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Abstract—Unmanned aerial vehicles (UAVs) have gained wide
research interests due to their technological advancement and
high mobility. The UAVs are equipped with increasingly advanced
capabilities to run computationally intensive applications enabled
by machine learning techniques. However, because of both energy
and computation constraints, the UAVs face issues hovering in the
sky while performing computation due to weather uncertainty.
To overcome the computation constraints, the UAVs can partially
or fully offload their computation tasks to the edge servers.
In ordinary computation offloading operations, the UAVs can
retrieve the result from the returned output. Nevertheless, if
the UAVs are unable to retrieve the entire result from the
edge servers, i.e., straggling edge servers, this operation will
fail. In this paper, we propose a coded distributed computing
approach for computation offloading to mitigate straggling edge
servers. The UAVs can retrieve the returned result when the
number of returned copies is greater than or equal to the
recovery threshold. There is a shortfall if the returned copies
are less than the recovery threshold. To minimize the cost of
the network, energy consumption by the UAVs, and prevent over
and under subscription of the resources, we devise a two-phase
Stochastic Coded Offloading Scheme (SCOS). In the first phase,
the appropriate UAVs are allocated to the charging stations
amid weather uncertainty. In the second phase, we use the
z-stage Stochastic Integer Programming (SIP) to optimize the
number of computation subtasks offloaded and computed locally,
while taking into account the computation shortfall and demand
uncertainty. By using a real dataset, the simulation results show
that our proposed scheme is fully dynamic, and minimizes the
cost of the network and UAV energy consumption amid stochastic
uncertainties.

Index Terms—Unmanned Aerial Vehicles, Coded Distributed
Computing, Stochastic Integer Programming, Task Allocation,
Internet-of-Things

I. INTRODUCTION

Due to the rapid advancement of Internet of Things (IoT)
enabled technologies, the number of wirelessly connected
devices is increasing exponentially [1] and generating huge

WC. Ng and WYB. Lim are with Alibaba Group and Alibaba-NTU Joint
Research Institute, Nanyang Technological University, Singapore

ZH. Xiong is with Singapore University of Technology and Design,
Singapore

D. Niyato is with School of Computer Science and Engineering, Nanyang
Technological University, Singapore.

C. Miao is with Joint NTU-UBC Research Centre of Excellence in
Active Living for the Elderly (LILY) and School of Computer Science and
Engineering, Nanyang Technological University, Singapore

Z. Han is with the Department of Electrical and Computer Engineering
in the University of Houston, Houston, TX 77004 USA, and also with the
Department of Computer Science and Engineering, Kyung Hee University,
Seoul, South Korea, 446-701.

D. I. Kim is with the Department of Electrical and Computer Engineering,
Sungkyunkwan University (SKKU), Suwon 16419, South Korea

amounts of data [2]. There are many new real-time appli-
cations enabled by wirelessly connected devices, such as
augmented/virtual reality [3] and smart cities [4] that are
delay-sensitive. For example, it is important to know the real-
time traffic [5]/parking [6] information to regulate traffic flow.
The increase in wirelessly connected devices exerts a tremen-
dous burden on the wireless communication infrastructure.
For example, in many urban areas that are covered by dense
skyscrapers or when the end-users are in congested regions
or at high-speed vehicular network [7], the content in the
static roadside units (RSUs)/base stations (BSs) cannot be
successfully delivered to the end-users.

One solution is to deploy Unmanned Aerial Vehicles
(UAVs), also known as drones, to act as an airborne BS to
collect and process data from the terrestrial nodes [8, 9]. UAVs
are in different shapes and sizes, such as fixed wings or multi-
rotors, and they can maintain a line-of-sight communication
with the end-users to provide a better quality of service (QoS).
Furthermore, UAVs can be flexibly deployed to inaccessible
terrains or disaster relief operations, e.g., due to their size
and mobility. Moreover, wireless connections can be estab-
lished without a fixed infrastructure to extend communication
coverage. However, apart from all those benefits, UAVs are
faced with energy constraints [10], and thus, they cannot
complete their computation tasks if the energy utilization is
not scheduled correctly.

In this paper, we consider a network contains various
UAVs, mobile charging stations, and edge servers that are
attached to the BSs to run applications such as traffic monitor-
ing [11, 12]. The UAVs are required to perform computation,
e.g., distributed matrix multiplication, as it is central to many
modern computing applications, including machine learning
and scientific computing [13, 14] in applications such as
post-disaster relief assistance [15] and crowd detection [16].
To alleviate some of the battery constraints of the UAVs,
the matrix multiplication can be offloaded to ground-based
edge servers for processing. The matrix multiplication in
the UAVs can be accelerated by scaling the multiplication
out across many distributed computing nodes in BSs or
edge servers [17] known as the workers. However, there is
a significant performance bottleneck that is the latency in
waiting for the slowest workers, or “stragglers” to finish their
tasks [17]. Coded distributed computing (CDC) is introduced
to deal with stragglers in distributed high-dimensional matrix
multiplication. In CDC, the computation strategy for each
worker is carefully designed so that the UAV only needs to
wait for the fastest subset of workers before recovering the
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output [17]. The minimum number of workers that the UAV
has to wait for to recover their results is known as the recovery
threshold.

Apart from using the CDC technique to mitigate stragglers,
there are three challenges in this network. The first challenge is
the weather uncertainty. If the UAV is not properly allocated,
it may not withstand the strong wind if its engines are not
sufficiently powerful and the battery capacity is small. The
second challenge is demand uncertainty. Typically, the edge
servers in the BSs require the users to pay a subscription fee
in advance, e.g., monthly subscription, so that the users, i.e.,
UAVs, can use the offloading service. For instance, in matrix
multiplication, the size of the matrices, which is the demand,
is not always the same. If the actual matrix size is very small,
it will be cheaper to perform the local computation within the
UAV. Therefore, an uncertainty of actual demand can result in
an over-and under-subscription problem. The third challenge
is the shortfall uncertainty. Once after the UAVs are allocated,
they can perform full local computation, full offload or partial
offloading. If the UAV decides to offload the computation to
the edge servers in BSs, there is shortfall uncertainty that the
copies cannot be returned by any edge servers on time to the
UAV due to delays and link failure [18]. It means that the total
copies that the UAV has is less than the recovery threshold,
where each copy is a sub-portion of matrices involved in the
matrix multiplication operation. Therefore, the UAV has to
pay a correction cost to re-compute the number of shortfalls
locally or re-offload them to match the recovery threshold.
This correction cost also involves a hovering cost as the UAVs
have to hover in the sky throughout the re-computation.

To overcome the three challenges mentioned above, we
introduce the Stochastic Coded Offloading Scheme (SCOS).
SCOS is a two-phase optimization scheme that adopts a CDC
technique to reduce the total cost of the network:

• Phase one (UAV type allocation): The application owner
will first allocate the appropriate UAV to each mobile
charging station by considering the weather condition in
each time slot. This weather uncertainty is modeled by a
two-stage Stochastic Integer Programming (SIP) [19].

• Phase two (task allocation): There are a different num-
ber of time-frames/periods within the same time slot.
For example, when the morning is the first time slot,
each hour is treated as one period, and task allocation
occurs in each period. Demand and shortfall are the two
uncertainties in task allocation. Instead of performing
local computation as the correction action to correct the
shortfalls, the same decision options are provided to the
UAVs until the z stage. Therefore, z-stage SIP is used
to model the demand and shortfall uncertainty in various
stages.

Extensive simulations are performed to evaluate the effective-
ness of SCOS. The results show that SCOS can minimize
the total cost and the UAVs’ energy consumption, especially
compared with the traditional deterministic baseline scheme.

The contributions of this paper are summarized as follows.

• The combination/integration yields fully dynamic on-
demand computing solutions for emerging applications

such as road traffic prediction for autonomous vehicles in
which traditional approaches are ineffective due to their
rigid and fixed deployment.

• Our SCOS is able to provide strategic scenario-based
decision that adapts well with the weather condition in
which the current solutions for UAVs are limited.

• The proposed SCOS can minimize the UAVs’ overall
costs by optimizing the task allocation. At the same time,
it can also minimize all the UAVs’ energy consumption.
The optimal solution is achieved by considering both the
demand and shortfall uncertainty.

• From the performance evaluation, we use the real data
to validate that SCOS is the optimal scheme when the
performance is compared with the Expected-Value For-
mulation (EVF) and random scheme.

The remainder of the paper is organized as follows: In
Section II, we review the related works. In Section III, we
present the system model. In Sections IV and V we formulate
the problem. We discuss and analyze the simulation result in
Section VI. Section VII concludes the paper.

II. RELATED WORK

A. UAV-enabled Mobile Edge Computing

Mobile edge computing (MEC) is regarded as a promising
solution to break through the computation limitation [20]. Due
to the flexibility of the UAVs, the UAV is an ideal mobile
edge computing (MEC) platform for performing computing-
intensive tasks for ground users. Furthermore, the UAV-
enabled MEC platform can be quickly deployed in emergency
response scenarios such as major traffic accidents [21]. There
have been several works investigating the performance of
UAV-enabled MEC. In [22], the authors studied the UAV-
enabled MEC wireless powered system by considering both
partial and binary computation offloading modes. Instead of
using only the UAVs to act as the BSs, the authors in [23]
installed the MEC servers on both UAVs and stationary BSs
and presented a novel game-theoretic framework to serve
their users more efficiently. In [24], the authors consider both
computation bits and energy consumption to optimize the
computation efficiency in a multi-UAV MEC system. The
authors in [25] maximize the computation efficiency in partial
computation offloading mode.

However, different from the work mentioned above, in this
paper, we reduce energy consumption by adopting a CDC
technique to mitigate stragglers in the network. The UAVs
can recover the computed task if the returned tasks are greater
than or equal to the recovery threshold.

B. Stochastic Integer Programming

Stochastic integer programming is one of the important tools
to incorporate uncertainty in optimization problems [26]. SIP
can be applied to various fields to solve the optimization prob-
lem, e.g., production planning [27]. SIP assumes uncertain data
as random variables with known probability distributions, and
uses sampled values from this distribution to build a scenario
tree and optimize over the expectation [28]. SIP models can
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correct the decisions using the concept of recourse. In this idea,
some decisions have to be made before realizing uncertain
parameters and some decisions after their realization [19].
SIP models can be formulated as the two-stage and multi-
stage problems. For the two-stage SIP, stage one decisions are
made ‘here and now’ at the beginning of the period without
the uncertainty realization. Stage two decisions are taken ‘wait
and see’ as the recourse action at the end of the period [29].
For example, in [30], the authors applied the two-stage SIP to
optimize the resource provisioning cost in cloud computing.
In the courier delivery serves, the authors in [31] uses the
two-stage SIP to plan an optimal vehicle delivery route. A
multi-stage SIP is a generalization of the two-stage SIP to
the sequential realization of uncertainties. For example, the
authors in [32] use a multi-stage SIP to optimize electricity
generation, storage, and transmission investments over a long
planning horizon. The recourse is the key concept behind SIP.
In this problem, weather, demand, and shortfall uncertainties
are constantly changing. Therefore, it is not possible to obtain
one decision that is suitable for all scenarios. With the idea of
recourse, corrective action can be made after a random event
has taken place. To the best of our knowledge, the application
of stochastic programming to coded distributed computing has
been less studied.

C. Coded Distributed Computing
Distributed computing has been widely adopted to perform

various computation tasks in different computing systems [33,
34]. Nevertheless, there are many design problems, i.e., com-
puting frameworks are vulnerable to uncertain disturbances,
such as node failures, communication congestion, and strag-
gler nodes [18]. Only in recent years, coding techniques gained
great success in improving the resilience of communication,
storage, and cache systems to uncertain system noises [35].
The authors have [36] first presented the used of CDC to
speed up matrix multiplication and data shuffling. As a result,
a lot of the focus has been shifted to CDC. Followed by this
study, CDC has been explored in many different computation
problems, such as the gradients [37], large matrix-matrix
multiplication [38], and multivariate polynomials [39].

There have been many other works to reduce the com-
munication load [40, 41] that are capable of improving the
overall communication time. The authors in [40] introduced
a Coded MapReduce framework to reduce the inter-server
communication load by a multiplicative factor that grows
linearly with the number of servers in the system. The authors
in [41] presented a technique known as Short-Dot to reduces
the cost of computation, storage, and communication. Besides
reducing the communication load, Short-Dot also tackles the
straggler issue. It completes the computation successfully by
ignoring the stragglers. More relevant to our study, the authors
in [13] proposed PolyDot codes, which is a unified view of
Matdot [13] and Polynomial codes [17] and leads to a trade-off
between recovery threshold and communication costs.

However, the works mentioned above mainly focus on the
designing of different CDC schemes. Therefore, in this paper,
we adopt PolyDot codes in the UAV network to alleviate the
straggler problem and improve network reliability.

Phase one UAV type allocation

Phase two task allocation

Take-off and landing path

OR

OR

Small UAV

Medium UAV

Large UAV

UAV Local computation

Offload

Base Station
Contains

Edge server 1

Edge server 20

Mobile charging station

Mobile charging station

When there is strong wind and

the largest type UAV is not used

Redeploy

Large UAV

Fig. 1. An illustrative example of the network with X = {1 : small, 2 :
medium, 3 : large}, 1 mobile charging station Y = 1, 20 edge servers
q1 = 20 attached to 1 BS F = 1.

III. SYSTEM MODEL

The overall system model is shown in Fig. 1. We model
the phase one (UAV type allocation) and phase two (task
allocation) to complete applications defined by an application
owner, e.g., road traffic monitoring [11] while considering
various uncertainties. Since each edge server has limited
computation capability, by deploy many edge servers at the
BS, we can use constraints (53) and (54) from Appendix A
to ensure that there will be enough computation resources to
support the computation required by each UAV. The following
sets are used to denote time slots, UAV types, mobile charging
stations, and BSs.
• T = {1, . . . , t̄, . . . , T̄} represents the different time slot.
• P̄ t̄ = {1, . . . , p̄t̄, . . . , P̄ t̄} represents the period in time

slot t̄.
• The available UAVs are clustered into |X | types denoted

by set X , where X = {1, . . . , x, . . . ,X}. Specifically,
the type refers to the battery capacity of the UAV in
ascending order. For example, X is the largest type UAV
that has the most battery and therefore leads to a longer
flight time. The UAVs are owned by service provider Ā1.
We use xt̄ to denote when type x UAV is used in time
slot t̄.

• Y = {1, . . . , y, . . . , Y } represents the UAV mobile
charging stations, owned by service provider Ā1. All the
mobile charging stations are deployed at pre-specified
locations defined by application owner Ā3.

• Each of BS f is attached with qf number of edge servers.
F = {1, . . . , f, . . . , F} represents BSs with the height
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of Hf . Edge servers are owned by service provider Ā2.
In phase one, the application owner first considers the

weather uncertainty to pre-allocate the UAV types to each
mobile charging station, also known as a UAV depot. Once
the phase one optimization is done, all the UAVs will take
off from their respective mobile charging stations which are
located at (ay, by). (ay, by) are the x-y coordinates of mobile
charging station y. At time slot t̄, type x UAV will take
off vertically to the height of Hy,xt̄ and hover in the sky
for purposes such as traffic monitoring. (ay, by, Hy,xt̄) and
(af , bf , Hf ) are the three-dimensional coordinates of the type
x UAV associated with mobile charging station y and edge
servers in BS f , respectively, where Hy,xt̄ > Hf to maintain
a line-of-sight (LoS) communication link between type x UAV
and edge servers in BS f . For simplicity, we assume that UAV
maintain a LoS link with the edge servers in the RSUs. Due
to the hovering capability, we consider only the rotary-wing
UAVs [42].

After the UAVs reach their respective heights, they can
receive and process computation tasks. In this paper, we
consider the task that the type x UAV computes is the matrix-
matrix product AB involving the two matrices A and B.
However, the UAV has limited computing and storage capabil-
ity [43]. Therefore, the UAV can choose to offload a portion
or the whole matrix multiplication to the edge servers [43]. In
phase two, it derives the offloading decision to minimize the
overall operation cost by considering the demand and shortfall
uncertainties. Note that the key notations used in the paper
are listed in Table I. In the following, we discuss the coded
distributed computing model and UAV energy consumption
model.

A. Coded Distributed Computing

Massive parallelization can speed up matrix multiplication.
However, it has a computational bottleneck due to stragglers
or faults. Coded computation is introduced to make matrix
multiplications resilient to faults and delays, i.e., PolyDot
codes [13]. In PolyDot codes, the system model typically
consists of the followings [13]:
• Master node receives computation inputs, encodes and

distributes them to the worker nodes.
• Worker nodes perform pre-determined computations on

their respective inputs in parallel.
• Fusion node receives outputs from successful worker

nodes and decodes them to recover the final output.
We consider that the type x UAV is our proposed network’s
master and fusion node. Each edge server in BS f is the worker
and has the computation capability of τf,q , where τf,q denotes
the CPU computation capability of the edge server q in BS f
(in CPU cycles per second).

The definitions of copy, successful workers, recovery thresh-
old, shortfall, and demand are given as follows.
Definition 1. [Copy] a fraction of matrices A and B [13].
Definition 2. [Successful workers] Workers that finish their
computation task and the task is received successfully by the
UAV.

Definition 3. [Recovery threshold] The recovery threshold
is the worst-case minimum number of successful workers
required by the UAV to complete the computation [13].
Definition 4. [Shortfall] There exists a shortfall when the
total returned copies from the local computation and from the
workers are less than the recovery threshold.
Definition 5. [Demand] The demand is size of the matrix
input Ny . It is always different as the input of the matrix
multiplication is not always the same.

Following [13], two Ny × Ny square matrices Ay and By
are considered. Note that our model can be applied to other
matrices, e.g., non square matrices. Each of matrices Ay and
By is sliced both horizontally and vertically. For example, Ay
is sliced into Ny

t ×
Ny

s matrices and By is sliced into Ny

s ×
Ny

t .
We choose s and t such that they satisfy st = m [13] and
a copy is the m-th fractions of matrices A and B. Each edge
server has a storage constraint that limits the edge server to
store only m fractions of matrices A and B [13]. The recovery
threshold k is defined [13] as:

k = t2(2s− 1). (1)

The processing by the workers may take a longer time when
it is currently occupied with some other tasks. Therefore, the
processing in the offloaded tasks is perceived to have failed if
the duration exceeds the threshold time limit [44]. To recover
the computed task, the sum of returned offloaded copies and
locally computed copies must be greater than or equal to
recovery threshold k.

The decision scenario of phase one and phase two are
explained using recovery threshold k. In phase one, |X |
scenarios may occur. Mobile charging station y chooses the
UAV type to be used. In phase two, three scenarios may occur.

• The UAV can compute all copies locally, M (L)

y,xt̄ ≥ k,

where M (L)

y,xt̄ indicates the number of copies that type x
UAV from mobile charging station y computes locally at
time slot t̄ and k is defined in (1).

• The UAV can offload all copies to BS f , M (O)

y,xt̄,f
≥ k,

where M
(O)

y,xt̄,f
denotes the number of copies that are

offloaded to the edge servers in BS f at time slot t by
the type x UAV from mobile charging station y.

• The UAV can compute some copies locally and offload
some copies to the edge servers in BS f , M (L)

y,xt̄ +

M
(O)

y,xt̄,f
≥ k

The final output can be decoded from all the return copies
M

(L)

y,xt̄ +M
(O)

y,xt̄,f
.

Similar to [13], the type x UAV associated with mobile
charging station y uses denc = N2

y (M
(L)

y,xt̄ + M
(O)

y,xt̄,f
)

symbols for encoding of matrices and ddec = N2
y t

2(2s −
1) log2 t2(2s − 1) to decode the returned matrices. Each
copy contains m-th fractions of matrices A and B. UAV will
transmit dtocomm =

N2
y

m symbols to each of the edge servers.

Each copy requires dcmp =
N3

y

mt symbols for computation.
After computation is completed, the edge server will send
dfrcomm =

N2
y

t2 symbols back to the UAV.
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TABLE I
LIST OF KEY NOTATION

Symbol Definition
T Set of time slots while t̄ ∈ T denotes the time slot index
P̄ t̄ Set of periods in t̄ while p̄t̄ ∈ P̄ t̄ denotes the period index
X Set of UAV types while x ∈ X denotes the UAV type index
Y Set of mobile charging stations while y ∈ Y denotes the mobile charging station index
F Set of BSs while f ∈ F denotes the BS index
k Recovery threshold
z The number of stages in multi-stage SIP
γ t̄ Set of weather condition scenarios in t̄ while µt̄i ∈ γ t̄ denotes the weather condition scenario index
Θt̄ Set of demand scenarios in t̄ while λt̄i ∈ Θt̄ denotes the demand scenario index

Ω(z̄,t̄) Set of shortfall scenarios in stage z̄ − 1, where 2 < z̄ ≤ z, and t̄ while ω(z̄,t̄)
i ∈ Ω(z̄,t̄) denotes the shortfall

scenario index

Txt̄

y Binary variable at time slot t̄ for mobile charging station y indicates whether type x UAV is used.

T
(t̄,X)
y (µt̄i)

Binary variable at time slot t̄ for mobile charging station y indicates whether a correction on-demand type-X
UAV is used in scenario µt̄i , and X represents the largest UAV type.

M
(s)
f Binary variable to indicate whether the edge servers in BS f will be used or not

M
(L,2)

y,xt̄
(λt̄i)

Decision variable represents the number of copies computed locally by the type x UAV that is associated with
mobile charging station y in stage 2, time slot t̄ and scenario λt̄i

M
(O,2)

y,xt̄,f
(λt̄i)

Decision variable represents the number of copies offloaded to the edge servers in BS f by the type x UAV that is
associated with mobile charging station y in stage 2, time slot t̄ and scenario λt̄i

...
...

M
(L,ẑ)

y,xt̄
(λt̄i, . . . , ω

(z̄,t̄)
i )

Decision variable represents the number of copies computed locally by the type x UAV that is associated with
mobile charging station y in time slot t̄, scenario λt̄i , . . . , scenario ω(z̄,t̄)

i and stage ẑ, where 1 < ẑ ≤ z

M
(O,ẑ)

y,xt̄,f
(λt̄i, . . . , ω

(z̄,t̄)
i )

Decision variable represents the number of copies offloaded to the edge servers in BS f by the type x UAV that is
associated with mobile charging station y in time slot t̄, scenario λt̄i , . . . , scenario ω(z̄,t̄)

i and stage ẑ

B. UAV Hovering Energy

The propulsion energy consumption is needed to provide
the UAV with sufficient thrust to support its movement. Note
that we drop the time notation for ease of presentation. The
propulsion power of a rotary-wing UAV with speed V can be
modeled as follows [42]:

Px(V ) = Px,0

(
1 +

3V 2

U2
tip

)
+

Px,1

(√
1 +

V 4

4v4
0

− V 2

2v2
0

) 1
2

+
1

2
d0ρ

t̄AV 3, (2)

where

Px,0 =
δ

8
ρsA43

xR
3, (3)

Px,1 = (1 + r)
W

3/2
x√
2Aρ

. (4)

Px,0 and Px,1 are two constants related to UAV’s weight,
rotor radius, air density, etc. Utip denotes the tip speed of the
rotor blade, v0 is known as the mean rotor induced velocity in
hover, d0 and s are the fuselage drag ratio and rotor solidity,
respectively. ρ and A are the air density and rotor disc area,
respectively. r is the incremental correction factor to induced
power. Wx is the type x UAV weight, δ is the profile drag
coefficient, and 4x denotes blade angular velocity of the type
x UAV. By substituting V = 0 into (2) [42], we obtain the
power consumption for hovering status as follows:

Px,h = Px,0 + Px,1. (5)

C. Local Computing Model

When one copy is processed locally, the local computation
execution time of the type x UAV is expressed as [45]:

tlocaly,x (Ny) =
Cxd(

N3
y

mt )

τx
, (6)

where Cx is the number CPU cycles needed to process a bit, τx
denotes the total CPU computing capability of the type x UAV,
and d(·) is a function to translate the number of symbols to
the number of bits for computation, i.e., if the 16 Quadrature
Amplitude Modulation (QAM) is used, each symbol carries 4
bits [46]. The type x UAV takes tency,x seconds to encode one
copy of the matrices, and it is expressed as follows:

tency,x (Ny) =
Cxd(N2

y )

τx
. (7)

After the type x UAV obtains at least k copies, it will take
tdecy,x seconds to decode. tdecy,x is defined as follows:

tdecy,x(Ny) =
Cxd(N2

y t
2(2s− 1) log2 t2(2s− 1))

τx
. (8)

D. UAV Communication Model

We assume that each UAV is allocated with an orthogonal
spectrum resource block to avoid the co-interference among
the UAVs [47]. The transmission rate from the type x UAV
which is associated with mobile charging station y to the edge
servers in BS f can be represented as [48]:

ry,x,f = Bx log2(1 + PCx hy,x,f/No), (9)

where the wireless transmission power of the type x UAV at
time slot t̄ is expressed as PCx and Bx is the bandwidth. hy,x,f



6

is the channel gains, and N0 is the variance of complex white
Gaussian noise. The UAV to edge server communication is
most likely to be dominated by LoS links. Therefore, the air-
to-ground channel power gain from the type x UAV to the
edge servers in BS f can be modeled as follows [49]:

hy,x,f =
β0

D2
y,x,f

, (10)

where

D2
y,x,f = (ay − af )2 + (by − bf )2 + (Hy,x −Hf )2. (11)

Dy,x,f denotes the distance between the type x UAV that is
associated with mobile charging station y and the edge servers
in BS f , and β0 represents the reference channel gain at
distance d0 = 1m in an urban area [49]. We assume that for
all the edge servers in the same BS f , they will have the same
D2
y,x,f . The transmission time to offload one copy of matrix

from the type x UAV to a edge server in BS f can be given
as follows:

ttoy,x,f (Ny) =
d(
N2

y

m )

ry,x,f
. (12)

The energy ey,x required by the type x UAV to receive data
from the edge server in BS f is defined as follows [50]:

ey,x(Ny) = P rex
d(
N2

y

t2 )

rf,y,x
, (13)

where P rex is the receiving power of type x UAV. rf,y,x is the
transmission rate from edge servers in BS f to type x UAV
which is associated with mobile charging station y. It is define
similar to (9).

E. Problem Formulation

As an illustration, Fig. 2 depicts the decision process of
the system across all the time slots. UAV type allocation
is performed in each time slot t̄. Throughout t̄, the mobile
charging stations will use the same UAV type to perform
the task allocation in each period. Fig. 3 shows a detailed
diagram that zooms into one-period in one-time slot, and it is
explained in details in both Sections IV and V. In Section IV,
the application owner Ā3 pays a reservation cost to make
an advance booking for a different time slot for the use of
the UAVs. The application owner can observe the weather
condition via weather forecast as it may affect the status of
the UAV. If the wind is too strong and the UAV used is not
large type, the UAV may crash as it has insufficient energy to
hover against the wind [51]. For example, a strong wind has
high kinetic energy, kinetic energy leads to a higher density of
the air, and it increases the UAV hovering power consumption.
Low wind speed is referred to as wind speed that is less than
11m/s and turbulence level < 5 [52]. As a result, Ā3 has to
request an on-demand X type UAV to perform the job. In order
for SCOS to model the weather uncertainty, we formulate the
two-stage SIP to optimize the UAV type allocation.

To achieve cost minimization, phase two (task allocation)
in Section V has to consider two sources of uncertainty,
i.e., the demand uncertainty and shortfall uncertainty. Demand

uncertainty refers to the task required by the applications, such
as traffic monitoring can be of different sizes, i.e., the task’s
size depends on the image resolution. Shortfall uncertainty
refers to if the UAV offloads the copies to the edge servers,
the computed copies may not return, or the number of copies
returned is less than the recovery threshold due to delays
and link failure. Therefore, we use multi-stage SIP to model
the demand uncertainty to optimize the number of copies
to compute locally M

(L)

y,xt̄ and offload M
(O)

y,xt̄,f
. For example,

when the recovery threshold is k = 4 and the UAV decide
to offload two copies of the task for the edge servers in BS
f to compute, i.e., M (O)

y,xt̄,f
= 2. Therefore, the UAV has

to compute at least two more copies locally to match the
recovery threshold M

(L)

y,xt̄ = 2. In time slot t̄, type x UAV
will hover in the sky for a threshold time limit tthresh

y,xt̄ to wait
for the offloaded copies to return. Without loss of generality,
tthresh
y,xt̄ is set as the worst-case scenario, i.e., the time required

to compute all copies locally by the UAV, i.e., ML
y,xt̄ = k.

However, there is a probability that the edge servers in BSs
may fail, i.e., the computed task is not returned to the UAV
before tthresh

y,xt̄ . As a result, the UAV cannot complete the full
task if the total returned copies are less than 4. When the
UAV fails to receive sufficient number of copies, there are
shortfalls, and hence, the UAV has to re-compute the shortfalls
locally or re-offload to the edge servers. Since the UAV has
limited computation capabilities, it can choose to re-compute
the shortfall locally or re-offload to the edge servers until z
stages, where z is the number of times of re-computations. In
the meantime, the UAV has to continue hover in the sky when
performing the re-computation. In order to model the shortfall
uncertainty, we formulate z-stage SIP to optimize the numbers
of copies to compute locally and to offload, and we can also
optimize the number of stages required. Hence, this scheme
will minimize the overall network cost, and the system model
of this network is formulated as follows:

min
Txt̄
y ,Txt̄

y (µt̄
i),M

(s)
f ,...,M

(O,ẑ)

y,xt̄,f
(λt̄

i,...,ω
(z̄,t̄)
i )

:

∑
t̄∈T̄

OUAVallocation(t̄) +
∑
t̄∈T̄

∑
p̄t̄∈P̄ t̄

OTaskallocation(p̄t̄), (14)

subject to: (19)-(22), (44)-(56)
where OUAVallocation(t̄) is the UAV type allocation cost in time
slot t̄ and it is defined in (17) in Section IV. OTaskallocation(p̄t̄)
is the task allocation cost within period p̄ and period p̄ is in
time slot t̄. The task allocation is defined in (35) in Section
V-B.

IV. PHASE ONE: UAV TYPE ALLOCATION

This section introduces the SIP to optimize phase one (UAV
type allocation) in SCOS by minimizing the total allocation.
As described in Section III, the application owner Ā3 needs
to make a reservation in advance to secure certain types of
UAVs, which are own by Ā1. However, the weather condition
is unknown and may vary at a different time slot t̄. If the wind
is too strong, the UAV is required to use more energy to hover
at a fixed location [51]. As a result, the UAV will crash with
insufficient energy, and the application owner has to make an
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1 2 Time slot

Task allocation

UAV type allocation UAV type allocation UAV type allocation

1 2 3 Period1 2 3 1 2 3

Task allocation Task allocation

Fig. 2. The decision process of the system across all the time slots T̄ .

Small UAV

Large UAV

Medium UAV Large UAV

The actual weather 

condition is observed

1st Stage 2nd Stage

- Allocate UAV type in each mobile charging station - Decide the use of on-demand large UAV

Phase one (UAV type allocations) Section IV

Phase two (Task allocations) Section V

- Decide the subscription 

of the BSs

The actual demand

 is observed

- Each of the UAV decide 

the number of copies 


to compute locally
- Each of the UAV decide 


the number of copies 

to offload

The actual shortfall in

stage 2 is observed

1st Stage 2nd Stage

The actual shortfall in

stage 3 is observed

3rd Stage

The actual shortfall in

stage z-1 is observed

zth Stage

- Each of the UAV decide 

the number of copies 


to compute locally
- Each of the UAV decide 


the number of copies 

to offload

- Each of the UAV decide 

the number of copies 


to compute locally
- Each of the UAV decide 


the number of copies 

to offload

Once UAV type allocation is done for each of

 the mobile charging station

- Each BS  contains  edge servers

Fig. 3. Decision making process of the system in one time slot with the using of three different types of UAV, X = {1 : small, 2 : medium, 3 : large}.

on-demand request with a X type UAV. Fig. 3 illustrates the
decision-making process of the system with the use of three
UAV types, 1, 2 and 3, which represents small, medium and
large, respectively.

Hence, we formulate this scheme as the two-stage SIP
model.
• First stage: The application owner makes a reservation

on the types of UAVs to be used. The decision will be
made based on the available cost information and the
probability distribution of the weather condition.

• Second stage: After knowing the exact weather condi-
tion, the application owner decides the correction action,
which is the on-demand request to use the largest type
X UAV.

Let µt̄i = {Gt̄1(µ
t̄)
i , . . . , G

t̄
y(µt̄i)} denote weather condition

scenarios i of all mobile charging stations at time slot t̄. The

set of all weather scenarios is denoted by γ t̄, i.e., µt̄i ∈ γ t̄ [53].
Gt̄y(µt̄i) represents a binary parameter of the weather condition
at time slot t̄. For tractability, we only consider that each
mobile charging station experiences only two types of weather
condition. As shown in Table II, Gt̄y(µt̄i) = 1 means that at
time slot t̄, the wind is strong in mobile charging station y and
the UAV has crashed, and Gt̄y(µt̄i) = 0 means otherwise. P(µt̄)

denotes the probability if scenario µt̄ ∈ γ t̄ is realized. All
of the scenarios can be obtained from historical records [31]
or weather forecast. The cost function is proportional to the
resources used. In total, there are |X |+ 2 types of payments.
Note that we drop the time notation.

• Cxr is the reservation cost for the type x UAV. It is defined
as follows:

Cxr = α1Bx, (15)
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TABLE II
WEATHER UNCERTAINTY

Symbol Definition

Gt̄
y(µt̄i) = 0

At time slot t̄, the wind is weak or there is no wind
at mobile charging station y. Low wind speed is
referring to wind speed that is less than 11 m/s
and turbulence level < 5 [52]

Gt̄
y(µt̄i) = 1

At time slot t̄, the wind is strong at mobile charging
station y. High wind speed is referring to wind
speed that is greater than 11 m/s and
turbulence level > 5 [52]

where Bx is the battery capacity of the type x UAV and
α1 is the cost coefficient.

• CXo is the on-demand cost for the type X UAV, which
represents the largest UAV type. It is defined as follows:

CXo = α2BX , (16)

where α2 is the cost coefficient with a similar role to α1

and α2 > α1. BX is the battery capacity of the type X
UAV.

• Cp is the penalty cost. This penalty cost is the repair cost
for the crashed UAV.

We formulate the UAV type allocation as a two-stage SIP
model. There are |T |(|X |+1) decision variables in this model.

• T x
t̄

y is a binary variable at time slot t̄ for mobile charging
station y indicates whether type x UAV is used. When
T x

t̄

y = 1, at time slot t̄, mobile charging station y uses
type x UAV and T x

t̄

y = 0 means otherwise.
• T

(t̄,X)
y (µt̄i) is a binary variable at time slot t̄ for mobile

charging station y indicates whether a correction on-
demand type X UAV is used in scenario µt̄i, and X

represents the largest UAV type. When T
(t̄,X)
y (µt̄i) = 1,

at time slot t̄, mobile charging station y performs a
correction action by using the largest type-X UAV in
scenario µt̄i and T (t̄,X)

y (µt̄i) = 0 means otherwise.

The objective function given in (17) and (18) is to minimize
the cost of the UAV type allocation. The expressions in (17)
and (18) represent the first- and second-stage SIP, respectively.
The SIP formulation can be expressed as follows:

min
Txt̄
y ,T

(t̄,X)
y (µt̄

i)

:

∑
t̄∈T

OUAVallocation(t̄) =
∑
t̄∈T

∑
y∈Y

∑
x∈X

T x
t̄

y Cxr + E
[
Q(T x

t̄

y (µt̄i))

]
,

(17)

where

Q(T x
t̄

y (µt̄i)) =
∑
t̄∈T

∑
µt̄
i∈γ t̄

P(µt̄i)
∑
y∈Y

T (t̄,X)
y (µt̄i)(C

X
o + Cp),

(18)

subject to:∑
x∈X

T x
t̄

y = 1, ∀t̄ ∈ T ,∀y ∈ Y, (19)

Stage 1 Stage 2 Stage 3 Stage z  

Fig. 4. A scenario tree structure for z-stage SIP in task allocation.

∑
x∈X\{X}

T x
t̄

y (1−Gy(µt̄i)) + TX
t̄

y + T (t̄,X)
y (µt̄i) = 1,

∀t̄ ∈ T ,∀µt̄i ∈ γ t̄,∀y ∈ Y, (20)

T x
t̄

y ∈ {0, 1}, ∀t̄ ∈ T ,∀y ∈ Y,∀x ∈ X , (21)

T (t̄,X)
y (µt̄i) ∈ {0, 1}, ∀t̄ ∈ T ,∀y ∈ Y,∀µt̄i ∈ γ t̄. (22)

The constraint in (19) ensures that the application owner
makes a reservation on the types of UAV. On the other hand,
(20) ensures that the UAV crashes because of strong wind if
the application owner previously reserves a UAV that is not
largest type X . Then, the application owner has to perform
a correction action by using the largest type X on-demand
UAV. (21) and (22) are boundary constraints for the decision
variables.

V. PHASE TWO: TASK ALLOCATION

Once the types of the UAVs are optimized from phase one
in SCOS, we introduce the Deterministic Integer Programming
(DIP) and SIP to optimize phase two (the number of copies
to compute locally and to offload) by minimizing the UAV
network cost. Note that for simplicity, we drop notation p̄t̄

from phase two task allocation.

A. Deterministic Integer Programming System Model

In an ideal case, when the actual demand, which is the
actual matrix size and the number of shortfalls, are precisely
known ex-ante, the UAVs can choose the exact number of
copies to compute locally or offload. Therefore, the correction
for the shortfall is not needed, and the correction cost is zero.
Similar to [54], the cost function is proportional to the UAVs
offloaded data and to their demand for consuming computation
resources. Choosing different sizes of UAVs will affect the
payment value. In total, five types of payments are considered
in DIP.
• C̄f is the subscription cost for the edge servers in BS f .
• C̄y,x denotes the UAV local computation cost and encod-

ing cost for computing of one copy, i.e.,

C̄y,x(D) = α3(tlocaly,x (D) + tency,x (D)), (23)
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where α3 is the cost coefficient associated to the energy
consumption and D is the actual demand.

• Cy,xt̄,f denotes the offloading cost and it consists of three
parts. The first part is related to the transmission tto

y,xt̄,f
and encoding delay tency,x . The second part is the type x
UAV energy consumption cost and the last part Cf is the
service cost for edge servers in BS f . It is modeled as
follows:

Cy,xt̄,f (D) = α3(ttoy,xt̄,f (D) + tency,x (D))

+α4ey,xt̄(D) + Cf , (24)

where α4 is the cost coefficient with a similar role to α3.
• Cthreshy,xt̄ denotes the hovering cost for tthresh

y,xt̄ seconds.
They are defined as follows:

Cthreshy,xt̄ = tthreshy,xt̄ kα5Pxt̄,h, (25)

where α5 is the cost coefficient with a similar role to α3.
• Ĉy,x denotes the type x UAV decoding cost for the

returned matrices as follows:

Ĉy,x(D) = α3t
dec
y,x(D). (26)

A DIP can be formulated and minimize the total cost of the
UAVs as follows:

min
M

(s)
f ,...,M

(O)

y,xt̄,f

:

∑
t̄∈T

OTaskallocation(t̄) =
∑
t̄∈T

∑
f∈F

M
(s)
f C̄f+

∑
t̄∈T

∑
y∈Y

∑
f∈F

(
M

(L)

y,xt̄C̄y,x(D) +M
(TH)

y,xt̄,f
Cthreshy,x +

M
(O)

y,xt̄,f
Cy,x,f (D) + Ĉy,x(D)

)
, (27)

subject to:∑
y∈Y

M
(O)

y,xt̄,f
≤ σM (s)

f , ∀t̄ ∈ T ,∀f ∈ F ,

(28)∑
y∈Y

M
(O)

y,xt̄,f
≤ qf , ∀t̄ ∈ T ,∀f ∈ F ,

(29)

M
(O)

y,xt̄,f
≤ σM (TH)

y,xt̄,f
, ∀y ∈ Y,∀t̄ ∈ T ,∀f ∈ F ,

(30)∑
f∈F

M
(O)

y,xt̄,f
≥ S t̄y −M

(L)

y,xt̄ , ∀t̄ ∈ T ,∀y ∈ Y,

(31)

M
(L)

y,xt̄ +
∑
f∈F

M
(O)

y,xt̄,f
− (S t̄y −M

(L)

y,xt̄) ≥ k,

∀y ∈ Y,∀t̄ ∈ T ,∀f ∈ F , (32)

M
(s)
f ,M

(TH)

y,xt̄,f
∈ {0, 1}, ∀y ∈ Y,∀f ∈ F ,

(33)

M
(L)

y,xt̄ ,M
(O)

y,xt̄,f
∈ {0, 1, . . .}, ∀t̄ ∈ T ,∀y ∈ Y,∀f ∈ F .

(34)

M
(s)
f is a binary variable to indicate whether the edge servers

in BS f will be used or not. M (TH)

y,xt̄,f
is a binary variable

to indicate in time slot t̄ whether the type x UAV which
is associated with mobile charging station y will choose to
offload or not. When M

(TH)

y,xt̄,f
= 1, in time slot t̄ the UAV

associated with mobile charging station y choose to offload
some of the copies to BS f and M (TH)

y,xt̄,f
= 0 means otherwise.

The objective function in (27) is to minimize UAVs’ total
cost involving the UAVs’ local computation cost and the
UAVs’ offloading cost. The constraint in (28) ensures that the
subscription cost of the edge servers in the BS will be paid if
they are used in any of the stages, where σ is a sufficiently
large number. (29) ensures that the total number of copies
offloaded to the edge servers must not exceed the total number
of edge servers in BSs. (30) ensures that the threshold cost will
be paid if the UAV perform offloading action. (31) ensures
that the shortfalls should only exist if the number of copies
offloaded is more than or equal to the shortfalls. (32) ensures
that the number of copies computed locally and offloaded have
to be at least equal to or larger than recovery threshold k. (33)
indicates M (s)

f and M (TH)

y,xt̄,f
are binary variables. (34) indicates

that M (L)

y,xt̄ and M (O)

y,xt̄,f
are positive decision variables.

B. Stochastic Integer Programming System Model

This section introduces the SIP to minimize the total cost of
the network by optimizing the number of copies to compute
locally and to offload to the edge servers in BSs. The first stage
consists of all decisions that have to be selected before the
demand and shortfall are realized and observed. In the second
stage and onwards, decisions are allowed to adapt to this
information. In each stage, decisions are limited by constraints
that may depend on previous decisions and observations.

As described in Section III, there is a subscription cost when
the service provider Ā3 wants to use the edge servers in BSs
for computation. Then, without knowing the demand, the type
x UAV can decides the number of copies to compute locally
M

(L)

y,xt̄ and the number of copies to offload M (O)

y,xt̄,f
.

The computation process in the edge servers are not very
reliable, as the edge servers might be processing some other
task or congested. As a result, the computation time is much
longer than the threshold limit tthresh

y,xt̄ . Therefore, if a copy
is offloaded, there is a probability that the computation might
fail, and it will require the type x UAV to re-offload again or
compute it locally.

Hence, we formulate this framework as a z-stage SIP model.
• First stage: The application owner Ā3 decides to use the

edge servers in BS f or not. The decision will be made
based on the available cost information, the probability
distribution of the demand, and the shortfall.

• Second stage: After knowing the exact demand, the
application owner Ā3 decides the number of copies that
are computed locally and the number of copies to be
offloaded to the edge servers in BS f .

• Third stage: After knowing the exact shortfall in the
previous stage, the Ā3 performs a correction action to
re-decide the number of copies that is computed locally
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and the number of copies to be offloaded to the edge
servers in BS f .

...
• z stage: After knowing the exact shortfall in the z-1 stage,
Ā3 performs a correction action to re-decide the number
of copies that is computed locally and the number of
copies to be offloaded to the edge servers in BS f . To
promote the UAV to complete the task, a huge penalty
will occur if there is still a shortfall in stage z.

Let λt̄i = {Dt̄
1, . . . , D

t̄
y} denote the UAV demand scenario i

across all mobile charging station y in time slot t̄ and the set
of demand scenarios is denoted by Θt̄, i.e., λt̄i ∈ Θt̄ [53]. Dt̄

y

contains a discrete value from a finite setW = {1, . . . ,W}, it
represents the size of the task in UAV that is associated with
mobile charging station y. Specifically, Dt̄

y = 1000 means that
in time slot t̄ the matrix that UAV receives is in the size of
1000× 1000. Let ω(z̄,t̄)

i = {F(z̄,t̄)
1 , . . . ,F(z̄,t̄)

y } denote the i-th
shortfall scenario of the UAV in time slot t̄ that is associated
with its individual mobile charging station in stage z̄−1, where
2 < z̄ ≤ z. The set of shortfall scenarios is denoted by Ω(z̄,t̄),
i.e., ω(z̄,t̄)

i ∈ Ω(z̄,t̄). F(z̄,t̄)
y represents a binary parameter of the

shortfall in time slot t̄ from the type x associated with mobile
charging station y in stage z̄ − 1. For example, F(z̄,t̄)

y = 1
means that, in time slot t̄ from the copies that the UAV has
offloaded, at least A(z̄,t̄)

y copy did not return. As a result, the
total number of copies that the UAV currently has is less than
k, and F(z̄,t̄)

y = 0 means otherwise. In stage z, F(z̄,t̄)
y = 0 when

F(z̄−1,t̄)
y = 0. When there is no shortfall in the previous stage

then, there will not be any shortfall in the next stage. Fig. 4
illustrates the stages with four scenarios at each stage. All of
the scenarios can be obtained from the historical records.

The cost function used in SIP is similar to DIP with an
additional penalty cost C̃. C̃ occurs when the UAV still has
to perform a corrective action. In total, six types of payments
are considered in z-stage SIP.

We formulate the task allocation as the z-stage SIP model.
There are |T̄ |(z(f + 2)− 1) decision variables in this model.
• M

(s)
f is a binary variable to indicate whether the edge

servers in BS f will be used or not. When M
(s)
f = 1,

edge servers in BS f will be used and M (s)
f = 0 means

otherwise.
• M

(O,2)

y,xt̄,f
(λt̄i) indicates in time slot t̄ the number of copies

to be offloaded to the edge servers in BS f by type x
UAV which is associated with mobile charging station y
in stage 2.

• M
(L,2)

y,xt̄ (λt̄i) indicates in time slot t̄ the number of copies
computed locally by the type x UAV which is associated
with mobile charging station y in stage 2.

• M
(TH,3)

y,xt̄,f
(λt̄i) is a binary variable to indicate in time slot t̄

whether the type x UAV which is associated with mobile
charging station y choose to offload or not in stage 3.
When M (TH,3)

y,xt̄,f
(λt̄i) = 1, the type x UAV associated with

mobile charging station y chooses to offload some of the
copies to the edge servers in BS f and M (TH,3)

y,xt̄,f
(λt̄i) = 0

means otherwise.
...

• M
(O,ẑ)

y,xt̄,f
(λt̄i, . . . , ω

(z̄,t̄)
i ) indicates in time slot t̄ the num-

ber of copies to be offloaded by type x UAV which is
associated with mobile charging station y to the edge
servers in BS f in stage ẑ, where 1 < ẑ ≤ z.

• M
(L,ẑ)

y,xt̄ (λt̄i, . . . , ω
(z̄,t̄)
i ) indicates in time slot t̄ the number

of copies that the type x UAV which is associated with
mobile charging station y is computing locally in stage
ẑ.

• M
(TH,ẑ)

y,xt̄,f
(λt̄i, . . . , ω

(z̄,t̄)
i ) indicates is a binary variable to

indicate in time slot t̄ whether the type x UAV which
is associated with mobile charging station y choose to
offload or not in stage ẑ.

The objective function given in (35) - (38) is to minimize
the total cost of the network. The expressions in (35), (36),
(37) and (38) represent the first, second, third and up till
z stage objectives, respectively. P(λt̄i) and P(ω

(z̄,t̄)
i ) denote

the probabilities if scenarios λt̄i ∈ Θt̄ and ω
(z̄,t̄)
i ∈ Ω(z̄,t̄) are

realized, respectively. The SIP formulation can be expressed
as follows:

min
M

(s)
f ,...,M

(O,ẑ)

y,xt̄,f
(λt̄

i,...,ω
(z̄,t̄)
i )

:

∑
t̄∈T

OTaskallocation(t̄) =
∑
t̄∈T

∑
f∈F

M
(s)
f C̄f + E

[
Q(M

(s)
f (λt̄i))

]
,

(35)

where

Q(M
(s)
f (λt̄i)) =

∑
t̄∈T

∑
λt̄
i∈Θt̄

P(λt̄i)
∑
y∈Y

∑
f∈F

(
M

(L,2)

y,xt̄ (λt̄i)

C̄y,x(Dy(λt̄i)) +M
(O,2)

y,xt̄,f
(λt̄i)Cy,x,f (Dy(λt̄i))+

Cthreshy,x + Ĉy,x(Dy(λt̄i))+

E
[
Q(M

(O,2)

y,xt̄,f
(λt̄i, ω

(3,t̄)
i ))

])
, (36)

Q(M
(O,2)

y,xt̄,f
(λt̄i, ω

(3,t̄)
i )) =

∑
t̄∈T

∑
ω

(3,t̄)
i ∈Ω(3,t̄)

P(ω
(3,t̄)
i )

∑
y∈Y

∑
f∈F(

M
(L,3)

y,xt̄ (λt̄i, ω
(3,t̄)
i )C̄y,x(Dy(λt̄i)) +M

(O,3)

y,xt̄,f
(λt̄i, ω

(3,t̄)
i )

Cy,x,f (Dy(λt̄i) +M
(TH,3)

y,xt̄,f
(λt̄i, ω

(3,t̄)
i )Cthreshy,x

+E
[
Q(M

(O,3)

y,xt̄,f
)(λt̄i, ω

(3,t̄)
i , ω

(4,t̄)
i )

])
,

(37)
...

Q(M
(O,ẑ)

y,xt̄,f
)(λt̄i, ω

(3,t̄)
i , . . . , ω

(z̄,t̄)
i ) =

∑
t̄∈T

∑
ω

(z̄,t̄)
i ∈Ω(z̄,t̄)

P(ω
(z̄,t̄)
i )

∑
y∈Y

∑
f∈F

(
M

(L,ẑ)

y,xt̄ (λt̄i, . . . , ω
(z̄,t̄)
i )C̄y,x(Dy(λt̄i))+

M
(TH,z̄)

y,xt̄,f
(λt̄i)Cthreshy,x +M

(O,ẑ)

y,xt̄,f
(λt̄i, . . . , ω

(z̄,t̄)
i )

Cy,x,f (Dy(λt̄i)) + Fz̄y(λt̄i, . . . , ω
(z̄,t̄)
i )C̃

)
,

(38)
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subject to: Please see Appendix A
The constraints in (44) and (45) are the same as the con-
straint (28). (46) and (47) are the same as (30). (48) and (49)
ensure that if the previous stage does not have a shortfall,
and then the shortfall for the next stage should be zero. The
shortfalls should only exist if the number of copies offloaded
in the previous stage is more than or equal to the shortfall.
They also ensure that the number of shortfalls can be reduced
when the UAV performs local computations. (50) ensures that
the number of copies computed locally and offloaded should
be at least k. (51) and (52) ensure that if the UAV has a
shortfall in the previous stage, the UAV has to compute the
shortfall locally or re-offload to the edge servers in the BS to
match k, i.e., the recovery threshold for task completion. (53)
and (54) ensure that the total number of copies offloaded to the
edge servers in each stage must not exceed the total number of
edge servers in BSs. (55) indicates M (s)

f , M (TH,3)

y,xt̄,f
(λt̄i, ω

(3,t̄)
i ),

. . . ,M
(TH,z̄)

y,xt̄,f
(λt̄i, . . . , ω

(z̄,t̄)
i ) are binary variables. (56) indi-

cates M
(O,2)

y,xt̄,f
(λt̄i), M (L,2)

y,xt̄ (λt̄i), . . . , M
(O,ẑ)

y,xt̄,f
(λt̄i, . . . , ω

(z̄,t̄)
i ),

M
(L,ẑ)

y,xt̄ (λt̄i, . . . , ω
(z̄,t̄)
i ) are positive decision variables.

To solve SIP, we assume that the probability distribution of
all scenarios in set γ t̄, Θt̄, Ω(3,t̄), . . . ,Ω(z̄,t̄) are known [55],
then, the complexity of the problem increases exponentially
when the total number of scenarios across all the stages in-
creases [55, 56]. For phase one in Section IV, the total number
of decision variables can be calculated from (39), where t′, y′,
and x′ denote the total number of time slots, mobile charging
stations, and UAV types in the set, respectively. µ′ is the total
number of weather scenarios. The total number of constraints
can be calculated from (40). For example, with six time slots,
six mobile charging stations, three UAV types, and ten weather
scenarios, phase one will have 468 decision variables and 864
constraints.

decisionV ariables1 = t′y′x′ + µ′t′y′ (39)

constraints1 = t′y′ + 2µ′t′y′ + t′y′x′ (40)

For phase two in Section V-B, the total number of decision
variables can be calculated from (41), where f ′ denotes the
total number of BSs in the set. λ′, ω3′

, . . . , ωz̄
′

are the
total number of demand, shortfall in stage 2, . . . , shortfall
in stage z̄ − 1 scenarios. The total number of constraints can
be calculated from (42).

decisionV ariables2 = t′f ′ + t′λ′y′f ′ + t′ω3′
y′f ′ + . . .

(41)

+t′ωz̄
′
y′f ′

constraints2 = 2(t′f ′λ′ω3′
+ . . .+ t′f ′λ′ω3′

. . . ωz̄
′

(42)

t′f ′λ′) + 2(t′y′f ′λ′ω3′
+ . . .+ t′y′f ′λ′ω3′

. . . ωz̄
′
)

+t′y′λ′ω3′
+ . . .+ t′y′λ′ω3′

. . . ωz̄
′

+t′y′f ′λ′ + 2(t′y′f ′λ′ω3′
. . . ωz̄

′
)

C. Stochastic Coded Offloading Scheme Flowchart

In Fig. 5, the flowchart of SCOS algorithm is shown. The
algorithm for solving SCOS is presented in four steps (i.e.,
Step-1 to Step-4) as follows.

In Step-1, we obtain the weather probability for the first time
slot, and it can be obtained from the historical records [31]
or weather forecast. The weather uncertainty is then modeled
using SIP from (17).

In Step-2, we save the solution from Step-1.
In Step-3, we obtain the demand probability from the

road traffic data set released by Land Transport Authority
Singapore [57].

In Step-4, we obtain the shortfall probability from the
historical records. Using the allocated UAV type from Step-
2, we modeled the demand probability from Step-3 and the
shortfall probability using SIP from (35). After solving this
problem, if the next period has task allocation, the solution is
saved, and the algorithm will proceed to Step-3. Otherwise, the
algorithm proceeds to the next decision box. If the timeslot is
the last time slot for the next decision box, the algorithm will
end and output the SIP decision variables solution. Otherwise,
the algorithm will proceed to Step-1.

Step-1

Obtain historical weather
probability and model the

weather uncertainty using SIP

Step-2

Obtain SIP solution

Step-3

Obtain historical demand

probability

Step-4

Obtain historical shortfall

probability model the shortfall
uncertainty using SIP

No

Start

No

Yes

Stop

Yes The next period has 

task allocation?

Is the timeslot the 

last timeslot?

Fig. 5. Flowchart of SCOS algorithm.

VI. SIMULATION RESULT AND ANALYSIS

In this simulation, we consider the system model with one
time slot |T | = 1, six mobile charging stations, two BSs,
sixty edge servers and thirty UAVs equally split into three
UAV types. X = {1 : small, 2 : medium, 3 : large}. The
battery capacities B1, B2 and B3 are 2375mAh, 3500mAh
and 5200mAh, respectively [58]. A conceptual illustration of
the system model is shown in Fig. 6. Fig. 6 is an x-y plane
that shows the locations of the UAVs and the BSs. All the
UAVs associated with their respective mobile charging stations
are hovering at 100m, and the height of all edge servers in
the BSs is 20m. They are randomly allocated in the area of
1000×1000 m2. Each small grid is 25×25 m2. We consider
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Mobile charging station 1

Mobile charging station 2

Mobile charging station 3

Mobile charging station 4

Mobile charging station 5

Mobile charging station 6

Fig. 6. x-y coordinates of all the UAVs and BSs.
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Fig. 7. Singapore traffic camera location.
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Fig. 8. The probability distribution of the demand size.

the case with m = 2 [13]. Therefore, we can substitute s = 2
t

into (1), and we obtain the following:

k = 4t− t2, (43)

by differentiating (43) with respect to the variable t and
equating the result to zero. Then, we are able to obtain
t = 2, s = 1, and k = 4. The simulation parameters are
summarized in Table III and their values are from [48, 42].
For the presented experiments, we implement the SIP model
using GAMS script [59, 60].

We obtain the finite set W from the road traffic data set
released by Land Transport Authority Singapore [57]. As
depicted in Fig. 7, there are 72 cameras in Singapore to
monitor the traffic flow. We generate 1 set of the data in
real-time to obtain Y . The data are in the dimension of
row×column. Following [13] we are only considering square
matrices, therefore, W = row = column. The probability
distribution of the demand size is shown in Fig. 8 and
W = {240, 260, 480, 1080}. We use scenarios to represent the
weather, demand, and shortfall uncertainties. In each scenario,
each uncertainty will have a corresponding value. For example,
when Gt̄y(µt̄i) = 1. It means that the weather uncertainty
in scenario i in mobile charging station y at time slot t̄ is
represented by the value of 1. For the road traffic data set, we
obtain the dimension of the data, and we post-process the data
to obtainW which is the demand size. We use the demand size
to represent the actual demand uncertainty. Similar to weather

TABLE III
EXPERIMENT PARAMETERS

Parameter Values
UAV weight in kg, Wx [8-12]
Air density in kg/m3, ρ 1.225
Rotor radius in meter, R 0.5
Rotor disc area in m2, A 0.79
Blade angular velocity in radians/second, 4x [380-420]
Tip speed of the rotor blade, Utip 200
Number of blades, b 4
Blade or aerofoil chord length, c 0.0196
Rotor solidity, defined as the ratio of the
total blade area bcR to the disc area A, s 0.05

Fuselage drag ratio, d0 0.3
Mean rotor induced velocity in hover, v0 7.2
Profile drag coefficient, δ 0.012
Incremental correction factor
to induced power, r 0.1

UAV hover height in meter, Hy,x [80-100]
Height of edge servers in BS, Hf 20
UAV bandwidth in MHz, Bx 2
UAV transmit power in mW , PC

x 32
UAV receiving power in mW , P re

x 32
White Gaussian noise in dBm, N0 -100
UAV computation power in GHz, τx [0.6-1]
Number of CPU cycles needed
to process a bit, Cx 20

Channel gains, β0 -60dB
Cf in $ 0.05
α1 0.001
α2 0.0015
α3 0.5
α4 0.5
α5 0.0001

uncertainty,W is represented by its corresponding values 240,
260, 480, and 1080. As shown in Fig. 9, weather, demand, and
shortfall uncertainties can be injected into the GAMS script
using their corresponding values.

A. Allocation of UAV

We first evaluate the UAV type allocation for each mobile
charging station. We consider a two-stage SIP, where the first
stage is (17) and the second stage is (18). In this UAV type
allocation, we consider two scenarios of weather condition,
i.e., strong wind and weak wind, which are |γ1| = 2 [30].
The two scenarios are that all locations have strong wind µ1

1
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GAMS Scrpit

Weather uncertainty

Demand uncertainty

Shortfall uncertainties

Fig. 9. The value of uncertainties are inserted into
GAMS script.
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Fig. 10. The cost of UAV type allocation when
varying the penalty cost.
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Fig. 11. The cost of the network by varying the
penalty cost and the weather probability.

and no location has strong wind µ1
2. We consider a stochastic

system with P(µ1
1) = 0.3 and P(µ1

2) = 0.7. We perform
the sensitivity analysis by varying the incurred cost and the
weather condition probability.

1) Penalty cost Cp: We evaluate the UAV type allocation
by varying the penalty cost Cp, and the result is presented in
Fig. 10. When the penalty cost is low, the application owner
still prefers to reserve the small UAV even though there is a
crashing probability. However, the decision changed when the
Cp ≥ 1.5. The cost of the correction action, which is the on-
demand cost of using a type 3 UAV, becomes much higher.
Ā3 has to make a reservation on the type 3 UAV in the initial
phase.

2) Probability of the weather condition: Next, we consider
the same setting as that in Section VI-A1. We investigate the
impact on the network by varying both the weather probability
P (µ1

1) and Cp. The result is shown in Fig. 11. When the
weather is good P (µ1

1) = 0, all the charging stations will
choose to use a type 1 UAV in stage 1 since there is no strong
wind. When the probability of bad weather increases, e.g.,
P (µ2

1) ≥ 0.5 all the charging stations tend to choose type
3 UAVs even when the penalty cost is low due to a high
probability of UAV crashes.

B. Allocation of Task

We now perform the sensitivity analysis on task allocation
using the UAV type allocation derived when Cp = 2. We
perform the sensitivity analysis by varying the number of
stages z, hovering cost Cthresh

y,xt̄ , the probability of shortfalls,
recovery threshold k as well as the types of UAV use, and we
discuss the results in this subsection.

1) Cost structure: We first study the cost structure of
the network. As an illustration, a primitive UAV network is
considered with zero local computation ML,2

y,x = 0, ML,3
y,x = 0,

and we consider a three-stage SIP, where the first stage is
(35), the second stage is (36) and the third stage is (38).
Furthermore, we first consider six mobile charging stations,
one BS, one demand scenario |Θ1| = 1 and |Ω(3,1))| = 1.
The demand is 1080. The shortfall scenario is that there are
shortfalls from the copies that the UAV has offloaded. Since
k = 4, the number of copies that are offloaded M

(O,2)
y,x,f

begins with 4. In Fig. 12, the costs in the first, second, third
stages and the total cost under the different number of the

offloaded copies are presented. Since offloading is the only
decision, the edge servers subscription cost in stage one should
always paid. In the second stage, the cost is expected to
increase as the number of copies that are offloaded increases.
However, the cost in the third stage after knowing the actual
shortfall decreases as the number of offloaded copies increases
since the UAV needs to perform fewer re-computation to
match the shortfall. Fig. 12 shows the optimal solution in this
simple network. It can be identified that even in this simple
network, the optimal solution is not trivial to obtain due to
the uncertainty of shortfall. For example, the optimal cost is
not the point where the cost in the second stage is the lowest
of the cost in the third stage is the lowest. Therefore, SIP
formulation is required to guarantee the minimum cost to the
UAVs.

2) Number of stages z: We consider the case with four
demand scenario |Θ1| = 4, one shortfall scenario |Ω(z̄,1)| = 1
for each SIP stage, and there is a shortfall in each stage.
The four demand scenarios are made up of 4 demand size
each, λ1

1 = 480, λ1
2 = 240, λ1

3 = 1080 and λ1
4 = 360. We

vary the value of z from 3 to 6. The cost of the network
is shown in Fig. 13 and Table IV indicates the value of the
variables. The number of variables in the six-stage SIP is large.
Therefore, for illustration, we only indicate the value for all
the variables in mobile charging station 1 when z = 3. Then,
We use the result from z = 3 to explain the findings. When
the data size is 240, the offloading cost is more expensive
than the local computation cost. Therefore, the UAV will
perform local computation in stage 2 when the data size is
240. M (L,2)

1,31 (λ1
2) = 4, M (O,2)

1,31,f (λ1
2) = 0, M (L,3)

1,31,f (λ1
2) = 0

and M
(O,3)
1,31,f (λ1

2) = 0. However, for the rest of the data size,
the offloading action is chosen. The UAV will offload more
in stage 2 to overcome the shortfall, and this offloading cost
is cheaper than the local computation cost. The total number
of copies offloaded to the edge servers in BSs 1 and 2 is 24
each. The UAVs will always offload to the edge servers that
is closer to it as the cost is lower. To support the offloading
process, 24 edge servers have to be placed in both BSs 1 and
2. Since the shortfalls exist in every stage, as the number of
stages increases, the UAV will perform more local computation
in stage 2. When z ≥ 5, the UAV will only consider local
computation regardless of the demand, and the overall cost
will remain the same. Since there is no offloading process,
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Fig. 12. The optimal solution in a simple three-
stage SIP UAV network.
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Fig. 13. The cost of the network by varying the
number of stages in SIP. Considered only UAV 1,
BS 1 and BS 2.
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Fig. 15. The cost of the network by varying the
probability of shortfall in each stage.
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Fig. 17. The overall network cost when the UAV
type x is varied.

edge servers’ locations are no longer necessary as they are no
longer needed.

3) Hovering cost Cthreshy,x : We consider the case with
mobile charging station 1 and BS 1. We vary both the hovering
cost and the number of stages z to observe the impact on
the network. We keep the rest of the parameters the same
as Section VI-B2. Fig. 14 shows the cost of the network. It
can be identified that when the hovering cost increases, it will
also increase the re-offloading cost, therefore increasing the
network cost. Since there is a shortfall scenario in every stage,
the increase of hovering costs in every stage will affect the
decision of the UAV. For example, when stage 4 has 2.5 times
hovering cost, the UAV will perform full local computation
regardless of the data size. Full local computation is also
performed when z ≥ 5.

4) Probability of the shortfalls: We consider the setting
similar to Section VI-B3. There are two shortfall scenarios
in each stage |Ω(z̄,1)| = 2. The two shortfall scenarios are i)
all the UAVs have shortfalls ω(z̄,1)

1 in stage z̄ and ii) all the
UAVs do not have shortfall ω(z̄,1)

2 . We observe the impact
on the network by varying both the shortfall probabilities
P (ω

(z̄,1)
1 ), P (ω

(z̄,1)
2 ) and the number of stages z. The result

is shown in Fig. 15. Since there is no shortfall P (ω
(z̄,1)
1 ) = 0,

when z increases, the decision made by the UAV remains the
same. The UAV can choose the cheapest decision, which is
the offloading action. When P (ω

(z̄,1)
1 ) increases, the number

of copies that are computed locally and offloaded in the earlier
stage also increases to reduce the penalty cost by the shortfalls.
However, the number of scenarios increases exponentially with
z [61], and this is the reason that it leads to a sharp increase

in cost from stages 5 to 6. For example, in a 6-stage SIP with
two scenarios per stage, this results in a total of 56 = 15, 625

64 scenarios [61]. When z = 6 and P (ω
(z̄,1)
1 ) = 1, with the

high re-offloading cost, full local computation is perform in
the earlier stage.

5) Recovery threshold k: Similar to Section VI-B3, we
consider three-stage SIP with four demand scenarios |Θ1| = 4,
one shortfall scenario |ω(3,1)| = 1 and there is shortfalls in
each offloading process. We monitor the impact of the network
by varying the recovery threshold. We set m = 4 and we vary
recovery threshold k by changing s from 1 to 5. Since k is
controlled by (1), as s increases, k varies from 16 to 6. When
s = 1, the recovery threshold is the highest k = 16. The
result is shown in Fig. 16. The stage 1 cost remains constant
as the BS is always subscribed. The cost of the network is
also the highest as the UAV has to compute the most number
of copies. When the data size is 240, 360, and 480, in stage
2, the UAV prefers to compute most of the copies locally as
the local computation cost is much lower than the offloading
cost plus the re-offloading cost in stage 3. The reason is that
when k is high, the number of shortfalls is also high, which
increases the re-offloading cost. This is why the stage 3 cost
is zero. As s increases, the value of k decreases, the cost
in local computation increases. Therefore, instead of local
computation, some of the UAVs perform offloading process
in stage 2. Throughout the simulations, the cost in stage 3 is
zero. With the additional penalty and hovering cost, no UAVs
prefer to compute the shortfalls in stage 3.

6) UAV types: Similar to Section VI-A1 and Section VI-B5,
we consider 1 UAV and Cp = 2 and investigate the differences
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TABLE IV
DECISION VARIABLE VALUE

Variable z=3 z = 4 z = 5 z = 6

M
(s)
1 1 1 0 0

M
(s)
2 0 0 0 0

M
(L,2)

1,31 (λ1
1) 0 4 4 4

M
(L,2)

1,31 (λ1
2) 4 4 4 4

M
(L,2)

1,31 (λ1
3) 0 0 4 4

M
(L,2)

1,31 (λ1
4) 0 4 4 4

M
(O,2)

1,31,1
(λ1

1) 8 0 0 0

M
(O,2)

1,31,1
(λ1

2) 0 0 0 0

M
(O,2)

1,31,1
(λ1

3) 8 4 0 0

M
(O,2)

1,31,1
(λ1

4) 8 0 0 0

M
(L,3)

1,31 (λ1
1, ω

(3,1)) 0 0 0 0

M
(L,3)

1,31 (λ1
2, ω

(3,1)) 0 0 0 0

M
(L,3)

1,31 (λ1
3, ω

(3,1)) 0 0 0 0

M
(L,3)

1,31 (λ1
4, ω

(3,1)) 0 0 0 0

M
(O,3)

1,31,1
(λ1

1, ω
(3,1)) 0 0 0 0

M
(O,3)

1,31,1
(λ1

2, ω
(3,1)) 0 0 0 0

M
(O,3)

1,31,1
(λ1

3, ω
(3,1)) 0 8 0 0

M
(O,3)

1,31,1
(λ1

4, ω
(3,1)) 0 0 0 0

Total number of edge server in BS 1 24 24 0 0
Total number of edge server in BS 2 24 24 0 0

in cost when we change the UAV type. The overall network
cost is shown in Fig. 17. If the service provider initially uses
type 1 and 2 UAVs, and when the wind is strong, the UAV
cannot have sufficient energy to withstand the strong wind
(weather uncertainty). As a result, the service provider has to
deploy another UAV (type 3) to perform the task. However,
if the service provider initially deploys a type 3 UAV, it will
have sufficient energy to withstand the strong wind. There is no
additional correction cost. Therefore, the UAV type allocation
cost is cheaper if the service provider chooses to book type
3 UAV in advance. Furthermore, using type 3 UAV in task
allocation makes the computation capability stronger than the
other UAV types. As a result, it will have a shorter latency and
will lead to a lower computation cost. Hence, the computation
cost is also the lowest when a type 3 UAV is used. Therefore,
the overall network cost is the lowest when a type 3 UAV is
used.

C. Comparing between EVF, SIP and random scheme

We set z = 3 and compare the SIP with Expected-Value For-
mulation (EVF) [62] as well as the random scheme. Expected-
value formulation uses the average values of shortfall as
well as the demand and solves a DIP. For EVF, the total
number of copies (M (L)

y,xt̄ +M
(O)

y,xt̄,f
) is fixed using the average

value of shortfall and demand, an approximation scheme. In
a random scheme, the values of the decision variables are
randomly generated. We vary the price of the offloading action
to compare the difference between EVF, SIP, and random
schemes. This cost is combined with the UAV type allocation
cost to observe the total cost of the network. Fig. 18 depicts the

1x cost 1.5x cost 2x cost 2.5x  cost
Offloading cost

70
80
90

100
110
120
130
140
150

To
ta

l c
os

t

EVF
SIP
Random

Fig. 18. SIP comparing with EVF and random scheme.

comparison result. As shown in the result, EVF and random
scheme cannot adapt to the change in cost. On the other hand,
SIP can always achieve the best solution among the three to
reduce the shortfall cost.

VII. CONCLUSION

In this paper, we have proposed the Stochastic Coded
Offloading Scheme (SCOS) that employs a CDC technique to
combines with computation offloading to minimize the energy
consumption of the UAV network. We have first formulated
the SCOS as the two-stage stochastic programming to optimize
the UAV type allocation to account for the weather uncertainty.
Then, we have formulated the z-stage stochastic programming
to account for data size and task completion uncertainty. We
have also conducted numerical experiments to verify that our
proposed SCOS can optimize the total cost and the UAVs’
energy consumption. Compared to the benchmark, SCOS
based on SIP can achieve the best solution as it can adapt
to changes in data size and task failure probability. We also
know that a three-stage SIP is enough to formulate the problem
through the simulations as it has the lowest cost.
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APPENDIX A
CONSTRAINTS OF z-STAGE SIP SYSTEM MODEL

∑
y∈Y

M
(O,2)

y,xt̄,f
(λt̄i) ≤ σM

(s)
f , ∀t̄ ∈ T ,∀f ∈ F ,∀λt̄i ∈ Θt̄,

(44)

...

∑
y∈Y

M
(O,ẑ)

y,xt̄,f
(λt̄i, . . . , ω

(z̄,t̄)
i ) ≤ σM (s)

f ,

∀t̄ ∈ T ,∀f ∈ F ,∀λt̄i ∈ Θt̄,∀ω(3,t̄)
i ∈ Ω(3,t̄), . . . ,

∀ω(z̄,t̄)
i ∈ Ω(z̄,t̄),

(45)

M
(O,3)

y,xt̄,f
(λt̄i, ω

(3,t̄)
i ) ≤ σM (TH,3)

y,xt̄,f
(λt̄i, ω

(3,t̄)
i ),

∀t̄ ∈ T ,∀y ∈ Y,∀f ∈ F ,∀λt̄i ∈ Θt̄,∀ω(3,t̄)
i ∈ Ω(3,t̄), (46)

...

M
(O,ẑ)

y,xt̄,f
(λt̄i, . . . , ω

(z̄,t̄)
i ) ≤ σM (TH,z̄)

y,xt̄,f
(λt̄i, . . . , ω

(z̄,t̄)
i ),

∀t̄ ∈ T ,∀y ∈ Y,∀f ∈ F ,∀λt̄i ∈ Θt̄,∀ω(3,t̄)
i ∈ Ω(3,t̄), . . . ,

∀ω(z̄,t̄)
i ∈ Ω(z̄,t̄),

(47)

∑
f∈F

M
(O,3)

y,xt̄,f
(λt̄i, ω

(3,t̄)
i ) ≥ F(3,t̄)

y (λt̄i, ω
(3,t̄)
i )(

Ā(3,t̄)
y (λt̄i, ω

(3,t̄)
i )−M (L,3)

y,xt̄ (λt̄i, ω
(3,t̄)
i )

)
,

∀t̄ ∈ T ,∀y ∈ Y,∀λt̄i ∈ Θt̄,∀ω(3,t̄)
i ∈ Ω(3,t̄),

(48)

...

∑
f∈F

M
(O,ẑ)

y,xt̄,f
(λt̄i, . . . , ω

(z̄,t̄)
i ) ≥

(
Ā(z̄,t̄)
y (λt̄i, . . . , ω

(z̄,t̄)
i )−

M
(L,ẑ)

y,xt̄ (λt̄i, . . . , ω
(z̄,t̄)
i )

)
F3
y(λt̄i, ω

(3,t̄)
i ) . . .Fz̄y(λt̄i, . . . , ω

(z̄,t̄)
i ),

∀t̄ ∈ T ,∀y ∈ Y,∀λt̄i ∈ Θt̄,∀ω(3,t̄)
i ∈ Ω(3,t̄), . . . ,

∀ω(z̄,t̄)
i ∈ Ω(z̄,t̄),

(49)

M
(L,2)

y,xt̄ (λt̄i) +M
(O,2)

y,xt̄,f
(λt̄i) ≥ k,

∀t̄ ∈ T ,∀y ∈ Y,∀f ∈ F ,∀λt̄i ∈ Θt̄, (50)

M
(L,2)

y,xt̄ (λt̄i) +
∑
f∈F

M
(O,2)

y,xt̄,f
(λt̄i) + F(3,t̄)

y (λt̄i, ω
(3,t̄)
i )

M
(L,3)

y,xt̄ (λt̄i, ω
(3,t̄)
i ) +

∑
f∈F

F(3,t̄)
y (λt̄i, ω

(3,t̄)
i )M

(O,3)

y,xt̄,f
(λt̄i, ω

(3,t̄)
i )

−F(3,t̄)
y (λt̄i, ω

(3,t̄)
i )

(
Ā(3,t̄)
y (λt̄i, ω

(3,t̄)
i )−M (L,2)

y,xt̄ (λt̄i, ω
(3,t̄)
i )

)
≥ k,

∀t̄ ∈ T ,∀y ∈ Y,∀f ∈ F ,∀λt̄i ∈ Θt̄,∀ω(3,t̄)
i ∈ Ω(3,t̄),

(51)

...

M
(L,2)

y,xt̄ (λt̄) +
∑
f∈F

M
(O,2)

y,xt̄,f
(λt̄i) + . . .+

∑
f∈F

F(3,t̄)
y (λt̄i, ω

(3,t̄)
i )

. . .F(z̄,t̄)
y (λt̄i, . . . , ω

(z̄,t̄)
i )M

(O,ẑ)

y,xt̄,f
(λt̄i, . . . , ω

(z̄,t̄)
i )+

F(3,t̄)
y (λt̄i, ω

(3,t̄)
i ) . . .Fz̄y(λt̄i, . . . , ω

(z̄,t̄)
i )M

(L,ẑ)

y,xt̄ (λt̄i, . . . , ω
(z̄,t̄)
i )

−F(3,t̄)
y (λt̄i, ω

(3,t̄)
i )

(
Ā(3,t̄)
y (λt̄i, ω

(3,t̄)
i )−M (L,2)

y,xt̄ (λt̄i, ω
(3,t̄)
i )

)
− . . .− F(3,t̄)

y (λt̄i, ω
(3,t̄)
i ) . . .F(z̄,t̄)

y (λt̄i, . . . , ω
(z̄,t̄)
i )(

Ā(z̄,t̄)
y (λt̄i, . . . , ω

(z̄,t̄)
i )−M (L,ẑ)

y,xt̄ (λt̄i, . . . , ω
(z̄,t̄)
i )

)
≥ k,

∀t̄ ∈ T ,∀y ∈ Y,∀f ∈ F ,∀λt̄i ∈ Θt̄,∀ω(3,t̄)
i ∈ Ω(3,t̄), . . . ,

∀ω(z̄,t̄)
i ∈ Ω(z̄,t̄),

(52)

∑
y∈Y

M
(O,2)

y,xt̄,f
(λt̄i) ≤ qf ,∀t̄ ∈ T ,∀f ∈ F ,∀λt̄i ∈ Θt̄, (53)

...

∑
y∈Y

M
(O,ẑ)

y,xt̄,f
(λt̄i, . . . , ω

(z̄,t̄)
i ) ≤ qf ,

∀t̄ ∈ T ,∀f ∈ F ,∀λt̄i ∈ Θt̄,∀ω(3,t̄)
i ∈ Ω(3,t̄), . . . ,

∀ω(z̄,t̄)
i ∈ Ω(z̄,t̄), (54)

M
(s)
f ,M

(TH,3)

y,xt̄,f
(λt̄i, ω

(3,t̄)
i ), . . . ,M

(TH,z̄)

y,xt̄,f
(λt̄i, . . . , ω

(z̄,t̄)
i )

∈ {0, 1},
∀t̄ ∈ T ,∀y ∈ Y,∀f ∈ F ,∀λt̄i ∈ Θt̄,

∀ω(3,t̄)
i ∈ Ω(3,t̄), . . . ,∀ω(z̄,t̄)

i ∈ Ω(z̄,t̄),
(55)

M
(O,2)

y,xt̄,f
(λt̄i),M

(L,2)

y,xt̄ (λt̄i), . . . ,M
(O,ẑ)

y,xt̄,f
(λt̄i, . . . , ω

(z̄,t̄)
i ),

M
(L,ẑ)

y,xt̄ (λt̄i, . . . , ω
(z̄,t̄)
i ) ∈ {0, 1, . . .},

∀t̄ ∈ T ,∀y ∈ Y,∀f ∈ F ,∀λt̄i ∈ Θt̄,

∀ω(3,t̄)
i ∈ Ω(3,t̄), . . . ,∀ω(z̄,t̄)

i ∈ Ω(z̄,t̄). (56)
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