
1

Smart Home’s Energy Management through a
Clustering-based Reinforcement Learning Approach

Ioannis Zenginis, John Vardakas, Senior Member, IEEE, Nikolaos E. Koltsaklis, Member, IEEE,
and Christos Verikoukis, Senior Member, IEEE

Abstract—Smart homes that contain renewable energy sources,
storage systems and controllable loads will be key components of
the future smart grid. In this paper, we develop a reinforcement
learning-based scheme for the real-time energy management of a
smart home that contains a photovoltaic system, a storage device,
and a Heating Ventilation and Air Conditioning (HVAC) system.
The objective of the proposed scheme is to minimize the smart
home’s electricity cost and the residents’ thermal discomfort
by appropriately scheduling the storage device and the HVAC
system on a daily basis. The problem is formulated as a Markov
decision process, which is solved using the Deep Deterministic
Policy Gradient (DDPG) algorithm. The main contribution of our
study compared to the existing literature on RL-based energy
management is the development of a clustering process that
partitions the training dataset into more homogeneous training
subsets. Different DDPG agents are trained based on the data
included in the derived subsets, while in real-time, the test days
are assigned to the appropriate agent, which is able to achieve
more efficient energy schedules when compared to a single DDPG
agent that is trained based on a unified training dataset.

Index Terms—smart home, energy management, reinforcement
learning, clustering.

I. INTRODUCTION

Internet of Things (IoT) technologies are the key drivers
contributing to the development of Microgrids (MGs) [1],
which are local energy networks comprising Distributed En-
ergy Resources (DER), Energy Storage Systems (ESSs), and
controllable loads[2]. MGs’ adoption aims to make the opera-
tion of traditional energy systems more efficient, economic and
environment-friendly [3]. Hence, large amounts of Renewable
Energy Sources (RES) will be placed close to electricity
consumers [4], while energy management schemes should be
developed for achieving proper coordination of the various
MGs’ components through the utilization of IoT platforms [5].

MGs appear at various scales, from a single building to
a whole neighborhood [6]. For several reasons, including
government incentives, decreasing costs, and environmental
awareness, there is a rapid increase in the number of PV
installations at residential buildings around the world. The cost
of ESSs also follow a decreasing trend, making the investment
in PV-storage systems popular [7]. ESS is a valuable com-
ponent because it mitigates the impacts of load fluctuations
and PVs’ stochastic generation, while it also provides with
energy management flexibilities [8], such as taking advantage
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of the energy arbitrage; when dynamic pricing schemes are
applied, the ESS can store energy during low price periods and
provide it back to the demand over peak pricing [9]. Moreover,
dynamic pricing offers opportunities to reduce energy cost
through the smart scheduling of controllable loads [10], such
as Heating, Ventilation, and Air Conditioning (HVAC) sys-
tems, which account for about 40% of total energy consump-
tion in a household [11]. An effective energy management
scheme should minimize the operating cost of HVAC systems
while maintaining the residents’ thermal comfort.

Traditionally, the MGs’ energy management issue is formu-
lated as a sequential optimization problem that determines ap-
propriate set points for the controllable devices so that energy
costs are minimized. Several optimization frameworks have
been proposed in [12]-[15], including Mixed Integer Linear
Optimization (MILP) in [12], non-linear optimization in [13],
and Model Predictive Control (MPC) in [14]-[15], which target
to minimize the operating cost of buildings’ HVAC systems,
while also considering the occupants’ thermal comfort. MPC
and MILP frameworks have been also applied in [16] and [17],
respectively, for the energy cost optimization of smart homes
that contain RES, ESSs, and controllable loads. The optimal
solutions in [12]-[17] are obtained through the utilization
of commercial solvers. In contrast, this is avoided in [18] -
[20] where approximate dynamic programming techniques are
developed for minimizing the energy costs of MGs, whose
operation is modeled as a Markov Decision Process (MDP).

The energy management schemes in [12]-[20] are model-
based, which means that detailed domain knowledge is re-
quired to construct accurate system models describing the
MGs’ dynamics and their components’ interactions. In ad-
dition, accurate forecasts of stochastic variables are required
to obtain the optimal control decisions. Any inaccuracies of
the employed system models and forecasting methods may
deteriorate the solutions’ quality.

On the contrary, Reinforcement Learning (RL) techniques
can leverage the deployment of IoT devices to develop model-
free energy management schemes [21], which do not require
the analytical design of system models, the accurate forecast-
ing of stochastic variables and the utilization of expensive
commercial solvers. RL is a process where an agent interacts
with an environment in order to learn what to do (actions)
in given situations (states) so that numerical returns (rewards)
are maximized. RL agents are trained through the utilization
of historical data, and then they are able to deal with unknown
situations based on the gained experience.

In recent years, there is a large number of studies that de-
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velop RL-based energy management schemes. The Q-learning
algorithm is applied in [22]-[24] for the scheduling of smart
homes’ controllable appliances, while the Deep Q-learning
(DQN) algorithm is employed in [25]-[26] for the same
purpose. In all cases, the main objective is the minimization
of the smart homes’ energy costs, while the minimization of
users’ dissatisfaction and the reduction of peak demand are
additional objectives that are considered in [23]-[24] and [25],
respectively. DQN is also applied in [27] for minimizing the
daily operating cost of a MG that is equipped with controllable
DER, RES and ESSs, while the double DQN algorithm is
proposed in [28] for optimizing the cooperation between a
MG and an external storage system.

In RL-based approaches, the energy scheduling problem,
which is characterized by continuous variables, is modeled as
an MDP. However, Q-learning is applicable to MDPs with
discrete state and action spaces, while DQN is applicable
to MDPs with continuous state spaces and discrete action
spaces. As a consequence, these methods suffer from the curse
of dimensionality [29]. To resolve the dimensionality issue,
energy management schemes have been developed in [30]-[35]
that utilize RL algorithms compatible with continuous state
and action spaces. The Deep Deterministic Policy Gradient
(DDPG) algorithm is employed for the optimal control of a
building’s HVAC system in [30], and in [31], where it is found
that DDPG reduces the HVAC system’s energy consumption
by 4.31% and 8.95% while improving the occupants’ thermal
comfort by 13.6% and 17.6%, compared to the DQN and
Q-learning algorithms, respectively. In [32], Li et al. apply
the Trust Region Policy Optimization (TRPO) algorithm for
the real-time scheduling of controllable appliances in a smart
home to minimize the electricity cost and to maximize the
occupants’ thermal comfort.

Contrary to the studies in [30] - [32], where the system
models do not include any energy sources, a DDPG-based
energy management scheme is developed in [33] for the
optimal control of an isolated MG that is equipped with a
diesel generator, a PV system, and an ESS. A DDPG-based
control strategy is also proposed in [34] with the objective to
minimize the daily operating cost of a residential multi-energy
system that contains electrical and thermal energy sources, as
well as electrical and thermal storage units. However, real-
time pricing is not taken into account in [33] and [34]. As
opposed to that, in [35], Yu et al. consider dynamic pricing,
and apply the DDPG algorithm to minimize the energy cost
while maintaining a comfortable temperature range for the
occupants of a smart home that contains RES, an ESS, and an
HVAC system. However, only the cooling mode of the HVAC
system is taken into account by the authors.

Motivated by the interest of the scientific community on
RL methods, in this paper we develop a DDPG-based scheme
for the real-time energy management of a smart home that
is equipped with a PV system, an ESS and an HVAC sys-
tem. Under uncertainties induced by the not-controllable load
demand, the PV generation, the real-time electricity prices,
and the outdoor temperatures, the proposed method targets to
obtain effective energy schedules for the ESS and the HVAC
system on a daily basis so that the smart home’s electricity cost

and the residents’ thermal discomfort are minimized. Contrary
to [35], both the heating and the cooling mode of the HVAC
system are considered in our study.

Moreover, our proposed scheme targets to improve the ef-
fectiveness of RL agents when dealing with energy scheduling
issues by reducing the variance of the training data, as well as
by increasing the similarity degree between the training set and
the test set. In the existing literature ([22]-[35]), the RL agents
are trained based on a unified training dataset that includes
stochastic variables’ values, and then they use the obtained
knowledge to deal with unknown situations encountered in the
test set. In our work, a clustering process is developed based
on the K-means algorithm that partitions the training dataset
into day-type subsets consisting of more homogeneous price
and outdoor temperature data points (e.g. subsets that contain
clusters of high-price curves and clusters of high-temperature
curves, or subsets that contain clusters of high-price curves
and clusters of low-temperature curves, etc.). Then, a separate
DDPG agent is trained based on the data included in each day-
type subset. In this way, the training process becomes more
case-oriented since the agents gain experience from days that
have similar price and temperature profiles.

In addition, the agents’ ability to generalize their experience
becomes more effective because any day in the test set is first
assigned to one of the predetermined subsets, and then, the
agent that has been trained based on the information of that
subset is loaded to the smart home’s Energy Management Sys-
tem (EMS) for taking real-time decisions regarding the ESS’s
and HVAC system’s set points. For the assignment of test days
into the appropriate day-type subset, a simple forecast model
is used that predicts, before the beginning of the decision
horizon, the next day’s price and temperature curves based on
past data (e.g. a week). The predicted curves are then assigned
to the closest price and temperature clusters, and hence to the
appropriate day-type subset. It should be noted that predictions
do not need to be extremely accurate as in optimization-based
models, and so a complex forecast model is not required.
Instead, a simple Long Short-Term Memory (LSTM) network
proved to be adequate for effectively matching the predicted
curves with the closest clusters. Our clustering-based energy
management scheme can achieve up to 24.7% lower electricity
costs than a no-clustering approach, while in terms of thermal
discomfort, the performance gap between the two methods can
reach up to 1914%, depending on the examined test sets.

The rest of the paper is organized as follows: Section
II describes the various smart home’s components, and the
way the energy scheduling issue is formulated as a RL
problem. Section III describes the DDPG algorithm’s training
process, the way the training dataset is partitioned into day-
type subsets, and the way real-time energy management is
implemented based on the trained agents. Section IV contains
a case study for testing the performance of the proposed
method, while Section V concludes the outcomes of our work.

II. SYSTEM MODEL AND RL FORMULATION

A. System Model
We consider a smart home that contains a PV system, an

ESS, an HVAC system, and an EMS, which are interconnected
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through an IoT-based infrastructure. The EMS is responsible
for implementing daily power scheduling of the controllable
devices so that electricity cost is minimized and thermal
comfort is maintained, i.e. the indoor temperature is kept
within a minimum Θmin and a maximum Θmax level. The
intra-day scheduling takes place over a decision horizon of T
time slots t of duration ∆t. Under this convention, power is
used interchangeably with energy in this paper. At every time
slot, the power balance is described by:

PG
t = PL

t −PPV
t + |PHVAC

t |+ PESS
t (1)

where PG
t denotes either the power imported from the main

grid, if PG
t ≥0, or the power exported to the main grid, if

PG
t ≤0. PL

t is the smart home’s not-controllable load, PPV
t is

the generated PV power, PHVAC
t is the HVAC system’s power,

and PESS
t denotes either the power transferred to the ESS, if

PESS
t ≥0, or the power discharged from the ESS, if PESS

t ≤0.
The indoor temperature at the next time slot is a function

of the indoor temperature Θin
t , the outdoor temperature Θout

t

and the HVAC system’s power at the current time slot:

Θin
t+1 = ϵΘin

t + (1− ϵ)

(
Θout

t − PHVAC
t nHVAC

W

)
(2)

where positive values of PHVAC
t denote that the HVAC system

operates at the cooling mode and negative values denote that it
operates at the heating mode. In addition, ϵ is a constant factor,
nHVAC is the efficiency of the HVAC system and W stands for
the thermal conductivity [36]. Based on (2), the smart home’s
thermal comfort is maintained by appropriately adjusting the
HVAC system’s power up to its rated value PHVAC

max :

| PHVAC
t |≤ P

HVAC

max (3)

The ESS’s State of Charge (SoC) SoCt at t is given by:

SoCt = SoCt−1 + mESS
t

(
PESS
t /NESS

)
(4)

where NESS is the nominal capacity of the ESS and mESS
t

stands for the charging or discharging losses. When the ESS is
charged, mESS

t is described by the ESS’s charging efficiency
nESS
c (mESS

t =nESS
c ). In case the ESS is discharged, mESS

t

is expressed as the reversed discharging efficiency nESS
d , i.e.

mESS
t =1/nESS

d . The ESS’s SoC ranges within a minimum
SoCmin and a maximum SoCmax level:

SoCmin≤ SoCt ≤ SoCmax (5)

while PESS
t is bounded by a maximum power rate PESS

max [7]:

| PESS
t |≤ P

ESS

max (6)
B. RL Formulation

The smart home’s daily power scheduling is formulated
as an RL problem where an agent is trained through an RL
algorithm to learn how to interact with an environment. During
training, the agent observes the environment’s current state
st and performs a set of actions at∈Ast . The action space
Ast stands for the range of all possible actions that can be
taken at state st, and it is defined by the rules that govern the
environment’s transition from one state to another. Depending
on the performed actions, the environment responds with a
reward signal rt and moves to the next state st+1, where the

agent performs another action, receives a new reward and so
on. The sequence of states, actions and rewards, as well as the
rules for transitioning from one state to another over a decision
horizon, compose an MDP episode. The mapping from states
to actions during an episode is defined as the agent’s policy π.
The objective of an RL algorithm is to train the agent so that
an optimal policy π∗ is achieved, where the agent’s actions
at every observed state maximize the total discounted reward
Rπ

t over an MDP episode of T steps, which is expressed as:

Rπ
t =

T−1∑
t=0

rtγ
t (7)

where 0≤ γ ≤ 1 is a discount factor that determines the
importance of future rewards. When γ=0, the agent considers
only the current reward, while when γ=1 the agent weighs
equally both the current and the future long-term rewards.

When the smart home’s power scheduling is mod-
eled as an MDP, the state of the system st ={
PL
t −PPV

t ,Θin
t ,Θout

t , SoCt, ϕt, t
}

at time slot t is described
by a set of variables that include the not-controllable load
PL
t minus the PV generation PPV

t , the indoor Θin
t and

outdoor Θout
t temperatures, the ESS’s state of charge SoCt,

as well as the electricity price ϕt and the time slot’s in-
cremental number t. In addition, the agent’s taken actions
at=

{
PHVAC
t , PESS

t

}
, at ∈ Ast refer to the set points of the

system’s controllable variables, which are the HVAC system’s
power PHVAC

t and the ESS’s power PESS
t , while the action

space Ast is defined by the operational constraints in (1)-(6).
The reward rt that the agent receives from the environment

at every time interval consists of three terms Ielect , Icomf
t and

Iesst related to the electricity cost, the thermal comfort and the
ESS’s operation, respectively:

rt = Ielect + Icomf
t + Iesst (8)

where
Ielect =

{
−PG

t ϕt, if PG
t ≥ 0

−PG
t ϕtρ, if PG

t < 0

}
, (9)

Icomf
t =

 0, if Θmin≤ Θin
t ≤ Θmax

−δ (Θmin −Θin
t ), if Θin

t < Θmin

−δ (Θin
t −Θmax), if Θin

t > Θmax

 (10)

and
Iesst = −ζUESS

t (11)

Ielect signifies that higher rewards are obtained either when
less electricity is imported (PG

t ≥0), or when more electricity
is exported (PG

t <0). It should also be noted that the electricity
selling price is assumed to be a fraction of the buying price
ϕt, i.e. 0<ρ<1 in (9). Icomf

t denotes that the agent receives
a penalty when the indoor temperature deviates from the
acceptable limits. The penalty depends on a weighting factor
δ and the amount of deviation. Finally, Iesst represents also
a penalty consisting of a weighting factor ζ and of UESS

t ,
which is associated with the ESS’s proper operation. In case
the ESS’s SoC ranges within the acceptable limits of (5),
UESS
t =0. However, as far as the SoC limits are violated,

it is computed by UESS
t = β + (1 − β)UESS

t−1 , where β is a
weighting factor.



4

III. PROPOSED ENERGY MANAGEMENT ALGORITHM

A. Training process of the DDPG algorithm
The DDPG algorithm uses four Deep Neural Networks

(DNNs); a critic, which is a Q-network with parameters θQ, an
actor, which is a policy network with parameters θµ, a target
Q-network with parameters θQ

′

and a target policy network
with parameters θµ

′

. The target networks are copies of the
original ones, and they are used for making the training process
more stable [29]. The algorithm updates the parameters of
the four DNNs so that the trained actor represents the agent’s
optimal policy. The training process takes place by considering
MDP episodes i.e. days with a T -length decision horizon,
in our case, where stochastic variables’ values are derived
from a hyperset of historical data that includes load demand,
PV generation, outdoor temperature and price datasets over a
long period of time. Specifically, the initial hyperset is firstly
divided into day-type subsets that include days with similar
outdoor temperature and price profiles, and then a separate
agent is trained for each subset.

The process of training an agent based on a day-type subset
consisting of D days’ data is described in Algorithm 1. Firstly,
the DNNs’ parameters are initialized in line 1, while a replay
buffer of size B is initialized in line 2. The algorithm runs for
M iterations; at every iteration, a random episode is selected,
and a random process Ξt is initialized, which is used for explo-
ration (line 4). The main part of the agent’s training takes place
within the selected episode (lines 5-15), and consists of the
following steps: firstly, the actor observes the system’s current
state st and performs an action at to which exploration noise
Ξt is added for enabling the agent to gain more experience
from the environment (line 6). Given the performed action,
the environment responds with a reward signal rt and moves
to the next state st+1 (line 7). The transition (st, at, rt, st+1) is
stored in the replay buffer, while a mini-batch of N transitions(
s
(i)
τ , a

(i)
τ , r

(i)
τ , s

(i)
τ+1, i ∈ N, τ ∈ (T − 1)

)
is randomly sampled

(line 8). Following that, a forward pass takes place at the critic
for deriving the Q-values of the sampled state-action pairs
(s

(i)
τ , a

(i)
τ ,∀i ∈N) (line 9). A forward pass also happens at

the target Q-network for obtaining the Q-values of the pairs
(s

(i)
τ+1, a

′ (i)
τ+1 ,∀i ∈N ) (line 11), where a

′ (i)
τ+1 is obtained by

the target policy network (line 10). Given that the Q-function
represents the discounted reward when action at is performed
in state st, and then a policy π is followed till the end of
the decision horizon, the critic’s parameters are updated in
line 12 by minimizing the loss function L

(
θQ

)
, while the

actor’s parameters are updated in line 13 by maximizing
J (θµ), which represents the expectation of the Q-function
[29]. Finally, the target networks’ parameters are updated by
slowly tracking the parameters of the original networks (line
14).
B. Day-type subsets’ derivation and real-time implementation

The day-type subsets, required for the DDPG algorithm’s
training process are derived by the proposed Algorithm 2,
which is based on K-means, an iterative algorithm that tries
to partition a dataset into K pre-defined clusters. K-means
assigns data points (T -dimensional price and outdoor temper-
ature curves in our case) to a cluster such that the Euclidean

Algorithm 1: DDPG agent’s training process
1: Randomly initialize the critic’s and actor’s parameters
θQ and θµ, respectively, and set the target networks’
parameters equal to them: θQ

′

← θQ, θµ
′

← θµ.
2: Define the size B of the replay buffer.
3: for ep = 1 to M :
4: Select a random day from D, and initialize Ξt.
5: for t = 0 to T − 1 :
6: Observe st and perform action at= π (st, θ

µ)+Ξt.
7: Execute action at in the environment and observe the

instant reward rt and the next state st+1.
8: Store (st, at, rt, st+1) in the replay buffer, and

sample from it a random mini-batch of N transitions(
s
(i)
τ , a

(i)
τ , r

(i)
τ , s

(i)
τ+1

)
, where i ∈ N and τ ∈ (T −1).

9: Given (s
(i)
τ , a

(i)
τ ,∀i ∈ N), do a forward pass of the critic

for obtaining their Q-values Q
(
s
(i)
τ , a

(i)
τ , θQ

)
,∀i ∈ N .

10: Given s
(i)
τ+1, do a forward pass of the target policy

network for obtaining the actions a
′ (i)
τ+1= π

′
(
s
(i)
τ+1, θ

µ
′)

.

11: Given (s
(i)
τ+1, a

′ (i)
τ+1 ), do a forward pass of the target Q-

network for obtaining Q
′
(
s
(i)
τ+1, a

′ (i)
τ+1 , θQ

′)
,∀i ∈ N .

12: Update the critic’s parameters by minimizing L
(
θQ

)
:

L
(
θQ

)
=

1

N

∑
i

(y(i)τ −Q
(
s(i)τ , a(i)τ , θQ

)
)
2

y(i)τ = r(i)τ + γ Q
′
(
s
(i)
τ+1, a

′ (i)
τ+1 , θQ

′)
13: Update the actor’s parameters by maximizing J (θµ)

using the following sampled policy gradient ∇θµJ (θµ):

∇θµJ(θµ)=
1

N

∑
i

(
∇
a
(i)
τ
Q
(
s(i)τ , a(i)τ , θQ

)
∇θµπ

(
s(i)τ , θµ

))
14: Update the target networks:

θQ
′

←ω θQ+ (1− ω) θQ
′

, θµ
′

←ω θµ + (1− ω) θµ
′

, ω ≪ 1
15: end
16: end

distance between the data points and the cluster’s centroid
(arithmetic mean of all the data points that belong to that
cluster) is minimized. The optimum number of clusters is
obtained by using the silhouette score, which is a measure
of similarity of a point to the other points in its own cluster
when compared to the points in other clusters. After finding the
optimum number of kϕ price and kθ temperature clusters (lines
2-7), the initial historical hyperset is divided into day-type
subsets that include more homogeneous price and temperature
curves (lines 8-12). Then, a separate DDPG agent is trained
for each subset following the process of Algorithm 1.

After the training process is completed, the policy networks
can be used for the smart home’s real-time energy management
as described in Algorithm 3. Before the beginning of the
decision horizon, the next day’s price and temperature curves
are predicted based on data of the past G days (line 1). An
LSTM network is used for this purpose since it is appropriate
for multi-step time series forecasting [37]. After the predicted
curves are obtained, they are assigned to the closest price
and temperature clusters (lines 2-3). Then, the corresponding
policy network is loaded to the EMS (line 4) for implementing
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Algorithm 2: Derivation of day-type subsets

1: Input the historical hyperset of training data which includes
the load, PV generation, price, and outdoor temperature
datasets ΛΩ, ΠΩ, ΦΩ and ΘΩ, respectively, where each of
which contains Ω data-points indexed by date.

2: for k = 2 to K :
3: Implement K-Means on the price dataset to obtain an

array of labels EΦk that indexes to which of the k clusters
each one of the Ω data-points belongs, as well as an
array CΦk that contains the centroids of the k clusters:
EΦk, CΦk = KMeans(ΦΩ, k)

4: Calculate the silhouette score SΦk(ΦΩ, EΦk)
5: Apply steps 3 and 4 for the outdoor temperature dataset.
6: end
7: Given the silhouette scores obtained in step 4 for the price

dataset, keep the maximum one SΦkϕ
, which corresponds

to kϕ price clusters, where 2<kϕ<K. Likewise, given the
silhouette scores obtained in step 5 for the temperature
dataset, keep the maximum one SΨkθ

, which corresponds
to kθ temperature clusters, where 2<kθ<K.

8: Implement K-means on the price dataset by setting k=kϕ
to obtain EΦkϕ

and CΦkϕ
.

9: Given EΦkϕ
, create kϕ subsets that are indexed by date and

contain price data-points that belong to the same cluster.
10: Apply steps 8 and 9 for the outdoor temperature dataset

to partition it into kθ subsets.
11: Create kϕ

.kθ day-type subsets by taking the intersections
of the indices (dates) of the kϕ price subsets obtained
in step 9 with the indices of the kθ temperature subsets
obtained in step 10.

12: Take the intersections of the indices of the obtained day-
type subsets with the indices of the load and PV generation
datasets to obtain the final day-type subsets.

Algorithm 3: Real-time energy management

1: Predict the next day’s price curve based on the previous
G days’ curves by using an LSTM network.

2: Calculate the squared Euclidean distance between the
predicted price curve and the clusters’ centroids CΦkϕ

and
assign it to the closest price cluster kϕ closest.

3: Do steps 1 and 2 for the next day’s temperature curve to
assign it to the closest temperature cluster kθ closest.

4: Load to the EMS the policy network of the agent
that has been trained based on the day-type subset
(kϕ closest, kθ closest).

5: for t = 0 to T − 1 :
6: Observe st and perform action at= π (st, θ

µ) .
7: Execute action at in the environment, observe the instant

reward rt and transit to the next state st+1.
8: end

real-time power scheduling (lines 5-8).

IV. CASE STUDY

For the evaluation of the proposed energy management
scheme, a smart home is considered that contains a 3 kWp
PV system, an ESS with nominal capacity NESS =6 kWh,

TABLE I: Parameters’ values
ESS’s parameters PESS

max =3kW,nESS
c =nESS

d =
0.95, SoCmin=SoC0=0.2

HVAC system’s parameters
Θmin = 20oC, Θmax = 24oC,
ϵ = 0.7, W =0.252 kW/oC,

nHVAC=2.5
Discount factor, electricity selling

price factor, weighting factors
γ=1, ρ=0.5,

δ= 0.9 e/oC, ζ=0.5 e, β=0.4
Episodes’ number, Replay

buffer’s size, Mini-batch size M=15000, B=106, N=480

Noise parameters ξ=0.15, m=0, dt=0.01, σ=0.2

and an HVAC system with nominal power PHVAC
max =2 kW.

Other parameters regarding the smart home’s components and
the RL formulation of the problem are reported in Table I.
The decision horizon is divided into T =24 time slots of
duration ∆t=1 hour, while stochastic variables’ data for the
load, the prices, as well as the PV generation and the outdoor
temperature are obtained from [38], [39] and [40], respectively.

Our method is tested over September and November when
the HVAC system operates at the cooling mode and the heating
mode, respectively. In both cases, data of 12 months before
the test periods are used for obtaining the day-type subsets
required for training the DDPG agents, as well as for training
the LSTM network that is necessary for the assignment of
test days to the appropriate subset. By using Algorithm 2,
it is derived that the 12-month price datasets and the 12-
month outdoor temperature datasets before both September
and November are optimally divided into two price (kϕ=2)
and two temperature (kθ=2) clusters. Hence, four different
agents are trained for each case that correspond to High Price
(HP) - High Temperature (HT), HP- Low Temperature (LT),
Low Price (LP)-HT and LP-LT day-type subsets.

Each agent consists of two DNNs representing the actor and
the critic. The actor’s input layer consists of six neurons, which
correspond to the smart home’s state st. The critic’s input layer
consists of eight neurons because, besides the state, it also
takes as input the actor’s output. Both DNNs have three hidden
layers consisting of 256 neurons and relu activation functions.
The critic’s output layer has a single neuron with a linear
activation function, while the actor’s output layer consists
of two neurons which are passed through a tanh activation
function. Furthermore, an Ornstein-Uhlenbeck process, which
is defined as Ξt =Ξt−1+ξ(m − Ξt−1)dt + σ

√
dt N (0, 12),

is added to the actor’s output for exploration [29]. After that,
the actor’s output is truncated in the interval [-1, 1], while
it is also multiplied by PHVAC

max and PESS
max . In this way, the

actor outputs a value for PHVAC
t that ranges in the interval

[−PHVAC
max , PHVAC

max ], and a value for PESS
t that ranges in the

interval [−PESS
max , PESS

max ], satisfying (3) and (6), respectively.
The above architecture is implemented using Pytorch [41] in
Python. Table I reports the parameters’ values considered for
each agent’s training process, which lasts for about 5 hours
being executed on a computer with an Intel Core i7 processor
at 2.3 GHZ and 8 GB RAM. It should also be noted that
the values for the DNNs’ parameters, as well as for the SoC
of the ESS at the beginning of every day (SoC0) have been
selected after a parameters’ tuning process, using as a criterion
the overall cost of the training days.

The smart home’s energy management, in real-time, is
accomplished through Algorithm 3, which requires about 1
second to implement steps 1-4 and several milliseconds for
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TABLE II: Assignment of test days to the price and temperature clusters
High Price Low Price High Temp. Low Temp.

September 1, 2, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30 3, 4, 10, 11, 17, 18, 24, 25 All days None
November All days None None All days

TABLE III: Overall results
No Clustering Clustering Difference
September

Electricity Cost (e) 65.35 52.42 24.7 %
Thermal discomfort (oC) 3.06 2.84 7.6 %

Total Cost (e) 68.11 54.98 23.9 %
November

Electricity Cost (e) 290.29 283.4 2.4 %
Thermal discomfort (oC) 48.54 2.41 1914 %

Total Cost (e) 333.98 285.57 16.9 %

executing steps 6 and 7. According to Algorithm 3, every
day in the test set is assigned, before the beginning of the
scheduling horizon, to one of the predetermined price and
temperature clusters. An LSTM network (line 1) is used for
this purpose that predicts the day’s price and temperature
curves based on the previous week’s data i.e. G = 7. The
LSTM network’s architecture is implemented in Keras [42],
and includes an input layer of G.T = 7.24 neurons, which
correspond to the past values of the curve that is to be
predicted (price or temperature). The input layer is fed to an
LSTM layer of 200 units, which in turn is connected to a
conventional neural network layer of 100 neurons. Finally, the
output layer contains T =24 neurons that represent the desir-
able predicted curve (next day’s price or temperature). Table II
summarizes the classification of test days to the derived price
and temperature clusters. To confirm the effectiveness of the
forecast model, we have also made the assignment by using
the actual curves of the test days. It has been found that only
the 8th day of September is misclassified.

Based on Table II, the HP-HT agent is loaded to the EMS
for the energy management of 22 September days, and the
LP-HT agent for the remaining 8 days. For November, only
the HP-LT agent is used because all days belong to the same
price and temperature cluster. Our clustering-based method is
compared with state-of-the-art approaches where no clustering
is applied, such as in [35], where the data of two months before
the beginning of the test period are used for training (i.e. a
single agent is trained for September based on the data of
July-August and another agent is trained for November based
on the data of September-October).

Table III compares the results of the two approaches for the
two test periods. In both cases, the proposed method performs
better; the total cost is by 23.9% and 16.9% lower for Septem-
ber and November, respectively. However, the reason for our
method’s superiority is different over the two test periods. In

Fig. 1: Outdoor temperatures

September, both approaches achieve similar levels of thermal
comfort, but the electricity cost is 24.7% higher under the no-
clustering case. This is mainly because the majority of days
(49/62) in the training set, when this method is applied, belong
to the low price level, while the majority of days in the test set
(21/30) belong to the high price cluster. The opposite outcomes
are observed in November, where although the electricity costs
are comparable, the thermal discomfort index is noticeably
higher under the no-clustering case because the majority of
days (56/61) in the training set (September-October) belong to
the high-temperature level, while all November days belong
to the low-temperature cluster. The aforementioned issues are
treated by our clustering-based approach, which increases the
degree of similarity between the training data and the test data,
achieving more efficient energy management.

Next, we compare the power scheduling during two Septem-
ber days that belong to different price clusters. Figs. 1 and 2
show the outdoor temperatures and the electricity prices, re-
spectively, for the examined days. The ESS’s power PESS

t , the
HVAC system’s power PHVAC

t , the not-controllable load minus
the PV power PL

t −PPV
t , as well as the power PG

t exchanged
with the main grid on the 4th of September, when the power
scheduling is performed by the LP-HT agent is presented in
Fig. 3. The ESS is mainly charged during 07:00-15:00 taking
advantage of the high PV production (PL

t −PPV
t ≤ 0). The

stored energy is later utilized to cover part of the load during
18:00-24:00 when the prices are higher than most part of the
rest of the day. A different scheduling pattern is observed
on the 9th of September (Fig. 4), which is determined by
the HP-HT agent. In this case, the ESS is initially charged
up to a significant level during the low price period 03:00-
06:00, and offers the stored energy back to the load during
06:00-08:00, when the prices show a sharp rise and the load
shows a morning peak. The ESS is then recharged at no cost
during 09:00-16:00, taking advantage of the energy excess (the
not-controllable load plus the HVAC power are lower than
the PV power). The stored energy is transferred to the load
during 17:00-24:00, which coincides with the second peak
price interval of that day.

The results of Figs. 3. and 4, in terms of the ESS’s
scheduling, can be generalized. Figs. 5 and 6 present the
ESS’s SoC for the days of September that are assigned to
the LP-HT agent, as well as for the days of September that

Fig. 2: Real-time prices
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Fig. 3: Power scheduling for September’s day 4 (LP-HT agent)

Fig. 4: Power scheduling for September’s day 9 (HP-HT agent)

are assigned to the HP-HT agent, respectively, based on Table
II. As Fig. 5 denotes, for the 8 days that are assigned to the
LP-HT agent, the ESS is mainly charged during afternoon and
discharged in the evening. On the other hand, for the 22 days
that are assigned to the HP-HT agent, the ESS’s schedules in
Fig. 6 show an additional early-morning charging followed by
a morning discharging. The flexibility of obtaining different
ESS’s schedules depending on the test day’s expected price
levels is the main reason why the proposed method achieves
lower electricity costs (by 24.7% according to Table III) than
the no-clustering candidate, in September. The performance
gap between the two methods is higher in days that belong
to the high price cluster, such as day 9. As mentioned earlier,
this is because the majority of days (49/62) in the training set
of the no-clustering approach are characterized by low price
levels. In November, all days are assigned to the same agent
(HP-LT), while the majority of training days (45/61), when the
no-clustering approach is applied, are characterized by high
price levels. For this reason, the performance gap between
the two methods, in terms of electricity cost, is low (2.4%
according to Table III).

In Fig. 7 we present the power scheduling on the 9th

of September under the no-clustering approach, in order to
compare it with the corresponding clustering-based scheduling
of Fig. 4. The total benefit obtained from the ESS’s utilization
under the no-clustering case is 0.69 e (0.89 e are saved
through the ESS’s discharging in the intervals 06:00-09:00
and 16:00-24:00, while 0.2e are spent for charging the ESS
during 00:00-06:00). On the other hand, the total benefit
from the ESS’s usage under the clustering-based approach
is 0.85 e (1.34 e are saved through discharging the ESS
in the intervals 06:00-09:00 and 17:00-24:00, while 0.49 e
are spent for charging it during 03:00-06:00). Moreover, the
clustering-based approach achieves a higher profit from energy
exports and a cheaper operating cost for the HVAC system.
During 09:00-17:00 there is energy excess, which under both

Fig. 5: ESS’s schedules for September (LP-HT agent)

Fig. 6: ESS’s schedules for September (HP-HT agent)

approaches is used for charging the ESS and operating the
HVAC system at no cost. Over the same period an amount of
energy is exported to the grid; the exports’ profit is by 0.07
e higher under the clustering-based method, while the total
cost for the HVAC system’s operation is by 0.07e lower. In
summation, the smart home’s electricity cost is 0.3 e lower
under our proposed method (0.43 e) compared to the no-
clustering method’s cost (0.73e), i.e., a difference of 70%.

Opposite to the electricity cost, both methods achieve satis-
fying levels of thermal comfort in September, according to
Table III. Fig. 8 indicates that the indoor temperature lies
within the acceptable limits (Θmin = 20oC, Θmax = 24oC)
under the two methods on the 4th of September, which is
the warmest day in the test set. However, the no-clustering
approach fails to achieve satisfying thermal comfort in Novem-
ber. As mentioned earlier, this is because the majority of days
in the training set (56/61), when this method is applied, are
characterized by high temperature levels, while all November
days belong to the low-temperature cluster. As Fig. 9 shows,
for the 29th of November, which is the coldest day in the
test set, there is a lack of thermal comfort under the no-
clustering approach, especially during the morning hours when
the outdoor temperatures are very low. On the other hand, the
indoor temperature is kept within the acceptable values under
our clustering-based approach.

Fig. 7: Power scheduling for September’s day 9 (no-clustering)
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Fig. 8: Indoor temperature for September’s day 4

Fig. 9: Indoor temperature for November’s day 29

V. CONCLUSION

The objective of the proposed energy management scheme
is to minimize the electricity cost and the thermal discomfort in
a smart home by selecting appropriate set points for the ESS’s
and HVAC system’s power in real-time. The problem is formu-
lated as a Markov decision process, and it is solved using the
DDPG algorithm, which is compatible with continuous state
and action spaces. The main advantage of our clustering-based
method compared to existing RL-based energy management
schemes is that it increases the similarity between the training
and the test data, and by doing so achieves more efficient
schedules for the controllable devices.

In our future work, we are planning to extend our approach,
and apply it to a system of cooperative microgrids that will
be equipped with sources of electrical and thermal energy,
such as combined heat and power units, renewable energy
sources, and controllable loads. In such a system, the objective
will not only be to optimize the schedules of the microgrids’
components but also the exchanges of electrical and thermal
energy among them. Moreover, we are planning to use and
evaluate the efficiency of other continuous RL algorithms, such
as the Soft Actor Critic (SAC) and the Twin Delayed Deep
Deterministic Policy Gradient (TD3) algorithms.
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