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Abstract—In this paper, we propose an intelligent reflecting
surface (IRS) enabled wireless powered caching system. In the
proposed IRS model, a power station (PS) provides wireless
energy to multiple Internet of Things (IoT) devices, delivering
their information to an access point (AP) by utilizing the
harvested power. The AP, equipped with a local cache, stores
the IoT data to avoid waking up the IoT devices frequently.
Meanwhile, we deploy the IRS involving in the wireless energy
and information transfer process for performance enhancements.
In this practical system, the PS and the AP could belong to
different service providers. Also, the AP requires to incentivize
the PS to offer a provisional energy service. We model the
interaction between the PS and the AP as a Stackelberg game
that jointly optimizes the transmit power of the PS, the energy
price, the phase shifts of the wireless energy transfer (WET) and
wireless information transfer (WIT) phases, as well as wireless
caching strategies of the AP. In this way, we first derive the
optimal solutions of the phase shifts and the transmit power of
the PS in closed-form. We propose an alternating optimization
(AO) algorithm to optimize the wireless caching strategies and
the energy price iteratively. Finally, we present various numerical
evaluations to validate the beneficial role of the IRS and the
wireless caching strategies and the performance of the proposed
scheme compared with the existing benchmark schemes.

Index Terms—Intelligent reflecting surface (IRS), wireless
caching, wireless powered communication networks (WPCN),
Internet of Things (IoT), phase shifts, Stackelberg game.

I. INTRODUCTION

Wireless sensing and massive connectivity have been re-

garded as the most significant components in Internet of

Things (IoT) networks, which has attracted an increasing

attention in academia and industry. In an IoT network, the

wireless devices (WDs) deliver their own sensed data to

the access points (APs) for various practical applications,

e.g., environment monitoring, wireless surveillance, etc. [1].

Typically, the APs collect these sensed data and then transmit

them to users via backhaul links upon their own requests

[2]. An explosive growth of the IoT service demand has
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caused a dramatic traffic increase in the IoT network, which

degrades the WDs’ quality of service (QoS). In addition,

energy constraint is a major issue for those WDs, limiting

their capabilities. Although various research contributions have

been made to the energy efficient management policies, the

lifetime of the WDs still remains an unconquered challenge

[3].

Recently, wireless powered communication networks

(WPCNs) have emerged as a promising solution to address

the energy constraint issue by utilizing electromagnetic trans-

mission. WPCNs are originated from the radio frequency (RF)

wireless energy transfer (WET) to ensure a stable energy

supply [4]–[6]. In a generic WPCN, a classic transmission

policy, “harvest-then-transmit”, was adopted. The WDs first

collect energy from a hybrid AP and then utilize harvested

power for data transmission [7]. The main advantages of

WPCNs include mitigating the circuit operational cost and

enhancing the sustainability of the WDs, which is a viable

solution for the low-energy consumption sensors.

Although the existing advanced techniques have been con-

sidered to enhance the capacity of wireless networks [8], [9],

these techniques require a large amount of RF chains for

data transmission over a high frequency band which consumes

more energy and increases hardware costs. This imposes a

new challenge since more emission of radio waves is needed

to transmit more data [10]–[12]. To deal with this challenge,

a novel and promising paradigm i.e., intelligent reflecting

surfaces (IRS), has been considered as one of the most revolu-

tionized techniques to effectively improve the spectral/energy

efficiency of wireless networks [13] The IRS is made up of a

large number of programmable reflecting elements, managed

by a smart controller. Each element features small-size, low-

cost, and low-power consumption, and induces an adjustable

amplitude or phase which can be intelligently tuned to coor-

dinate the incident signal [14].

On the other hand, an increasing amount of IoT sensed

data are transmitted to the mobile users inducing explosive

growth in IoT traffic and causing WDs to consume more and

more energy since they are expected to deliver IoT data to the

mobile users frequently [2]. To cope with this issue, wireless

caching has been developed to reduce the data traffic as well

as energy consumption. Local cache is attached in the AP,

which pre-fetches the most popular data from the WDs and

store them in its local cache [15]. If the data requested by the

users are locally cached in the AP, then they can be directly

delivered from the AP to the users via the backhaul link

rather than frequently keeping these WDs active [16]. Thus,



the optimal caching strategies should be designed which aims

to determine which data are appropriate for caching to take

full advantage of the finite cache capacity to enhance wireless

network performance.

A. State-of-the-art

1) IRS Assisted Wireless Networks: Recently, various re-

search contributions have been made to apply IRS to different

wireless networks [13], [17]–[25]. In [13], [17], the active

transmit beamforming and passive reflecting beamforming

were characterized in an IRS enabled multiple-input single-

output (MISO) downlink system. Also, the IRS has been inves-

tigated to improve wireless security performance in [18]–[20].

Power efficiency and achievable secrecy rate were optimized

via designing the active secure transmit and passive reflecting

beamformers, alternatively [18], [19]. In [20], artificial noise

(AN) was proved to be beneficial for the secrecy rate of the

IRS assisted security system compared with the counterparts

without IRS or AN. The IRS assisted multi-cell multiple-

input multiple-output (MIMO) system was considered in [21],

where the edge users take full advantage of such a system

deployment to suppress the inter-cell interference. The IRS has

been recently considered in simultaneous wireless information

and power transfer (SWIPT) to improve the energy harvesting

and data communication capabilities [22]–[24]. Specifically,

In [22], the WET efficiency was enhanced and the rate-

energy trade-off is characterized to maximize the weighted

harvested power. Also, the minimization problem of the total

transmit power is iteratively solved by an efficient penalty-

based method, which demonstrates the effect of IRSs on the

energy efficiency enhancement [23]. In [24], an IRS assisted

MIMO SWIPT system was exploited to maximize the WSR to

guarantee the energy harvesting requirement. Very recently, the

IRS have been applied to the mmWave communications over

orthogonal frequency division multiple access (OFDMA) in

[25]. On the other hand, the IRS has been considered to benefit

the uplink transmission, i,e., the IRS assisted multiple access

channel (MAC) [26], and the IRS assisted WPCN with user co-

operation (UC) [27]. The centralized and distributed IRSs were

considered to exploit capacity region of the uplink MAC and

analyze deployment mechanism of the IRS [26]. The authors in

[27] investigated a two-user UC assisted WPCN to exploit the

beneficial role of the IRS in improving energy harvesting and

data transmission capabilities. Very recently, the IRS assisted

mobile edge computing (MEC) were developed, which aims

to maximize sum computational bits to exploit the beneficial

role of the IRS on the overall computing performance of the

MEC system [28].

2) Caching Assisted Wireless Networks: In recent years,

wireless caching has been considered as one of most important

techniques to improve QoS of users as well as reduce the

costs of wireless network operations, which has attracted more

and more research attentions [29]. An increasing number

of research contributions have been made in existing works

that mainly focus on wireless caching strategies [30]–[35].

In [30], a content-centric transmission mechanism was pro-

posed in a cloud radio access network (C-RAN). Specifically,

the same content is requested by multiple users which are

cooperatively served by a group of BSs. Local cache is

attached in each BS which requests the contents either from

its local cache or from the central processor via backhaul

connections. The power control scheme was proposed in the

NOMA assisted wireless caching networks [31], where an

iterative algorithm was proposed to design the optimal power

allocation to minimize the transmission delay via a deep neural

network (DNN). Moreover, the cache-enabled network has

been considered to reduce the delivery latency [32], where

the efficient algorithms were designed for the low-latency

cloud-edge coordinated transmission strategies. In [33], the

performance gain in energy efficiency has been confirmed

in the cache-enabled networks. Furthermore, RF WET has

been integrated with fog radio access network (F-RAN) to

guarantee the downloading requirement of the content users

and the wireless charging requirement of the energy users

simultaneously [34]. In [35], multiple device-to-device (D2D)

pairs provide the contents with caching capacities, where the

mobile users access the optimal spectrum to download the

contents, and a Q-learning spectrum access scheme is proposed

to maximize the transmission rate.

Despite the existing works (including the ones mentioned

above) in the downlink/uplink IRS or caching assisted wireless

networks, there still exists a significant research gap on an

investigation of the IRS assisted wireless powered caching

strategies in the case where the IRS assisted WPCN can per-

form energy harvesting and data transmission enhancements.

The IRS can adequately coordinate the energy/information

RF signals to offer coverage extension for downlink wireless

charging and uplink throughput enhancements for the WPCN.

On the other hand, wireless transmission links are sometimes

not perfect due to the shadowing or long distance. Also, wire-

less cache delivery may suffer from performance uncertainties

during wireless transmissions, which is imperative to integrate

with IRS and WPCN to enhance the energy harvesting, infor-

mation transmission as well as caching capabilities. To the

best of the authors knowledge, there is a lack of work that

exploited the IRS assisted wireless powered caching strategies,

which motivates this paper.

Motivated by the earlier related works’ considerations, this

paper exploits the IRS in a wireless powered caching system.

For the system under study, we summarize the main contribu-

tions as follows:

1) First, we present an IRS assisted wireless powered

caching network, where the IRS is deployed to enhance

energy harvesting. In such a network, data transmission

capabilities and a local cache are attached in the AP to

prefetch the popular data sent from the IoT devices.

2) We evaluate the overall performance of the proposed

system in a practical and challenging scenario where the

WET and WIT networks may belong to different service

providers. In this case, an energy incentive mechanism is

adopted to stimulate the PS to provide wireless charging,

which is modelled as a Stackelberg game between the

WET and WIT networks. Specifically, the AP purchases

incentives to the PS for wireless charging to the IoT

devices, which optimally design the wireless caching



strategies, energy pricing, and the phase shifts of the

WIT phase. We aim to maximize the utility function that

is defined as the difference between the benefits obtained

from the sum throughput of the data transmission plus

the backhaul data rate and the payment for the energy

service. The PS determines the optimal solutions of

the transmit power of the PS and the phase shifts of

the WET phase to maximize its utility function defined

as the difference between the energy payment and the

energy operation cost, which is typically modelled as a

quadratic function.

3) We take into consideration the Stackelberg equilibrium

to solve the formulated Stackelberg game. Specifically,

we first propose the Majorization-Minimization (MM)

and complex circle manifold (CCM) algorithms to op-

timally derive the closed-form phase shifts of the WET

phase. Next, the closed-form transmit power of the

PS is derived. Then, we consider an AO algorithm to

iteratively design the wireless caching strategies and the

energy pricing. Particularly, we first derive the optimal

phase shifts of the WIT phase by triangle inequality,

and analyze the performance gain brought from the

IRS. Then, we optimize caching strategies for given

energy pricing, equivalent to solving the 0− 1 knapsack

problem. The optimal energy pricing is then designed

for given caching strategies.

The rest of this paper is organized as follows. The sys-

tem model are described in Section II. In Section III, the

Stackelberg game is formulated. Section IV investigates the

Stackelberg equilibrium of the formulated game. Section V

provides numerical results to evaluate the proposed algorithm.

Finally, we conclude this paper in Section VI.

II. SYSTEM MODEL

Fig. 1: An IRS assisted wireless powered cache network.

An IRS enabled wireless powered caching network under

study is depicted in Fig. 1, where a PS provides wireless

energy to K IoT devices which then delivery their own

messages to an AP by utilizing harvested power. Meanwhile,

an IRS, consisting of N reflecting elements, is deployed to

improve energy harvesting and data transmission capabilities

via generating passive energy and information passive beam-

formers. The IRS controller is typically attached to manage its

reflection mode via intelligently tuning the phase shift of each

reflecting element. The two operation modes of IRS include

channel estimation energy/data reflection, and a real-time CSI

feedback [13]. It is also assumed that all CSIs follow the quasi-

static flat-fading model. In addition, the AP consists of a local

cache equipped with a limited storage capacity, which connects

to a cloud through a wired backhaul link and transmits the

received data from the IoT devices to the users. In this paper,

we assume that the IoT data is not always time-sensitive,

e.g., free AR/VR content subscriptions of wearable devices

and software/firmware update requests of low-cost devices.

These IoT data transmitted by several IoT devices can be

pre-fetched at the local cache of the AP in the previous time

frame according to their own popularity for the users. This can

effectively avoid waking up the IoT devices too frequently so

as to reduce the latency and energy consumption of these IoT

devices. In addition, the time-sensitive requirement could be

considered as one of significant metrics in the IRS wireless

powered caching network, which is to minimize the latency of

information transmission and local wireless caching by jointly

designing the IRS phase shifts, time scheduling, and caching

strategy. This design would deserve another investigation,

which is left for our future work. When the user requests

certain IoT data, they are retrieved from the AP’s local cache,

or the corresponding IoT device directly delivers the data to

the user via the AP.

A. Wireless Powered Communication Network

For the system under investigation, we adopt a generic

harvest-then-transmit protocol. The PS first provides WET

service to the IoT devices during the downlink energy trans-

mission/reflection duration of τ0. At the same time, the IRS

passively reflects the energy signal via its planar arrays to

improve energy harvesting capability at the IoT devices.

Then, these IoT devices utilize the harvested power for WIT

with the help of the IRS. The time division multiple access

(TDMA) scheme is adopted during this uplink information

transfer/reflection duration, each of which is allocated at

τk, k ∈ [1,K]. Note that our work mainly focuses on

the optimal design of the wireless caching strategies at the

AP and the IRS phase shifts. Thus, we consider the equal

time scheduling, i.e., τ0 = τ1 =, ...,= τK , for conve-

nience and without loss of generality.1 We denote Θk =
diag [βk,1 exp(jαk,1), ..., βk,N exp(jαk,N )] , | exp(jαk,n)| =
1, ∀k ∈ [0,K], n ∈ [1, N ] as the diagonal phase shift

matrices of the IRS for energy/information reflection, where

αk,n ∈ [0, 2π) and βk,n ∈ [0, 1] denotes the associated phase

shift and amplitude.2 When k = 0, Θ0 is also known as

the energy reflection phase shift matrix, whereas Θk is called

the information reflection phase matrix when k ∈ [1,K]. In

order to maximize the energy and information reflections, the

reflecting amplitude of each element on the IRS should be set

1Joint optimization of the transmission time scheduling, the wireless
caching, as well as the IRS phase shifts leads to a more complicated problem
formulation and algorithm design, which deserves a separate investigation in
our future work.

2Practically, the phase shifts are typically selected with a series of finite
values from 0 to 2π to reduce the complexity of circuit implementation,
however, this would lead to a performance degradation [13], [36].



to be one, i.e., βk,n = 1, k ∈ [0,K], n ∈ [1, N ] to achieve the

maximum reflection gain. We denote the channel coefficients

from the PS to the k-th IoT device, from the PS to the IRS,

from the IRS to the k-th IoT device, from the k-th IoT device

to the AP, from the k-th IoT device to the IRS, and from

the IRS to the AP as gd,k ∈ C1×1, g0 ∈ C1×N , gr,kC
N×1,

hd,k ∈ C1×1, hk ∈ C1×N , and hr ∈ CN×1, respectively.

Thus, the RF harvested power at the k-th IoT device can be

given as [1], [37].

Ek = ηP0 |gd,k + g0Θ0gr,k|
2
. (1)

where η denotes the energy conversion efficiency, P0 repre-

sents the transmit power of the PS. This paper assumes that

each IoT device consumes all of its harvested power during

the WET phase, which can maximize the achievable data rate

at each IoT device during the WIT phase.

Remark 1: Several practical energy harvesting models have

been investigated in [38]–[40], such as the practical energy

conversion efficiency for the far-field scenario, and non-linear

energy harvesting models. These models may lead to more

complicated problem formulation such that it is more chal-

lenging to derive the optimal solutions of the IRS phase shifts,

energy pricing, and wireless caching strategy in closed-form.

In addition, the existing work studied a non-linear energy

harvesting model, which is composed of a two-piece linear

energy harvesting model. Specifically, the harvested power

linearly improves as the received power increases and becomes

saturated when the received power exceeds a certain threshold,

i.e., the saturated power [41]. In this paper, it is assumed that

all IoT devices adopt the first piece of this non-linear model to

harvest energy without loss of generality, and this assumption

typically holds during the low power transmission region, the

harvested energy at the IoT devices is lower than or equal

to its battery capacity. Moreover, a novel non-linear energy

harvesting model will be investigated based on a fractional

function, which employs a quadratic transformation (QT) to

jointly optimize the IRS phase shifts and transmission time

scheduling. This will be our follow-up work.

Hence, the achievable data rate at the AP from the k-th IoT

device can be written as [1], [37]

Rk=B log

(

1+
ηP0 |gd,k+g0Θ0gr,k|

2 |hd,k+hkΘkhr|
2

σ2

)

,

∀k ∈ [1,K], (2)

where B denotes the bandwidth of the uplink WIT, and σ2 is

the noise power.

B. Wireless Caching Model

In this subsection, we illustrate the wireless caching model,

to be specific, the local cache of the AP is limited by F

which is defined as the storage limit at the AP. Also, the

IoT devices transmit the IoT data as a file, the length of

which is denoted by a vector f = [f1, ..., fK ]. In addition,

the wireless caching strategy is represented by a binary vector

c = [c1, ..., cK ]T , where ck ∈ {0, 1}, ∀k ∈ [1,K], denotes

whether file k is cached. With the request of the user, the AP

first need to check its local cache and directly transmit the IoT

data to the user if the requested data is cached, i.e., ck = 1,

and the transmission rate is equivalent to the backhaul data

rate of the AP δ; otherwise, this data is transmitted from the

corresponding device to the user via the AP, i.e., ck = 0, and

the transmission rate can be denoted by min {Rk, δ} = Rk

[2]. Thus, the achievable sum throughput is expressed as

S =

K
∑

k=1

bk [(1− ck)Rk + ckδ] , (3)

where bk denotes the probability of the file popularity that

a user requests the k-th file. It is assumed that the user

requests these files according to their popularities, and the

request probability of the user to the k-th file follows a Zipf

distribution, e.g., bk = k−ǫ

∑
K

i=1 i−ǫ
, where ǫ is the skewness

factor to indicate the deviation of different file popularities.

On the other hand, the total cached data is required to not

exceed its cache storage limit, i.e.,

K
∑

k=1

fkck ≤ F. (4)

III. STACKELBERG GAME FORMULATION

This section considers a Stackelberg game to characterize

the WET and WIT networks’ strategic behaviours, aiming to

maximize their utility. To be specific, we expand monetary

payments by the WIT network to purchase the energy service

provided by the PS. We can explain this based on a practical

scenario that the WIT and WET networks may belong to

different service providers. Also, the PS does not want to pro-

vide wireless charging to the IoT devices voluntarily. Hence,

the AP’s rewards would encourage the PS to charge the IoT

devices wirelessly. In this Stackelberg game, the WIT network

is considered as a leader who bids a price for the energy

service released from the PS. The leader aims to maximizes

its utility function which is defined as the difference between

the benefits gained from the sum throughput of the data

transmission plus backhaul data rate and the payment for the

energy service. Thus, the leader-level problem is given by

max
c,Θ,λ

UWIT(P0,Θ0, c,Θ, λ)

s.t.

K
∑

k=1

fkck ≤ F, ck ∈ {0, 1},

Θ = [Θ1, ...,ΘK ], αk,n ∈ [0, 2π),

∀n ∈ [1, N ], ∀k ∈ [1,K], λ ≥ 0, (5)

where UWIT(P0,Θ0, c,Θ, λ) is denoted by (6) on the top of

the next page, µ > 0 denotes the price per unit sum throughput

of the WIT network, and λ > 0 is the price per unit energy

collection paid to the PS. The leader problem aims to optimize

the wireless cache strategies, the energy pricing, as well as the

phase shifts of the WIT phase. While, the WET network plays

a follower’s role to optimizes the transmit power of the PS

and the phase shifts of the WET phase, which maximizes its

utility function explained as the difference between the energy

payment and the energy operation cost, which is typically

defined as a quadratic function, i.e., F(x) = α̃x2, where α̃ > 0



UWIT(P0,Θ0, c,Θ, λ) = µ

K
∑

k=1

bk

[

(1− ck)B log

(

1 +
ηP0 |gd,k + g0Θ0gr,k|

2 |hd,k + hkΘkhr|
2

σ2

)

+ ckδ

]

− λP0

K
∑

k=1

|gd,k + g0Θ0gr,k|
2
, (6)

is a pre-determined parameter [42]. Thus, the follower level

problem is written as

max
P0,Θ0

UWET(P0,Θ0, λ)=λP0

K
∑

k=1

|gd,k+g0Θ0gr,k|
2−F(P0),

s.t. P0 ≥ 0, α0,n ∈ [0, 2π), ∀n ∈ [1, N ]. (7)

Problem (5) and problem (7) form a Stackelberg game G,

which is modelled in the IRS assisted wireless powered

caching network to exploit the strategic interaction between

the WET and WIT networks. This formulated game can be

defined as follows:

1) Players: the WET network, i.e., PS (follower) vs the

WIT network, i.e., AP (leader).

2) Strategies:

a) Leader: wireless caching strategies c, phase shifts

of the WIT Θ, and energy pricing λ.

b) Follower: transmit power of the PS P0 and phase

shifts of the WET Θ0.

3) Utilities: UWIT(P0, c,Θ, λ) of the WIT network and

UWET(P0,Θ0, λ) of the WET network.

We evaluate the optimal solution of this Stackelberg game

gained by exploiting the Stackelberg equilibrium, in which

both WET and WIT networks reach a consensus on the energy

service, the wireless caching strategies, the phase shifts of

the WET and WIT phases, as well as energy pricing. The

deviation of either the WET network or the WIT network

from the equilibrium will induce a performance loss. Thus,

the Stackelberg equilibrium is defined as

Definition 1: Assuming that c∗ = [c∗1, ..., c
∗
K ], Θ∗ =

[Θ∗
1, ...,Θ

∗
K ] and λ are the optimal solutions of problem (5),

also, P ∗
0 and Θ∗

0 are the optimal solutions of problem (7).

Then, (P ∗
0 ,Θ

∗
0, c

∗,Θ∗, λ∗) satisfies the Stackelberg equilib-

rium of the game G if and only if

UWIT(P
∗
0 ,Θ

∗
0, c

∗,Θ∗, λ∗) ≥ UWIT(P
∗
0 ,Θ

∗
0, c,Θ, λ) (8a)

UWET(P
∗
0 ,Θ

∗
0, λ

∗) ≥ UWET(P0,Θ0, λ
∗) (8b)

IV. OPTIMAL SOLUTION OF STACKELBERG GAME G

This section aims to obtain the Stackelberg equilibrium of

the formulated game G, where the best responses (optimal

solutions) of the follower and the leader can be achieved by

solving the follower level problem (7) and the leader level

problem (5), respectively. To specific, the proposed scheme

aims to achieve the optimal solution of the IRS phase shifts,

the wireless caching strategy, and the energy pricing. Actually,

one purpose of wireless caching technique would reduce

latency. However, considering the latency minimization would

require another problem formulation, which may result in the

numerical optimization solution and is still time-consuming. In

our work, the proposed algorithm is designed to analyze the

network performance rather than make it directly applicable

for the real-time applications.

A. Optimal Strategy of Follower Level Problem (7)

To solve the follower level problem (7), we first derive the

optimal phase shifts of the WET in closed-form. For given

P0, solving (7) to obtain the optimal phase shifts of the WET

phase is equivalent to solve the following problem

max
Θ0

K
∑

k=1

|gd,k + g0Θ0gr,k|
2

s.t. αk,n ∈ [0, 2π), ∀n ∈ [1, N ], (9)

Problem (9) is not convex due to the its non-convex unit-

modulus constraint, which cannot be directly solved. To deal

with it, its objective function is equivalently modified as

K
∑

k=1

|gd,k + g0Θ0gr,k|
2

= θ0Φ1θ
H
0 + 2R{θ0γ}+ d1,

(10)

where θ0 = [exp(jα0,1), ..., exp(jα0,N )], ak = diag(g0)gr,k,

Φ1 =
∑K

k=1 aka
H
k , γ =

∑K

k=1 conj (gd,k)ak, and d1 =
∑K

k=1 gd,kconj (gd,k). By substituting (10) into problem (9)

and applying a few of mathematical manipulations, we have

min
θ0

θ0ΦθH
0 − 2R{θ0γ}+ d (11a)

s.t. |θ0(n)| = 1, ∀n ∈ [1, N ], (11b)

where Φ = −Φ1, d = d1. To solve problem (11), we propose

two different approaches, i.e., the Majorization-Minimization

(MM) algorithm and the complex circle manifold (CCM)

methods. These two algorithms have been investigated in the

IRS assisted wireless networks, such as the multicell MIMO

networks, the MIMO SWIPT system, and wireless powered

sensor networks (WPSN) [21], [24], [37], [43].

1) Majorization-Minimization (MM) Algorithm: We first

consider the MM algorithm to derive the optimal phase shifts

of the WET, where the objective function and the constraint

set of (11) are approximated with a sequence of tractable sub-

problems which are iteratively resolved [44].

Proposition 1: [44], [45] For given θ(m) and any feasible

θ, (11a) can be approximated at the m-th iteration as follows:

f(θ0) , θ0ΦθH
0 − 2ℜ{θ0γ}+ d

≤ θ0ΥθH
0 − 2ℜ

{

θ0

[

(Υ−Φ)θ̃H
0 + γ

]}

+ θ̃0(Υ−Φ)θ̃H
0 + d

=λmax(Φ)‖θ0‖
2−2R

{

θ0

[

(λmax(Φ)IN×N−Φ) θ̃H
0 +γ

]}

+ d̃ , g(θ0|θ̃0), (12)



where d̃ = θ̃0 [λmax(Φ)IN×N −Φ] θ̃H
0 + d, Υ =

λmax(Φ)IN×N , λmax(Φ) is the maximum eigenvalue of Φ,

θ̃0 denotes the approximated solution to θ0 which is achieved

in the previous iteration via the alternating algorithm.

By exploiting Proposition 1, we construct a surrogate function

of (11a), where it can be verified that g(θ|θ(m)) in (12)

satisfies all conditions in [44, Eq. 46].Thus, problem (11) is

equivalently modified as

min
θ0

λmax(Φ)‖θ0‖
2 − 2R{θ0γ̃} , s.t. (11b), (13)

where γ̃ = (λmax(Φ)IN×N −Φ) θ̃H
0 + γ. It is apparent that

‖θ0‖2 = N due to |θ0(n)| = 1. The term R{θ0γ̃} can be

maximized when the phases of θ0(n) and γ̃(n) are identical.

Hence, the optimal solution to (13) is derived as

θ∗
0 =

[

exp (j arg[γ̃(1)]) , . . . , exp (j arg[γ̃(N)])
]

. (14)

We summarize the details of the MM algorithm in Algorithm

1.

Algorithm 1: The proposed MM algorithm to solve problem

(11)

1) Initialization: m denotes the iteration number, the ac-

curacy ǫ, the feasible solution θ̃0 = θ
(0)
0 . Calculate the

objective value of problem (11), i.e., f(θ
(1)
0 ).

2) Repeat:

a) Calculate

γ̃(m)=(λmax(Φ)IN×N−Φ)
(

θ̃
(m)
0

)H

+γ.

b) Update θ
(m+1)
0 = θ∗

0 in (14) and calculate

f(θ
(m+1)
0 ).

c) Set m = m + 1 until convergence, i.e.,
f(θ

(m+1)
0 )−f(θ

(m)
0 )

f(θ
(m+1)
0 )

≤ ǫ.

3) Obtain the optimal phase shifts of the WET phase, i.e.,

θ∗
0 .

2) Complex Circle Manifold (CCM) Algorithm: Problem

(11) can be solved to achieve the optimal phase shifts of

the WET phase by exploiting the CCM algorithm. Its main

premise is based on the derivation of a gradient descent

algorithm based on the manifold space [46]. To perform this

method, problem (11) is first reformulated as

min
θ0

θ0 (Φ+ κIN )θH
0 − 2R{θ0γ} + d,

s.t. |θ0(n)| = 1, ∀n ∈ [1, N ]. (15)

Note that κ > 0 in problem (15) is a positive constant

to control the convergence of the CCM algorithm, and will

be characterized in the following. Also, problem (11) is

equivalent to (15) due to κθ0θ
H
0 = κN .

To proceed, we denote its objective function as f̃(θ
(m)
0 ) at

the m-th iteration. By minimizing problem (15), we determine

the search direction, which is opposite to the gradient in

Euclidean space of f̃(θ
(m)
0 ), i.e.,

ι(m)=−∇θ0 f̃(θ
(m)
0 )=−2 (Φ+κIN)

(

θ
(m)
0

)H

+2γ. (16)

Next, we find the Riemannian gradient of f̃(θ
(m)
0 ) at the

current point θ
(m)
0 ∈ SN , which is in the tangent space

T
θ
(m)
0

SN [47].3 We project the search direction ι(m) in

Euclidean space onto T
θ
(m)
0

SN , and the Riemannian gradient

of f̃(θ
(m)
0 ) at θ

(m)
0 is given as follows [47]:

PTθ0
SN (ι(m))=ι(m)−ℜ

{

conj(ι(m))⊙θ
(m)
0

}

⊙θ
(m)
0 . (17)

Then, we update θ
(m)
0 on the tangent space T

θ
(m)
0

SN , which

is given as

θ̄
(m)
0 = θ

(m)
0 + ζPTθ0

SN (ι(m)), (18)

where ζ is a step size which will be characterized in the

following. Finally, we map θ̄
(m)
0 into the manifold SN via

retraction operation, as θ̄
(m)
0 is not in SN . Note that the

retraction operation is to normalize each element of θ̄
(m)
0 to

be unity, which is given by

θ
(m+1)
0 = θ̄

(m)
0 ⊙

1

θ̄
(m)
0

. (19)

Additionally, the following theorem required to determine

the range of parameters κ and ζ to satisfy the convergence of

the CCM algorithm.

Theorem 1: [46] Provided that the parameters κ and ζ are

determined to guarantee κ ≥ N
8 ̺max(Φ) + ‖γ‖2, and 0 <

ζ < 1
̺max(Φ+κIN ) , respectively, the CCM algorithm yields a

non-increasing sequence until convergence.

From the above-mentioned derivations, the steps of the CCM

algorithm are summarized in Algorithm 2.

Algorithm 2: The proposed CCM algorithm to solve

problem (11).

1) Initialization: m, ǫ and θ
(0)
0 denote the iteration number,

the accuracy, and the feasible solution, respectively.

Calculate the objective value of problem (11), i.e.,

f(θ
(1)
0 ).

2) Repeat:

a) Calculate the search direction ι(m) in (16).

b) Calculate the projection of ι(m) onto the tangent

space according to (17).

c) Update the tangent space via (18).

d) Retract θ̄
(m)
0 to the manifold SN via (19).

e) Set m = m + 1 until convergence, i.e.,
f(θ

(m+1)
0 )−f(θ

(m)
0 )

f(θ
(m+1)
0 )

≤ ǫ.

3) Obtain the optimal solution θ∗
0

3) Convergence and Computational Complexity Analysis of

Proposed Algorithms: Since the optimal phase shifts of the

WET phase θ0 can be iteratively computed via Algorithm 1

or Algorithm 2, its convergence property is investigated in the

following. The MM algorithm or the CCM algorithm shows

that f(θ0) is a monotonically non-increasing function at each

iteration, i.e.,

f(θ
(m+1)
0 )≤g(θ

(m+1)
0 |θ

(m)
0 )≤g(θ

(m)
0 |θ

(m)
0 )=f(θm

0 ), (20)

3The tangent space of S at point yn can be defined as TymSN =
{z ∈ C : ℜ{conj(z)ym} = 0}. Accordingly, the tangent space TySN is
the product of these N tangent spaces TymS , i.e., TySN = Ty1S ×
Ty2S · · · TyNS .



where θ
(m)
0 denotes the point generated at the m-th iteration.

From (20), the first inequality and the third equality follow

the relations of [44, Eq. 46], respectively. Also the second

inequality holds via solving

θ∗
0 = arg min

θ0(n)
g(θ0|θ̃0), s.t. (11b). (21)

The monotonicity of the objective function in the above prob-

lem confirms that the MM algorithm or the CCM algorithm

converges to a stationary point in practice due to the unit-

modulus equality constraint (11b).

Next, we characterize the computational complexity of the

proposed MM and CCM algorithms in solving problem (11).

To proceed, we denote the number of iterations to achieve

the convergence of the proposed MM and CCM algorithms

as IMM and ICCM , respectively. Both algorithms start with

largest eigenvalue calculations from (12) in the MM algorithm

and from Theorem 1 in the CCM algorithm, respectively, and

this computational complexity of this step is given as O
(

N3
)

.

Thus, the total computational complexity of the MM and

CCM algorithms are calculated by O
(

N3 + IMMN2
)

and

O
(

N3 + ICCMN2
)

, which mainly depends on the number of

iterations for convergence. According to the numerical eval-

uations [21], the MM algorithm can achieve the convergence

with less number of iterations than the CCM algorithm, which

implies that the MM algorithm has a lower computational

complexity than the CCM counterpart.

Remark 2: In (14), we obtain the optimal phase shift of the

WET phase via the proposed MM or CCM algorithm, which

can independently deploy the IRS to maximize the energy

signal strength at the IoT devices. Although problem (11) can

be easily relaxed as a SDP, (14) brings an optimal solution

which is more efficient for implementation and significantly

reduces the computational complexity introduced by the SDP,

especially for a large number of reflecting elements N .

After obtaining the optimal phase shifts at the WET phase, we

denote t =
∑K

k=1 tk, where tk = |gd,k + g0Θ
∗
0gr,k|

2
, Θ∗

0 can

be achieved from θ∗
0 . Thus, the follower level problem (7) is

rewritten as

max
P0

UWET(P0,Θ
∗
0, λ) = λP0t− α̃P 2

0 , s.t. P0 ≥ 0. (22)

To proceed, we determine the optimal strategies of the

follower-level problem in terms of the transmit power of the

PS (i.e., P0) for given energy price λ. The following lemma

is required:

Lemma 1: For given the energy prince λ, the optimal

transmit power of the PS P0 is given by P ∗
0 = λt

2α̃ .

Proof: It is easily proved that (22) is a convex problem

in terms of P0 for given energy price λ, since its objective

function is a quadratic, and its constraint is affine. Thus, we

directly take the first derivative of UWET in terms of P0 and set

it to zero as ∂UWET

∂P0
= 0, which achieves the optimal solution

of P0. We thus completed the proof of Lemma 1.

B. Optimal Strategy of Leader Level Problem (5)

In this subsection, we characterize the optimal strategy of

the leader level problem (5), which is first written by replacing

Θ0 and P0 with Θ∗
0 and P ∗

0 , respectively, as follows:

max
c,Θk,λ

UWIT(P
∗
0 ,Θ

∗
0, c,Θ, λ)

s.t.

K
∑

k=1

fkck ≤ F, ck ∈ {0, 1},

|exp (jαk,n)| = 1, ∀n ∈ [1, N ], ∀k ∈ [1,K],

λ ≥ 0, (23)

where UWIT(P
∗
0 ,Θ

∗
0, c,Θ, λ) is denoted by (24) on the top of

the next page. Problem (23) is not jointly convex with respect

to the caching strategy c, the phase shifts of the WIT phase

Θk, as well as the energy price λ. Thus, it is intractable to

simultaneously find the optimal solutions of c, Θk, and λ due

to the multiple coupled variables of the objective function in

(23). To deal with this non-convex issue, we consider a two-

step approach to optimally solve this problem. Particularly,

we first derive the phase shifts of the WIT phase in a closed-

form. Subsequently, an AO algorithm is proposed to design

the caching strategy and the energy price alternatively.
1) Optimal Phase Shifts of WIT Phase: To proceed, we first

handle the phase shifts of the WIT phase Θk, ∀k ∈ [1,K].
The following lemma is presented to derive the optimal phase

shifts of the WIT, i.e., Θk for ∀k ∈ [1,K].
Lemma 2: In order to achieve the optimal phase shift matrix

Θk, the following problem is investigated

max
Θk

|hkΘkhr + hd,k|
2

s.t. |exp (jαk,n)| = 1, ∀n ∈ [1, N ], ∀k ∈ [1,K]. (25)

Proof: From (23), it can be shown that UWIT is a mono-

tonically increasing function in terms of |hkΘkhr + hd,k|
2
.

It then follows that solving problem (23) is equivalent to the

maximization of |hkΘkhr + hd,k|
2

for ∀k ∈ [1,K] to obtain

the optimal Θk . Thus, problem (25) can be solved for given

w, τ , and Θ0 to maximize the objective function (23), which

completes the proof of Lemma 2.

To solve (25), we first modify its objective function as

|hkΘkhr + hd,k|
2 = |θkbk + hd,k|

2, ∀k ∈ [1,K], (26)

where where bk = diag (hk)hr, θk = [θk,1, ..., θk,NR
] =

[exp (jαk,1) , ..., exp (jαk,NR
)], |θk,n| = 1. Via (26) and the

triangle inequality,

|θkbk+hd,k|≤
N
∑

n=1

|θk,nbk[n]|+|hd,k|=
N
∑

n=1

|bk[n]|+|hd,k|,

(27)

where bk[n] is the n-th element of bk and the equality holds

with |θk,n| = 1 for n ∈ [1, N ]. The optimal phase shifts can

be obtained via the upper bound in (27) as

θ∗k,n = exp(jα∗
k,n) (28)

where α∗
k,n = arg(hd,k)− arg(bk[n]), arg(·) is the the phase

operator. The optimal solution to problem (25) can be denoted

by θ∗
k = [θk,1, ..., θk,N ], and the optimal phase shift matrix

Θ∗
k is formed from θ∗

k. To proceed, we have the following

proposition to characterize the beneficial role of the IRS.

Proposition 2: The optimal phase shifts of the WIT phase,

i.e., Θ∗
k, can align the cascaded link (i.e., from the k-th IoT

device to the AP via the IRS) with the direct link (i.e., from



UWIT(P
∗
0 ,Θ

∗
0, c,Θ, λ) = µ

K
∑

k=1

bk

[

(1 − ck)B log

(

1 +
η
(

λt
2α̃

)

tk |hd,k + hkΘkhr|
2

σ2

)

+ ckδ

]

− λ

(

λt

2α̃

)

t. (24)

the k-th IoT device to the AP), which is mathematically given

by

hkΘ
∗
khr = ξkhd,k, ∀k ∈ [1,K], (29)

where ξk is a positive constant, denoting the signal strength

metric of the cascaded link.

Proof: With some mathematical manipulations, the term

|hkΘkhr + hd,k|
2

is further equivalent to

|hkΘkhr + hd,k|
2
= |hkΘkhr|

2
+ |hd,k|

2

+ 2 |hkΘkhr| |hd,k| cos [arg(hd,k)− arg(hkΘkhr)] . (30)

From (30), it is shown that |hkΘkhr + hd,k|
2

attains its max-

imum value if cos [arg(hd,k)− arg(hkΘkhr)] = 1. Hence,

the phases of both the direct and cascaded links are same, i.e.,

arg(hd,k) = arg(hkΘkhr), thus, (29) holds. This completes

the proof of Proposition 2.

Next, we quantify the signal strength introduced by informa-

tion reflection for each IoT device.

Remark 3: By exploiting Proposition 2, for given τ and

Θ0, the IRS can improve signal strength of the k-th IoT

device at the AP by at most (1 + ξk)
2 times compared with

the case without IRS. In addition, ξk for ∀k ∈ [1,K] is

proportional to the number of the IRS reflecting elements.

Hence, a larger number of the reflecting elements will lead

to a more significant performance gains for the utility of the

AP. Moreover, the IRS deployment as well as path loss model

of the cascaded link also have a significant impact on the

received signal strength [48].

2) Optimal Solutions of Caching Strategy and Energy

Price: In Section IV-B1, the optimal phase shifts of the

WIT phase is derived by θ∗
k in (28), and equivalently the

optimal solution (i.e., Θ∗
k) is obtained from θ∗

k. Let us denote

t̃k = |hd,k + hkΘ
∗
khr|2, problem (23) is written as

max
c,λ

UWIT(P
∗
0 ,Θ

∗
0, c,Θ

∗, λ)

= µ

K
∑

k=1

bk



(1−ck)B log



1+
η
(

λt−β
2α

)

tk t̃k

σ2



+ckδ





−
λ2t2−βλt

2α
,

s.t.

K
∑

k=1

fkck ≤ F, ck ∈ {0, 1},

λ ≥ 0. (31)

Problem (31) is jointly non-convex due to the coupling of

the Boolean variables c and the logarithm function with

respect to the energy price λ. To work around the non-convex

problem, we propose an AO algorithm to design the caching

strategy/energy price for given energy price/caching strategy.

1) Optimize caching strategy for given energy price: We

fix the energy price to design the caching strategy, thus,

problem (31) can be rewritten as

max
c

µ

K
∑

k=1

bkck (δ −Rk) + µ

K
∑

k=1

bkRk −
λ2t2

2α

s.t.

K
∑

k=1

fkck ≤ F, ck ∈ {0, 1}, (32)

Problem (32) can be regarded as a 0−1 knapsack prob-

lem, which can be resolved by various techniques such

as approximation algorithm and dynamic programming

[2], [49].

2) Optimize energy price for given caching strategy: Now,

we fix the caching strategy to optimize the energy price.

For convenience, two sets S+ = {k|ck = 1, k ∈ [1,K]}
and S− = {k|ck = 0, k ∈ [1,K]} are denoted as the

cached and uncached files, respectively. Problem (31) is

thus transformed as

max
λ

µ
∑

k∈S−

bkB log

(

1 +
η
(

λt
2α̃

)

tk t̃k

σ2

)

+ µδ
∑

k∈S+

bk −
λ2t2

2α

s.t. λ ≥ 0. (33)

It can be easily shown that problem (33) is convex in

terms of λ. Since its objective function is composed

of a sum of the logarithm functions, a constant, and a

quadratic function, also, the constraint is linear function,

which confirms the convexity of (33). Thus, we set the

first derivative of the objective function in (33) equal to

zero, which is given as

∂UWIT

∂λ
= µB

∑

k∈S−

bkηttk t̃k

2ασ2 + ηλttk t̃k
−

λt2

2α
= 0. (34)

From (34), it is not easy to obtain the optimal energy

price λ in closed-form. To tackle this issue, we design

an algorithm to iteratively update λ, which is expressed

as

λ(l+1) =
αµB

t2

∑

k∈S−

bkηttk t̃k

2ασ2 + ηλ(l)ttk t̃k
, (35)

where l is the number of iterations. The iterative algo-

rithm to update λ is summarized in Algorithm 3, which

update λ in an iterative manner until convergence [2].

Algorithm 3: The iterative algorithm to optimize λ

1) Initialization: l, ǫ, λ(0) denote the iteration number, the

accuracy, and the feasible solution, respectively.

2) Repeat: for given λ(l) at the l-th iteration.

a) Obtain λ(l+1) via (35).

b) Set l = l + 1 until convergence.

3) Output: λ∗ = λ(l+1).



C. Alternating Optimization Based IRS Assisted Wireless Pow-

ered Caching Algorithm

In this subsection, we consider an AO based IRS assisted

wireless powered caching algorithm to jointly design the leader

level problem (5). We first jointly design the optimal phase

shifts of the WET and the optimal transmit power of the PS

by solving the follower level problem (7) in Section IV-A.

Then, we consider the AO algorithm to optimize the caching

strategy and the energy price alternatively, which follows the

optimal derivation of the phase shifts of the WIT phase. Based

on these manipulations, we summarize the proposed AO based

IRS assisted wireless powered caching algorithm in Algorithm

4.

Algorithm 4: The proposed AO based IRS assisted wireless

powered caching algorithm

1) Initialization: c(0), λ(0), i and ǫ denote the feasible

solutions of the caching strategy and the energy price,

the iteration number as well as the accuracy, respectively.

Calculate the objective value of problem (7), denoted

by U
(1)
WIT.

2) Obtain the optimal phase shifts of the WET phase θ0

via Algorithm 1 or Algorithm 2.

3) Obtain the optimal transmit power of the PS P0 via

Lemma 1.

4) Obtain the optimal phase shifts of the WIT phase

θk, ∀k ∈ [1,K] via (28).

5) Repeat: the AO algorithm with iteration number i

a) Calculate the caching strategy c(i+1) via the 0-1

knapsack problem (32) for given energy price λ(i).

b) Calculate the energy price λ(i+1) via Algorithm 3

for given caching strategy c(i+1) .

c) Set i = i+1 until convergence, i.e.,
U

(i+1)
WIT

−U
(i)
WIT

U
(i+1)
WIT

≤
ǫ.

d) AO Output: the optimal solutions of the caching

strategy and the energy price, i.e., c∗ = c(i+1) and

λ∗ = λ(i+1).

6) Output: UWIT(P
∗
0 ,Θ

∗
0, c

∗,Θ∗, λ∗).

V. NUMERICAL RESULTS

This section demonstrates the numerical results to validate

the overall performance of the proposed algorithm. We con-

sider a three-dimensional (3-D) coordinates to illustrate the

network deployment in Fig. 2, where the PS, the IRS and

the AP are placed as (XPS , YPS , ZPS), (XIRS , YIRS , ZIRS)
and (XAP , YAP , ZAP ), while the IoT devices are randomly

located within a circular area of x − z coordinates centered

at (0, 0) with radius 5 m. Specifically, we set XPS = −10,

XAP = 10, XIRS = −2, YIRS = 6, YPS = ZPS =
YAP = ZAP = Yk = ZIRS = 0. All channel coefficients

are composed of distance-dependent path loss and small-scale

fading, i.e., g = PLḡ. Note that PL = Ad−ε and ḡ denotes

the path loss model and the small-scale coefficients for the

corresponding channel, respectively, also, A = −20 dB, ε

and d are the path loss exponent and the distance between

Fig. 2: System deployment.

any two nodes, respectively. The small-scale channel coef-

ficients from the PS to the IRS, from the IRS to the k-

th IoT device, from the k-th IoT device to the IRS, as

well as from the IRS to the AP are modelled as Rician

fading models given by ḡ0 =
√

K1

K1+1g
LOS
0 +

√

1
K1+1g

NLOS
0 ,

ḡr,k =
√

K1

K1+1g
LOS
r,k +

√

1
K1+1g

NLOS
r,k , h̄k = ḡT

r,k, and

h̄r =
√

K1

K1+1h
LOS
r +

√

1
K1+1h

NLOS
r , where gLOS

0 , gLOS
r,k , and

hLOS
r denote the line-of-sight (LOS) deterministic components

of the corresponding channel coefficients; gNLOS
0 , gNLOS

r,k , and

hNLOS
r are the non-line-of-sight (NLOS) components of the

corresponding channel coefficients which follow the Rayleigh

fading; K1 is the Rician factor which is set to 5 dB for

convenience and without loss of generality. The remaining

small-scale channel coefficients are generated as the Gaussian

random variable, i.e., CN (0, 1). Unless otherwise specified,

the configurations of the numerical evaluations are summa-

rized as: the number of IoT devices K = 10, the number

of IRS reflecting elements N = 70, the system bandwidth

B = 180kHz, the noise power density is −174 dBm/Hz,

the energy conversion efficiency η = 0.8, the energy cost

coefficient α = 1, the backhaul data rate of AP δ = 2 Mb/s,

the cache storage limit F = 2 Mb, and the Zipf file popularity

skewness factor ǫ = 0.6.

To highlight the overall performance of the proposed

scheme, we also evaluate the performance of the following

benchmark schemes under the same configurations for com-

parison.

1) Optimal caching strategy with random phase shifts: the

phase shifts of both WET and WIT phases are uniformly

and randomly distributed in [0, 2π).
2) Optimal caching strategy without IRS: the conventional

wireless powered caching system without IRS is consid-

ered.

3) Optimal caching strategy without direct link: the direct

links between the PS and the IoT devices as well as the

IoT devices and the AP are too weak so that they can

be neglected.

4) IRS assisted wireless powered network without caching:

the optimal phase shifts of the WET and WIT phases



are designed.
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Fig. 3: The utility of AP versus number of reflecting element at the
IRS (N ) (δ = 2 Mb/s, F = 2 Mb, and ǫ = 0.6).
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First, we evaluate the utility of the AP versus the number

of the reflecting element N at the IRS in Fig. 3 with different

numbers of IoT devices (K = 3, 5, 10), where the optimal

caching strategy is applied to three different schemes (e.g.

optimal phase shifts, random phase shifts, and without IRS).

From this figure, one can observe that the utility of AP

has an increasing trend with respect to N , especially in a

larger number of reflecting elements region. This is expected

to reveal the fact that the IRS can effectively improve the

overall performance of the wireless powered caching system.

Also, the proposed MM and CCM methods produce identical
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Fig. 5: The utility of AP versus x-coordinate of the IRS (XIRS)
(K = 10, N = 70, δ = 2 Mb/s, F = 2 Mb, and ǫ = 0.6).

results, which validates the local optimality of the IRS phase

shifts and demonstrates the effectiveness of the proposed

methods. Both proposed schemes significantly outperform the

other two benchmark schemes, i.e., random phase shifts, and

without IRS. The gap between the proposed schemes and these

benchmark schemes becomes larger as N increases due to

a higher array gain, leading to enhanced energy/information

signal reception, thus improved performance. Moreover, the

proposed scheme outperforms that without the direct link,

which can be explained by the fact that the proposed scheme

includes both links, i.e., direct and reflection links, which

produces a better performance in terms of energy harvesting

and information transmission; Whereas the scheme without the

direct link only has the reflection link, which relies on the IRS

to reflect the energy and information during the downlink WET

and uplink WIT, respectively. As such, the scheme without the

direct link incurs a significantly degradation compared with the

proposed scheme.

Next, Fig. 4 demonstrates the utility of AP with different

numbers of IoT devices K . It can be observed that supporting

more IoT devices would degrade the utility of the AP. This

follows from the fact that files more likely not be cached at

the AP with a larger K , and need to be delivered from the IoT

devices by utilizing the harvested power, which in turn results

in a lower utility of the AP.

We then evaluate the utility of the AP versus x-coordinate

of the IRS XIRS in Fig. 5.

As seen in this figure, we vary the x-coordinate of IRS

XIRS from −10 to 10. When the IRS moves from −10 to 0,

the utility of the AP demonstrates an increasing behaviour,

this may be explained by the fact that the higher energy

reflection efficiency improves the utility function of the AP

since the distance between the IoT devices and IRS becomes

closer and plays a dominant role to enhance the utility of

the AP. As the IRS moves from 0 to 10, longer distance



between the PS/IoT devices and the IRS, which affects the

WET and WIT simultaneously such that the utility of the AP

is significantly reduced. Apparently, this trend shows that the

optimal deployment of the IRS effectively improves the energy

collection at the IoT devices so as to maximize the information

reception at the AP.
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Fig. 6: The utility of AP versus backhaul data rate (δ) (K = 10,
N = 70, F = 2 Mb, and ǫ = 0.6).
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Fig. 7: The utility of AP versus cache storage limit (F ) (K = 10,
N = 70, δ = 2 Mb/s, and ǫ = 0.6).

In Fig. 6, we demonstrate the utility of the AP versus the

backhaul data rate δ. It is seen from this figure that the optimal

caching strategies have an increasing trend with respect to

δ, and outperforms the counterpart without caching, which

remain stable with δ. Fig. 7 demonstrates the utility of the AP

versus the cache storage capacity F , where it is expected that
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Fig. 8: The utility of AP versus file popularity skewness factor (ǫ)
(K = 10, N = 70, δ = 2 Mb/s, and F = 2 Mb).

this utility increases with respect to F . This is due to the fact

that more files may be cached with a larger cache storage limit,

which leads to an increasing utility of the AP. While, the IRS

assisted wireless powered network without caching remains

unchanged with respect to F . In Fig. 8, we evaluate the impact

of file popularity skewness factor ǫ on the utility of the AP,

where the optimal cache strategies increase the utility with

respect to ǫ. This is due to the fact that larger skewness factor

leads to a larger divergence of the file popularity distribution,

and more IoT devices are interested in less popular files which

are cached at the AP. It can also be seen that the utility of

the IRS assisted wireless powered network without caching

remains unchanged with respect to ǫ, since the it does not

adopt cache to deliver data.

Moreover, we describe the utility of the AP versus the

pathloss exponent between the PS and the IRS, the IRS and the

IoT devices, as well as the IRS and the AP in Fig. 9, Fig. 10,

and Fig. 11, respectively. From Fig. 9, we observe a declining

trend of the utility of the AP with respect to the pathloss

exponent between the PS and the IRS in the IRS assisted

wireless powered network, this is expectedly since a larger-

scale fading between the PS and the IRS will lead to a weaker

energy reception from the PS such that the beneficial role of

the IRS is diminished. In addition, Fig. 10 illustrates that the

utility of the AP has a significantly decreasing trend with the

pathloss exponent between the IRS and the IoT devices, which

can be explained by the fact that a larger-scale fading between

the IRS and the IoT devices adversely affects energy reflection

during the WET phase or information reception during the

WIT phase. Similar trend and argument from Fig. 11 can be

observed here, where a larger-scale fading between the IRS

and the AP leads to a weaker channel gain, thus diminishing

the information reflection of the IRS during the WIT phase.

Furthermore, we characterize the impact of the discrete

phase shifts on the utility of the AP. The performance of
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Fig. 9: The utility of AP versus pathloss exponent between the PS
and the IRS (K = 10, N = 70, δ = 2 Mb/s, F = 2 Mb, and

ǫ = 0.6).
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Fig. 10: The utility of AP versus pathloss exponent between the
IRS and the IoT devices (K = 10, N = 70, δ = 2 Mb/s,

F = 2 Mb, and ǫ = 0.6).

continuous phase shifts is compared to that of discrete phase

shifts [50] in Fig. 12, which characterizes the utility of the

AP for the EBCD and CCM algorithms with the continuous

and discrete phase shifts, respectively. Specifically, the per-

formance of the continuous phase shifts represents an upper

bound for its discrete counterpart in terms of the utility of

the AP, and the gap between them gradually decreases as

number of bits used for phase resolutions increases from 1
bit to 10 bits. This is explained by the fact that the quantized

phase shifts result in an imperfect alignment such that a

performance loss of energy and information receptions is
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Fig. 11: The utility of AP versus pathloss exponent between the
IRS and the AP (K = 10, N = 70, δ = 2 Mb/s, F = 2 Mb, and

ǫ = 0.6).
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Fig. 12: The utility of AP versus number of bits (K = 10,
δ = 2 Mb/s, F = 2 Mb, and ǫ = 0.6).

induced. In addition, a larger number of bits will yield a higher

interval density of phase shifts to be selected for energy and

information reflections, thus approaching the performance of

the continuous counterpart in terms of the utility of the AP.

To evaluate the impact of the system deployment, Fig. 13

considers a larger deployment of physical distance, where

the PS, AP, IRS are deployed as (XPS = 20, YPS =
0, ZPS = 0), (XAP = 20, YAP = 0, ZAP = 0), and

(XIRS = 2, YIRS = 8, ZIRS = 0), and all IoT devices are

randomly located within a circular area of x − z coordinates

centered at (0, 0) with radius 8 m. From this result, one

can observe that the proposed scheme (i.e., MM or CCM
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algorithm) shows an increasing trend with respect to N and

provides a better performance than the benchmark schemes,

i.e., the schemes with random phase shifts and without IRS,

especially for larger number of reflecting elements, which

verifies the optimality of the IRS phase shifts, and highlights

the benefits induced by the IRS, respectively. The scheme with

the random phase shifts also highlights the benefit of using IRS

compared with that without IRS after N ≥ 30, whereas the

scheme without IRS remain constant with respect to the IRS,

this is due to the fact that the IRS did not participate the energy

or information reflection during the downlink WET and uplink

WIT. Compared to Fig. 3, this larger scenario magnifies the

physical distance between each two nodes, which enlarges the

propagation fading so as to significantly degrade the utility

performance at the AP. Also, the larger scenario in Fig. 13

leads to a smaller increase of utility performance at the AP

with respect to N , especially when the number of reflecting

elements is small, this is due to the fact that larger wireless

propagation fading or path loss can weaken the impact of the

utility performance at the AP. As such, this result suggests that

this wireless powered caching network should deploy larger

number of reflecting elements to combat the larger-fading

scenario.

VI. CONCLUSION

In this paper, we proposed the IRS assisted wireless powered

caching system, where the IoT devices collect energy from

the PS to support data transmission. The AP is equipped

with a wireless cache to store uploaded files from the IoT

devices according to their popularity. To optimize the overall

performance, we proposed a Stackelberg game to exploit the

PS and AP interaction. We first solved the follower level

problem, where the MM and CCM algorithms were proposed

to derive the optimal phase shifts of the WET phase in

closed-form, and the optimal transmit power of the PS was

subsequently derived. Then, we proposed an AO algorithm

to solve the leader level problem. Specifically, we derive the

optimal phase shifts of the WIT phase in closed-form and

design the optimum wireless caching strategies and the energy

price. Finally, the numerical results validate that the proposed

scheme can introduce a significant performance gain. The IRS

and the wireless caching bring significant utility performance

gains compared to the benchmark schemes. For the future

work, we would like to investigate the IRS assisted wireless

power caching systems with more multiple access schemes,

such as time division multiple access (TDMA), frequency

division multiple access (FDMA), non-orthogonal multiple

access (NOMA). Furthermore, the IRS assisted mobile edge

computing and wireless caching would be investigated for joint

integration of the communication, sensing and computing.

Moreover, the channel estimation of the cascaded CSI related

to the IRS may be one of our future work. Specifically,

robust design will be studied to deal with the imperfect

channel estimation, where the cascaded channel estimation

errors are modelled to be deterministically or statistically

bounded. Additionally, distributed IRSs can be deployed to

overcome the larger-fading scenario, since multiple IRSs can

introduce a massive number of IRS reflecting elements in a

distributed way to strengthen the energy reception at the IoT

devices and the information reception at the AP. This will be

a topic for future investigation.
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