sampling
frequency up to 500 KS/s per channel, with smaller input
noise, and a quite higher resolution. Hereinafter, we refer to
this 3SMA as 3SMA-Laptop.

All these devices belong to the same dedicated local area
network. They are physically connected through a 100 Gbps
Ethernet switch that introduces a negligible communication
latency of about 10 ns. Gigabit Ethernet equipment provides
backward compatibility to older 100 Mbps and 10 Mbps
legacy Ethernet devices [45]. All the traffic generated by this
equipment is routed through the computer where the virtual
MAN runs in Mininet. Table II reports all the parameters
required to our model to configure the simulation scenario
in terms of both power grid and MAN.

VI. EXPERIMENTAL RESULTS

In experimental analysis, we consider two sets of
experiments. The first one includes evidence on fault location
isolation and service restoration (FLISR). The second one
reports data on state estimation (SE). Each aspect is analyzed
in one of the following subsections.

A. Fault Location Isolation and Service Restoration

In this section, we focus on the efficiency of our
3SMA-RPi unit to implement the FLISR procedure. We
evaluate the computation efficiency and the accuracy of our
3SMA-RPi architecture and we also compare it with its laptop
implementation, i.e., the 3SMA-Laptop, exploiting a more
precise data acquisition board (see Section V). As illustrated in
Figure 5, one of our targets is to minimize the time required
to reconfigure the network when a fault occurs. In a real-
world scenario, a crucial factor in measuring this time is
the congestion of the MAN, which can strongly influence
the communication delays. To take this aspect into account,
we consider in our scenario the data network simulation
previously described. We also tested different scenarios by
changing the location of the fault in the grid to evaluate how
this aspect influences our results.

During our tests, the 3SMA-RPi was always able to
correctly detect the presence of a fault on the grid, with no
false positive or false negative. Moreover, the fault location
algorithm was always able to correctly identify the two buses
among which the fault occurred and locate the fault with
an error of ±50 m. Notice that this relatively low accuracy

Node type # of Node Voltage Distance among nodes Node type Connection type Transfer rate

E
le

ct
ri

c

pa
ra

m
et

er
s HV to MV substation 2 220kV/22kV n.d.

IC
T

pa
ra

m
et

er
s Backbone routers connection full-duplex,max 10 Km,zero losses up to 100 Mbp

MV to LV substation 12 22kV/230V 220 m R1,R2,R3,R4 towards users full-duplex,max 1 Km, zero losses up to 10 Mbp
R5,R6,R7 towards traffic generators full-duplex,max 1 Km, zero losses up to 200 Mbp
Physical connection Gigabit Ethernet switch up to 100 Mbp

TABLE II: Our simulated grid: The main parameters used by our model to set-up the simulation.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

is strongly related to the quality of the USB DAQ used to
collect the values of voltage and current. To double-check
this accuracy, we repeated our test replacing the 3SMA-RPi
with the 3SMA-Laptop. With the new unit, the error to
locate the position of the fault was reduced to a value of
±10 m. However, even if this accuracy analysis confirms our
expectations, it is worth noticing that to correctly complete the
FLISR process the meter just needs to correctly identify the
two buses among which the fault occurred. For example, in
Figure 9 the position of the fault does not have any meaningful
effect on the execution time. This was equal to 8.17±0.14 s
for the 3SMA-RPi and to 0.531±0.008 s on average using the
3SMA-Laptop.

Fig. 9: The fault location phase: Execution times exploiting
the 3SMA-RPi unit.

To properly evaluate our approach to fault restoration, the
last factor we need to take into account is the communication
delay. To do that, we measure the elapsed time between the
moment in which our smart meter sends the MQTT message
containing the information of the buses affected by the fault
and the moment it receives the new topology from the network
configurator through another MQTT message. The latency
time is shown in Figure 10, with different levels of network
congestion and a packet size of 1.4 KByte. As expected,
the latency in the communication is mostly related to the
congestion level. Even if this measure includes the execution
time of the Network Reconfiguration algorithm, this time does
not particularly affect the delay due to the transmission time
as it is always lower than 0.028s. In the worst scenario of
our simulation, with 100% of congestion, the medium latency
time was equal to 0.49 s and the maximum latency time was
1 s. However, Internet service providers try to avoid such
high network congestion as, in long periods, it could lead to
the collapse of MAN itself. Thus, we can assume that the
communication latency would be always smaller than 1 s.

To further detail our analysis, Figure 11 reports the time
required by all main steps of our procedure in the worst-
case scenario, i.e., their higher values obtained running the
procedure several times. From the graphic, it is possible to
notice that during our simulations the maximum time needed
to perform the whole FLISR is about 10.5 s for the 3SMA-RPi
unit. This maximum time decreases to approximately 2.5 s

for the 3SMA-Laptop device. As shown in Figure 11, the
majority of this time is taken by the execution of the fault
location algorithm running on-board of our smart meter. On
the contrary, the latency due to the data communication and
execution of the Network Reconfigurator represents a minor
contribution. Interestingly, this result also highlights that,
with a relatively simple infrastructure and low-cost hardware
devices, it is possible to drastically improve the time required
by the operator to restore the energy distribution after a fault.

As a final consideration, Figures 11 and 12 show that the
advantage of our approach in terms of service restoration.
With the methodology traditionally used in real scenarios,
the restoration phase can require from 40 minutes to more
than 80 minutes [46] (Figure 12). With our infrastructure,
the same process is completely automated and, as illustrated
by Figure 11, just a few seconds are required for the entire
process even in the worst-case scenario. Thus, the difference
of about 8 s in the computation time between the 3SMA-RPi
and the 3SMA-Laptop unit can be considered as negligible.
As a consequence, our approach not only improves the quality
of the service delivered to the customers, but it also helps the
system operators to reduce the maintenance costs and it allows
them to avoid penalties for long service failures.

B. State Estimation Results

As far as the state estimation algorithm is concerned, our
target is to prove that our 3SMA-RPi is able to perform each
step of the algorithm as efficient as the 3SMA-Laptop unit.
We also want to prove that our 3SMA-RPi is able to complete
each step in less than 1 minute, as this is the time occurring
between two consecutive states evaluations. As in the previous
section, to ensure a more realistic condition, we included in
our setting the data network simulation to test the algorithm
with different levels of network congestion.

Our first test focuses on verifying that the infrastructure
and our two 3SMA prototypes are able to communicate, run
the distributed algorithm, and update the MQTT topic in case
of a network reconfiguration. The state estimation has been
verified using both our prototypes running in two possible
configurations, i.e., with 3SMA-RPi executing the LV grid-
level SE and the 3SMA-Laptop running the MV grid-level

Fig. 10: Latency time as a function of the level of traffic over
the network. The packet size is equal to 1.4 KByte,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig. 11: The total FLISR time for the proposed infrastructure:
A comparison between the low cost 3SMA-RPi unit and the
more powerful but expensive 3SMA-Laptop.

Fig. 12: Legacy process for fault management on real
infrastructures [46].

SE, and vice-versa. This enables a fair and head-to-head
comparison in terms of performance and accuracy.

As shown in Figure 13, when 3SMA-RPi (M2 in Figure 7)
runs the LV grid-level SE, it takes about 11.9±0.4 s for
each computation. When it executes the MV grid-level SE
(M1 in Figure 7), it takes 4.13±0.03 s. Repeating the very
same tests with the 3SMA-Laptop unit, the two steps are
executed in 0.127±0.003 s and 0.057±0.003 s, respectively.
As the same version of the algorithm is used on both units,
the accuracy achieved is the same and we did not notice any
difference in terms of outputs accuracy. Thus, we can claim
that our 3SMA-RPi unit is perfectly suitable to address such
computation, even if it takes a longer time for its execution.
To better analyze our infrastructure, as in the previous cases,
we need to consider the latency time added to the process
by the communication network. Indeed, as introduced in the
previous sections, the MQTT is used to send partial results
from the smart meter performing the LV grid-level SE to the
one running the MV grid-level SE algorithm. Since the size
of the messages is quite similar to the one of FLISR (i.e.,
1.4 KByte), the maximum possible latency in the worst case
is less than 1 s, as shown in Figure 10. Since the proposed
procedure runs a state estimation algorithm every minute, the
3SMA-RPi unit is fully compliant with this requirement as
it is able to complete all phases, i.e., LV SE and MV grid-
level SE, in less time. Moreover, in case of a fault, after the
topology changes occurred during the restoration phase, the
MQTT topic and the configuration of the SE algorithm are
correctly updated according to the portion of the MV network
monitored by the 3SMAs. As discussed in Section VI-A, this
reconfiguration can last about 10.5 s. During the network
reconfiguration, in case one of the 3SMAs deployed across
the grid is disconnected from the Internet, it will receive the

Fig. 13: Execution time of the state estimation for both LV
and MV grid-level SE running on our 3SMA-RPi unit.

new setting when the next auto-update routine starts. The
time period between two consecutive auto-update routines
depends on the end-users settings configured in the DeC (see
Section IV-A).

When our algorithm runs on the 3SMA-RPi, even if the
memory usage is just at 3.9%, the CPU usage is always around
100%, with some outliers that even exceed that value. This
result may look liks an issue, but there are two main factors
to take into consideration:

• The algorithm is written in Matlab© and it runs on
3SMA-RPi using Octave, thus, the code is not optimized
at all for embedded devices.

• The target of our test is to assess the possibility to run
a distributed algorithm on the 3SMA prototype, not to
optimize our application for real usage.

Once these two considerations are correctly taken into
account, our results look promising. Even without any code
optimization and with the adoption of low-cost hardware
devices, the 3SMA is perfectly able to run the different
levels of SE and to satisfy the time threshold required by the
algorithm. In conclusion, using inexpensive hardware devices
reduces costs and improves scalability but it also implies the
necessity to carefully design and optimize the applications
deployed on the devices.

C. Final Remarks on Communication Latency

Assessing the impact of data transmission in existing
communication networks is crucial to address novel service
requirements in terms of data transmission latency as well.
Indeed, such latency can affect the operational status of
the smart grid. The IEC 61850 standard [12] defines
the communication requirements to be addressed in power
distribution networks. Table III reports the performance classes
defined by the standard. Our experimental results on time
delay, performed by exploiting Mininet to simulate a realistic
virtual MAN, satisfy the requirements of classes TT0, TT1,
and TT2. This is confirmed when the MAN congestion rate
is lower than 90%, as in this case, the maximum latency
never exceeds 500 ms. When the congestion rate is 100%, the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Performance
Requirements

Performance
Classes

Values
[ms] Example of services

Transfer time

TT0 >1,000 Files, events log contents, SCADA
TT1 1,000 Events, alarms
TT2 500 Operator commands
TT3 100 Slow automation interactions
TT4 20 Fast automation interactions
TT5 10 Releases, status changes
TT6 3 Trips, blockings

TABLE III: The IEC 61850 [12] standard: Communication
requirements and performance classes for power systems.

median and the maximum latency values are about 350 ms
and 1 s, respectively. However, as previously discussed, this
latter scenario is very critical and must be avoided because it
could lead to the collapse of the MAN itself.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a low-cost smart meter architecture
and a distributed software infrastructure for AMI, which
can collect data from the network, communicate with other
entities, and offer different features to each actor connected
to the network. The usage of well-known IoT technologies
ensures a high compatibility with other devices and third-
party services. Our 3-phase meter architecture is able to run
multiple software applications, either on-board or distributed
over the network, and to auto-update its status when required.
Moreover, new algorithms can be added, updated, or removed
on the fly thanks to its auto-configuration capability. This
ensures high compatibility with other device management tools
and communication protocols such as DLMS/COSEM [10],
SML [11], and IEC 61850 [12], which could be added and
treated as any other data processing algorithm.

To verify the characteristics of the entire infrastructure, we
run real-time simulations with different configurations and
settings. The experimental results prove that the system can
identify and locate grid problems at high speed, restoring
the original functionalities faster than any other state-of-the-
art solution. Moreover, the time delay on data transmission,
estimated by including a MAN simulator in our realistic test-
bed environment highlights that the resulting latency respects
the limits imposed by the IEC 61850 standard [12].

Among the possible future work, we would like to mention
that the proposed distributed software platform and the 3SMA
will be integrated in a wider distributed multi-model co-
simulation environment [47]. The target of this effort is to
unlock other possible scenarios and test additional multi-
energy services such as optimal management of renewable
energy sources. In addition, we also plan to further optimize
our algorithms and software running on our 3SMA to improve
their performances when implemented on embedded systems
with reduced computation power.

REFERENCES

[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet of Things Journal, vol. 1, no. 1,
pp. 22–32, 2014.

[2] Y. Saleem, N. Crespi, M. H. Rehmani, and R. Copeland, “Internet of
Things-Aided Smart Grid: Technologies, Architectures, Applications,
Prototypes, and Future Research Directions,” IEEE Access, vol. 7, pp.
62 962–63 003, 2019.

[3] A. Ghosal and M. Conti, “Key management systems for smart grid
advanced metering infrastructure: A survey,” IEEE Communications
Surveys Tutorials, vol. 21, no. 3, pp. 2831–2848, thirdquarter 2019.

[4] A. Ghasempour and J. Lou, “Advanced metering infrastructure in
smart grid: Requirements, challenges, architectures, technologies, and
optimizations,” in Smart Grids: Emerging Technologies, Challenges and
Future Directions. Nova Science Publishers, 2017.

[5] Y. Wang, Q. Chen, T. Hong, and C. Kang, “Review of Smart Meter
Data Analytics: Applications, Methodologies, and Challenges,” IEEE
Transactions on Smart Grid, vol. 10, no. 3, pp. 3125–3148, 2019.

[6] A. Ghasempour, “Optimized scalable decentralized hybrid advanced
metering infrastructure for smart grid,” in 2015 IEEE International
Conference on Smart Grid Communications (SmartGridComm), Nov
2015, pp. 223–228.

[7] M. Nardello, M. Rossi, and D. Brunelli, “An innovative cost-effective
smart meter with embedded non intrusive load monitoring,” in 2017
IEEE PES Innovative Smart Grid Technologies Conference Europe
(ISGT-Europe), Sep. 2017, pp. 1–6.

[8] A. Zidan, M. Khairalla, A. M. Abdrabou, T. Khalifa, K. Shaban,
A. Abdrabou, R. El Shatshat, and A. M. Gaouda, “Fault detection,
isolation, and service restoration in distribution systems: State-of-the-
art and future trends,” IEEE Transactions on Smart Grid, vol. 8, no. 5,
pp. 2170–2185, Sep. 2017.

[9] F. Al-Turjman and M. Abujubbeh, “Iot-enabled smart grid via sm: An
overview,” Future Generation Computer Systems, vol. 96, pp. 579–590,
2019.

[10] “Dlms: Device language message specification — dlms.” [Online].
Available: https://www.dlms.com/home

[11] “Synchronous modular meter - vde fnn.” [Online]. Available:
https://www.vde.com/de/fnn/arbeitsgebiete/imesssystem/lastenhefte/lastgangzaehler

[12] P. CODE, “Communication networks and systems in substations–part 5:
Communication requirements for functions and device models,” 2003.

[13] Y. Yan, R. Q. Hu, S. K. Das, H. Sharif, and Y. Qian, “An efficient
security protocol for advanced metering infrastructure in smart grid,”
IEEE Network, vol. 27, no. 4, pp. 64–71, 2013.

[14] F. Ye, Y. Qian, and R. Q. Hu, “A security protocol for advanced metering
infrastructure in smart grid,” in 2014 IEEE Global Communications
Conference. IEEE, 2014, pp. 649–654.

[15] A. Meloni and L. Atzori, “A cloud-based and restful internet of things
platform to foster smart grid technologies integration and re-usability,”
in 2016 IEEE International Conference on Communications Workshops
(ICC), 2016, pp. 387–392.

[16] S. Chen, H. Wen, J. Wu, W. Lei, W. Hou, W. Liu, A. Xu, and Y. Jiang,
“Internet of things based smart grids supported by intelligent edge
computing,” IEEE Access, vol. 7, pp. 74 089–74 102, 2019.

[17] Y. Yan and W. Su, “A fog computing solution for advanced metering
infrastructure,” in 2016 IEEE/PES Transmission and Distribution
Conference and Exposition (T D), 2016, pp. 1–4.

[18] Q. Ou, Y. Zhen, X. Li, Y. Zhang, and L. Zeng, “Application of
internet of things in smart grid power transmission,” in 2012 Third
FTRA International Conference on Mobile, Ubiquitous, and Intelligent
Computing, 2012, pp. 96–100.

[19] J. Lloret, J. Tomas, A. Canovas, and L. Parra, “An integrated iot
architecture for smart metering,” IEEE Communications Magazine,
vol. 54, no. 12, pp. 50–57, 2016.

[20] M. Hussain, M. Beg et al., “Fog computing for internet of things
(iot)-aided smart grid architectures,” Big Data and cognitive computing,
vol. 3, no. 1, p. 8, 2019.

[21] M. Forcan and M. Maksimović, “Cloud-fog-based approach for smart
grid monitoring,” Simulation Modelling Practice and Theory, vol. 101,
p. 101988, 2020.

[22] Y. Liu, C. Yang, L. Jiang, S. Xie, and Y. Zhang, “Intelligent edge
computing for iot-based energy management in smart cities,” IEEE
Network, vol. 33, no. 2, pp. 111–117, 2019.

[23] Y. Yan and W. Su, “A fog computing solution for advanced metering
infrastructure,” in 2016 IEEE/PES Transmission and Distribution
Conference and Exposition (T&D). IEEE, 2016, pp. 1–4.

[24] A. Angioni, G. Lipari, M. Pau, F. Ponci, and A. Monti, “A low cost pmu
to monitor distribution grids,” in 2017 IEEE International Workshop on
Applied Measurements for Power Systems (AMPS). IEEE, 2017, pp.
1–6.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[25] P. Romano, M. Paolone, T. Chau, B. Jeppesen, and E. Ahmed, “A high-
performance, low-cost pmu prototype for distribution networks based on
fpga,” in 2017 IEEE Manchester PowerTech. IEEE, 2017, pp. 1–6.

[26] P. Romano, M. Paolone, J. Arnold, and R. Piacentini, “An interpolated-
dft synchrophasor estimation algorithm and its implementation in an
fpga-based pmu prototype,” in 2013 IEEE Power & Energy Society
General Meeting. IEEE, 2013, pp. 1–6.

[27] J. Gallano, V. Malvas, J. Quirona, R. Soriano, M. Pacis, and F. Cruz,
“Design and implementation of phasor measurement unit with iot
technology,” in 2020 IEEE 12th International Conference on Humanoid,
Nanotechnology, Information Technology, Communication and Control,
Environment, and Management (HNICEM). IEEE, 2020, pp. 1–6.

[28] T. Sirojan, S. Lu, B. T. Phung, and E. Ambikairajah, “Embedded
edge computing for real-time smart meter data analytics,” in 2019
International Conference on Smart Energy Systems and Technologies
(SEST), 2019, pp. 1–5.

[29] Y.-Y. Chen, Y.-H. Lin, C.-C. Kung, M.-H. Chung, and I.-H. Yen, “Design
and implementation of cloud analytics-assisted smart power meters
considering advanced artificial intelligence as edge analytics in demand-
side management for smart homes,” Sensors, vol. 19, no. 9, 2019.

[30] P. A. Pegoraro, A. Meloni, L. Atzori, P. Castello, and S. Sulis,
“Pmu-based distribution system state estimation with adaptive accuracy
exploiting local decision metrics and iot paradigm,” IEEE Transactions
on Instrumentation and Measurement, vol. 66, no. 4, pp. 704–714, 2017.

[31] M. Pignati, M. Popovic, S. Barreto, R. Cherkaoui, G. D. Flores, J.-Y.
Le Boudec, M. Mohiuddin, M. Paolone, P. Romano, S. Sarri et al.,
“Real-time state estimation of the epfl-campus medium-voltage grid by
using pmus,” in 2015 IEEE Power & Energy Society Innovative Smart
Grid Technologies Conference (ISGT). IEEE, 2015, pp. 1–5.

[32] R. T. Fielding and R. N. Taylor, “Principled design of the modern web
architecture,” ACM Transactions on Internet Technology (TOIT), vol. 2,
no. 2, pp. 115–150, 2002.

[33] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
p. 114–131, Jun. 2003.

[34] MQTT, “http://mqtt.org,” Accessed on June 2021. [Online]. Available:
http://mqtt.org

[35] “USB 12-Bit DAQ Devices with 8 Analog Inputs - Measurement
Computing,” Accessed on June 2021. [Online]. Available:
https://www.mccdaq.com/usb-data-acquisition/USB-200-Series.aspx

[36] A. Estebsari, E. Pons, E. Bompard, A. Bahmanyar, and S. Jamali,
“An improved fault location method for distribution networks exploiting
emerging lv smart meters,” in 2016 IEEE Workshop on Environmental,
Energy, and Structural Monitoring Systems (EESMS). IEEE, 2016, pp.
1–6.

[37] M. Pau, E. Patti, L. Barbierato, A. Estebsari, E. Pons, F. Ponci, and
A. Monti, “A cloud-based smart metering infrastructure for distribution
grid services and automation,” Sustainable Energy, Grids and Networks,
vol. 15, pp. 14–25, 2018.

[38] ——, “Design and accuracy analysis of multilevel state estimation based
on smart metering infrastructure,” IEEE Transactions on Instrumentation
and Measurement, vol. 68, no. 11, pp. 4300–4312, 2019.

[39] L. Barbierato, A. Estebsari, L. Bottaccioli, E. Macii, and E. Patti, “A
distributed multimodel cosimulation platform to assess general purpose
services in smart grids,” IEEE Transactions on Industry Applications,
vol. 56, no. 5, pp. 5613–5624, 2020.

[40] “Mininet,” Accessed on June 2021. [Online]. Available:
http://mininet.org/

[41] V. GUEANT, “iperf,” Accessed on June 2021. [Online]. Available:
https://iperf.fr/

[42] “Eclipse Mosquitto,” Accessed on June 2021. [Online]. Available:
https://mosquitto.org/

[43] “BNC-2120.” [Online]. Available: https://www.ni.com/en-
us/support/model.bnc-2120.html

[44] “DAQCard-60602.” [Online]. Available: https://www.ni.com/en-
us/support/model.daqcard-6062.html

[45] “IEEE 802.3-2018 - IEEE Standard for Ethernet,” Accessed on
June 2021. [Online]. Available: https://standards.ieee.org/standard/8023-
2018.html

[46] J. R. Agüero, “Applying self-healing schemes to modern power
distribution systems,” in 2012 IEEE Power and Energy Society General
Meeting. IEEE, 2012, pp. 1–4.

[47] D. S. Schiera, L. Barbierato, A. Lanzini, R. Borchiellini, E. Pons,
E. Bompard, E. Patti, E. Macii, and L. Bottaccioli, “A distributed
multimodel platform to cosimulate multienergy systems in smart
buildings,” IEEE Transactions on Industry Applications, vol. 57, no. 5,
pp. 4428–4440, 2021.


