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Abstract—A novel approach is presented in this work for
context-aware connectivity and processing optimization of In-
ternet of things (IoT) networks. Different from the state-of-the-
art approaches, the proposed approach simultaneously selects
the best connectivity and processing unit (e.g., device, fog, and
cloud) along with the percentage of data to be offloaded by
jointly optimizing energy consumption, response-time, security,
and monetary cost. The proposed scheme employs a reinforce-
ment learning algorithm, and manages to achieve significant
gains compared to deterministic solutions. In particular, the
requirements of IoT devices in terms of response-time and
security are taken as inputs along with the remaining battery level
of the devices, and the developed algorithm returns an optimized
policy. The results obtained show that only our method is able to
meet the holistic multi-objective optimization criteria, albeit, the
benchmark approaches may achieve better results on a particular
metric at the cost of failing to reach the other targets. Thus, the
proposed approach is a device-centric and context-aware solution
that accounts for the monetary and battery constraints.

Index Terms—Constrained Devices, Efficient Communications
and Networking, Machine Learning, Context-Awareness, Energy
Efficient Devices, Reinforcement Learning.

I. INTRODUCTION

The world is witnessing a rapid adoption of the Internet
of things (IoT) technologies to enhance and augment human
endeavors in operating almost every aspect of our lives. IoT is
a system of connected devices that sense and actuate signals in
the real world. These devices are connected and enable real-
time data collection and respective optimized action. However,
designing and deployment of IoT networks pose multiple
challenges, including energy consumption, connectivity, and
data processing [1]-[3].

As previously stated in [4], different communication pro-
tocols and standards exist, with each having its pros and
cons. Cellular IoT networks, for example, operate in the
licensed band and utilize mobile network infrastructure for IoT
device inter-connectivity. They are the most suitable option
for private data transmission because they provide reliable,
secure (due to the presence of eSIM card), and wide range
coverage with vast infrastructure. Three cellular technologies

*Electrical and Electronics Engineering, Ankara Yildirim Beyazit Univer-
sit)](, Turkey.
Communication, sensing and imaging (CSI) research group, James Watt
School of Engineering, University of Glasgow, United Kingdom.
Electrical and Computer Engineering, Ajman University, UAE.
School of Electronic Engineering and Computer Science, Queen Mary
University of London, united Kingdom.
11AI Research Centre (AIRC), Ajman University, UAE.
This work was supported by EPSRC Global Challenges Research Fund the
DARE Project: Grant EP/P028764/1, and partially funded by DGSR, Ajman
University under grant ID 2019-IRG-ENIT-8.

have been proposed by 3GPP Rel-13 to support IoT con-
nectivity: narrowband IoT (NB-IoT), enhanced machine type
communications (eMTC), and enhanced coverage GSM (EC-
GSM) [2]. NB-IoT has been designed to offer low cost, wide
coverage, and low data rate transmission with limited mobility
support. The short-range solution, on the other hand, comprises
Zigbee, Wi-Fi, Bluetooth, etc. which could also be publicly,
privately or jointly owned [5].

As argued in [6], the smart port concept is adopted in this
research to illustrate context-aware connectivity and process-
ing. Smart ports represent a vast application as they bridge
the fleet of vessels to the fleet of trucks and include various
aspects of Industry 4.0 technologies. Moreover, cost-efficiency
is a prime objective in the application of smart ports in view of
the competition between various parties in quality and price.
Towards this end, as the industry looks for least complexity
in IoT devices to reduce their capital and operating cost and
enable cost-effective applications, the design of an IoT system
faces the challenge of optimizing the location of the data
processing. This could be in the cloud or device but also in
an intermediate node (e.g., Wi-Fi gateway) referred to as fog.

Furthermore, the massive deployment of IoT devices would
result in the generation of a huge amount of data which
would be difficult for traditional processing techniques to
handle [7]. In addition, due the massive inter-connectivity of
devices, network management and orchestration will become
very complex and challenging, hence the need for more
intelligence to be included in IoT networks to enable enhanced
data processing as well as intelligent and autonomous network
operation [8]. In the midst of diverse IoT network standards
and protocols, vast IoT applications, varying characteristics of
IoT devices (stationary, mobile, battery life, etc.), and several
connectivity options, there is the need to carefully select the
most suitable method to harness, store, transmit, process, and
secure the data obtained from massive IoT networks in an
energy efficient and cost effective way. The application of
artificial intelligence (AI) and machine learning (ML) would
help harness the useful information embedded in the massive
data that is generated in order to facilitate decision making
while ensuring smart and efficient network operation.

A. Related Work

There are many challenges associated with IoT networks
ranging from energy consumption, security, latency and cost
of data processing and transmission, etc. This has led to the
introduction various communication standards and protocols,
and technologies to ensure that these challenges are addressed.
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Some of these communication protocols and standards in-
clude long range solutions (NB-IoT, eMTC, EC-GSM) and
short range solutions (Zigbee, Wi-Fi, Bluetooth) which may
be licensed or non-licensed, private or public networks [5],
[9]-[11]. In addition, IoT enabling technologies including
enhanced data storage and processing infrastructures such
as caching, fog and cloud storage, and mobile edge com-
puting (MEC) [12]-[14] have also been developed. Several
techniques (data aggregation, data offloading, computation
offloading, etc.,) [15], [16] and optimization algorithms in-
cluding machine learning and deep learning [17], [18] have
been proposed to address the aforementioned challenges either
individually or jointly.

The authors in [19] carried out a comparative study of the
connectivity based performance of two IoT enabling technolo-
gies, namely NB-IoT and LoRa to ascertain their suitability
for smart grid applications. In [20], an energy performance
analysis of various low power wide area network (LPWAN)
technologies was performed in order to determine the type of
sensors to select, based on their battery life, that would meet
the energy requirement of the desired IoT application. In [21],
[22] a survey of various security challenges and solutions in
IoT networks was performed. A lightweight authentication
mechanism was proposed in [23], to secure IoT devices in
order to prevent unwanted access while in [24], a survey
of various authentication techniques for the security of IoT
devices was performed.

One of the major concerns of IoT networks is the energy
consumption of IoT devices, hence the network has to be
designed and optimized in such a way that it ensures the
longevity of the device battery life. In this regard, various
optimization frameworks as well as data aggregation, compu-
tation offloading techniques have been proposed. The authors
in [25] proposed a smart game algorithm to optimize both
data transmission and energy consumption. A novel energy
and context-centric scheme based on ML was introduced
in [26], which aims at elongating the device battery life while
ensuring that the required quality of service (QoS) level is
maintained. The use of data aggregators for data collection
from IoT devices in order to reduce signalling overhead as well
optimize energy consumption of IoT devices was considered
in [27], where a drone, which serves as the data aggregator,
was used to collect data from a cluster of IoT devices before
relaying it to the cellular network. The proposed technique
resulted in improved energy efficiency for the IoT devices. The
authors in [28] proposed an energy-optimal data aggregation
mechanism using mixed integer programming for optimal
data routing and aggregation decisions in IoT networks. Even
though the use of data aggregators results in less signalling
overhead and reduced energy consumption for IoT devices,
this approach often results in increased latency and transmis-
sion delays, making it unsuitable for critical IoT applications.

To reduce the latency associated with data transmission,
various caching techniques have also been introduced. The
authors in [29] proposed a caching mechanism using fog
nodes where IoT users with similar interest and in close
proximity to each other are grouped together and mapped to
a fog node, thereby reducing service delays and enhancing

the total throughput of the system. Similarly, An efficient
caching framework for IoT applications in order to ensure
quick content retrieval and reduced latency was introduced
in [30]. A review of different machine learning approaches
for caching IoT data at fog nodes was carried out in [31].

The choice of where to process data is also one of the deci-
sions that need to be made in IoT networks due to the limited
processing power of IoT devices as well as the need to prolong
their battery life and increase the data processing speed. In this
regard, different computation offloading strategies have been
developed. The authors in [32], [33] considered the trade-off
between the energy consumed for local data processing at the
IoT device and that due to offloading to the edge cloud. The
former proposed a theoretical framework for the reduction
of the energy consumption of the devices by developing an
optimal offloading strategy for all user devices in the network.
The latter considered the delays—due to offloading data to
the edge cloud for processing—as an optimization constraint
while developing a close form expression for determining
the optimal offloading strategy for multiple user devices in
order to reduce their energy consumption. A data compression
mechanism was proposed in [34] to reduce the amount of
data offloaded from the IoT device to the edge server for data
analysis purposes thereby reducing the energy consumption in
the IoT device due to data transmission.

There is also the need to develop proper managements
platforms in order to efficiently coordinate the operations
of the large number of heterogeneous IoT devices that are
connected together in a context-aware framework. This is to
ensure that the IoT devices respond rapidly to dynamic chang-
ing events in their environment and that QoS is guaranteed
when transmitting the information gathered to the required
destinations. In this regards, a situation-aware IoT service
orchestration framework was proposed in [35], wherein three
heuristic algorithms were developed. The first algorithm was
to automate the process of event detection based on a pre-
defined event pattern that includes both the event selection
and utilization strategy. The second algorithm, which is a
process decomposing algorithm, was designed to effectively
coordinate the services of the various IoT devices. Then, the
final algorithm was developed to detect the occurrence of event
mismatch during the process of coordinating the services of the
IoT devices. In [36], an intelligent context-aware framework
for QoS management during video transmission in mobile
and fixed networks was proposed. The proposed context-
aware QoS management system comprises three major phases
including context discretization, reduction, and QoS assurance.
Three separate heuristic algorithms were developed to find the
optimal solution in each phase in order to ensure effective end-
to-end QoS management.

Deep learning approaches have been exploited for data
analysis and network optimization because of their excellent
ability to analyse and learn from the large volume of data
generated by IoT devices [37]. A deep learning model was
proposed in [38] for joint transmission and recognition for
IoT devices in order to ensure efficient data transmission to
the server for recognition purposes under very low signal-to-
noise-ratio (SNR). In [39], a deep learning based framework
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for forecasting the energy consumption of IoT networks in an
edge computing scenarios was introduced. A novel offloading
strategy based on deep learning was developed in [40] to
enhance the performance of IoT networks as well as optimize
the amount of edge computing tasks that can be performed.
Another important aspect of IoT networks is ensuring the
confidentiality of the massive data that is collected from IoT
devices. To that end, the authors in [41] proposed a deep
learning framework for big data analytic in IoT networks
that would ensure that the privacy of the data is preserved.
Blockchain technologies has also been combined with deep
learning solutions in order to ensure that the data generated
from IoT devices during model training is secure. In this
regards, the work in [42] proposed a blockchain based deep
learning model to preserve the privacy of data generated by
IoT devices during model training and process of data analysis.
A survey of the application of blockchain technology and deep
learning for privacy in IoT was carried out in [43], [44].

However, most of the proposed approaches considered a
layered approach to IoT network optimization, where one
or two optimization constraints were considered among the
many constraints which include energy consumption, con-
nectivity, transmission delays, storage, computing/processing,
and monetary considerations, respectively. We argue that a
holistic solution approach that considers several optimization
constraints is necessary for IoT network optimization in order
to fully harness the benefits that such solution has to offer. In
this regard, the authors in [3] proposed a context-aware scheme
for IoT networks for the joint optimization of computation and
connectivity using @-learning, a reinforcement learning (RL)
algorithm. A two stage (Q-learning algorithm was developed
where the first stage involved the selection of the connection-
processing unit pair, while the second stage was to determine
the amount of data to be offloaded to fog or cloud. However,
the penalty function developed for the ()-learning algorithm
is not scalable, and hence difficult to adapt it to changing IoT
application requirements. Moreover, in the proposed approach,
it is not possible to prioritize the importance of one constraint
over another, which helps enhance the context-awareness of
the solution.

B. Objectives and contributions

RL is employed in this work in order to manage multiple
optimization objectives, such as connectivity, processing, stor-
age, etc., jointly. The following objectives are pursued in this
work:

o energy consumption and monetary cost: based on the
battery conditions of IoT devices, the total energy con-
sumption of a device—incurred by data processing and
transmission—along with monetary cost is minimized.

« quality requirements of IoT devices: meeting the stip-
ulated quality of the IoT device/application is another
objective of this optimization problem. In this work, we
focus on security and latency exigencies.

In that regard, in this work, a context-aware connectivity

and processing optimization in IoT networks using )-learning
is developed for the joint optimization of connection-type,

processing unit, percentage of data to be offloaded, response
time, security as well as monetary cost. Different from [3],
the proposed holistic framework for IoT network optimization
involves only one stage of (-learning. A simpler and more
generalized penalty function of ()-learning—which will be
referred to as penalty function hereafter—is also introduced to
capture the variations in IoT application demands. In addition,
a weighting mechanism is designed that will enable the IoT
devices to prioritize any of the optimization constraints, on
which basis, the algorithm would change its behaviour. Due
to the fact that the work in [3] and the present work have
structural differences, it would not be fair to compare them.
In other words, the novel weighting mechanism included
here considerably distinguishes this work from [3], since IoT
devices are allowed to rank their requirements, making the
algorithm more dynamic and flexible. In [3], the requirements
are considered in a binary form (i.e., 0 for not required
and 1 for required), while in this work—albeit still being
discritized—the IoT devices can choose the strictness of their
requirements.

Having said all this, the differences between this work
and [3] can be summarized as follows:

o A weighting mechanism is added in order to consolidate
the power of the algorithm, such that IoT devices do
not have to make a hard decision between having a
requirement or not for a particular parameter, including
security and latency. They are rather given the freedom
of ranking their requirements, thus making their decision
softer and the algorithm more flexible. Indeed, this mech-
anism makes it very difficult to compare both works as
[3] does not have such mechanism.

o The design of ()-learning algorithm is made significantly
simpler:

— There are two (Q-learning stages in [3], making the
design more complex and more prone to errors, since
ML cannot guarantee the optimal solution and thus
there is a possibility of having errors. Therefore,
having two stages of ML increases the probability
of error. In this work, on the other hand, these two
stages are compressed in a single ()-learning stage,
and thus the complexity and probability of error are
dramatically reduced.

— The penalty function of ()-learning is much simpli-
fied, making it more understandable and intuitive.
This also reduces the need for parameter tuning, as
there is a huge number of parameters to be tuned
in [3], which is significantly reduced in this work. In
other words, the penalty function in [3] is customized
for a specific scenario and once network conditions
change it would need readjustments. In this work, on
the other hand, the penalty function is made much
more generic and can be applied to changing network
conditions.

The remaining parts of this paper is organized as follows:
The system model is defined in Section II, while the con-
sidered problem is formulated in Section III. The proposed
framework is presented in Section IV, and the performance
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evaluation via a comprehensive results analysis are discussed
in Section V. Lastly, Section VI concludes the article.

II. SYSTEM MODEL

The novel scheme for context-aware connectivity and pro-
cessing developed in this work may be applied to any IoT
application. For clarity purposes, the system model is built
based on the smart port environment as depicted in Fig. 1. The
IoT devices are powered by batteries of varying capacity and
lifespan. They are all equipped with a measure of processing
ability required for basic operation and are able to offload their
data processing operations to Wi-Fi gateway (fog) or the base
station (cloud).

Communication Environment Connection Types

. oo . Wi-Fi GW: Fog Processing
ST ().
B A | e @

Connection
type (a)

R
o‘\‘@: © eNB:
W® Cloud
Processing

10T Node: Device Processing

Fig. 1. System modelling. The IoT network scenario is depicted on the left
hand side, while the descriptions of the considered wireless connection types
are given on the right. GW: gateway

A. Propagation Model

As seen in Fig. 1, the following wireless connections are
modelled: (a) Device-to-Gateway (Wi-Fi), (b) Device-to-eNB
(NB-IoT), and (c) Gateway-to-eNB (LTE). On the one hand,
as we considered that there are neighbouring Wi-Fi gateways
operating at the same frequency—which is a quite likely
scenario—, connection type (a) is taken to be interference
limited. On the other hand, it is assumed that i) NB-IoT
technology is not used in other surrounding eNBs and ii) a
scheduler is used for LTE connections, thereby connection
types (b) and (c) are considered to be noise limited.

The propagation modelling is performed here in order to
obtain the amount of required transmit power for all the
connection types, which is subsequently used for energy con-
sumption computations. In general, wireless communication
is governed by propagation loss that is a function of distance
and frequency. We adopt the log-distance path-loss (L) model
as follows:

d
0
47d
Lo = 201og;, (T) : (1b)

where ¢ is the path-loss exponent, d (in meter) is the distance
between the transmitter and receiver with dy (in meter) being
the reference distance. &, is the shadowing component with a
standard deviation, o, and zero mean. Lg is the path-loss at

. c .
the reference distance dy, A = — is the wavelength, where ¢

is the speed of light, and f, is the transmission frequency.

Signal-to-interference-plus-noise ratio (SINR) is an impor-
tant measure, since it determines the level of signal power at
the receiver, which imposes a certain level of received signal
power—referred to as receiver sensitivity, under which the
communication link fails. Moreover, the receiver sensitivity
varies for different radio access technologies (RATS), thus
the communication channel should be designed accordingly.
Given that various communication types (e.g., LTE, NB-IoT,
and Wi-Fi) with diverse receiver sensitivities are considered
in this work, the link margin concept is used to capture the
distinctive sensitivity levels.

From Shannon’s channel capacity theorem, we know that
the achievable data rate is a function of SINR, such that
higher SINR values result in higher data rates, and vice versa.
As such, by manipulating the well-known Shannon capacity
formula, we obtain the receivable data rate as follows [3], [32]:

D = TBlog, (1 )

P
TR NOB) ’
where P; is the required received power, D (in bits) is the
finite-length data to be transmitted, 7" is the time period, B is
the channel bandwidth, and F; is the cumulative interference
power on the given channel during time period 7. Please
note that P has no effect for wireless connections of type
(b) and (c), since they are noise limited. Next, the required
received power—which is needed to achieve the target data
transmission—is calculated using (2) and solving for F; [3],
[32]:

P = (275 1) (P + NoB). 3)

In this regard, the IoT devices are aware of their data rate
requirements, which is then used to compute the required
transmit power through (3).

B. Energy consumption model

Similar to [3], two main components of the energy con-
sumption are considered and modelled: wireless transmission
and task computation. The energy consumption due to wire-
less transmission is represented by Fi, while that due to
task computation is denoted by E,, hence the total energy
consumption in the IoT network is obtained by summing
both together. The energy as a result of transmission power
is dependent on the transmission route selected by the IoT
device. The transmission route can be either one hop from
device to NB-IoT (Eixp) or two hops with the first hop
being device to Wi-Fi gateway while the second hop Wi-Fi
gateway to LTE (Fi, + Eixc). The energy consumption due
to task processing is determined by the amount of data (D),
computing capability of the processing unit' (X) as well as
the energy consumed in each computation cycle (e); thus
E, = f(D,X,e) = & Xe, where W is the number of bits
per data element (DE) [32].

'Tt is measured in the number of computational cycle per data element (DE);
i.e., higher X yields less computational power
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C. Response time model

The response time is modelled in this work in a similar
fashion to [3]. The response time experienced by an IoT device
is a function of the latency experienced during transmission
from IoT device to the server. We model the uplink delay
in this paper, while assuming that all devices have the same
downlink delay. Towards that end, task computation (process-
ing delay, t,) and data transmission (transmission delay, #,) are
two primary elements of the uplink delay. Of these two, the
processing delay (p) is a function of the processor’s computa-
tional power (X)), such that more delay is experienced with a
lower computational power at the processor. A server usually
possesses much greater processing power compared to an IoT
device, with gateway in between, such that X, < Xy < Xj,
where Xg4, X¢, X. are the computational powers of device,
fog, and cloud, respectively. Hence, we model ¢, with respect
to the processing powers of the various location where task
computation will be performed as follows: ;?—: = fXL: = Eg:,
with 2,4, £, and ?,. denoting delays due to task processing
at the device, fog, and cloud, respectively. The output from
the processing stage is usually compressed data and is of
lesser volume compared to the original raw input data. As
a result, the compression rate that accounts for the difference
in data volume between raw input and processed output data
is expressed as U; D, = UD, with D, and D, denoting the
volume of input and output data, respectively.

The type of RAT as well as the amount of data to be
transmitted have a major impact on the level of transmission
delays that will be experienced. The use of Wi-Fi technology
causes more transmission delays because it uses the unli-
censed frequency band, making it more prone to frequent re-
transmission due to likely collisions. Hence, in this research, as
it is done in [3], we consider this effect by introducing a factor
F' > 1, such that delay experienced due to data re-transmission
over Wi-Fi is F' times greater than that over LTE or NB-
I0T; t 0 = tpF' =t F', where t,,, t, and ¢, represents the
transmission delays due to connection type (a), (b), and (c),
respectively. This is captured in the model in Fig. 1, where
the IoT device or the gateway could be the source with either
the gateway or cloud being the receiver.

As a result, the total response time per action can be
computed as:

Ny
R=t,D+Y tuD “
i=1

where N, is the number of hops, and D € {D;, D,}, while
t; and D; denotes the values of ¢; and D for the ith hop
respectively. It should be noted that connection type (a) and
(b) represent the first hop, while the second hop is depicted
by connection type (c).

III. PROBLEM FORMULATION

In this section the novel problem formulation will be elab-
orated. This work takes the advantage of making the IoT net-
work management more context aware, since the requirements
of the devices are taken into account while making a decision
on the wireless connection type and the data processing unit.

Moreover, in this problem formulation, the IoT devices are
not only able to indicate their requirements but also prioritize
them, meaning that, unlike [3] where the requirements are
considered in a binary form, the IoT devices are given the
option of ranking their requirements, thus making the solution
more accurate. For example, in [3], the IoT devices only
indicate that they have security concerns, whereas in this work
they are able to indicate how much security is important to
them, leading to a more precise decision that makes the devices
more satisfied with their requirements.

All the possible connection types and processing unit pairs
are given in Fig. 2. Considering the diversity in the available

Wi-Fi NB-loT
. X Processing
[ Device ] [ Fog ] [ Cloud ] [ Device ] [ Cloud ] Unit

Wireless
Connection Type

[Option-A] [Option-B] [Option-C] [Option-D] [Option-E] Options

Fig. 2. Possible options for a pair of connection type and processing unit.
Note that although device, fog, and cloud processing are all available for Wi-
Fi case, NB-IoT includes only device and cloud processing owing to the fact
that it does not have/require a Wi-Fi gateway to connect to the Internet.

options provided in Fig. 2, there are multiple components and
objectives of the developed optimization problem:

a) Requirements of IoT devices: there could be a broad
range of requirements based on the use-case, scenario, and
conditions, such as data rate, security, latency, etc., to name
a few. In this work, response time—as another interpretation
of latency—and security are considered as possible require-
ments of IoT devices. As such, let K; be the response time
requirement of an IoT device, and K, be the response time
offered by the selected option. Therefore, in order to satisfy
the response time requirement of the IoT device, the following
criterion must be met:

K, < K,. 5)

The security requirement, on the other hand, is captured by
eSIM protection, such that IoT devices opt for eSIM protection
if data security is of importance to them. In a more formal way,
let K € {0,1} be the security requirement of an IoT device,
and K; € {0,1} be the level of data security offered by the
selected wireless technology, where 1 indicates the need for
eSIM protection and 0 means eSIM protection is unnecessary.
In this regard, the following condition is needed in order to
meet the security requirement of the IoT device:

K, > K,. (6)

b) Energy consumption: the total energy consumption of
the IoT device (Et), which consists of Ei and E,, should be
minimized in order to keep the device alive for a longer time.
However, the requirements of 10T devices may undermine this
objective, since the number of available options may reduce in
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an attempt to satisfy the requirements. Furthermore, the battery
level of an IoT device, represented by 3, is also considered
in this work provided that it could be another variable in the
optimization problem, such that the energy consumption of the
device can be prioritized if 5 goes low.

¢) Monetary cost: it is also important to reduce the
monetary costs due to the fact that a smart port scenario, which
is more related to trading and business, is targeted in this work.
Since lower costs are vital to keep the business sustainable
and profitable, the total data processing cost, represented by
M, is supposed to be minimized as well, constituting another
objective for the optimization problem. To this end, each
processing unit incurs different costs: My, My, and M, which
are the processing cost per bit for device, fog, and cloud
processing, respectively.

In addition to the requirements and objectives, the optimiza-
tion problem has strict constraints as well. For example, the
available computational capacity of the processing unit is the
major constraint, since it can render the selection infeasible.
In this regard, let K, € {X4, X¢, X.} be the computational
capacity of the selected processing unit, where Xy, X¢, and
X, are the available capacities of device, fog, and cloud,
respectively. Then, the following condition must be obeyed to
ensure that the selected processing unit has enough capacity
for the required amount of data:

KX S IA{Xa (7)

where Kj is the required data rate of the IoT device. Note that
although K = D, the Kx notation is kept here for the sake
of consistency.

In addition to the computational capacity, the aforemen-
tioned requirements of IoT devices create additional con-
straints due to the fact that poorly addressed response time and
security requirements can make the whole process impractical.
For example, meeting the security requirement can be a must
for some use-cases, which value data privacy and cannot
tolerate data breaches. In this regard, for such use-cases,
Options A, B, and C in Fig. 2 are eliminated from the
possibilities, since they involve Wi-Fi connectivity that does
not offer an eSIM protection.

Moreover, partial offloading—where IoT devices are al-
lowed to offload portions of their raw data to the fog or
cloud—is also considered in this work. As such, the amount
of data to be offloaded should also be optimized, therefore
we propose a joint optimization of connection-processor pair
and amount of data to be offloaded. The reasoning behind the
partial offloading concept is that it is not sufficient to optimize
the best connection-processor pair alone, since this kind of
optimization cannot be done properly without considering
and optimizing the amount of data to be offloaded given the
aforementioned constraints.

In this regard, the overall optimization problem can be

6
written formally as follows:
min  Br(K, ), Mr(K,9)
s.t. K} <K, ®)
K > K,
KX S [A{X)

where 1 is the selected percentage volume of data to be
offloaded. K € {A,B,C,D,E} is the selected option from
Fig. 2, and is a 5-tuple as follows:

K= [Kr7kS7KX7EA‘T7MT]7 (9)

where Er and My are the resulting total energy consumption
and monetary cost offered by the selected option, K, respec-
tively.

IV. PROPOSED SCHEME

An RL based solution is designed in order to tackle the
problem detailed in Section III. The primary motivation of
using RL instead of heuristic algorithms, which are also
capable of solving such kind of problems, is the computational
cost. As such, although heuristics are good options in finding a
sub-optimal solution to the many problem in various domains,
the nature of wireless communication as well as IoT networks
are quite dynamic, and thus the solution process performed
by heuristics should be repeated every time when there is a
change in the network. In this regard, RL based approaches—
if designed appropriately—are generally computationally less
demanding which makes them more scalable [45]. In other
words, if the environment was static, then then there is a
plethora of advanced multi-objective optimization algorithms,
including Pareto- and evolutionary-based approaches, etc., that
are capable of solving complex problems in different fields;
such as finance, electrical, chemical to name a few [46].
However, since the problem-at-hand requires tackling dynam-
ically changing environments—i.e., the physical conditions
rapidly change—, such algorithms need to be repeated with
a new parameter settings at each change which could be
in the order of seconds in terms of time. Given that this
kind of implementation would be infeasible in terms of both
time/computational complexity and required time for param-
eter tuning and convergence at each change in conditions,
we consider RL as the optimization methodology. Since the
experience gained is transferable among different actors and
time instances, making the decision process much faster after
the initial training process [45], [47], [48].

Furthermore, heuristics are often model-based, meaning that
they require an initial knowledge about the environment-of-
interest, which is an issue in the context of wireless commu-
nication networking as there are multiple random effects in the
equation. Even though there are model-based RL approaches
available, we designed a model-free RL algorithm in order to
resolve the aforementioned challenge of acquiring the model
of the environment in advance. Besides, as mentioned in
[45]-[48], heuristic implementations would require expertise
in tuning the hyperparameters of the algorithms when the
environmental conditions change, bringing the cost of qualified
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labour from the perspective of mobile network operators. In
RL, on the other hand, after the initial design process, there
is no need for parameter tuning when the network conditions
change as the algorithm learns the experience and transfers
accordingly. Lastly, this work is an attempt to demonstrate and
prove the applicability of ML in optimizing such problems,
opening a new path in automating the IoT networks by
eliminating the need for traditional optimization algorithms
which might be outdated when the scale of IoT networks and
latency requirements are jointly considered.

Given its promising convergence features and capabilities of
working in dynamically changing environments, ()-learning—
one of the most popular RL algorithms—is employed in this
work [49]-[51]. In general, Q-learning is an algorithm, where
an agent interacts with its environment by taking actions and
evaluating consequent outcomes—referred to as reward or
penalty. In particular, there are four main components of Q-
learning [49], [50]. 1) environment: anything that produces
an output for any taken action; 2) agent: the entity that
takes the actions within the given environment; 3) action: the
movements that the agent performs to observe the output; 4)
state: the condition of the agent according to the action taken.

It is a model-free algorithm, meaning that it does not require
a prior knowledge about the environment; it rather learns the
environment through continuous interactions. In addition to
the aforementioned convergence and adaptability features, this
model-free characteristics of ()-learning also makes it a good
candidate for the problem defined and modelled in Section III.
Furthermore, it is already proven to perform well in a similar
scenario and problem tackled in [3].

The sequence diagram explaining how the proposed
methodology can be implemented is depicted in Fig. 3,
wherein three main entities—namely, device, fog, and cloud—
are included with their subsystems. Starting from the subsys-
tems that are common to all the entities, the processor is pri-
marily responsible for data processing, meaning that it tries to
extract the meaningful information from the data. Transceivers
are for wireless communications, that is, they are used to
transmit and receive data from other entities and convey the
data to the remote controller, which analyzes the data received
from the IoT device and takes the required action. In the
case of wild fire, for example, the IoT device may sense’
some physical parameters—say corbonmonoxide—from the
environment (forest in this case) and transmit it to the remote
controller (e.g., firefighters or local authorities), which then
decides the kind of action to take in order to prevent and/or
fight the fire.

The local controller in the IoT device orchestrates all
the decision making process by training the designed RL
algorithm and taking the final decision. The local controller, as
seen in Fig. 3, collects all the necessary information from all
the entities and subsystems in order to train the algorithm. It is
worth noting the the QoS requirements and their corresponding
weights are acquired from the remote controller, since it is the
one determining such parameters. In other words, the same

2Note that the sensing unit in the IoT device is not depicted in Fig. 3 in
order not to pollute the figure as it is not related to the discussion.

IoT device can be used for various use cases, and each use
case might have distinctive requirements, which are set by the
remote controller according to different variables, including
the characteristics of the use case, environmental conditions,
etc.

A. Actions and States

In the considered scenario, the IoT devices are supposed
to choose one of the options presented in Fig. 2 to conduct
their connection and data processing tasks. In this regard, these
options could also be treated as an action set for the developed
Q-learning algorithm. However, Options B, C, and E include
either fog or cloud processing, meaning that IoT devices are
supposed to offload their collected data to the fog or cloud for
processing if they choose one of these options. Provided that
partial offloading is also captured in this work, the amount
of data to be offloaded should also be optimized, and thus
considering the options in Fig. 2 alone as the action set would
not be adequate for this objective. Therefore, the action set is
determined as follows:

A=Kx U, (10)

where x represents a Cartesian product, K is the set of
all the possible options included in Fig. 2, such that K =
{A,B,C,D,E}, and ¥ is the set of all the possible options
for offloading percentage, such that

U ={rm|me{0,1,2,..,20}}, »eRT, (11)

where m is discretisation factor that is used to discretise the
continuous values from 0% to 100%, and 7 is the resolution
of the discretisation process. 7 can take any value in RT, but
with a trade-off: the smaller it gets, the higher the resolution
is, resulting in a more precise decision. However, smaller 7
creates an additional computational burden, since it increases
|A|, which is the cardinality of A. Without loss of generality,
7 = b5 is taken in this work, since it provides a sufficient
resolution without significantly increasing the computational
complexity. Note that Options A and D do not have ¥
parameter, because they do not perform any offloading at all.
Using this phenomena, the actions set in (10), can be rewritten
as

Kx W, if K € {B,C,E}

K, if K € {A,D}.

Since each of these actions also defines the state of the
agent, the state space, denoted by S is designed to be the
same with the action space, such that S = A.

A= (12)

B. Penalty Function

In the proposed @-learning algorithm, two novel prioritiza-
tion concepts are adopted:

a) Prioritization of requirements: loT devices are al-
lowed to prioritize their requirements using a weighting mech-
anism, such that w = {wy,w,}, where w; € R and ws, € R
are the weight parameters for response time and security
requirements, respectively. IoT devices are asked to rate the
strictness of their requirements, such that lower values indicate
that the requirement is loose, while higher values yield a
stricter requirement.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on March 06,2022 at 11:12:26 UTC from |IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2022.3152381, IEEE Internet of
Things Journal

DEVICE FOG

Cloud
Processor

Remote

Local Local '
: Controller

i Controller ~Processor

Fog

Transceiver
Processor

Transceiver

(i) QoS requirements|

(ii) Requirement weights

(iii) Battery level

(iv) L(ocal energy profile

(v) Fog energy profile & cost
[€

le (vi) Cloud energy profile & cost

Training
b Process |

> Processed data

= = = =>» Rawdata
© Firsthop
@ Second hop

Option-A

D Option-B

®—— Option-C

Option-D.
D— Option-E

Fig. 3. Sequence diagram showing the information flow between an IoT device, fog, and cloud. Note that the data is always transmitted or received by the
transceiver of the concerned entity before it is conveyed to the processor internally.

b) Prioritization of energy consumption and monetary
cost: the total energy consumption and monetary cost are sub-
ject to prioritization as well. However, unlike the requirement
prioritization case, where IoT devices control their weights (w;
and wy), the energy consumption and cost prioritization are
triggered by the network. Moreover, this mechanism is linked
to the battery level of an IoT device, 3. More specifically, a
certain threshold, denoted by 7 € R, is determined for the
battery level, and

« if the battery level of an IoT device ¢ is above or equal
to the threshold, such that

Bi > BTa

the monetary cost is prioritized.
« if, on the other hand, the battery level of an IoT device
1 18 less than the threshold, such that

Bi < Br,

then the energy consumption is prioritized.

(13)

(14)

Based on that, the overall penalty function for the developed

Q-learning algorithm is formulated as follows:
Co =0, + O, + O + O + wFr, (15)

where O, O, O, and O, are the penalty elements for
response time, security, computational capacity, and monetary
cost, respectively:

O + K, if K, > K,

e, = . (162)
0, otherwise,
v, if Ky < K

o, = = (16b)
0, otherwise,
Qv if Ky > K

0. = b X (16¢)
0, otherwise,

Om = wmMr Ky, (16d)

where 2 € R is the global penalty factor, and w. € R is the
penalty factor incurred when the computational capacity is ex-
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ceeded. Note that w, > max{wy, ws}, since the computational
capacity is a physical constraint that cannot be breached.

we and wy, are the weights for energy consumption and
monetary cost set by the network, such that

w+, if B; <

w, = W HAi<Pr (17a)
w, , otherwise,

R (17b)
w,, otherwise,

where x+ and x~ represents the high and low values of z,
respectively.

V. PERFORMANCE EVALUATION

In this section, the proposed RL approach is implemented
in a simulation environment, as illustrated in Fig. 1, using the
simulation parameters defined in Table L.

A. Benchmarking

In this subsection, we introduce the benchmark scenarios
that we compared our proposed approach with. It is worth
noting that the methods mentioned here are some fixed com-
binations of wireless connectivity and data processing unit,
since other methodologies, such as heuristics, are hard to
implement for the problem detailed in Section III due to the
fact that they need the model of the environment in advance.
As such a model cannot be available for IoT networks because
of multiple random effects that change the environmental
parameters very abruptly and frequently (refer to Section IV
for a more detailed discussion on this), hence the use of
heuristics as a benchmark is not appropriate. Such kind of
benchmarking makes a weak assumption of having the model
of the environment in advance, which would violate the reality
of the work.

Moreover, given that the primary objective of this work
is to demonstrate the feasibility and compatibility of RL to
the problem-at-hand, we do not deem it necessary to compare
different RL algorithms, such as Q-learning and SARSA. In
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TABLE I
SIMULATION PARAMETERS

Parameter  Value Description
Communication
8 3 Path loss exponent
do 10 m Reference distance
o 8 dB Standard deviation
c 3 x 10% m/s Speed of light
fea 2.4 GHz Carrier frequency for IEEE 802.11¢g
few 1700 MHz Carrier frequency for NB-IoT
fee 1800 MHz Carrier frequency for LTE
No —204 dbW/Hz  Noise density
T 1/N s Time period
B 180 kHz Bandwidth
F 2 IEEE 802.11g retransmission rate
Tenb 1 km Coverage radius of eNB
Twifi 30 m Coverage radius of eNB
General
Nio 10 Number of IoT devices
€ 5x 1077 Energy per computation cycle
w 8 Number of bits per DE
Xd 30 kbps Computational capacity of device
Xt 100 kbps Computational capacity of fog
Xe 10 Mbps Computational capacity of cloud
X4 100 (Device) Comp. cycles per DE
X 10 (Fog) Comp. cycles per DE
X 1 (Cloud) Comp. cycles per DE
My 107* AC (Device) Cost of processing per bps
M; 1071 AC (Fog) Cost of processing per bps
M. 1 AC (Cloud) Cost of processing per bps
(8} 200 Data compression rate
Br 30% Threshold for battery level
Q-learning
[eY 0.5 Learning rate
] 0.9 Discount factor
€ 0.8 Chance of choosing random action
Nep 102 Number of episodes
N 103 Number of iterations per episode
Q 10 Global penalty factor
wWe 5 Penalty of exceeding comp. capacity
wl, w 10,1 High, low values of we
w:‘r, wy 10,0 High, low values of wn,

other words, the motivation of this work is not comparing RL
algorithms; instead, revealing that RL can be employed for
this type of problems, mitigating the computational burden and
model dependence of other optimization methods. However, it
is worth mentioning the rationale behind choosing Q)-learning
over SARSA in this work: since (-learning is an off-policy
algorithm and it acquires straightforwardly the optimal policy,
its analysis is more simplified and it converges early [52].
Furthermore, considering the cliff walking example in [52],
SARSA is more conservative in taking actions, and thus it
is preferable in problems whose costs cannot be tolerated.
Given that the cost of choosing a sub-optimal or undesired
option would not make a serious consequence in the case
of the problem formulated in Section III, it is considered
safe to select -learning algorithm. Nonetheless, it should be
noted that such selection would be trivial for this problem, as
SARSA and -learning are quite similar algorithms other than
being on-policy and off-policy respectively, SARSA would
also be expected to produce similar results as (-learning [52],
[53].

The implementation of RL with value-function approxima-
tion (VFA), including deep RL and linear VFA, is beyond the

scope of this work as it can be implemented for more complex
scenarios and requires a completely different approach. Be-
sides, albeit its proven strong capabilities—especially in large-
scale problems—RL with VFA brings an extra implementa-
tional complexity on the grounds that the inclusion of either
linear function approximation or a neural network (in the case
of deep RL) necessitates more hyperparameter tuning as the
feature selection, which plays a crucial role in the performance
of such algorithms [52], will also be an issue. In this regard,
intuitively, conventional RL methods can be preferable if the
search space (e.g., number of states) or complexity of the
problem is limited, whereas RL with VFA would be a choice in
the case of increase state space in the design of the algorithm.

Lastly, even though this work originates from [3], it is quite
difficult to use it as a benchmark given that there are structural
changes made in this current work. Although the reasoning
behind this is detailed in Section I-B, it is better to have a
brief summary in order to ensure the completeness of this
subsection. The main reason is that a weighting mechanism—
discussed in Section IV—is included in this work, making
the comparison of both works very hard; such that although
the work in [3] considers the requirements of IoT devices
in a binary fashion, this work allow them to prioritize one
requirement over another. Therefore, the comparison would
not be possible and fair.

There are some relevant and strong works in the literature,
such as [35] and [36]. Although those works are similar to
our work from a top-level view, as the context-awareness is
investigated in both [35] and [36], the characteristics and focus
of such works are quite different than our work. For example,
in [35], the authors tried to automate the process of event
detection, and they developed a detection mechanism for the
occurrence of event mismatch during the process of coordi-
nating the services of the IoT devices. The authors in [36],
on the other hand, investigates an intelligent context-aware
framework for QoS management during video transmission. In
addition to the characteristics, the formulated and investigated
problem of our work is distinct, making it hard to compare it
with such exiting works.

Having said all this, in order to obtain the benchmark sce-
narios, first, the IoT devices are categorized into two groups—
with equal number of members—based on their wireless con-
nection type as follows: the devices with NB-IoT connection
and the ones with Wi-Fi connection. The former group is
called Group-X, while the latter group represents Group-Y.
Then, these groups are mapped to the available processing
units, and all the possible combinations are considered as
benchmark scenarios, as given in Table II.

B. Performance Metrics

The obtained results are evaluated with five different met-
rics, namely energy consumption, monetary cost, response
time, security dissatisfaction, and a novel joint metric that is
specifically developed for this work. Moreover, these metrics
are presented in a comparative fashion, where the perfor-
mances of the benchmark methods—provided in Table II—are
compared to the proposed RL-based method.

The performance metrics are elaborated as follows:
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TABLE II
LIST OF FIXED BENCHMARK SCENARIOS WITH CONNECTION TYPES AND
DATA PROCESSING UNIT

Scenario  Group-X  Group-Y
Sca Device Device
Scp Cloud Device
Sce Device Fog
Scp Cloud Fog
Scg Device Cloud
Scg Cloud Cloud

a) Energy consumption: the accumulated energy con-
sumption of all the IoT devices, which is caused by data
processing and transmission, is calculated by

Niot
Er = Z Er;,
i=1
where Ny is the number of IoT devices, and Er ; is the total
energy consumption of i IoT device.

b) Monetary cost: the aggregated monetary cost that the

IoT devices are charged for data processing:
Niot
My = Z Mr ;,

i=1

(18)

19)

where Mr; is the total monetary cost for i" ToT device.
c) Response time: the accumulated response time for all

the IoT devices:
Nio(

Rr = Z Ry,
i=1

where Rr; is the total response time for i™ ToT device, and
given by

(20)

" K- K, ifEK >K
T, =
7 07

d) Security dissatisfaction: the number of IoT devices,
whose security requirements are not satisfied:

Nio[
NgisT = E Vdis, i+
=1

where vgis ; is the security dissatisfaction variable for the IoT
device 1, such that

21
otherwise. @D

(22)

0, if K> K,

. (23)
1, otherwise.

Vdis =
e) Joint metric: the combination of all the aforemen-
tioned metrics, such that

J = yEr + nMr + (Ry + 6N, (24)

where ET, qu, RT, and Ndis,T are the normalised versions of
ET, MT, RT, and Ndis"]]‘, respectively. The normalisation (fea-
ture scaling) operation is performed here in order to keep the
scale of the each metric in the same range, thus preventing
one from dominating another. y (unitless), 1 in (Joule/AC), ¢
in (Joule/s), and « in (Joule), where vy = n = ( = k = 1,
are coefficients used to make the units of the elements of J
in (24) the same. Note that AC in the unit of 7 stands for
arbitrary currency.
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C. Battery Regimes

Two different battery regimes, namely low and high, are
considered in this work, and results are produced separately
in order to observe the behaviours of the proposed method?.

a) Low-battery regime: when the energy level of the
battery of a particular IoT device is under a certain thresh-
old (8; < pr), the device is considered to be in a low-
battery regime, and the proposed @)-learning algorithm starts
to prioritize the total energy consumption of the device along
with meeting the response time and security requirements. It
is worth noting that, the priority between the requirements and
the energy consumption is determined by the weights of the
requirements (w), such that if the requirements are strict (i.e.,
with high weights), then they become more important than the
energy consumption, and vice versa. The underlying idea here
is that if the device is strict in any requirement, it means that it
is unwilling to compromise on that. Moreover, the monetary
cost is completely discarded, and therefore IoT devices are
expected to be charged more when they are in this regime.

b) High-battery regime: to be in the high-battery regime,
the remaining energy in the battery of an IoT device should be
above the aforementioned threshold for the battery level (/3; >
Br). In this high-battery regime, the monetary cost is val-
ued significantly, and—similar to the low-battery regime—
the importance of the requirements are determined by their
correspondent weights, and energy consumption is loosely
prioritized*.

D. Results and Discussions

Fig. 4 demonstrates the performances of all the methods
including the proposed one and the benchmarks when the
entire set of IoT devices are in the low-battery regime.
Moreover, both response time and security requirements of
the IoT devices are prioritized in a rigid way, where both w;,
and w; are ranked as 3. In the following paragraphs, there will
be individual discussions on the results for each performance
metric:

a) Energy consumption: owing to the low-battery
regime, it was expected that the proposed method will perform
well in minimizing the energy consumption. This is due to
the fact that, when the battery level is under the threshold, the
energy consumption component in the penalty function in (15)
is prioritized through its weight (w.) by setting it to its high
value (w;" ), as seen in (17a). This is a reasonable behaviour,
since the energy consumption becomes more crucial when the
battery is about to be depleted, which in turn interrupts the
communication until the battery is recharged or replaced.

The energy consumption results for the benchmark scenarios
are also worth discussing. There are two main components of
the overall energy consumption, namely data processing and
transmission. Based on the channel conditions and distance

31t is worth noting here that the benchmark methods do not consider the
remaining battery level of IoT devices, and thus their behaviours are not
expected to change with the battery level.

It is important to mention that unlike the low-energy regime, where
the monetary cost is completely discarded, the energy consumption is still
considered in the high-battery regime albeit with much less importance, since
energy consumption of an IoT device should always be in the equation.
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Fig. 4. Performances of the proposed method (named as @Q-learning in the
legend) and the benchmark scenarios in terms of considered metrics when all
the IoT devices are in the low-battery regime. The response time and security
requirements are strictly prioritized, such that w, = ws = 3. Note that the
shown results are normalised values in the range of [0, 1] with an offset of
0.1, which is used only due to visualisation purposes. However, the results
are discussed in the text without considering the offset value.

between a transmitter and a receiver, the transmission energy
consumption can prevail over the processing energy consump-
tion, or vice versa [32]. However, receiver sensitivity, which is
captured by the link margin in this work, also plays an impor-
tant role provided that it is directly correlated to the required
received power, which in turn affects the required transmit
power. Therefore, the connection type (i.e., Wi-Fi, NB-IoT,
and LTE) is also involved in the breakdown of the total energy
consumption. In this work, due to the random distribution of
the IoT devices and the Wi-Fi gateways at each repeat® in the
simulations, it is avoided for one of the aforementioned two
components of energy consumption to dominate the other®.
Nonetheless, owing to the link margin assumption, the NB-
IoT connection happened to be the least energy consuming
connection type in most of the cases. Besides, in terms of the
energy consumption, the descending order of the tasks is as
follows: Wi-Fi connection, data processing, NB-IoT connec-
tion. Note that the energy consumption difference between the
Wi-Fi connection and data processing happened to be much
more than the difference between the data processing and NB-
IoT connection. This may seem counter-intuitive given that
the Wi-Fi gateway is much closer to the IoT devices than the
eNB. Nonetheless, since the receiver sensitivity of NB-IoT is
less than Wi-Fi and LTE, it happens to result in less energy
consumption owing to the less required transmit power, which
is caused by the less path-loss.

In this regard, since all the options include the same
number of IoT devices with NB-IoT (Group-X) and Wi-
Fi (Group-Y), there is no difference in terms of the number
of connection types. However, the point that matters here
is the processing unit. On one hand, when an IoT devices

5The simulations are repeated for 25 times to avoid random effects.

This is ensured via random process; the path-loss can sometimes be
huge, which results in the transmission energy consumption surpassing the
data processing energy consumption, or vice versa. However, this effect is
minimized by averaging out the simulation repeats.
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is connected through Wi-Fi, device processing is expected
to consume less energy than cloud processing, with fog
processing in between. On the other hand, when the device
is connected through NB-IoT, device processing consumes
more energy than cloud processing, with fog processing in
between. In addition, the maximum energy consumption with
Wi-Fi connection is expected to be more than the maximum
energy consumption with NB-IoT connection. Based on that,
Scg resulted in the least energy consumption due to the fact
that the devices with Wi-Fi connection process the data locally,
while the devices using NB-IoT connection performs cloud
processing. Scp is followed by Sca, since it also processes
the data locally for Wi-Fi connections. The small difference
between Sca and Scg comes from the difference between the
cloud and device processing for NB-IoT connections. In a
similar fashion, Scg consumed the maximum energy among
the benchmark methods, since it employs cloud processing
for Wi-Fi connected devices and device processing for NB-
IoT connected devices. In summary, cloud processing is less
energy consuming for NB-IoT, whereas it is more energy
consuming for Wi-Fi. Moreover, as mentioned earlier, the
maximum energy consumption with Wi-Fi is much more than
that of NB-IoT.

b) Monetary cost: as a result of the low-battery regime,
the proposed algorithm inclines towards being much looser in
monetary cost, and thus it is not expected to be competitive in
this metric. Based on that, as expected, the proposed method
performed worse than all the benchmark methods other than
Scg, which purely includes cloud processing.

Similarly, the results of the benchmark methods are obtained
as expected: the cloud is the most expensive means of data
processing, followed by the fog, and the device (local), re-
spectively, such that My < My < M,.. Thus, the scenarios
with device processing (e.g., Sca) resulted in less amount of
monetary cost, whereas the scenarios with cloud and/or fog
processing (e.g., Scp and Scg) become the most expensive
ones. The results obtained in Fig. 4 confirms this statement.

c) Response time: the proposed method performed quite
well in response time by outperforming all the benchmark
methods. Provided that w, = 3, which yields a strict priori-
tization of response time, it was expected that the proposed
method will reduce the response time. Considering (15) and
(16a) together, the effect of response time in the penalty
function in (15) increases with growing w,. As such, the
primary objective of the developed ()-learning algorithm is
to minimize the overall penalty, hence, the response time
satisfaction becomes key for this objective.

Similar to the previous metrics, the benchmark methods
also performed as anticipated. As discussed in Section II-C,
response time is a function of the number of hops (1Vy), the
computational power (X), retransmission rate (F'), the data
volume (D € {D.,D,}), and compression rate (U). Given
that NB-IoT connection has only one hop and lower retrans-
mission rate than Wi-Fi connection, the scenarios with NB-
IoT resulted in a comparatively less response time. Similarly,
from (4), albeit suffering from a higher computational time,
device processing is also preferable due to the processed data
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transmission, which entails U times less data volume’. Thus,
for example, a cloud processing with a Wi-Fi connection
would result in the highest response time owing to: 1) Wi-
Fi connection, which has higher retransmission rate; 2) two
hops taken; and 3) raw data transmission. In this regard, Sca
resulted in the least response time, whereas Scr caused the
highest response time among all the methods.

d) Security dissatisfaction: similar to the response time
case, security requirement is also strictly prioritized in these
simulation campaigns by setting ws to 3. Considering (15)
with (16b), higher values of w; incurs more cost by increasing
O, which in turn inflates the penalty function, Cq in (15).
Given that the objective of the designed ()-learning algorithm
is to minimize &g, satisfying the security requirement of IoT
devices becomes crucial for the proposed algorithm, as ©
returns 0 when the requirement is met. To this end, the de-
veloped Q-learning algorithm achieved a significant reduction
in terms of the security dissatisfaction when compared to the
benchmark methods.

One can question the equal results of the benchmark meth-
ods, but there is a rationale behind it: half of the IoT devices
are connected with NB-IoT (Group-X in Table II), while the
other half communicates through Wi-Fi (Group-Y in Table II),
and—as discussed in Section III—the security requirement
is captured by the need for an eSIM card, which is only
available for NB-IoT connections. Thus, those connected with
NB-IoT do not have any issue with the security dissatisfaction,
since they always meet the requirements due to their eSIM
card availability. Those connected through Wi-Fi, on the other
hand, cannot respond to the eSIM card requirement. Based on
that, the number of IoT devices with security dissatisfaction
always equals to the number of IoT devices that: 1) is
connected through Wi-Fi and 2) requires eSIM protection.
Thus, the number of dissatisfied devices is the same for all
the benchmark methods.

e) Joint metric: while each individual previous metric
reflects the behaviours of the methods in a specialized man-
ner, this joint metric summarizes the overall performances.
Therefore, this metric can be seen as a holistic cost of
each method, which demonstrates how they perform when
all the previous metrics are combined. The proposed method
performed quite well and outperformed all the benchmark
methods in different scales. The reasoning behind this is that
there are four metrics in total other than joint metric, and the
proposed method outperformed all the benchmark methods
in three of them. Therefore, it is quite reasonable that the
proposed method performed the best in terms of the joint
metric. Similarly, the benchmark methods responded to the
joint metric according to their results in each individual metric,
namely: energy consumption, monetary cost, response time,
and security dissatisfaction.

The comparison between the cases of requirement de-
prioritization (w;, = ws = 0)—which will be referred
to as low-battery requirement-aware (LBRA) hereafter—and

"The response time of the options (connection and processing) would alter
for different values of U, F, and X. Therefore, the response time of the
benchmark methods would change accordingly, but the discussions here are
based on the current assumptions for U, F', and X.
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prioritization (w; = ws = 3)—which will be referred to
as low-battery requirement-unaware (LBRU) hereafter—under
the low-battery regime is demonstrated in Fig. 5. The loss
calculations for each metric is performed as follows:

Ao LBrU — AQ.LBRA

L= , (25)

AQ 1BRU
where Ag sra and Ag 1pru are the differences between the
values obtained via the proposed method and the minimum
value obtained with the benchmark methods for LBRA and
LBRU, respectively, such that

Aqera = Vo,erA — min(V4), (26a)
Ageru = Vo,Leru — min(V4), (26b)

where Vi, € {Vse,, Ve, Vsees Vseps Vser, Vser b are the ob-
tained values in the aforementioned metrics with the bench-
mark methods. Vg 18ra and Vg 1gru are the obtained values
in the aforementioned metrics with the proposed method for
LBRA and LBRU, respectively.

There is an important caveat to note here: positive values
of L calculated through (25) indicate loss, where the LBRU
performed worse than LBRA, and the negative values of L
indicate gain, where LBRU performed better than LBRA.
From the findings in Fig. 5, it is obvious that LBRA out-
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Fig. 5. Performances of the proposed method in terms of considered metrics
when all the IoT devices are in the low-battery regime. The results show the
percentage loss when LBRU (w; = ws = 0) is compared to LBRA (w; =
ws = 3). Positive values yield loss; i.e., the superiority of LBRA, while
negative values yield gain; i.e., the superiority of LBRU.

performed LBRU in all the metrics other than the energy
consumption. Starting from response time and security dis-
satisfaction, the results are quite expected provided that both
of the requirements are prioritized in LBRA with weight
values of w, = ws, = 3. Hence they are given a special care
in LBRA when (15) is considered together with (16a) and
(16b). Although the scale difference between the response time
and security dissatisfaction is worth discussing, however, it is
better to first analyze the energy consumption results, which
will then be more beneficial to explain such difference.

As seen from Fig. 5, the energy consumption is the only
metric that LBRU performed better than LBRA. The rationale
behind this is that energy consumption is the only focus of
LBRU given that: 1) the IoT devices are in the low-battery
regime, and 2) both w; and wy are set to 0. Thus, LBRU does
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not consider any other metric other than energy consumption,
which is the reason why it managed to outperform LBRA.

Considering this rationale as a base, it would be more
straightforward to explain the obtained results from the other
metrics, as the reasoning for all the results are linked to each
other and they all arise from this base. There are additional
supporting facts as follows:

o« LBRA aims at minimizing the energy consumption, but
with the response time and security constraints. In other
words, the energy consumption is minimized after the
response time and security requirements of the devices
are satisfied. Provided that Options A, D, and E happen
to result in minimal response time, meaning that they
could be the options for the devices with low response
time requirements.

o Similarly, Options D and E are the ones that provide
the eSIM protection, which means an IoT device should
select one of these if it has security concerns.

Based on that, Options D and E followed by A are the
intersection ones that are most likely to be selected when
both response time and security is prioritized. For example,
the response time requirement of an IoT device can only be
satisfied with Option A and D, but Option E can result in
less energy consumption. In such cases, LBRA would select
Option A or D that has the least monetary cost due to device
processing, whereas LBRU goes for Option E that results
in the highest monetary cost due to cloud processing. As
such, LBRA is more likely to perform better in terms of
monetary cost, while LBRU is better in energy consumption.
These explain the performance differences between LBRA and
LBRU in terms of energy consumption and monetary cost.

It is now better to turn back to the discussion on the scale
difference between the response time and security dissatisfac-
tion. There are two points to consider:

o Switching among Wi-Fi options (i.e., A, B, and C)
and among NB-IoT options (i.e., D and E) does not
change the security dissatisfaction results, but it changes
the response time. In other words, selecting a different
option from Fig. 2 definitely changes the response time
behaviour, whereas the security behaviour might remain
the same. In this regard, there is more room for response
time to alter than that of the security behaviour.

e Options D and E have NB-IoT connection, which was
already discussed in this section as being the least energy
consuming one in majority of the cases, and thus the
agent would be more prone to stick with them. Owing
to the fact that Options D and E are with NB-IoT
connection, both LBRA and LBRU would more possibly
select one of these options, which would have an impact
on the response time but the security behaviour remains
unaffected.

Due to these reasons, it is quite reasonable that LBRA out-
performs LBRU more significantly in response time than that
in security dissatisfaction.

Table III reveals the performance comparison between
LBRA and the case when the IoT devices are in the
high-battery regime and their requirements are fully priori-
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TABLE III
LOSS ON THE GIVEN PERFORMANCE METRICS

Energy consumption = Monetary cost
ET M']l‘

54.1525% -96.7937%

tized (w, = ws = 3)—which will be referred to as high-battery
requirement-aware (HBRA) hereafter. The results show the
percentage loss when HBRA is compared to LBRA. Positive
values yield loss; i.e., the superiority of LBRA, while negative
values yield gain; i.e., the superiority of HBRA. Note that only
energy consumption and monetary cost results are presented
in Table III, since LBRA and HBRA performed equally well
in response time and security dissatisfaction given that they
both fully prioritize the device requirements.

The findings in Table III show that LBRA reduced the
energy consumption of HBRA by around 53%, while HBRA
managed to decrease the monetary cost of LBRA by around
97%. These results are quite expected because LBRA focuses
only on the energy consumption, while completely ignoring
the monetary cost reduction®. HBRA, on the other hand,
aims at minimizing the monetary cost rather than the energy
consumption, since the battery levels of IoT devices are high.

Although these explanations are adequate to understand why
they surpass each other in the two considered metrics, there
is still room for clarification for the question of why the
scales of the outperformance are quite different from each
other. Considering (15) together with (16d), (17b), and (17a),
it is obvious that both energy consumption and monetary cost
have their own impacts in €g. On one hand, when the IoT
devices are in the low-battery regime, the weight for energy
consumption (w,) takes its higher value (w7), which is set to
10, while the weight for monetary cost (wy,) takes its lower
value (w,), which is set to 0. On the other hand, when the
IoT devices are in the high-battery regime, w, is set to its
lower value as w; = 1, while wy, is set to its higher value as
w, = 10. This means that

o when the IoT devices are in the low-battery regime,
the algorithm fully focuses on the energy consumption
minimization while completely discarding the monetary
cost reduction; but

o when the IoT devices are in the high-battery regime,
the algorithm mainly takes care of the monetary cost
reduction, but without completely ignoring the energy
consumption minimization.

This is done because energy consumption is always important
for an IoT device regardless of the battery level, which would
only change the degree of importance. As such, HBRA still
tries to conserve some energy while focusing primarily on
the monetary cost reduction, and thus this puts a barrier for
HBRA’s loss in energy consumption. Nonetheless, LBRA does
not take the monetary cost reduction into account at all, as a

8Energy consumption minimization and/or monetary cost reduction are the
secondary objectives for both LBRA and HBRA, since they fully prioritize
the device requirements.
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result, the scale of HBRA’s gain in monetary cost is more than
HBRA’s loss in energy consumption.

VI. CONCLUSION

A novel context-aware approach is presented in this work
for IoT networks, and connectivity-processor pair is jointly
optimized in order to meet the objectives in terms of the
energy consumption, monetary cost, security, and response
time. More specifically, this work is an attempt to determine
the wireless connection type and data processing unit along
with the amount of data to be offloaded, which is the case
where data can be processed at a unit other than the device.
In that regard, IoT devices come with diverse requirements in
terms of response time and security, and they are allowed to
prioritize their requirements. In addition, the proposed scheme
also takes the battery level of a device into account, such that
the minimization of energy consumption becomes the focus
if the battery level is under a certain threshold, while the
reduction of monetary cost is mainly targeted in case the
battery level is above that threshold. The proposed scheme
employs (Q-learning algorithm, and manages to achieve sig-
nificant gains compared to deterministic benchmark routes.
Results demonstrate that the proposed method outperforms all
the benchmark methods in the novel joint metric, combining
all the objectives of the formulated problem.
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