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Sovereign: Self-contained Smart Home with
Data-centric Network and Security

Zhiyi Zhang, Member, IEEE, Tianyuan Yu, Xinyu Ma, Yu Guan, Philipp Moll, Lixia Zhang, Fellow, IEEE

Abstract—Recent years have witnessed the rapid deployment
of smart homes; most of them are controlled by remote servers
in the cloud. Such designs raise security and privacy concerns
for end users. In this paper, we describe the design of Sovereign,
a home Internet of Things (IoT) system framework that pro-
vides end users complete control of their home IoT systems.
Sovereign lets home IoT devices and applications communicate
via application-named data and secures data directly. This
approach enables direct, secure, one-to-one and one-to-many
device-to-device communication over wireless broadcast media.
Sovereign utilizes semantic names to construct usable security
solutions. We implement Sovereign as a publish-subscribe-based
development platform together with a prototype home IoT
controller. Our preliminary evaluation shows that Sovereign
provides a systematic, easy-to-use solution to user-controlled, self-
contained smart homes running on existing IoT hardware without
imposing noticeable overhead.

Index Terms—Internet of Things, Smart Home, Network
Security, Named Data Networking

I. INTRODUCTION

Technology advances lead to improvements in home living.
For example, appliances such as dishwashers and refrigerators,
which are directly controlled by home users, improve the
quality of life at home. Over the last decade, Internet-of-
Things (IoT) has come of age [1], and networked smart devices
at home lead to home reinvention. However, different from
conventional home appliances, in most of today’s popular
smart home solutions [2]–[7], the smart home devices are
controlled by cloud-based servers running by the smart home
service providers.

Given home devices are remotely controlled by the cloud,
a fundamental concern with today’s smart home deployment
practice is the exposure of users’ daily home life operations to
these service providers in the cloud [8]–[12]. To control one’s
home, a user contacts the cloud backend, which authenticates
the user, and then authorizes her to issue commands through
the cloud to her home appliances. This effectively makes a
user an authorized client, rather than the controller, of her
own home.

Many previous efforts have been devoted to provide better
user privacy protection from the cloud service providers, and
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stronger user control of home devices and data [13]–[22].
These approaches usually apply cryptographic schemes like
identity-based encryption [13] over the existing data flow,
or introduce new control layers such as Software Defined
Network (SDN) [17], or add auditing services [14].

With the full recognition of today’s successful cloud-based
practice and ongoing efforts to enhance security and privacy
of cloud-based services, we propose to meet the end users’
privacy requirements by rethinking smart home realization: let
the control of smart homes stay at home. More specifically,
we propose to build smart homes as independent and self-
contained systems solely owned and controlled by end users,
whose operations do not rely on cloud or other external
services. We do not prohibit the use of cloud services; rather,
we propose that all usages of external resources (e.g., remote
backup, intensive computation, data retrieval) should be au-
thorized and controlled by the local smart home systems.

In this paper, we describe the design of Sovereign—a
framework for self-contained smart home systems. Figure 1
provides a conceptual level comparison between the current
practice and Sovereign. Sovereign lets each home operate as
an autonomous system, where all the entities belonging to
the smart home system (i.e., devices and local or remote
applications) are managed locally. To enable reliable and
secure communication in the home environment, Sovereign
takes the approach of data-centric networking and security.
First, every home entity and all available resources, i.e.,
content, services, keying material, and security policies, are
identified by hierarchical and semantically meaningful names.
Second, the entities in a home exchange messages with each
other directly over the broadcast wireless network, without
going through any centralized message broker. At the same
time, security policies that regulate named entities’ access to
named resources, are enforced by individual devices instead
of by a remote cloud server.

Sovereign is implemented as a software development kit
(SDK) [23] that provides developer-friendly application pro-
gramming interfaces (APIs) to smart home device manu-
factures and application developers. Programming a device
or an application with the Sovereign framework enables it
to connect to the localized smart home system and to be
controlled by home users without external dependencies. Users
control their homes through user interfaces provided by the
smart home applications programmed over Sovereign. The
application developments, e.g., human-computer interaction
(HCI) or specific home security policy definitions, are beyond
the system framework, thus not covered in this paper.
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( a ) Cloud-based Smart Home
Control enforced in the cloud

( b ) Sovereign
Control enforced on devices
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Figure 1: The current practice v.s. Sovereign

Contributions: Our contributions are twofold. First, we
design and prototype Sovereign, demonstrating an alternative
approach to building smart home systems that can fully protect
user privacy. Our prototype offers a proof of evidence that a
smart home can indeed be built as an independent and self-
contained system, with end-to-end security to enhance system
security and direct device-to-device message exchanges to
increase resilience and to overcome single points of failure.

Second, we implement the open-source and cross-platform
Sovereign SDK. As part of the SDK, we provide a lightweight
Named Data Networking (NDN) implementation that works
smoothly with constrained IoT devices. Our SDK is Along
with the development platform, we also provide a python-
based prototype controller application to let end users control
their homes. Our evaluation shows that Sovereign is developer-
friendly and exhibits low network latency, low computation
overhead, and a small resource footprint that allows Sovereign
on constrained devices.

Outline: The rest of the paper starts with our motivation
and Sovereign’s design principles in §II. We then describe the
Sovereign framework in §III and outline its implementation,
including Sovereign’s SDK with usable APIs, in §IV. We
provide the evaluation results in §V, talk about related works in
§VI, and give some discussions in §VII. Finally, we conclude
our work in §VIII.

II. MOTIVATION

A. Cloud-based Smart Home: Your Privacy is in the Cloud

Today’s dominating IoT frameworks center around the
cloud. Popular cloud-based smart home platforms, such
as Samsung’s SmartThings [2] and Amazon’s AWS Home
IoT [4], account for a large market share. For example,
according to Samsung, SmartThings has 120 million active
users worldwide by the end of 2020 [24].

To understand the role played by the cloud in a smart home
system, we analyze how Samsung SmartThings works as an
example. The SmartThings ecosystem [25] has three main
components: (i) the SmartThings cloud, (ii) cloud-connected
devices, and (iii) cloud-hosted applications. SmartThings re-
quires that device vendors and application developers pre-
install the SmartThings cloud certificate into their products and

register their products to the SmartThings cloud in advance,
so that SmartThings can recognize their unique IDs and public
keys. To add a new device to a smart home system, the
homeowner performs a simple operation, e.g., scanning a QR
code or pressing a button on the device. This operation pairs
the device with the user’s account in the cloud backend,
authenticating the device to the homeowner’s smart home
system. As shown in Figure 1, all devices and applications
in a home system establish secure connections, either directly
(e.g., through Transport Layer Security (TLS)) or indirectly
(e.g., via a WiFi-connected home hub), to the SmartThings
cloud, where they take control commands and communicate
with each other. Importantly, the cloud manages access to all
the home entities using Open Authorization (OAuth) [26]. An
application or device must first obtain OAuth tokens from the
cloud before it can access other home resources.

To summarize, the SmartThings cloud backend (i) holds the
trust anchor (i.e., cloud’s certificate), and maintains identities
of all the devices and applications in a smart home, (ii) serves
as a rendezvous point for data exchange among devices and
applications; and (iii) executes security policies (also called
control policies) by controlling access to home resources. In
addition, the cloud is also used as storage for smart home
application data in general. Similar designs are observed
in other cloud-based home systems, including AWS Home
IoT [4], Google Assistant Smart Home [27], and Microsoft’s
Azure IoT system [6] (see details in Appendix A).

These cloud-based systems expose home users’ privacy to
the cloud backend: the cloud can view all user commands and
data exchange from the home system1. When home application
data, such as video camera footage, is stored in the cloud, it
adds further privacy concerns [11], [28], [29]. In addition to
user privacy concerns, the “control by cloud” design increases
the overall system complexity when multiple cloud backends
get involved. For example, to automate SmartThings devices
with IFTTT [30], users need to grant IFTTT access right to
the SmartThings cloud backend, which introduces additional
cross-cloud data exchange and security configuration (e.g.,
through OAuth). Furthermore, the home systems’ dependency
on the cloud backends provided by tech giants further intensi-
fies Internet consolidation [31]. Finally, although today’s cloud
services seem reliable in general, the last few years did witness
several large-scale cloud service outages, each time disrupting
large numbers of users [32], [33].

We note that there do exist smart home products that are
locally controlled and operated. However, these systems lack
features, such as secure communication between devices, or
exhibit a single-point-of-failure, as we discuss in §VI.

B. Letting Smart Home Stay Home

Recent years witnessed great successes of cloud computing
which takes advantage of economy of scale. Therefore, it is
natural that smart home developments latched to the readily

1On today’s home IoT market, Apple’s HomeKit [3] supports local com-
munication among devices and allows users to directly control their home
IoT system, reflecting a shared goal with our work. However, HomeKit is not
cloud-independent, as it still relies on the cloud for device authentication and
identity management.
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available cloud infrastructure for quick development and de-
ployment. However, when examining the details, controlling
home IoT systems from the cloud does not seem to share
the same benefits as resource-intensive applications. Although
a home system may need to run computation-intensive apps,
e.g., face recognition, which can benefit from cloud assistance,
the control logic of a smart home does not need heavy
computation and could be done locally, especially as smart
home devices become cheaper and more powerful over time.
Controlling smart homes from the cloud seems mostly driven
by business incentives rather than a technical necessity.

From a technical point of view, bringing the smart home
control from the cloud to the home provides the most effective
solution to enhance user privacy. To figure out the needed
functional support, §II-A already identified the cloud’s role
in smart homes: (i) the cloud hosts a smart home controller;
(ii) individual home entities communicate with each other by
using the cloud as a message broker, and (iii) security is
provided by the secure connections from individual devices
to the cloud using TLS.

Correspondingly, the first requirement for building a local-
home-based smart home system is a local controller that takes
the user’s configuration and manages the home accordingly.
The second requirement is enabling communication between
smart devices and applications (hereafter entities). Lastly, after
moving the control out of the cloud, smart homes must be pro-
tected from local surrounding adversaries, i.e., one must add
strong security and privacy protection to local communications
in the smart home system.

Addressing the above-mentioned requirements brings up the
following identified challenges. Setting up a controller at home
differs from running a cloud-based controller in at least two
ways: the controller needs network and security configurations,
and the controller can be a single point of failure; neither is
an issue when the controller is in the cloud. Communication
between individual home entities, on the other hand, can be
trivially achieved by supporting direct device-to-device (D2D)
communication, assuming each home is connected by a WiFi
wireless network that is broadcast in nature. Accordingly,
security must be applied directly to D2D communication.

C. Design Choices

We identified mitigating the single point of failure and
providing secure D2D communication as the challenges in
realizing a self-contained home system. The first one includes
two cases: the controller fails or gets compromised. One can
mitigate the failure by providing home entities the ability for
secure message exchange without involving the controller;
mitigating the compromise can also be achieved, which we
discuss in §VII. To achieve secure D2D communication,
we see the following two possibilities: (i) a channel-based
solution, e.g., utilizing TLS, or (ii) a data-centric solution, as
provided by Information Centric Networking (ICN).

Channel-based communication and its security model has
been the default choice in network system design for many
years. However, it is not necessarily the best fit for all use-
cases. Deploying channel-based security in a smart home

Name or Name Prefix

Other parameters

Name of data

Payload
Signing Key Name

Signature

Interest Packet Data Packet

Optional Signature

Figure 2: Interest and Data packets in NDN

scenario requires all home entities to set up bidirectional
TCP/IP connections, secured using TLS, which introduces
limitations and complexity in various aspects. First, TLS
does not utilize the broadcast/multicast capabilities of wireless
home networks. For example, to turn on all the lights at home,
a simple way would be to issue a verifiable command through
multicast. However, with TLS, the command must be sent
through each TLS channel to all the lights. TCP/IP connections
also require a mapping between application-level identities
and network identifiers, i.e., IP addresses, and maintaining
such mappings requires additional synchronization services.
Moreover, executing control policies (e.g., the air conditioner
can access temperature data) requires application semantics,
which must be either installed at all the entities or otherwise
has to be performed by the controller.

In contrast, data-centric networking and its security model
provide a new option: Each piece of data is identified by a
semantically meaningful name, and security is carried in the
data instead of on the channel. This data-centric networking
model is realized by the NDN architecture. We introduce the
key function of NDN below to prepare readers ready with
data-centric security in the next section.

In NDN, applications pull data from the network by data
names. A request for data, called Interest packet, carries the
name of the desired Data. Packets carrying the fetched data
are called Data packets. When produced, each Data packet
is secured by the producer application by adding a digital
signature generated by the producer’s private key. The signa-
ture allows data consumers to verify the authenticity of every
received Data packet, so that a Data packet can be retrieved
not only from the producer but also from storage components
or in-network caches. NDN directly uses application layer
names for data fetching, where the names are semantically
meaningful and follow a hierarchic structure in general, similar
to Uniform Resource Locators (URLs) used in today’s Internet.
As Figure 2 shows, both NDN packet types carry data names;
Data packets also carry the requested payload and a cryp-
tographic signature. To facilitate data retrieval, applications
make use of naming conventions, i.e., well-established naming
patterns, to help consumers construct names of desired data.
As an example naming convention, the temperature produced
in the bedroom of Alice’s home can be named as “/alice
/temp/bedroom”. This allows a potential requester to fetch data
without having to discover the name first.

The properties of NDN (and ICN in general) enable secure
D2D communications by securing data directly. In a home
network, an entity can directly fetch desired data by sending
Interest packets to the local broadcast network, eliminating
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the additional layer of indirection between IP address and
application layer data identifiers in a TCP/IP network. Security
is realized in a data-centric way by letting the data producers
sign and encrypt the data using their keys. In this way, a
piece of secured data can be fetched and verified by multiple
entities while only those who have sufficient keys can access
the payload. The semantically meaningful name carried in each
message can be directly used to construct and enforce security
policies (see §III-B for an example).

III. DESIGN OF SOVEREIGN

As stated, today’s cloud-based smart home design puts
trust, control, and security to the cloud. In Sovereign, this
is fundamentally changed by bringing the trust anchor to the
local network. After being bootstrapped by the local controller,
individual entities enforce security policies by directly se-
curing the D2D communication. Specifically, producers will
sign and encrypt each piece of data being produced and
consumers will authenticate and decrypt, if authorized, every
piece of data being consumed. As such, Sovereign removes
the single rendezvous point (i.e., the local controller) since the
data-centric communication takes place directly on the local
broadcast network among home entities.

Importantly, both networking and security in Sovereign
center around names:
• Content fetching is implemented by sending requests carry-

ing the content name and service invocation is realized by
issuing commands carrying the service name.

• Security is implemented by expressing constraints on dif-
ferent names. For example, service access control is to
constrain which named entities can issue commands to
which named services.
Our new framework impacts the way of networking and

security, but is not supposed to affect the application logic,
and hence, does not change end users’ experiences of using
smart home compared with today’s cloud-based systems: A
home user Alice only does minimal operations to set up the
whole system and adding new entities, e.g., by scanning a QR
code mounted on a device with the controller. Importantly,
Alice controls her home by deciding the rules of the system
through user interfaces (UIs) provided by the local controller2.

In this section, we first use an example to provide an
overview of Sovereign’s system design, then introduce indi-
vidual components from an entity’s perspective.

A. An Overview

Figure 3 visualizes the high-level overview of Sovereign.
Let us assume the user Alice installs a new air conditioner
(AC) in her home and wants to connect it to Sovereign. There-
fore, Alice uses the controller to scan a QR code mounted
on the AC, which initiates the entity bootstrapping process
(see § III-C). In this process, the device registers itself to
the controller and the controller (i) installs the system trust

2We acknowledge that correctly configuring security policies possibly
goes beyond the capabilities of most homeowners. However, the support of
cleverly designed user interfaces (not in the scope of this work) can ease the
configuration process, e.g., by providing default policies with best practices.
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Figure 3: High-level overview of the Sovereign Home System

anchor to the device, (ii) sends keying material and security
policies needed by the device, as well as (iii) assigns a name to
the device according to the naming conventions (see § III-B).
In Sovereign, the security policies are based on names and
are converted from user-decided rules by the controller. In
addition, the entity’s name is associated with a public key
pair whose public key will be certified by the controller, and
the private key is kept secret by the AC.

After joining the system, the AC starts running by fetch-
ing the temperature data and setting the target temperature
accordingly. In addition, the AC will also close bedroom
windows when it is running. In Sovereign, the temperature data
fetching and window command sending all take place directly
between the involved devices over the broadcast network in
the form of NDN Interest–Data exchange. To get temperature
data, the entity directly broadcasts the desired data name so
that any other entities who have the data can reply. After
fetching the Data packet carrying the temperature, the AC
will first verify the packet is signed by another home entity,
whose certificate is endorsed by the trust anchor. Then, to
access the payload, the AC needs to decrypt it using keys
obtained from the controller. When issuing a command to the
window, the AC will also name this command according to
the naming convention, encrypt the payload, and sign it with
its own private key. Therefore, windows in the system can
fetch the command by the name. If the AC is allowed by the
security policies to generate such a command, home windows
will successfully verify, decrypt, and execute the command. A
detailed description of these workflows is provided in §III-D.

B. Name Design

One key difference of Sovereign compared to IP-based
systems is the use of semantic names in the network. Since
endpoint addresses are used for decades, the advantage of
name-based communication might not be obvious. This is why
we first focus on answering the question: Why bothering with
designing semantic naming schemes? First, semantic metadata
is needed to represent identities and data when realizing
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Type Naming Convention

Home entity (i.e., device or application) /<home-prefix>/<service>/<location>/<entity-id>*
e.g.,/alice-home/AirCon/bedroom/north-ac-1

Command to executable services

/<home-prefix>/<service>/<scope>/CMD/<cmd-id>**
e.g.,/alice-home/AirCon/bedroom/north-ac-1/CMD/set-temp – device-level command
e.g.,/alice-home/AirCon/bedroom/CMD/set-temp – room-level command
e.g.,/alice-home/AirCon/CMD/set-temp – home-level command

Data produced by services /<home-prefix>/<service>/CONTENT/<location>/<entity-id>/<content-id>**
e.g.,/alice-home/TEMP/CONTENT/bedroom/senor-1/temp

Encryption/Decryption Key /<home-prefix>/<scope>/EKEY
/<home-prefix>/<scope>/DKEY

Security Policy /<home-prefix>/RULE/<location>/<entity-id>**

Notation: A component with <> represent a variable. A component without <> represent a constant string component.
∗: Actual service command, content, and policy NDN Data packets will have a timestamp suffix to achieve the data uniqueness.
∗∗: The corresponding identity key name is the identity name with a “KEY/<key-id>” suffix.

Table I: Naming Conventions of entities and data (i.e., services, content, and keying material)

application logic. In Sovereign, naming conventions allow
entities to follow established rules to infer the name of the
desired data. Second, it is possible to design security policies
based on names. This means that security policies can directly
define which named entities are allowed to produce or access
which named resources. Hence, in Sovereign, name-based
security policies allow inferring which entities are granted
access to certain resources by checking their names.

Naming Conventions: Prior studies [34], [35] suggest that
smart home access control and authentication systems should
be flexible enough to support a wide variety of use cases
and types of relationships that exist in homes. Therefore,
Sovereign’s naming conventions embed the attributes held by
entities and data into semantic names. These attributes include
an identifier of the home system, a service type, the location of
the corresponding entity or data, and a resource type. Table I
summarizes the structure of names (i.e., naming conventions)
used in Sovereign. Note that the home prefix is defined during
the system setup and better to be globally unique considering
potential communication among homes in a neighborhood.
One approach is by attaching a random string to a user-
specified name.

Sovereign allows flexible service invocation and content
fetching by constructing different names based on the appli-
cation’s need. For indicating the capabilities of Sovereign’s
naming scheme, we provide a small example of an AC in
the bedroom of Alice’s home. The AC listens to requests
under three prefixes that allow other entities to send control
commands on a device-level, room-level, and house-level.

/alice-home/AirCon/bedroom/north-ac-1/CMD/set-temp
/alice-home/AirCon/bedroom/CMD/set-temp
/alice-home/AirCon/CMD/set-temp

Thus, the controller or other authorized entities can flexibly
control the home temperature in the desired granularity. Im-
portantly, semantic naming combined with broadcast media
allows sending one command to control multiple devices. This
is a sharp contrast to IP-based systems, where commands
address single devices only.

Name-based Security Policies: Sovereign’s naming conven-
tions facilitate the use of name-based security policies. As

elaborated earlier, security policies generally specify entities
that are authorized to perform certain operations. In Sovereign,
flexible control can be achieved by specifying the names
of entities and resources in the policies. Given the name
P representing one or multiple entities, and the name R
representing one or multiple resources. One can limit P ’s
authorized actions to R by defining a security policy. Such a
policy can be written as a triple based on P and R, which
can be either be specific names, name prefixes, or regular
expressions of names.

<P ’s name, verb, R’s name>.

For example, the verbalized policy “the controller can com-
mand all door locks” can be written as the name-based policy
<controller name, produce, door lock command prefix>. As
another example, the verbalized policy “temperature sensors
can produce temperature data” can be represented by the
policy <prefix of temperature sensors, produce, temperature
content prefix>.

We want to note that using names in security policies is
assumed to be secure since names are assigned and certified
with the entity’s certificate. This certificate is derived from
the trust anchor in the entity bootstrapping phase (see §III-C).
Thereby it is ensured that entities can not spoof the names of
other entities.

C. Security Design

In Sovereign, the authentication and access control are
managed by the controller but enforced distributedly in D2D
communication. In general, after converting user-defined rules
into name-based security policies, the controller distributes
these policies among all entities. During runtime, all Data
packets are signed and encrypted by producers, and veri-
fied and decrypted by consumers. In the verification step,
consumers consult the available security policies and verify
whether data producers are authorized to sign the piece of
data before consuming its content or executing the command.

System Setup: In the system setup phase, the controller
generates an asymmetric key pair. The public key is bound to
the home prefix and published as a self-signed certificate. This
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certificate represents the home’s trust anchor. The trust anchor
will be installed on each entity during the entity bootstrapping.
The private key is kept secret by the controller and is used
to sign security policies, cryptographic keying material, and
certificates for new entities.

Entity Bootstrapping: In the entity bootstrapping phase, a
new entity joins the system and learns keying material and
security policies required for later communication.

The process takes place in the default broadcast media and
starts with mutual authentication between the controller and
the entity, in which out-of-band operations may be needed
(e.g., QR code scanning). Then, the following information is
secretly exchanged:

• The trust anchor certificate is installed on the new entity.
• The controller assigns the new entity an appropriate name

according to the naming convention (supported by addi-
tional input from the homeowner, e.g., entity location or
customized device name).

• The controller issues a public key certificate binding the
entity’s public key and name together. The certificate is
signed with the private key of the trust anchor.

• The entity will obtain security policies and symmetric cryp-
tographic keys that the entity is authorized to have. These
keys will be used in data encryption and decryption for
access control and privacy protection purposes. In addition,
the new entity and the controller will negotiate another sym-
metric to encrypt the future cryptographic material issued by
the controller to this entity.

An implementation of Sovereign’s entity bootstrapping process
is discussed in [36].

Bootstrapping hardware-independent applications follows
similar steps as given above. Note that applications can run
either locally (e.g., software executed on the home hub) or
remotely (e.g., software hosted in the cloud).

Enforcing Security Policies: While name-based security
policies are maintained by the controller, individual partic-
ipants enforce these security policies for the D2D commu-
nication. To elaborate on how these policies are enforced,
we differentiate between two types of security policies: (i)
produce-policies define which entities are allowed to produce
data of a specific name pattern (e.g., sending an actuating
command to a door lock), (ii) decrypt-policies define the
entities that are allowed to access data of a specific name
pattern (e.g., data from specific sensors).

Produce-policies are enforced by data receivers. To be
more specific, after authenticating a Data packet, the receiving
entity extracts the data name and producer’s name from NDN
Data’s name and signature fields. These names allow checking
whether the data was generated by an authorized entity defined
in security policies. For example, the following policy defines
that temperature content can only be signed by a temperature
sensor, where “/alice-home/TEMP” is the shared prefix of all
home temperature sensors, and “/alice-home/TEMP/CONTENT”
is the common prefix of temperature content.

< /alice-home/TEMP, produce, /alice-home/TEMP/CONTENT>

Combining the Data’s name, the producer’s identity, and the
available security policies allow receiving entities to reject
temperature content produced by unauthorized parties.

The same procedure is applied for restricting entities to issue
commands. For example, a produce-policy as follows indicates
that all the automation applications running on the home hub
named “hub-1” can invoke executables whose names match
the specified regular expression3.

</alice-home/AUTO/hub-1, produce,
/alice-home/LOCK/<>*/CMD>

Before executing the issued command, the receiving entities
first check the verified producer name against the available
security policies and rejects the command when issued by
unauthorized entities.

Decrypt-policies are enforced by utilizing data encryption.
To be more specific, every entity can fetch data by emitting
an Interest packet carrying the desired content name. The
encrypted data, however, can only be accessed when having
access to the correct decryption key. In Sovereign, the con-
troller is providing all encryption and decryption keys, and
allows authorized entities to obtain certain keys4. This reduces
access control to maintaining the access of corresponding
decryption keys. For example, the decrypt-policy “bedroom
AC can read the temperature” is written as follows:

</alice-home/AirCon/bedroom, decrypt, /alice-home/TEMP/DKEY>

The subject name “/alice-home/TEMP/DKEY” represents the
decryption key to the content produced under the temperature
service.

Privacy Protection: Sovereign protects the privacy carried in
network packets with three methods: (i) As stated, the payload
of all Data packets is only sent in encrypted form. (ii) Since
semantic names may also leak sensitive information, Sovereign
applies name obfuscation. That is, instead of using plaintext
name components, Sovereign can choose to use pseudonyms
derived from a keyed hash (e.g., HMAC of the name compo-
nent with a random key generated by the controller). Besides,
service-specific name components, such as “content-id” and
“command-id” are encrypted with the payload’s encryption key.
(iii) In Sovereign, the data exchange happening in the local
network is invisible to the outside. When homeowners allow
services provided by trusted remote entities, the latter can only
access the data allowed by the security policies.

Key Distribution: As stated, encryption and decryption keys
are first distributed during the entity bootstrapping process.
In the system runtime, since each key has a lifetime and
security policies can change (e.g., end users add or revoke
access rights), keys need to be periodically renewed. There-
fore, entities will need to retrieve the updated keys from the
controller. In Sovereign, decryption keys will be encrypted for
each authorized entity using the shared symmetric key between
the entity and the controller, and they can be retrieved by

3The regular expression <>* matches zero or more name components.
4The Sovereign controller makes encryption and decryption keys available

for authorized entities. After the distribution of the keying material, the
controller is not involved in the D2D communication, allowing entities
communicating securely without requiring a central message broker.
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the key name (Table I) with the entity’s name as the suffix.
Importantly, this process can be asynchronous: the controller
can pre-provision Data packets carrying the encrypted renewed
keys into a storage component, allowing the key renewal
process to operate when the controller is temporarily down.

D. Putting Everything Together

The previous sections explained individual components of
Sovereign. In this section, we show how everything works
together to build a local, user-controlled smart home system.

Reviewing current smart home systems shows that the
individual entities can be classified into two groups. The
first group represents devices that provide executables. These
devices can be as simple as a light bulb that can be switched on
or off, but also more security-critical, such as the door lock
of the front door. The second group represents devices that
produce content., e.g., sensors that monitor the smart-home
environment, providing temperature information or motion
detection. Also, some devices combine both groups.

When invoking an executable, or when requesting content,
entities are typically not interested in communication with a
specific device or application, but in a specific service on a
certain location (e.g., switching on the kitchen light, getting
the ambient temperature of the living room). Without knowing
the actual entity required for the action, the name can be
inferred by joining the service name with the intended location
scope (e.g.,“/alice-home/Light/kitchen/CMD/switch-on”,
“/alice-home/TEMP/CONTENT/living room”). When it comes
to networking, we differentiate between actuating messages
used for invoking executables, and content consumption
messages for reading data. To fetch a piece of content, the
desired content name is encoded into an Interest packet
for broadcast. In contrast, when issuing a command, the
command is encoded in a Data packet to carry the signature
and sufficient parameters in the payload. The command sender
will emit a notification Interest to the broadcast network so
that relevant other entities can fetch the command. Note that
command fetching only needs to take place once because
other entities can also hear the command via broadcast.

To fulfill security policies, the produced content and com-
mands are encrypted and signed by its producer. Hence, when
receiving a Data packet, the receiver can first verify whether
the producer is authorized to produce the data by checking
the signature against security policies. In case the producer is
authorized, only authorized receivers can access the decryption
key and successfully decrypt the Data packets content. Hence,
security policies are enforced.

IV. IMPLEMENTATION OF A USABLE FRAMEWORK

The Sovereign framework is implemented as a smart home
Software Development Kit (SDK). Our SDK supports develop-
ers and device manufacturers in building Sovereign-compatible
devices and applications. The design of our API design aims to
provide a high developer-friendliness and is outlined in §IV-A.
Our SDK’s main components are discussed in §IV-B.

We also provide a proof-of-concept controller with pre-
liminary UIs. This controller allows home users to bootstrap
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Figure 4: Workflow beneath the pub/sub API

devices and applications and to define security policies. More
sophisticated UIs can be designed to allow end users to use
Sovereign the same way as current smart home systems.
Sovereign’s main contribution – enabling a self-contained,
local smart home – is beneath the applications and should
be transparent to end users.

A. Encapsulation of Framework Details

The core implementation idea of Sovereign is to use a
publish-subscribe (pub/sub) communication module that en-
capsulates naming, security, and networking primitives in one
API. Pub/sub is a messaging pattern that categorizes messages
into semantically meaningful topics and is often seen in
the context of IoT. Message producers (called publishers)
publish messages to topics without knowing the set of message
consumers (called subscribers). Subscribers choose to receive
messages under pre-defined topics without the need to know
the actual message producers. Pub/sub is used for two main
reasons. First, pub/sub is data-centric which matches the data-
centric networking and security design of Sovereign. Second,
pub/sub has been widely adopted in existing IoT frameworks,
and hence, it provides convenience for developers.

Pub/sub API is directly built over Sovereign’s D2D com-
munication as presented in the previous section by handling
name prefixes as topic identifiers. That is, subscribers use
name prefixes to decide whether a message is under a certain
topic or not. For example, a message carrying temperature data
of the bedroom is mapped to the name prefix “/alice-home
/TEMP/CONTENT/bedroom”. This name prefix is further used
as the pub/sub topic identifier. In this way, producers that
publish content or commands under a topic is to generate Data
packets named under the corresponding prefix. Subscribing
to a topic is implemented by issuing Interests containing the
topic’s name prefix to fetch relevant data.

As indicated in Figure 4, in Sovereign implementation,
the pub/sub API embeds naming, security, and networking
considerations to make them transparent to developers. We
illustrate the underlying workflow with an example, where an
application issues a command to set the bedroom temperature
to 70°F. After calling the publish API, Sovereign defines the
command name based on application parameters following
naming conventions (Ê). Sovereign identifies an encryption
key according to the topic and encrypts the payload (Ë). Fur-
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ther, the API wraps the command name and the encrypted pay-
load into a Data packet. Finally, the API uses the application’s
private identity key to sign the Data (Ì) and makes it available
on the local network. On the receiving end, after subscribing to
a topic, the API automatically fetches the relevant Data packet.
Once a Data packet is received, Sovereign verifies its signature
and checks against security policies (Í). In the next step,
the Data is decrypted with the corresponding decryption key
(Î). Once verified and decrypted, the command is delivered
to the application. For clarity, we omit low-level protocol
details of Sovereign’s pub/sub transport in this publication. We
provide a discussion of the pub/sub design, protocol details,
and implementation in a supplemental technical report [37].

B. Sovereign Software Development Kit

Sovereign is made available as an open-source, cross-
platform software development kit (SDK) [23] in C language
for device and application developers. The SDK’s structure
is visualized in Figure 5. The core library implements the
Sovereign framework as detailed in §III. As indicated, the only
components exposed to developers are the Entity Bootstrap-
ping and the Pub/Sub APIs. Other components are transparent
for developers. Moreover, the SDK includes an adaptation
layer making the core library work across different platforms
and communication media. So far, the adaptation layer is
tested for platforms including Linux/Unix, RIOT OS [38],
and Nordic NRF boards [39]. Regarding connectivity, the
adaptation layer allows using Bluetooth, IEEE 802.15.4, and
the legacy TCP/UDP used as link layer protocols.

Importantly, the Sovereign SDK includes a standalone NDN
stack that follows the official NDN specification [40] and
is lightweight enough for constrained devices. NDN-LITE is
required since the official NDN library and forwarder — ndn-
cxx [41] and NFD [42] — are not designed for being used on
constrained IoT devices.

C. A Case Study on Real-world Smart Home Programs

In this section, we conduct a case study with two real-
world applications and comparing our work with SmartThings,
a leading smart home ecosystem on the smart home market.
Through the study, we show real examples of the use of the
Sovereign SDK and at the same time assess the privacy and
security by analyzing packet flows behind the API calls.

We select two applications [43], [44] from the official open
source codebase [45] of SmartThings, and implement the same

Sovereign Device (C) Code block 2 SmartThings Device (C) Code block 1 

SmartThings SmartApp (Groovy) Code block 3 Sovereign App (C) Code block 4

st_conn_init(credential, device_info);
st_cap_cmd_set_cb("on", callback);
...
void callback(evt) {
  event = st_cap_attr_create_string("switch", "on");
  st_cap_attr_send(event);

bootstrapping(credential, device_info);
sub_to_command(SWITCH, callback);
...
void callback(context, event) {
  ps_event_t state = ps_event_init("state", "on");
  pub_content(SWITCH, state);

subscribe(contact, "contact.open", handler)
...
def handler(evt) {
  switches.on()
}

sub_to_content(CONTACT, callback)
...
void callback(context, event) {
  if (event.id=="state" && event.payload=="on")
    pub_command(SWITCH, "/", "on");

Figure 6: Code snippets in SmartThings and Sovereign

functionality in Sovereign. The first application is designed for
a smart switch device and the second is an automation applet
turning on a remote switch when a contact sensor is touched.
The first application changes its own state to “on” when it gets
a turn-on command, and the second application subscribes to
the state of a contact sensor and turns on a remote switch when
the subscribed state is changed to be on. The code snippets of
the original programs (code block 1 & 3) and their Sovereign-
based equivalents (code block 2 & 4) are compared in Figure 6.

As shown, the programs in Sovereign are similar to their
original version. This is because by adopting the pub/sub,
Sovereign provides a similar development pattern as the ex-
isting SDKs, allowing developers to port their applications to
Sovereign with minimum amount of code changes.

Despite the similarities, the underlying traffic flow is funda-
mentally different: Sovereign provides the same functionality
as cloud-based smart homes via local secure communication.
The home activities and data are not accessible to the cloud
unless users explicitly grant access rights to a cloud service.

First, in the SmartThings device application (code block 1),
the first line securely connects the device to the home’s cloud-
backend. After that, the cloud recognizes the new device,
learns its profile, and registers it to the device database for the
home on the cloud. In contrast, the first line of the Sovereign
device application (code block 2) bootstraps the device to a
local controller. All sensitive information that is transmitted
in the bootstrapping phase stays in the local network and is
protected by encryption.

Second, the first line of the code block 3 and 4 subscribes to
a given topic. However, the underlying operations differ: the
SmartThings application notifies the cloud backend about its
interest in the given service, while the Sovereign application
simply starts listening to a local name prefix under which the
desired data is published. Similarly, when the SmartThings
application turns on the switch, the command is sent to the
cloud backend, where the command is verified and sent back
to the switch at home. In contrast, publishing a command in
Sovereign means producing a new Data packet and making it
accessible in the local home network.

V. EVALUATION

We evaluate the Sovereign prototype and answer the following
questions:
1) Can Sovereign enhance smart home security and privacy

compared with existing cloud-based smart home systems?
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2) Is Sovereign resilient enough to operate when the controller
is temporarily down?

3) Does the use of cryptographic operations on smart home
entities impair the usability of Sovereign in real deploy-
ment, especially on low-power devices?

4) Are Sovereign SDK’s programming interfaces friendly to
IoT developers?

A. Security and Privacy

The security and privacy in Sovereign is provided through
a collection of factors. First, from a design perspective,
Sovereign removes the external dependency from the content
fetching and service invocation at home, which minimizes the
exposure of local sensitive information. Second, by heavily
relying on the local communication, link layer security like
Wi-Fi Protected Access (WPA) can provides more security as
both ends of the communication in Sovereign are local. Third,
identity authentication and traffic encryption implementation
follows the mature symmetric and public key cryptography.
We also provide an analysis of Sovereign against various
attacks in smart home and network systems in Appendix C.

Note that a smart home system is complicated in the sense
that applications and devices are provided by different parties
and each of them can have their own external dependencies
and vulnerabilities. Sovereign, as a system framework, is just
one part of the overall smart home security.

B. Resilience, Performance, and Overhead Evaluation

In this section, we first test the Sovereign’s resilience by
taking down the controller intentionally at the system runtime.
We then evaluate the performance of Sovereign by measuring
the latency in common system operations. We also compare
our results with cloud-based home IoT solutions; since the
latency bottleneck is in the network round trip time and cloud-
based approaches share the similar communication model as
discussed in §II-A, we selected AWS IoT as a representative
for comparison and the comparison results also apply to
other cloud based home IoT systems. Finally, we measure the
resource footprint required by Sovereign on IoT devices.
Experiment Setup: We conduct our experiments using (i)
an laptop with a 2.2GHz Intel quad-core Core i7 CPU, (ii)
Raspberry Pi (RPI) 3B with an ARM Cortex A53 @1.4GHz
processor, and (iii) an nRF52840 board [39] to mimic smart
home entities with different capabilities. Among them, we
classify nRF52840 chip with 32-bit Cortex M4@64MHz CPU,
1MB ROM, and 0.25MB RAM5 as constrained hardware.
The experiments with RPI are over WiFi connectivity and
with a Sovereign controller running on the laptop. Evaluations
involving the nRF52840 are conducted over IEEE 802.15.4
and use a simplified controller installed on another nRF52840.
For the AWS IoT, we use the cloud backend provided by the
official AWS IoT Core services [51] and an RPI as the local
device.

5We acknowledge that a part of current IoT devices shows lower capa-
bilities. However, market studies [46]–[50] have seen the market turning to
32-bit microcontrollers. Hence, we assume the nRF52840 as an appropriate
candidate for future smart home systems.
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Figure 7: Latency in Sovereign and Cloud-based Home IoT

Resilience to Controller Outage: To evaluate Sovereign in
the case of temporary controller outage, we first set up the
system and bootstrap new devices with the controller. After
some time, we bring the controller offline and test whether
the content fetching and service invocation can still be finished
and whether the security policies are still executed as normal.

The experiments presented below confirm that the commu-
nication happens in a D2D manner and is secured without a
controller involved, showing Sovereign’s ability to continue
operation even when the controller is temporarily down.
Latency Measurement: We then evaluate the latency of com-
mon operations in the system, including entity bootstrapping,
content delivery, and command delivery, between Sovereign
and AWS IoT. The experiment results are visualized in the
left two bars (i.e., blue bars for AWS IoT and orange bars for
Sovereign) in each bar group in Figure 7.

As shown, there is no significant difference between the
bootstrapping operation, but the advantage of keeping com-
munication local in Sovereign becomes clear when focusing
on content and command delivery, where Sovereign is about
62% faster in content delivery and 42% faster in command
delivery than the AWS IoT.
Latency on Constrained Devices: In addition, to mea-
sure Sovereign’s latency on constrained devices, we use the
nRF52840 as the device and IEEE 802.15.4 network in our
experiments. The result is visualized in the right bars (i.e.,
green bars) of Figure 7. As shown, it requires about 2-3x
latency compared with the RPI implementation of Sovereign.
However, since the bootstrapping is infrequent (e.g., once
in each device’s lifetime) and the latency of content and
command delivery are below 500 ms, Sovereign is practical
for the use of constrained devices in smart homes.
Execution Time Breakdown: A breakdown of Sovereign’s
runtime into individual operations is provided in Figure 8.
The visualized operations are performed when preparing Data
before broadcasting to the network and Data processing after
receiving. This includes digital signature creation and verifica-
tion (ECDSA), content encryption and decryption (AES CBC),
security policy checking, NDN packet encoding/decoding, and
other cryptographic operations (including ECDH, KDF). The
results show that asymmetric cryptography consumes most
of the computation time. This trend is observable across all
evaluated devices.



10

en
cry

pt&

de
cry

pt
pk

t s
ign

&

sig
 ve

rify

en
cod

ing
&

de
cod

ing

oth
er 

cry
pto

op
era

tio
ns

  
pu

b:

en
cry

pt pu
b:

pk
t s

ign pu
b:

en
cod

ing sub
:

de
cod

ing sub
:

sig
 ve

rify sub
:

sch
em

a
sub

:

de
cry

pt

0.1

1.0

20.0

100.0
300.0

0.05

6.95

0.03

6.12

0.02

2.31

0.01 0.01

2.76

0.01
0.03

0.16

15.62

0.09

14.51

0.09

7.53

0.08

0.02

8.19

0.03

0.12

1.94

267.82

0.57

215.92

0.28

119.33

6.62

0.07

127.51

11.05

1.35

Bootstrapping

Pu
b/

Su
b

Ti
m

e 
El

ap
se

 (m
s)

App: core i7 2.2GHz Device: cortex A53 1.4GHz Device: cortex M4 64MHz

Figure 8: Breakdown of the Execution Time

ROM and RAM Footprint: We programmed an nRF52840
chip using RIOT OS [38] for measuring Sovereign’s mem-
ory footprint. Table II reports the size taken by individual
Sovereign modules. All the main modules together require
less than 50 KB of RAM and 70 KB of ROM. This indicates
Sovereign’s ability to be used on resource-constrained smart
home devices.

Program/Modules ROM Use RAM Use
Subscriber in total 62KB 47.3KB
Publisher in total 52.4KB 38.2KB

Application 1.8% 7.3%
High-level Modules 20.7% 34.2%

Utilities 3.3% 14.4%
Crypto Tools 25.1% 0.2%

Network Forwarder 24.1% 25.0%
OS and Adaptation 25.1% 18.9%

Table II: ROM and RAM Consumption

C. Developer Friendliness Evaluation

As shown by the line-by-line comparison between the
Sovereign and SmartThings applications in Figure 6, it be-
comes apparent that Sovereign offers a similar experience
to developers as SmartThings. Specifically, the highlighted
lines reveal a high API similarity and indicate that developers
can port existing smart home applications easily to Sovereign
without requiring changes to the application’s logic.

We evaluated the developer friendliness by a program-
ming experiment6. We recruited computer science students
as participants and asked each participant to write three new
sample applications, including related device drivers, and to
finish a questionnaire afterward. We give no assistance except
for providing a brief introduction, instructions, and the SDK
documentation with code examples. Appendix B provides
additional details on the programming experiment.

We found ten participants for the final programming experi-
ment, none of which had prior experience in developing smart
home software. Among them, two participants experienced
issues with the controller’s graphical UI, and hence, did not

6Our study has been certified as an exempt study by UCLA Research
Administration with protocol ID IRB#20-001611.

Stages Descriptions Avg.
Time*

Min
Time*

Max
Time*

Tutorial Finish the Sovereign tutorial 68 20 90

Task 1 Write an application that triggers
an alarm when detecting smoke 41 23 90

Task 2
Write an application that controls

an air conditioner based on
temperature values

24 15 40

Task 3
Write an application that used

motion sensor and lights to detect
if someone is at home

26 17 35

∗: Counted in minutes

Metrics Avg. Min Max
Lines of Code 72 15 114

Preparation Time** [min] 39 10 90
Debugging Time [min] 32 5 60

∗∗: The time spent for reading documentation after finishing the tutorial.

Table III: Results of the Programming Experiment

System
Cloud

Independent
Home

Fine-grained
Security Policy

Resilience to
controller failure

HomeOS [52] Conditionally* 3 7
IoTGuard [18] N/A 3 7
SmartAuth [16] N/A 3 7
HanGuard [17] N/A 7 7
ContextIoT [15] N/A 3 7

EXPAT [19] N/A 3 7
IoT-IDM [21] N/A 7 7

SMP [22] N/A 7 7
OpenHAB [53] Conditionally** 7 7

Home Assistant [54] Conditionally** 7 7

Sovereign Fully 3 3

N/A : The work is not relevant to whether the home relies on the cloud.
* : Cloud independent, when the controller is implemented locally.
** : Cloud independent, when purchased devices do not rely on the cloud.

Table IV: Comparison of Representative Related Work.

finish the experiment. Table III summarizes the results of
the remaining eight participants. As shown, the tutorial was
finished by all participants in an average time of 68 minutes.
The average time for completing the first task was 41 minutes,
and the remaining two tasks were solved in less time. We
expect the speedup to be caused by a learning effect.

After completing the programming tasks, all participants
finished an online questionnaire about Sovereign’s ease of
use. Two participants expressed concerns regarding the vague
specification of function parameters and the long function
names that are challenging to remember. Also, four partic-
ipants suggested adding more illustrations about the system
logic in the documentation. Other than that, the participants
faced no difficulties in using Sovereign’s SDK.

VI. RELATED WORK

Smart Home User Control: Many works aim to enhance
user control to today’s smart home systems. For example,
HomeOS [52] was proposed before the booming of the com-
mercial smart home market. Its main goal is to hide device
heterogeneity from application development by treating all
IoT devices as directly attached peripherals to a home PC.
However, the high dependency on a single centralized PC
raised the concern of single point of failures; if one were to
move that device to the cloud, it would resemble today’s cloud-
based solutions. After cloud-based smart home deployment
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became popular, different solutions have been proposed to
add runtime enforcement of security policies for better user
control. Some focus on modifying existing IoT application
programs, or adding additional data flow verification onto the
existing cloud backend [15]–[19]. Other solutions add user
control at the network layer [17], [20]–[22], e.g., by assigning
dedicated managers sitting at the network gateway to control
whether to block individual network packets based on user-
defined policies (e.g., through Software Defined Network).
Nevertheless, these approaches do not move away from the
cloud-based system model and thus do not fully address the
issues as mentioned in §II. A comparison between these
approaches and Sovereign is shown in Table IV.

Home automation projects that provide user control with
a local hub, like OpenHAB [53] and Home Assistant [54],
are seemingly similar to Sovereign’s local control. The hub
in these projects can directly control those devices that are
cloud-independent, thus realizing local user control to some
extent. However, these systems have a different goal from
ours: they focus more on providing a uniform control interface
for users and facilitating the delivery of users’ commands.
Thus, they do not provide a systematic solution to securing
the communication between devices and to enforce inter-
device access control. In addition, since all user commands
go through the local hub, the hub is a single point of failure.

Use of Names: Proposals that utilize semantically meaningful
names closely relate to our approach. For example, Intentional
Naming System (INS) [55] utilized semantic names inspired
from earlier works [56]–[58] to build an application overlay
for information and resource discovery. Bolt [59] also uses
semantic names from the application layer by abstracting data
as a stream of time-tag-value records, in which the semantic
tags are used for data management. Besides, SemIoTic [60]
utilizes a semantically meaningful meta-model based on Se-
mantic Sensor Network (SSN) ontology to describe smart
spaces. These works use names to facilitate service discovery
and data management at the application layer, which indicates
the undesired overhead like the IP-name mapping and the
complexity to bridge the gap between the data-centric security
and secured TCP/IP channels. IoT wireless protocols, like
Bluetooth Low Energy (BLE) [61] and ZigBee [62], also
define service identifiers rather than using opaque network
addresses for communication. Nevertheless, the identifiers in
BLE and Zigbee are solely for the purpose of communication.
In contrast, the names in Sovereign are not only used for
identifying resources but also used to execute security and
define security policies.

Pub/Sub: Regarding the related works in pub/sub, conven-
tional realizations, such as MQTT [63], rely on a central
message broker that handles message filtering and forward-
ing. The message broker serves as the rendezvous point
between publishers and subscribers, interconnecting both ends
at the application layer over a network of channel-based
communication models. Sovereign’s pub/sub implementation
uses NDN’s name semantic for defining message topics. This
allows publishers and subscribers to rendezvous by namespace
over broadcast network media, removing the need for a central

broker. Our implementation also differs from existing NDN-
based pub/sub designs [64]–[66], which are designed to run
over multihop networks and utilize a synchronization proto-
col between publishers and subscribers. Sovereign leverages
the local broadcast network setting to remove the need and
overhead for a synchronization protocol.

Related Works in ICN: Recent years have also seen
researches [12], [65], [67]–[74] on the direction of ICN based
smart homes. For example, Shang et. al [12], [67] analyze the
functions of cloud in today’s cloud-based smart home systems
and discuss how NDN can be potentially utilized to provide
a replacement of cloud to operate the smart home in a local
environment. Ascigil et. al [68] explore the different strategies
of using NDN names for data fetching and computation power
placing in edge IoT networks. Other works [73], [74] also
investigate how to combine the NDN/ICN with existing pro-
tocols like LowPAN or CoAP for IoT networking. Discussing
potential benefits and applying NDN/ICN to specific IoT
protocols, existing works are in an early stage of the direction.
In this paper, we present a systematic NDN-based smart home
framework with concrete implementation, which we believe is
a big step forward in this direction and helps to examine the
benefits of using NDN/ICN in IoT scenarios.

Comparing Sovereign’s access control with existing NDN
based access control solutions like Name-based Access Con-
trol (NAC) [75], the similarity is that they both utilize naming
conventions for automated key delivery. However, in order
to work with constrained devices, Sovereign’s access control
approach is more lightweight by directly delivering sealed
symmetric decryption keys to authorized entities without
computation-intensive asymmetric key encryption schemes.

VII. DISCUSSION

After presenting the design and evaluation of Sovereign in
the earlier parts of the paper, this section critically discusses
our design choices.

Sovereign Controller and System Resiliency: The controller
failure does not stop the system’s normal operation. Our ex-
periments show that Sovereign can continue operating during
failures of the smart home controller.

However, since Sovereign’s security design relies on the
controller acting as a trust anchor, a compromised controller
means hijacking the trust anchor, bringing all vulnerabilities
similar to the compromised root certificate of a system. Hence,
we highly recommend hardening the access to the controller,
and developing means for quick compromise detection. One
can add special protection for the controller, such as two-factor
authentication, the use of hardware TPM’s, and build anomaly
detection on top of our framework. At the same time, we
recognize that such measures might interfere with the smart
home system’s usability for end users.

As part of our future work, we plan to relax the single
point of trust, for example, with secret sharing schemes [76]
or threshold signatures [77]. In this way, the trust is jointly
held by multiple parties, namely, multiple controllers can be
installed (e.g., a hub device in the home, and the homeowner’s
smartphone). Such schemes allow that all security-critical
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actions need to be verified by more than a single party,
reducing the impact of a single compromised controller.
Resiliency to Packet Losses and Link/Node Failures: Two
other commonly encountered failures in a networked sys-
tem are network packet losses and link or node failures. In
Sovereign, data consumers are responsible for reliable data
fetching. If an Interest packet times out without receiving
the requested data, the consumer retransmits the Interest. In
addition, Sovereign also utilizes redundancy mechanisms to
improve packet delivery success: (i) fully utilizing broadcast
media: if a device misses a notification message, it may hear
a related response message issued by another device which
received the notification; and (ii) redundant notification: when
sending notification for a newly available Data packet (i.e., a
command), the entity may send redundantly by retransmitting
aggressively. Regarding a failed or compromised devices in
Sovereign, the damage is limited. A failed node does not
affect others’ direct communication, and even a compromised
node cannot access resources that it is not allowed to. When
such a device is identified (e.g., by applying existing intrusion
detection mechanisms [18], [78]–[81] above Sovereign), its
identity, as well as access rights, can be revoked by updating
security policies and not renewing its keying material.
Using the Cloud in Sovereign: Sovereign’s main contribution
to user privacy protection is putting the control of users’ data in
the users’ hands. This does not exclude or discourage the use
of cloud services. A smart home system is free to outsource
individual services like backup storage, or computationally
intensive tasks such as voice recognition, to cloud service
providers. Sovereign supports this by handling remote services
as normal system entities. That is, same as local entities, cloud
services need to obtain permission from the home controller
before they can access home data.
Deployment of Sovereign: The deployment of smart home
solutions is far more than a technical question and reaches
beyond the scope of scientific research. The goal of Sovereign
is to demonstrate an alternative to today’s practice, and to
encourage more discussion and development around this new
direction. It is noteworthy that Sovereign does not depend on
a global NDN deployment. Even the deployment of NDN in
the home network is transparent because the communication
specifics are included in, and automatically handled by, the
Sovereign core library. When NDN based designs become
gradually adopted on edge systems and applications and bring
desired benefits to end users, they can be expected to drive
broader adoptions of NDN at a larger scale.

VIII. CONCLUSION

We make three observations based on our investigation
into the Sovereign design and development. First, although
cloud-based applications have achieved great successes, home
IoT systems should take a different direction; putting the
home system control in end users’ hands offers a sure way
to fully protect user privacy. Second, the biggest challenge
in designing a user-controlled home IoT system is security,
and today’s network security practices do not fit the home
problem space. Third, our experience with Sovereign suggests

that the new networking direction pointed out by ICN/NDN
research, using semantically named and secured data as the
basic system building block, shows great promise in enabling
user-controlled smart home systems.

The Sovereign design and development are still in an early
stage with a few important pieces remain to be done. In
addition to improving the reliability of the local controller,
another urgent task is the design and integration of a local
storage component for home operation logging, which can
further be used for auditing and data analysis. The reliability
of such a local data storage can be enhanced by saving an
encrypted backup in cloud-based storage systems.

We hope that this paper can serve as an invitation to all
interested parties in joining us in exploring and experimenting
with this new way of building smart homes.

APPENDIX A
THE CLOUD IN EXISTING SMART HOME SYSTEMS

In this appendix we use Amazon AWS IoT [4], Google
IoT Core [27], and Microsoft Azure IoT [6] as examples to
demonstrate the use of cloud backend in smart home systems.

Amazon AWS IoT: AWS IoT consists of three main com-
ponents: cloud-connected devices, cloud-hosted applications,
and the AWS Cloud. In an AWS IoT home system, devices
and applications must connect to the AWS Cloud through
TLS with mutual authentication. Therefore, each device and
application must install two public key certificates in advance:
one is AWS’s certificate as the trust anchor and the other
one is device/application certificate, which was issued when
developers registered their products at AWS. The cloud serves
as the message broker and the authority to manage the system
– any unauthorized access to home resources will be rejected
by the cloud. Though the recent AWS Greengrass frame-
work [82] encourages local communication, the management
is still realized at the cloud.

Google Assistant and Google IoT Core: Google Assistant
and Google IoT Core in general manage home IoT system with
Google’s cloud services and OAuth. Specifically, the cloud
creates a database for each home containing the information
of the structure, rooms, and devices. This database serves as a
global view of the home and is queried whenever there is an
intent (e.g., turn on the light). For a device or an application
to access some services, they need to obtain OAuth tokens
from a OAuth server running in the cloud. Besides, devices
are implemented with code that is deployed as a webhook
in the cloud. When users send a command to the device,
the command is first processed by the webhook and then
forwarded back to the device at home.

Microsoft Azure IoT: Azure IoT uses the cloud to interact
with individual devices. When receiving data, analysis will be
performed at cloud side which is connected to other Azure
cloud services. In D2D scenario, the cloud will also act as
a message broker between devices. In the middle of cloud
backend and devices, a predefined cloud gateway called Azure
IoT Hub is involved. Azure IoT Hub has the capabaility of
identity management for devices. When connecting to the
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cloud, the device and the cloud will be mutual authenticated
by a TLS-based handshake.

APPENDIX B
DEVELOPER FRIENDLINESS STUDY

The programming experiment presented in §V-C was de-
signed as follows. First, participants were from the computer
science department and were recruited via email, and a link
to the experiment website was also included in the same
email. The website contains (i) the background information,
(ii) the instructions for the experiment, (iii) the documentation
for Sovereign SDK, and (iv) a tutorial with code templates
and an example program. Beyond that, participants received
no further assistance. Then, we asked each participant to go
through the tutorial, write three programs for three simple
smart home use cases, and complete a questionnaire along
the experiment. Specifically, these three programs aim to
implement the following functionalities: (i) to raise the alarm
based on the smoke detector’s report, (ii) to monitor the
ambient temperature and turn on the air-conditioner when the
received temperature is higher than 80 degrees, and (iii) to
turn off all lights in the living room when the motion sensor
does not detect any motion for more than five minutes. The
questionnaire contained four parts, which were presented to
the participant at different stages of the experiment. Table V
lists all the questions. The first part surveys the participant’s
background information before the experiment starts. The sec-
ond part is after the tutorial but before the actual programming
starts. The third part is after the programming and the last part
is after the whole experiment, focusing on difficulties of using
the Sovereign APIs.

In addition, the participants were asked to end the exper-
iment if they have spent two hours in total. Note that all
participants took the experiment remotely so we had no control
over the participant’s experiment environment; however, the
impact can be ignored as the students who agreed to participant
should already have an appropriate workspace. Before the
real experiment, we also did a pilot test with two volunteers
to evaluate the experiment setup; some minor improvements
were made after that, mainly in regards to the clarity of API
documentation and instructions.

APPENDIX C
SECURITY ANALYSIS AGAINST EXISTING ATTACKS

In this appendix we analyze Sovereign’s security strength
by checking its resistance to various attacks that can exploit
common security design flaws in smart home and network
system design.

Smart Home Attacks: Recently, researchers have identified
various security design flaws at the application layer. For
example, Fernandes et. al [83] proposes a set of attacks that
exploit the coarse binding between authorized SmartThings
devices and applications. A typical attack caused by coarse
access control is a Pin Code Snooping Attack, where attackers
leverage an over-privileged battery monitoring application to
read door lock’s PIN code. Whereas in Sovereign, semantic

No. Questions
Part 1 Background

1.1 Do you have experience on home automation?

1.2
If you have experience on home automation, what’s the ad-
vantages/disadvantages of Sovereign comparing to the home
automation library you used before

Part 2 Learning

2.1 How many minutes did it take for you to finish the quickstart
example/tutorial?

2.2 How many minutes did it take to learn the library before you
begin coding?

Part 3 Programming Experiment
3.1 How many minutes did it take for you to finish your task 1?
3.2 How many minutes did it take for you to finish your task 2?
3.3 How many minutes did it take for you to finish your task 3?
3.4 How many minutes did it take to debug your application?
3.5 How many lines of code did you write for your application?

Part 4 Summary and Suggestion
4.1 Do you face any difficulty when using the API?
4.2 Do you have any suggestion to improve the API?

Table V: Questionnaire accompanying the programming ex-
periment

meaningful names ensure the fine granularity for access con-
trol. Using the same attack scenario, security policies enforce a
Sovereign application under “/alice-home/Battery” can only
obtain decryption key for decrypting data under the same
prefix. If a malicious app disguises as a battery monitoring
app, it cannot get the decryption key for door lock related
data and thus cannot access the PIN code.

Security policies not only restrict the read access to certain
named data, but also regulate the authority of producing data.
Attacks like Disabling Vacation Mode Attack and Fake Alarm
Attack spoof the current smart home applications by raising
fake physical device events. By the least privilege design of
Sovereign’s access control, malicious applications that try to
produce fake physical device events, like fake smoke detection,
will not obtain acceptable signing key for the data. Thus, the
false alarm cannot pass the security policy verification process
as the malicious applications’ names does not match those
names for producing a smoke detection.
Network Attacks: Sovereign leverages NDN’s built-in se-
curity properties to handle common network attacks such as
Man-In-The-Middle Attack and Replay Attack. Specifically,
each Data packet in NDN carries a cryptographic signature that
ensures the data integrity and authenticity. Any manipulation
will fail the verification on the consumer end. In addition,
each signature comes with a nonce, a sequence number, or
a timestamp. This prevents the replay attack if a dead nonce
list or a latest sequence number is maintained or the clock is
synchronized in the system.
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[68] O. Ascigil, S. Reñé, G. Xylomenos, I. Psaras, and G. Pavlou, “A
keyword-based icn-iot platform,” in Proceedings of the 4th ACM Con-
ference on Information-Centric Networking, 2017, pp. 22–28.

[69] Z. Zhang, E. Lu, Y. Li, L. Zhang, T. Yu, D. Pesavento, J. Shi, and
L. Benmohamed, “Ndnot: a framework for named data network of
things,” in Proceedings of the 5th ACM Conference on Information-
Centric Networking, 2018, pp. 200–201.
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