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Abstract—Doppler shift is an important measurement for lo-
calization and synchronization (LAS), and is available in various
practical systems. Existing studies on LAS techniques in a time
division broadcast LAS system (TDBS) only use sequential time-
of-arrival (TOA) measurements from the broadcast signals. In
this paper, we develop a new optimal LAS method in the TDBS,
namely LAS-SDT, by taking advantage of the sequential Doppler
shift and TOA measurements. It achieves higher accuracy com-
pared with the conventional TOA-only method for user devices
(UDs) with motion and clock drift. Another two variant methods,
LAS-SDT-v for the case with UD velocity aiding, and LAS-SDT-k
for the case with UD clock drift aiding, are developed. We derive
the Cramér-Rao lower bound (CRLB) for these different cases.
We show analytically that the accuracies of the estimated UD
position, clock offset, velocity and clock drift are all significantly
higher than those of the conventional LAS method using TOAs
only. Numerical results corroborate the theoretical analysis and
show the optimal estimation performance of the LAS-SDT.

Index Terms—Ilocalization and synchronization (LAS), time-
of-arrival (TOA), Doppler shift, sequential measurements, time
division broadcast.

I. INTRODUCTION

OCALIZATION and synchronization (LAS) techniques

for user devices (UDs) using a set of measurements
has gained significant attention in a variety of applications,
such as Internet of Things (IoT), emergency rescue, aerial
surveillance, Internet of Vehicles (IoV) and target detection
and tracking [1]-[4]. To achieve LAS for moving UDs with
clock drift, there are usually several synchronous anchor
nodes (ANs) at known locations to transmit signals that the
moving UDs capture to obtain measurements for LAS. Typical
measurements include time-of-arrival (TOA), time difference
of arrival (TDOA), received signal strength (RSS), angle of
arrival (AOA) and their combinations [5]-[12], since these
measurements are associated with the moving UDs’ position
and timing information.

Doppler shift is an important measurement for LAS in
addition to the measurements mentioned above. It is adopted
by many real-world LAS systems such as the global naviga-
tion satellite systems (GNSSs). Unlike other measurements,
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Doppler shifts are directly related to the UD velocity and
clock drift and thus can achieve LAS solely or improve
LAS accuracy combined with other measurements. Using the
Doppler shifts only or along with the other measurements,
including TOA, TDOA and AOA, etc., to estimate the source
or the target localization and velocity is widely studied in
literature.

The studies in [13]-[20] employ the Doppler shifts alone
to achieve position and velocity estimation for a stationary
or moving target or source. Various estimation methods are
investigated in these works. The direct position determination
(DPD) for locating a single emitter is presented in [13], [14].
The Gauss-Newton iterative method using concurrent Doppler
shift measurements from several satellites [15] or sequential
Doppler shifts from a moving unmanned aerial vehicle (UAV)
[16] are proposed. Closed-form methods for locating one or
more stationary sources by different number of moving or
stationary sensors are presented in [17]-[19]. Semi-definite
relaxation (SDR) methods for localization are developed [19],
[20].

Utilizing Doppler shifts along with TOA or AOA measure-
ments for LAS are investigated in [21]-[29]. Localization for
a moving target using time delay and Doppler shift measure-
ments in the presence of sensors’ motion are studied in [21]. In
[22], the Doppler shifts and the elliptic distance measurements
are explored to jointly estimate a moving target’s position and
velocity and a closed-form method is proposed. Localization
for multiple stationary transmitters that uses angle and Doppler
shift measurements is performed using a direct position de-
termination (DPD) method based on the weighted subspace
fitting (WSF) algorithm [23]. The studies in [24]-[29] exploit
TDOA and frequency differences of arrival (FDOA) measure-
ments to achieve source or target localization. The work in [24]
focuses on solving the localization problem in the presence of
receiver random error. A closed-form solution, which does not
need the initial guess and has low computational complexity,
to determine the position and velocity of a moving target is
proposed in [25]. A multidimensional scaling (MDS) based
method, which is shown to be robust to the large measurement
noise is presented in [26]. The study in [27] proposes an
extension of Gaussian mixture presentation of measurements-
integrated tracking splitting (GMM-ITS) algorithm to track
a moving emitter. SDR based methods for moving source
localization with different formulations are proposed in [28],
[29].

However, all of the above-mentioned studies assume that
the ranging signals to form TOA measurements are sent
or received at the same time, and the UD does not have



clock drift. This assumption restricts their applications a time
division broadcast system (TDBS), which utilizes sequential
TOA measurements for LAS, and leads to LAS errors caused
by the UD clock drift.

In a TDBS, ANSs periodically broadcast the signals accord-
ing to their pre-scheduled launch time slots and the UDs pas-
sively receive the signals to obtain sequential measurements.
Since they have separate time slots to transmit signals, the
ANs in a TDBS do not need special radio frequency front
end design to isolate the transmission and reception signals.
This also brings an easier synchronization between ANs since
each AN can receive the signals from other ANs to determine
its own clock offset [30]. On the contrary, the concurrent
measurement systems, such as Global Positioning System
(GPS) and the global navigation satellite system (GLONASS),
require complex pseudorandom codes or need complex radio
frequency front end design for different narrow frequency
bands on each satellite to avoid interference, and have a high
cost for inter-satellite synchronization [31]. In addition, this
TDBS scheme supports unlimited number of UDs and offers
high safety for the UDs from being detected. Due to these
benefits, the TDBS has attracted more attention and the LAS
techniques in such a system have been widely studied recently
[11], [30], [32]-[36]. Many of the prior works [32]-[36] focus
on resolving the UD localization problem and do not address
the issues of clock synchronization and velocity estimation.
Methods for jointly estimating the UD position and clock
parameters using sequential TOA measurements in a TDBS are
proposed in [11], [30]. However, these studies ignore the UD’s
motion during the reception period for multiple measurements,
making the methods not applicable for moving UDs.

There are some recent studies on the LAS problem in a
TDBS for UDs with motion, clock offset and clock drift.
Zhao et al. [37] develop a set of optimal localization methods
for the moving UDs in different cases, and analyze their
performances. Shi et al. [38] propose a two-step weighted
least squares (WLS) method to jointly estimate the position,
velocity and clock parameters of the UDs in the presence of
position uncertainties of the ANs. Guo et al. [39] propose
a closed-form LAS approach for moving UDs in a TDBS
with synchronous ANs at known positions. However, they only
use the sequential TOA measurements, and the utilization of
Doppler shifts is not studied.

Doppler shifts are associated with the relative motion and
clock drift between the ANs and UDs. Utilizing the Doppler
shift measurements in a TDBS has the potential to improve
the LAS performance for a moving UDs with clock drift. Yet,
there is no report on LAS methods in a TDBS using Doppler
shift and TOA measurements, not to mention the studies on
performance evaluation.

In this paper, taking advantage of the Doppler shift to
achieve high-accuracy LAS for UDs with motion and clock
drift in the TDBS, we develop a new optimal LAS method
using the sequential Doppler and TOA measurements, namely
LAS-SDT. We first formulate the LAS problem as a maximum
likelihood (ML) estimator and develop an iterative algorithm
to solve it. In special cases, where aiding information such
as the UD velocity from external sensors and the UD clock
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Fig. 1. ANs and UD in a TDBS. The ANs transmit signals in a sequential
manner. The UD obtains the Doppler shift and TOA measurements from the
received signals. The position and clock offset of the moving UD change with
time.

drift from beforehand calibration are available, we propose
two variant algorithms, i.e., LAS-SDT-v for the case with
UD velocity aiding information, and LAS-SDT-k for the case
with clock drift aiding information. We analyze the estimation
errors of the LAS-SDT and derive the CRLB. We show that the
estimation accuracy of the LAS-SDT is higher than that of the
conventional TOA-only method. We demonstrate analytically
that the LAS error increases when the aiding information of
velocity or clock drift deviates from the true value. Simulation
results show the superior estimation accuracy of the new LAS-
SDT over the conventional TOA-only method, and validate all
the theoretical analyses.

The rest of the paper is organized as follows. In Section
II, we present the system model and formulate the problem.
We develop the optimal LAS method using both sequential
Doppler shift and TOA measurements in Section III. The
LAS estimation performances in different cases are analyzed
in Section IV. Section V presents the performance evaluation
based on numerical simulations. Finally, Section VI draws the
conclusion of this paper.

Main notations are summarized in Table I.

II. PROBLEM FORMULATION
A. Time Division Broadcast LAS System (TDBS) Model

We consider a TDBS, in which M ANs broadcast signal,
and moving UDs receive this signal and obtain the Doppler
shift and TOA measurements, as shown in Fig. 1. We denote
the known position of the i-th AN by q;, where i = 1,--- | M.
All ANs are synchronous and their time is denoted by t.
They sequentially broadcast signals in non-overlap time slots
periodically, e.g., AN #1, AN #2, ..., AN #M and then AN
#1. Without loss of generality, the sequential Doppler shift and
TOA measurements in one broadcast round from all M ANs
are used.

A moving UD in the TDBS receives the signals from ANs
to form Doppler shift and TOA measurements. The interval
between successive measurements is assumed identical and
denoted by At. We denote the unknown position and clock



TABLE I
NOTATION LIST

lowercase x scalar

bold lowercase x vector

bold uppercase X  matrix

T, & estimate of a variable

]| Euclidean norm of a vector

| square of Mahalanobis norm, i.e., 7 W
tr(X) trace of a matrix

| X | determinant of a matrix

XTu,: [ X0 the u-th row and the v-th column of a matrix,
respectively

sub-matrix with the wu-th to the v-th rows and
the m-th to the n-th columns

[X}u:v,m:n

[Xu,v entry at the u-th row and the v-th column of a
matrix

[®]w the u-th element of a vector

E[] expectation operator

diag(-) diagonal matrix with the elements inside

M number of ANs

N dimension of all the position and velocity vec-
tors, i.e., N = 2 in 2D case and N = 3 in 3D
case

i, J index of the measurements

N-element vectors with all zeros and ones

M x N, and N x N matrices with all-zero

entries

In N X N identity matrix

qi known position vector of AN #¢

p, v position and velocity vector of UD

b, k clock offset and clock drift between UD and
ANs

pi TOA measurement between UD and AN #

d; Doppler shift measurement between UD and AN
#i

e unit line-of-sight (LOS) vector from the UD to
the AN

At, At; time interval between successive measurements,
and At; = At- (1 —1)

(7] parameter vector

e, o2 Gaussian measurement noise and variance

F Fisher information matrix

w weighting matrix

34, Zp, variance matrices of Doppler shift and TOA
noises

G design matrix

o estimation bias

Q estimation error variance matrix

offset of a UD at the beginning of one broadcast round by
p and b, respectively. The UD velocity and clock drift are
denoted by v and k, respectively. The position and velocity
of both the ANs and UD are of N dimensional, and N = 2
or N = 3. Since one broadcast round of the ANs has a very
short time, the velocity and clock drift of the UD are treated
as constant during this short period. We aim to obtain the
unknown parameters of a UD in the TDBS using the Doppler
shift and TOA measurements from the sequential broadcast
signals within one broadcast round. The Doppler and TOA
measurements are modeled in the next subsection.

B. Doppler Shift and TOA Measurement Model

The Doppler shift measurement with respect to AN #,
denoted by d;, is obtained by comparing the frequencies of
the received signal and the local oscillator [40]. It is related
to the UD’s velocity and clock drift. We divide the Doppler
measurement by the carrier frequency and then multiply the

signal propagation speed to convert it from frequency to
velocity. It is then expressed by

g —p—v-Af

di:—’UT +k+€dl’i:17”';M7 (1)

lgi —p — v - At
where At; = At- (i — 1) is the time interval between the start
time of one broadcast round and the reception time of the
broadcast signal from AN #i, €4, is the measurement noise,
which follows an independent zero-mean Gaussian distribution
with a variance of 03 , i.e., £4, ~ N(0,07).

By differencing the local reception timestamp and the local
transmission timestamp, we can obtain the TOA measurement
at the UD. Since it is equivalent to a range when we multiply
the signal propagation speed, it is also referred to as pseudo-
range in the literature [31], [40]. Following the measurement
model in [10], [37], the sequential TOA measurement from
AN #i, denoted by p;, is written by

pi =llgi—p—v-At||+b+k-At;+¢e,,,i=1,--- | M, (2)

where ¢,, is the measurement noise, following an indepen-
dent zero-mean Gaussian distribution with a variance of O’%i,
ie., g, ~ N (O,oﬁi), and the time-related terms p;, b and
kAt; are all converted to distances by multiplying the signal
propagation speed and have the unit of meter.

The LAS problem for a moving UD with clock drift in such
a TDBS is to estimate the UD position p and the clock offset
b using M Doppler shifts and M TOA measurements given
by (1) and (2). This problem is important in nowadays LAS
applications and has not been studied in the literature. We will
develop an optimal LAS method in the next section.

III. OpTIMAL LAS FOR UD WITH MOTION AND CLOCK
DRIFT IN TDBS

As modeled in Section II, the unknown parameters of
interest include position p and clock offset b. We investigate
three practical cases, i) no prior knowledge on any parameters,
ii) with velocity aiding information, and iii) with clock drift
aiding information. The optimal LAS methods for the three
cases are proposed in this section.

A. Optimal Estimation for All Unknown Parameters

1) ML Estimator: The parameter vector to be estimated is
denoted by 8. Without any prior knowledge on any parameter,
0 contains the UD position, clock offset, velocity and clock
drift, i.e.,

0 =[p".b,0",k]".

The relationship between the measurements and the un-
known parameters is given by

r=1[d",p"]" = h)+e 3)

where d and p are the collective form of the Doppler
shift measurement d; and the TOA measurement p;, respec-
tively, ie., d = [dy, -+ ,dy]T and p = [p1,-- ,pm)T, €
is the collective form of all the measurement noises, i.e.,

€ = [Edys  * 1EdarrEprs  * 1Epnt)’» the Doppler and TOA



measurement noise variances are denoted by X and X,
respectively,

34 = diag (031,~~~ ,JZM),
¥, =diag (o7, ,05,,), “4)

T PM

diag(-) is a diagonal matrix comprised of the elements inside,
and the function h(-) is a nonlinear function, which has a
collective form as given by (1) and (2), i.e.,

[n(0)]; =
_ T _ai—p—v-At;
Y lg—pwan] TR
i=1,- M

’ ®)
lgi—vs — P —v - Ati_p]| + 0+ k- Ati_pr,

i=M+1,--,2M,

where []; is the i-th element of a vector.

The LAS problem can be solved using an ML estimator.
Recall that the measurement noises €4, and ¢, are indepen-
dent and follow Gaussian distributions. The ML estimator is
equivalent to a WLS minimization problem as

6 = argmin |7 — h(6)|lyy - 6)

where  is the estimator, and W is a positive-definite diagonal
weighting matrix given by

. 1 1 1 1
W:dlag<0'27.“70'270'27.“70'2>’ (7)
dy dv U p1 pM

and ||z||}, = 2T We.

This ML based method using the sequential Doppler shift
and TOA measurements can solve the LAS problem for a
moving UD with clock drift in the TDBS. We name it by
LAS-SDT method.

2) Iterative WLS Algorithm for LAS-SDT: We develop an
iterative WLS algorithm based on the commonly adopted
Gauss-Newton method [31], [40]. We first conduct a Taylor

. . . . A .7 7 o7 71T
series expansion at the estimate point of 8 = [pT, b, o7, k} ,
where p, 13, v, and k are estimates for p, b, v, and k,
respectively. We ignore the second and higher order terms.
Then, (3) becomes

T =h(6)+ (8’6’)2’”@_@) (6—-0)+e. (8)
We define the error vector:
AO 2600,
and the residual vector:
r21r—h(0)=G A8 +e, )

where G = %g’ﬂ o—g 1s the estimated version of the design
matrix G with 6 plugged in, and

[Gli: =
[0h];

[0h]; C

Tpaoa v i1 71*13"'7M7
_eZT_Mvla_ei_]\/[Ati—MaAti—M] NS M + 1,--- ,2M,

(10)

[Oh], vl

?

op  |lgi —p — vAt

T(qi —p — vAt)(qi — p — vAL)T
v’ (g —p — vAti)(q p—v ) =1 M,
lgi —p — vAL|
(11)
[0h],  20TAt; +pT — qf
ov llg: — p — vAL]|
AtvT(q; — p — vAL) (g — p — vAL)T
Aty (g —p — vALi)(q PV )72.:1’“.7M7
llai —p — vAL||
(12)
. —p — VAL,
;= H_PT UL 1.0, M, (13)

lai—p — oAt
with [-]; . denoting the ¢-th row of a matrix, and e; representing
the unit line-of-sight (LOS) vector from the UD to AN #.

We estimate the error vector A in a WLS sense, and denote
the estimated parameter error by A@. It is given by

AG=(GTWGR) 'GTWr. (14)
The estimated parameter vector is updated by
0 — 6+ A#. (15)

We substitute (15) into (9) and compute the estimated
parameter @ iteratively until convergence or a iteration count
limit is reached. The iterative WLS algorithm for the LAS-
SDT method is summarized in Algorithm 1.

The proposed iterative algorithm for the LAS-STD requires
a proper initialization to guarantee the convergence to the
correct solution. In real-world applications, we can utilize
some prior knowledge such as a rough estimate or the known
UD position from the previous estimation as the initialization.
To the best of the authors’ knowledge, the proposed method
is the first one to solve the LAS problem based on sequential
Doppler shift and TOA measurements. In the future, we will
investigate possible alternative solutions, such as the closed-
form methods and semi-definite programming (SDP) methods.

B. Optimal Estimator with UD Velocity Aiding

1) LAS-SDT-v: The UD velocity during one broadcast
round can be obtained by some other sensors such as an inertial
measurement unit (IMU) or an optical flow sensor. With this
aiding information of the UD velocity, we can use an ML
estimator to solve the LAS problem. We name this method by
LAS-SDT with velocity aiding or LAS-SDT-v for short.

In practice, the aiding velocity information, denoted by o,
may be subject to error, denoted by &,. We model the error
as a zero-mean Gaussian noise with a variance of X, i.e.,
€, ~ N(0,3,). We denote the parameters to be estimated by
6,, as given by 0, = 6.

The relation between all the measurements and the param-
eter 0, reads

€
Zy = yv(ev) + |:5u:| s (16)
where
Zy = |:;l)-:| s yv(av) = [h(gl))} ) (17



Algorithm 1 LAS-SDT

Algorithm 2 LAS-SDT-v

1: Input: Doppler shift measurements d and TOA measure-
ments p, noise variance Xy and X,, ANs’ positions
qi, © = 1,---, M, initial parameter estimate 0, =
(D8, bo, ¥d , ko)™, maximum iterative count iter, and con-
vergence threshold thr.

2: for s =1 : iter do

3: Calculate unit LOS vector €y; based on (13), ¢ =
1,---, M

4: Compute residual vector r using (9)

5: Form design matrix G based on (10)

: Calculate estimated parameter error vector A6 using
(14)
Update parameter estimate 6, = 6,_; + A@
if [|[A0]1.x41] < thr then
: Exit for loop
10: end if
11: end for
12: Output: 6,

1: Input: Doppler shift measurements d and TOA mea-
surements p, noise variance 34 and X, ANS’ posi-
tions q;, ¢+ = 1,---, M, aiding UD velocity v, veloc-
ity error variance X, initial parameter estimate évo =
e, bo, oL, ko]”', maximum iterative count iter, and con-
vergence threshold thr.

2: for s =1 :iter do

3: Calculate unit LOS vector é,, based on (19), i =
1,---, M

4 Compute residual vector 7, = z, — 4,(6,._,)

5: Form design matrix G, based on (20)

6: Calculate estimated error vector A8, using (21)

7 Update parameter estimate 0% = 0% .+ A6,

8 if ||[A0 l1:n+41]] < thr then

9: Exit for loop

10: end if

11: end for

12: Output: 8,

and the function A(-) has the same form as (5).
The parameter 6, is estimated by solving the WLS mini-
mization problem as

(18)

év = argr%in |z, — yv(ev)H%iV,U >

is the estimator, and
[W

where é,u

2) Iterative WLS Algorithm for LAS-SDT-v: The iterative
algorithm is similar to the LAS-SDT in Algorithm 1. The
differences are the estimated unit LOS vector €,,, estimated
design matrix GU, and estimated error vector ABU, as given
by

&, = LB 04 (19)
lg: —p
. G
GU i, — 20
(G Onxnv+1) In On (20)
and 3 3 3 3
Aev = (szqu))71GZWJT1)- (21)

The iterative process of the LAS-SDT-v is summarized in
Algorithm 2.

C. Optimal Estimator with UD Clock Drift Aiding

1) LAS-SDT-k: Current oscillators, even the consumer-level
products, usually have a good frequency stability. This enables
us to obtain the oscillator frequency offset or the clock drift
through multiple UD-AN communications when the UD is
stationary [41]. In this case with UD clock drift aiding, we
develop an ML-based LAS method, namely LAS-SDT-k.

We denote the aiding clock drift by k, which is subject
to error, denoted by ;. We model the error as a zero-mean
Gaussian noise with a variance of o7, and &, ~ N(0,0%).
The parameter to be estimated is denoted by 0y, and 0 = 6.

The parameter 6, is estimated by solving the WLS mini-
mization problem as

0 = argmin ||z — y(61) [y, - (22)
k
where ék is the estimator,
T h(6 %4
Rk = |:]%:| ) yk(ak) = |: (k_k):| 7Wk = |: 0_;2:| 5 (23)

and h(-) has the same form as given by (5).

2) Iterative WLS Algorithm for LAS-SDT-k: The iterative
algorithm is similar Algorithm 1. However, the estimated
design matrix Gk, and estimated error vector Aék have
different forms, as given by

i

Aék = (é{Wka)ilcﬁng’l‘k.

(Gl (24)

|:
2N+1
and

(25)

Algorithm 3 is a summary of the iterative approach of the
LAS-SDT-k.

IV. LAS PERFORMANCE ANALYSIS
A. LAS-SDT Estimation Error Analysis

1) Estimation Error: We denote the estimation bias of the
LAS-SDT by p, which has 2N + 2 elements. Note that an
ML estimator is asymptotically unbiased [42]. Therefore, we
have

pn=0. (26)
The estimation error variance, denoted by @Q, is
Q =E [(26 — E[A]) (A0 — E[A@])T}
=(G"wWaG)™! 27)



Algorithm 3 LAS-SDT-k
1: Input: Doppler measurements d and TOA measurements
p, noise variance 34 and X,, ANS’ positions gq;, 1 =
1,---, M, aiding UD clock drift %, initial parameter
estimate Oy, = [p3,bo, ¥, ko]T, clock drift error vari-
ance X, maximum iterative count iter, and convergence
threshold thr.
2: for s =1 :iter do
Calculate unit LOS vector é; based on (13), 1 =
M

(5]

4 Compute residual vector 7 = 2 — yx(Or._,)

5 Form design matrix G/ based on (24)

6: Calculate estimated error vector A8, using (25)
7 Update parameter estimate 05, = )., + A6,
8 if |[AO]1.n11] < thr then

9: Exit for loop
10 end if
11: end for

12: Output: éks

The root mean square error (RMSE) is thereby

RMSE = /[|u]|2 + tr(Q) = v/tr(Q),

where tr(-) is trace of a matrix.

We notice that the weighting matrix W is comprised of
the reciprocals of the measurement noise variances. Then the
estimation error variance @ is growing quadratically with the
increasing measurement noise oq, and o,,. Therefore, the
RMSE grows linearly when the measurement noise o4, and
0, increase.

2) CRLB Derivation for LAS-SDT: With M Doppler shifts
and M TOA measurements at the UD, we have the likelihood
function, denoted by f(7]0), as

exp (—5llm — 1(8)[3)
(2m)M |W 1|2

(28)

f(716) = (29)

The Fisher information matrix (FIM) denoted by F is

9 1n f(p|0)

00007 (30)

F=-E [ } =G"WG,
in which E[-] is the expectation operator, and G is given by
(10).

The CRLB for the i-th element in 6 is expressed by

CRLB([0):) = [F '], (31)
where [-]; represents the i-th element of a vector, and [];;
represents the diagonal element of a matrix at the ¢-th column
and the i-th row.

Remark 1: The estimation accuracy of the LAS-SDT is
higher than that of the conventional sequential TOA local-
ization method such as the LSPM-UVD [37]. Intuitively,
the LAS-SDT utilizes Doppler shifts in addition to TOA
measurements and thus has a better performance. This is also
proven mathematically in Appendix A.

B. LAS-SDT-v Estimation Error Analysis

1) Estimation Error and CRLB: We denote the estimation
bias of the LAS-SDT-v by u,. Similar to the bias of LAS-
SDT, we have

py = 0. (32)
The estimation error variance, denoted by Q, is
Q. = (G, W.G,)™". (33)
where
[Goi: = ONXmH)G i on | (34)
The RMSE is
RMSE, = /||| + tr(Qu) = V1r(Q.).  (39)

Similar to the CRLB derivation for the LAS-SDT in Section
IV-A2, the CRLB for LAS-SDT-v, denoted by CRLB,, is
CRLB, ([0.]:) = [F, i = [(GT W,G,) ]

v

oG9
where F, is the FIM for LAS-SDT-v.

Remark 2: Compared with the LAS-SDT, the aiding ve-
locity v in the LAS-SDT-v is treated as measurements with
extra information. Therefore, with more measurements, we can
intuitively know that there is a performance gain in the LAS-
SDT-v, i.e., the estimation error of the LAS-SDT-v is smaller
than that of the LAS-SDT. When the velocity error approaches
infinite, there will be little information in the aiding velocity
and the estimation error of the LAS-SDT-v will approach that
of the LAS-SDT. It is proven mathematically in Appendix B.

2) Estimation Error Caused by Deviated Velocity Informa-
tion: In real-world applications, the UD velocity measured
by a sensor may not be accurate enough, resulting in deviated
velocity information from the true value. This will cause errors
in the LAS estimation.

The deviated aiding UD velocity is denoted by v. The
deviated velocity-caused error vector, denoted by 7, is given

by
_ | Oy
Ty = L} - 1_)] . (37)
Then, the estimation bias denoted by ft, is
i, = (GIW,G,) 'GTW,7,, (38)

The estimation variance, denoted by Qv, and the RMSE,
denoted by RMSE,,, is given by

Q. = (GIwW,G,)™ ", (39)
and
RMSE, = \/||fio]|2 + tr(Q.), (40)
respectively.

Remark 3: The estimation bias f, can be expressed as
an increasing function of the deviation from the true velocity,
denoted by Av = v — v. It is shown in Appendix C.



C. LAS-SDT-k Estimation Error Analysis

1) Estimation Error and CRLB: We denote the estimation
bias of the LAS-SDT-k by p; and have

- (41)
The estimation error variance, denoted by Qy is
Qi = (GLW,,Gi) ™. (42)
where
(Gli,: = |:OgN+(f 1 } . (43)
The RMSE is
RMSE; = /[[e]® +t2(Qi) = Vtr(Qr).  (44)
The CRLB for LAS-SDT-k, denoted by CRLBy, is
CRLBy, ([0x];) = [(G{Wkak)*l]m. (45)

Similar to LAS-SDT-v, the estimation errors of LAS-SDT-k
are smaller than that of the LAS-SDT.

2) Estimation Error Caused by Deviated Clock Drift Infor-
mation: The UD clock drift is determined by the oscillator
frequency, which may vary with time and temperature. The
LAS estimation accuracy will degrade if the aiding clock drift
deviates from its true value.

We denote the aiding clock drift by k, and the deviation by

Ak =k — k. Then the error vector, denoted by 7, is

7 = [Oﬂf ] : (46)
The estimation bias, denoted by fiy, is
fur = (GEWiG) "' G Wiy, (47)
the estimation variance is
Qi = (GEWiGr) ™, (48)
and the RMSE is
RMSE; = /[l ]|? + tr(Qx). (49)

We can see from (46) and (47) that the estimation bias grows
with the clock drift deviation. This can be proven similarly as
Remark 3.

V. NUMERICAL SIMULATION

We conduct numerical simulations to assess the LAS per-
formance of the proposed LAS-SDT method. We use the
CRLB as the benchmark to evaluate the estimation accuracy.
In all the simulations, we compute the RMSE of the estimated
parameters. We take the position result as an example, and
have the RMSE as given by

K
1 X
RMSE =, | — —p|? 50
% 21: lp — Bl (50)
where K, is the number of simulation runs and p is the
localization result from the proposed method under test in each
simulation.
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Fig. 2. AN and UD placement in simulation scene. ANs are located at the
vertices and the middle of the edges, and UD is randomly placed at the red
dots (Inside Case) or at the black squares (Outside Case).

A. Simulation Settings

We create a 2D simulation scene with 8 ANs on the corners
and middle points on edges of a 600 m x 600 m square area
as shown in Fig. 2. The UD locations have two cases, i.e., the
Inside Case and the Outside Case. In the Inside Case, the UD
locates randomly at the red dots inside the convex hull formed
by the ANs as given in Fig. 2. And for the Outside Case, the
UD locations are the black squares outside the AN convex hull
as given in the figure. The UD speed ||v|| is randomly drawn
from a uniform distribution Z/(0,50) m/s. The direction of
the UD velocity is drawn from ¢/(0, 27). The initial UD clock
offset and drift are set randomly at the start of each simulation
run. The clock offset b is drawn from the uniform distribution
U(—1,1) s. The clock drift k is selected from ¢/ (—20, 20) parts
per million (ppm). The interval between successive Doppler
shift or TOA measurements is set to 50 ms. We set the standard
deviation (STD) of the TOA measurement noise o, to vary
from 0.1 m to 10 m with 5 steps. We set the Doppler shift
measurement noise o4 to 50, in m/s, which is at the same level
of [21]. At every noise step, we conduct 5,000 Monte-Carlo
simulations.

For the proposed iterative algorithms, the maximum itera-
tion time ¢ter is set to be 10 and the convergence threshold
thr = 1072 m. The initial position Py is set to a random
point on the circumference of a 60-m radius circle centered at
the true position, representing an inaccurate initial guess. The
other initial parameters are 50 = p1, ico =0 and vy = 0.

B. LAS-SDT Estimation Performance

1) Inside Case: In this simulation case, the UD is randomly
placed at the red dots as shown in Fig. 2. The estimation
results from the proposed LAS-SDT are shown in Fig. 3.
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Fig. 3. Estimation error vs. measurement noise (Inside Case). The estimation
accuracy of the proposed LAS-SDT method reaches the CRLB. Compared
with the conventional LSPM-UVD, the LAS-SDT has a significantly higher
estimation accuracy due to the utilization of the Doppler shift measurements.
With larger Doppler shift measurement noise, the LAS error increases.

We also depict the results of the conventional method using
sequential TOA measurements only, i.e., LSPM-UVD [37], for
comparison. Furthermore, the results with different Doppler
shift measurement noises, ie., oq = 0, and o4 = 100,
are also shown in the figure for comparison. We can see
that the estimation errors of the new LAS-SDT grow linearly
with increasing measurement noise o, and reach the CRLB.
By utilizing the sequential Doppler shift measurements, all
the estimation accuracies of the LAS-SDT for position, clock
offset, velocity and clock drift are superior to those of the
conventional LSPM-UVD. For example, the position and clock
offset errors of the LAS-SDT are about 50% smaller than that
of the LSPM-UVD when o4 = 50,. We also note that with
larger Doppler shift measurement noise, the LAS error of the
LAS-SDT will increase and approach that of the conventional
LSPM-UVD. This is consistent with the theoretical analysis
presented in Section IV-A.

In order to investigate how the initialization error affects the
convergence speed and estimation results of the iterative LAS-
SDT, we set the initial position with different distances to the
true position. The TOA measurement noise is fixed at o, = 10
m and the Doppler shift measurement noise is set to o4 = 50,.
We record the average number of iterations under different
initial position error conditions. The number of iterations and
the localization RMSEs of the LAS-SDT method in the Inside
Case are shown in Table II.

As can be seen from Table II, when the initial position
error is smaller than 100 m, the localization error of the new
LAS-SDT method reaches the CRLB in the simulation scene.
When the initial position error grows, the new method may not
give an accurate solution and the estimation RMSE deviates
from the CRLB. Furthermore, the average number of iterations
shows that the LAS-SDT method will use more iterations to
obtain the solution when the initialization error is larger.

TABLE II
NUMBER OF ITERATIONS AND LOCALIZATION RMSE FOR
LAS-SDT WITH DIFFERENT INITIAL POSITION ERRORS

Initial Position Error (m) 60 100 200 300

Avg. number of iterations  3.83  4.03 4.48 5.04
RMSE (m) 948 949 11.26 12.06
CRLB (m) 9.45

Note: When the initial position error grows, such as 200 m and
300 m, the estimated localization RMSE will become signifi-
cantly large and deviate from the CRLB, and the algorithm will
spend more iterations to reach a solution.
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Fig. 4. Estimation error vs. measurement noise (Outside Case). The estimation
accuracy of the proposed LAS-SDT method reaches the CRLB in the small
noise range. When the measurement noise becomes larger, the estimation
errors tend to deviate from the CRLB. The LAS-SDT has significantly smaller
estimation error compared with the conventional LSPM-UVD.

2) Outside Case: We investigate the performance of the
new LAS-SDT in another practical case, i.e., the Outside Case.
The UD position is randomly selected from the black squares
in Fig. 2. The estimation errors for position, velocity, clock
offset and clock drift are shown in Fig. 4. We also depict the
results of the conventional LSPM-UVD in the same figure for
comparison.

We can see that Fig. 4 shows similar patterns as Fig. 3.
For example, the estimation accuracy of the new LAS-SDT
method is significantly better than that of the conventional
LSPM-UVD, showing the performance improvement using the
Doppler shift measurements. We shall notice two differences
between Fig. 4 and Fig. 3, i.e., 1) the estimation RMSEs of both
the new LAS-SDT method and the conventional LSPM-UVD
in the Qutside Case are larger than those in the Inside Case,
and ii) the estimation errors in the Qutside Case tend to deviate
from the CRLBs when the measurement noise becomes larger.
They are caused by the worse relative geometry between the
UD and ANs in the Outside Case, which results in a larger
dilution of precision (DOP) [40] and amplifies the estimation
error.
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C. LAS Performance with UD Velocity Aiding (LAS-SDT-v)

1) LAS with Aiding Velocity Subject to Random Error:
We set the aiding UD velocity to the true value added with
zero-mean Gaussian random noise to investigate the estima-
tion performance of the LAS-SDT-v with erroneous known
velocity. The UD positions are randomly selected from the
Inside Case. The STD for the aiding velocity error is set to
o, = 0.10, in m/s. The other settings are the same as Section
V-B.

The estimation errors of the UD position, clock offset and
clock drift are shown in Fig. 5. We also depict the case with
o0y = 20, for comparison. We can see that the estimation
errors of the position, clock offset and clock drift from the
LAS-SDT-v all reach their CRLBs. Compared with the LAS-
SDT, the LAS-SDT-v has smaller errors. When the aiding
velocity error increases, the estimation error approaches that of
the LAS-SDT. This is consistent with the theoretical analysis
in Section IV-B1. We note that the accuracy improvement
of the clock offset is smaller than the improvement of the
position. The reason is that the velocity has a more direct
relation to the position than to the clock offset. Therefore, the
velocity information contributes more on the improvement of
the position accuracy.

2) Impact of Deviated Velocity Information: We fix the
TOA measurement noise to 0,=0.1 m, and deviate the aiding
UD velocity from its true value. We vary the norm of the
velocity deviation from O to 50 m/s with 6 steps. The direction
of the velocity deviation is randomly selected from (0, 27).
The UD positions are randomly selected from the Inside Case.

We plot the estimation RMSEs in Fig. 6. As can be seen, the
estimation errors of position, clock offset and clock drift all
increase when the deviated UD velocity becomes larger. The
theoretical curves are obtained based on (40). The figure shows
that the RMSEs from the numerical simulations all match the
theoretical analysis.
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Fig. 6. Estimation error vs. norm of UD velocity deviation for LAS-SDT-v.
The estimation errors increase with growing velocity deviation. The estimation
errors from simulations all match the theoretical analysis.

D. LAS Performance with UD Clock Drift Aiding (LAS-SDT-k)

1) LAS with Aiding Clock Drift Subject to Random Error:
For the LAS-SDT-k, we set the aiding UD clock drift to the
true value added with a zero-mean Gaussian random error. The
UD positions are randomly selected from the Inside Case. The
STD of the aiding clock drift error is set to o, = 0.50, in m/s.
The other simulation settings are the same as Section V-B.

The estimation errors of the UD position, clock offset and
velocity are shown in Fig. 7. We plot the case with o, = 20,
for comparison. As can be seen from the figure, the estimation
errors of the position, clock offset and velocity of LAS-SDT-
k all reach the CRLB and are smaller than those of the
LAS-SDT. When the aiding clock drift error increases, the
estimation error approaches that of the LAS-SDT. We note
that the position error of the LAS-SDT-k is only slightly
smaller than that of the LAS-SDT. Since the aiding clock drift
information is more related to the clock offset, the estimation
error of the clock offset is more improved than the position
estimation. The results shown in the figure corroborate the
theoretical analysis in Section IV-C.

2) Impact of Deviated Clock Drift Information: We set the
TOA measurement noise to o, = 0.1 m. The absolute value of
the clock drift deviation varies from O to 0.2 ppm, which equals
to an LOS speed range from 0 m/s to 60 m/s in a TDBS using
RF signals. The UD positions are randomly selected from the
Inside Case.

The estimation errors are plotted in Fig. 8. It shows that
the estimation errors of position, clock offset and velocity
all increase when the aiding clock drift deviates from the
true value. The theoretical curves are obtained based on (49).
The results show that the estimation errors from numerical
simulations are consistent with the theoretical analysis.

E. Computational Complexity

We can see from Algorithm 1 that the iterative algorithm for
LAS-SDT has the same operations in each iteration. In each
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iteration, the major operations are the matrix multiplication
and inverse given by (14). The complexity of these operations
is on the order of K3 [43], where K is the dimension of the
matrix. The total complexity is on the order of LK?3, where
L is the number of iterations.

We also record the run time of the LAS-SDT algorithm in
the numerical simulation. The computation platform we use is
Matlab R2019b on a PC with Intel Core i5-10600K CPU @
4.1 GHz and 32-GB RAM. We force the number of iterations
in the algorithm to be 10, which is more than sufficient to
obtain a correct solution, and record the total computation time
of 5,000 runs. We have found that the average computation
time for each run is only 0.90 ms. Such a low complexity
is suitable for real-time operation on size, weight and power
(SWaP) constrained devices such as IoT systems, miniature
drones and robotics.

VI. CONCLUSION

In this paper, we develop a new LAS-SDT method to exploit
the sequential Doppler shifts, which can be measured in the
TDBS, to obtain higher estimation accuracies for the position,
velocity, clock offset and clock drift, than the commonly used
TOA-only methods. The new LAS-SDT method is applicable
for real-world scenarios, where moving UDs always have
oscillator frequency offsets.

Particularly, we formulate the LAS problem as an ML
estimator and present the iterative algorithm, which achieves
optimal LAS estimation and is suitable for SWaP devices.
We further develop two LAS-SDT variants for two special
scenarios when additional prior information is available: (i)
LAS-SDT-v for the case with UD velocity aiding, and (ii)
LAS-SDT-k for the case with UD clock drift aiding. Theoret-
ical analyses confirm our expectation that the LAS-SDT has
higher LAS accuracy than the conventional TOA-only method,
and the LAS-SDT-v and LAS-SDT-k achieve additional gain
with the prior knowledge on UD velocity or clock drift.

Numerical results show that the estimation error reaches the
CRLB. The LAS estimation accuracy of the new LAS-SDT is
significantly higher than that of the conventional LSPM-UVD
method using TOA measurements only. All the numerical
results are consistent with the theoretical analyses.

APPENDIX A
PROOF OF REMARK 1
Based on the definitions of W in (7) and G in (10),
we partition them into TOA-related and Doppler-related sub-
matrices as

_|Waq O |Gy
W= {OM WP] G= [GP] , Gb
where
1 1
Wd:diag D R R R B
<U§1 03M>
1 1
W, diag<,""a>a (52)
8 Ugl O’g}%
[OR], [OR], .
i, — Zv ) 7171 ) :17"'7M7
[Gali.: { op 0 5o 1
(Gli: = [—el,1,—e] At;,At;] i=1,--- M. (53)
The FIM for the LAS-SDT in (30) is re-written as
W, O G
F = GT GT d M d
[ d p] {OM Wp Gp
= GiW,Gq+ G W,G,,. (54)

Note that the matrix G, is the design matrix for the LSPM-
UVD in [37]. We denote the FIM of the LSPM-UVD by

Frspm-uvp and
FLsPM-UVD = GZWpGp- (55)
We know that the matrix GdTWde is positive-definite.
Then, we have

F = FLsPM-UVD- (56)



The CRLB is the diagonal elements in the inverse FIM.
Therefore, the CRLBs of the LAS-SDT and the LSPM-UVD
have the relation as

CRLB < CRLBspy.uvD. (57)

Thus, we have proven that the LAS accuracy of the proposed
LAS-SDT is higher than that of the conventional LSPM-UVD.

APPENDIX B
PROOF OF REMARK 2

We re-write the design matrix for the LAS-SDT-v, i.e., G,
as

G
Gv Qi . 58
(Gl {ONX(NJrl) Iy On } (58)
We define
A2 [Oynyiniy In On]. (59
The FIM for the LAS-SDT-v in (36) becomes
w G
_ T _ [T T
ro-aiwa, e & [V 4 ] [6]
=G'"WG+ATE A (60)

Note that AT LA is positive semi-definite, and GTW G
is positive definite when there are sufficient number of ANs
and a proper geometry. Therefore,

G"WG+ATS'A - GTWG. (61)
We apply inverse on both sides of (61) and come to
(GTWG +ATS;'A) " < (GTWG) . (62)

We can see from (62) that the achievable estimation error of
the LAS-SDT-v is smaller than that of the LAS-SDT, and the
performance gain of the LAS-SDT-v is the term ATX 1A,
Moreover, when the velocity error grows, i.e., 3, — 00, the
estimation error of the LAS-SDT-v method will increase and
approach that of the LAS-SDT. Remark 2 is proven.

APPENDIX C
DERIVATION OF REMARK 3

According to (38), we have the estimation bias as

I ]* =7, ST 1, (63)
where S; = (GITW,G,) 'GTW,,.
We rewrite 7, given by (37) as
7y = SoAv. (64)
where the deviated aiding velocity Av = v — .
By plugging (64) into (63), we come to
i,]|? = AvT SAw, (65)

where S = SgSlT.S&Sg

We have obtained the relation between the estimation bias
and the deviated aiding velocity as given by (65). Further
more, note that S is positive definite. Therefore, there must
be a positive scalar 5 to make the matrix S — BI positive
semi-definite. Therefore, we come to

0|2 = BAVT Av + Av” (S — BI) Av > B||Av|? (66)

We can see from (66) that the estimation bias is growing
when the speed aiding deviation increases.
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