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Abstract—In this paper, we propose a unified SWIPT signal
and its architecture design in order to take advantage of both
single tone and multi-tone signaling by adjusting only the power
allocation ratio of a unified signal. For this, we design a novel
unified and integrated receiver architecture for the proposed
unified SWIPT signaling, which consumes low power with an
envelope detection. To relieve the computational complexity of the
receiver, we propose an adaptive control algorithm by which the
transmitter adjusts the communication mode through temporal
convolutional network (TCN) based asymmetric processing. To
this end, the transmitter optimizes the modulation index and
power allocation ratio in short-term scale while updating the
mode switching threshold in long-term scale. We demonstrate
that the proposed unified SWIPT system improves the achievable
rate under the self-powering condition of low-power IoT devices.
Consequently it is foreseen to effectively deploy low-power IoT
networks that concurrently supply both information and energy
wirelessly to the devices by using the proposed unified SWIPT
and adaptive control algorithm in place at the transmitter side.

Index Terms—Simultaneous wireless information and power
transfer (SWIPT), adaptive control, deep learning, temporal
convolutional network (TCN), nonlinear energy harvesting, low-
energy IoT.

I. INTRODUCTION

The Internet of Things (IoT) has emerged with the ever

growing interests in the large-scale deployment of low-energy

devices that collect information while connecting billions of

devices through networks. But powering a huge number of

IoT devices is expected to be a significant challenge in the

upcoming IoT era. Furthermore, the limited battery lifetime

is an important issue for permanently operating low-energy

IoT networks. Therefore, instead of battery replacement, self-

powered devices charged from ambient renewable resources

could be deployed to self-sustain the IoT networks.

Recently, thanks to the reduction in power consumption

of device circuits, and with the need to energize low-power

devices, radio frequency (RF) wireless power transfer (WPT)

has attracted attention as a promising power supply technology

for self-powering IoT devices. By utilizing the property that

RF signal can convey both information and power via the

same electromagnetic (EM) wave, the concept of WPT can

be extended to simultaneous wireless information and power
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transfer (SWIPT) [1]. It is suitable for a system that supports

low-power wireless devices or sensors, such as IoT networks.

There have been many proposals [2], [3] that aim at enhancing

the rate-energy tradeoff through optimum receiver design for

SWIPT. Two of the most widely used SWIPT schemes, time

switching (TS) and power splitting (PS) have been studied in

[3]. PS is based on the division of the signal power into two

streams for energy harvesting (EH) and information decoding

(ID). In TS, the received signal is used for EH or ID in specific

time periods. In [4], the authors studied the performance of

the integrated receiver (IntRx) utilizing a rectifier for EH and

ID while reducing the power consumption by integrating EH

and ID into one common circuit.

Meanwhile, it was shown that the RF to direct current (RF-

to-DC) power conversion efficiency (PCE) in EH circuits of

SWIPT receivers depends not only on the input power but also

the shape of the input signal, i.e., peak-to-average power ratio

(PAPR), due to the nonlinearity of the rectifier, such as diode

small signal [5], [6] and saturation effect [7]. Following this

observation, new modulation schemes which utilize multi-tone

waveforms for boosting the PCE were proposed in [8]–[11].

The authors in [8] proposed the PAPR modulation for SWIPT

using distinct levels of signal PAPR to convey information.

Similarly, the authors in [9] designed tone-index multisine

modulation where information is embedded into the tone-index

of multi-tone. These multi-tone SWIPT schemes utilize an

envelope detection that requires less power consumption and

low complexity for ID since the receiver can be implemented

without power-hungry devices (e.g., mixer, I/Q demodulator).

Also, the authors in [10], [11] proposed multi-tone FSK based

SWIPT by using the relationship between the input frequency

spacing and rectifier output intermodulation frequencies. But

most of the multi-tone SWIPT schemes suffer lower data

rate compared to conventional information modulation, hence

the rate-energy tradeoff should be optimized jointly with the

operational range of IoT devices.

To assess the power transfer efficiency of SWIPT accurately,

the recent works [12], [13] highlighted the nonlinear impact of

the high power amplifier (HPA) to SWIPT, in which the HPA

can significantly degrade the performance of the conventional

SWIPT. Furthermore, multi-tone signals with high PAPR are

more sensitive to the nonlinearity of HPA which can distort

the amplitude of signal. Such distortion on signal waveform

significantly impacts on both EH and ID performance of multi-

tone SWIPT, as studied in [14]. Also, the high PAPR signal can

cause in-band interference to nearby unintended information
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receivers, such as low noise amplifier (LNA) saturation [15].

To avoid such interference, the authors in [16] proposed a

frequency-splitting (FS) architecture for SWIPT which sends

power via the unmodulated high-power continuous wave (CW)

and transmits information by using a small modulated signal

with orthogonal frequency-division multiplexing (OFDM).

Consequently the effect of the transmitter HPA on signal

waveforms should be jointly considered in conjunction with

the receiver rate-energy tradeoff optimization, which leads to

the end-to-end efficiency of SWIPT systems. Therefore, a new

modulation scheme and an integrated receiver architecture

optimized for both the transmitter HPA and the receiver

rectifier nonlinearity are required to maximize the end-to-

end efficiency of SWIPT systems, thereby realizing the self-

powered IoT networks. This has motivated our work.

In cellular networks, we utilize a link adaptation (adaptive

modulation and coding) scheme depending on channel quality

and required quality of service (QoS). In the same spirit, in

low-energy IoT networks, we may control the transmit power

and communication mode considering the received power of

self-powered devices via SWIPT. But the end-to-end efficiency

of SWIPT is highly nonlinear due to nonlinear devices (i.e.,

transmitter HPA and receiver rectifier). Hence the optimization

over such nonlinearity is not as simple as conventional look-up

table (LUT) based link adaptation [17].

To tackle this difficulty, machine learning (ML) has recently

been introduced into wireless communications, so as to handle

various nonlinear and complex problems of the communication

systems by extracting the inherent features from data [18].

The ML enables the network infrastructure to learn from the

environment and take adaptive network optimization [19]. For

example, the authors in [20] have proposed deep learning

based traffic load prediction to predict the network congestion

and adaptively assign channel to IoT devices. In [21]–[23],

various deep learning methods were proposed to estimate

the nonlinear channel characteristics (e.g., time-varying) for

adaptive network optimization. Also, [24] has proposed the

reinforcement learning based adaptive control for SWIPT.

But these ML methods require parallel computing devices

(e.g., GPU) to train models and make inferences, which is a

heavy burden on low-energy IoT devices. For this reason, the

transmitter-oriented asymmetric processing for adaptive mode

switching (MS) was proposed via the recurrent neural network

(RNN) with long-short term memory (LSTM) to extract the

features from temporal correlation of the channel [25].

Meanwhile, recent works reveal that convolutional neural

network (CNN) architectures can outperform the conventional

RNNs [26]. Especially, the temporal convolutional network

(TCN) architecture outperforms the recurrent architectures

across various sequence modeling tasks [27], [28]. Moreover,

the overall framework of TCN is simpler than LSTM, and it

has natural superiorities for computational advantage of CNNs

which include parallelism operation. Motivated by this, the

authors in [29] have proposed a semi-supervised TCN model

for anomaly detection in IoT communication. But, to the best

of our knowledge, adopting these superiorities of TCN for

adaptive control of IoT networks has not been studied in the

literature. This also motivated our work.

In this paper, we propose a novel unified SWIPT signaling

and its architecture which utilize both single tone and multi-

tone shaped signals in one unified and integrated receiver.

Compared to the conventional SWIPT, the proposed SWIPT

architecture can handle both the HPA and rectifier nonlinearity

and adaptively control the communication mode through the

TCN based asymmetric processing. Furthermore, the proposed

signal and architecture can be low-power and low-complexity

by virtue of the EH - ID dual operation of an envelope detector.

The main contributions of this work are highlighted as:

• We propose a new unified signal design which can be

used for both single tone and multi-tone SWIPT signal

transmission. The MS between single tone and multi-tone

can be triggered by adjusting only the power allocation

ratio of the unified signal. Since the power allocation is

done at the transmitter side, the receiver does not need

any additional optimization for MS between ID and EH,

unlike conventional TS or PS SWIPT.

• For the proposed unified SWIPT signal, we also design a

novel unified receiver architecture which is the hybrid of

FS and PS, but it requires low-power consumption thanks

to the envelope detection. Since the unified receiver can

operate regardless of the signal waveform shape (i.e., no

MS at the receiver), it is suitable for implementing low-

energy IoT devices. Using the proposed unified SWIPT

signal and architecture design, we analyze the symbol-

error rate (SER) and outage performance.

• In order to lower the computational burden of the receiver,

the MS control based on asymmetric processing through

TCN is introduced, by which the transmitter optimizes

the modulation index and power allocation ratio based

on the received power feedback from the receiver. The

proposed algorithm determines the communication mode

and modulation index over each short-term channel block

to meet the energy-causality constraint for self-powering

IoT devices. The long-term optimization of the control

algorithm takes the short-term optimization results (i.e.,

MS attributes) as the input data of TCN. The proposed

mixed-time scale iterative algorithm effectively controls

the unified SWIPT system by estimating the MS threshold

from the MS attributes and temporal correlation of time-

varying channel.

• Taking into account the nonlinearities of the transmitter

HPA and the receiver rectifier, the proposed adaptive

control algorithm adjusts the communication mode and

modulation index to optimize the rate-energy tradeoff,

considering the end-to-end efficiency. We confirm that

the proposed unified SWIPT system with adaptive control

improves the performance over the existing SWIPT, under

the self-powering condition of IoT devices. Therefore, the

proposed unified SWIPT with adaptive control algorithm

will facilitate implementing low-power IoT networks that

simultaneously supply information and energy wirelessly

to the devices.

The rest of the paper is organized as follows. In Section

II, we describe the unified SWIPT system architecture along

with the unified signaling model, and provide examples of
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Fig. 1. Proposed architecture of unified SWIPT transceiver.

the unified receiver operation for ID and EH from the signal.

In Section III, we propose the TCN based adaptive control

algorithm for maximizing the achievable rate of the unified

SWIPT system under the energy-causality constraint to self-

sustain the low-energy IoT devices. Section IV presents the

simulation results to evaluate the performance of the proposed

unified SWIPT with adaptive control algorithm. Then, Section

V concludes the work.

II. SYSTEM MODEL

Fig. 1 illustrates the proposed architecture of unified SWIPT

transceiver. We consider a point-to-point SWIPT system, each

equipped with a single antenna, while our design can be

applied to the multi-antenna case. Let hv denote the complex

channel gain in the vth fading block with bandwidth B and

block time T < Tc for the channel coherence time Tc.

For a unified SWIPT signal transmission, the transmitter

generates a unified signal for a given power allocation ratio

ρ. The power allocation ratio determines overall shape of the

unified signal waveform, which will be elaborated in Section

II-A. We here employ PAPR modulation [8] for enabling the

low-power ID and boosting the PCE at low received power, in

which the modulation index of the unified SWIPT is defined

as the number of multi-tones Q. Then, the PAPR modulated

unified signal is amplified by the HPA at the transmitter.

At the receiver, the received signal is downconverted into

its baseband signal by an envelope detector, which is then

used for both EH and ID. Note that the receiver for the

proposed SWIPT signaling has one unified receiver for not

only EH/ID integration (i.e., the integrated receiver [3]) but

also single tone/multi-tone SWIPT dual mode operation. The

received signal is detected by the envelope detector, and then

its baseband signal is split with ratio ρr by the power splitter.

After the power splitter, the ρr-portion of the baseband signal,

i.e., P PS is used for ID, namely power-splitting (PS) PAPR

ID. Meanwhile, the (1 − ρr)-portion of the baseband signal

is further divided into direct current (DC) power PDC and

alternating current (AC) power P FS by the baseband power

divider, in a frequency-splitting (FS) manner [16]. Then P FS

is selectively used for FS PAPR ID at the information decoder.

Consequently PDC is used for EH at the energy harvester to

assure the self-powering of the receiver.

With the above operation at the transceiver, the transmit-

ter selects a waveform according to the proposed adaptive

control algorithm. The ML based control unit at the trans-

mitter updates the MS threshold P th and selects the proper

power allocation ratio ρ in each fading block, considering

Fig. 2. Power allocation of unified SWIPT signal and corresponding single
tone/multi-tone mode signal spectrum in frequency domain.

the received power Pr,v that is measured and reported by a

target IoT device in the vth fading block. Here, the receiver

feedbacks the measurement using the monostatic backscatter

[30] prior to each frame transmission, so as to train the deep

learning network and estimate the channel gains (i.e., CSIT is

assumed).1 In each fading block, all computational overhead

for the adaptive control algorithm is shifted to the transmitter,

so that the receiver can operate with low power and low

complexity, thereby realizing transmitter-oriented asymmetric

processing. We will elaborate more on the control of the

system with feedback in Section III.

A. Unified Signal Design for SWIPT with HPA

As illustrated in Fig. 2, we propose a new unified SWIPT

signaling which is composed of both single tone CW signal

at the carrier frequency fc and PAPR modulated multi-tone

signal occupying some bandwidth around the single tone. By

adaptively adjusting the power allocation ratio ρ, the unified

SWIPT not only mitigates signal distortion from the HPA but

also performs single tone/multi-tone MS to achieve better PCE

for self-powering. On the one hand, a large ρ means that the

transmitter allocates most of the signal power to the single tone

at the carrier frequency, which exploits the higher PCE with

single tone at the receiver. On the other hand, as ρ decreases,

the power allocation to the multi-tone is increased and the

overall signal will be shaped in multi-tone, which brings in

the favorable PCE with multi-tone at the receiver. Therefore,

it allows to adaptively switch the single tone/multi-tone mode

by changing only the power allocation ratio using the unified

SWIPT signaling above. Especially, we can perform the power

allocation required for EH and ID at the transmitter, which is

far less complex than conventional TS or PS SWIPT schemes

that adjust the power allocation between EH and ID through

mathematical optimization at the receiver.

The PAPR based information transmission facilitates low-

power decoding via simple PAPR measurements which does

not require any power-hungry device (e.g., mixer) [8]. With

the power allocation ratio ρ and the HPA drive power P dr,

the complex-valued baseband signal (i.e., complex envelope)

1As the single tone (continuous wave) pilot signal from the transmitter is
mainly used for EH, its signal power is much higher than the sensitivity of
the monostatic backscatter. Hence, we assume that the signal-to-noise ratio
(SNR) of the backscatter always satisfies the required QoS for uplink feedback
transmission, assuring error-free feedback.
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of the PAPR modulated unified SWIPT, which uses a subset

of N tones from Q available tones (i.e., N ∈ {1, ..., Q}), can

be expressed as

s(t) = ss(t) + sm(t) =
√

2ρP dr sc exp(jθc)

+
√

2(1− ρ)P dr

N
∑

n=1

sn exp
[

j(2πfnt+ θn)
]

, 0 ≤ t ≤ T

(1)

where fn = f1 + (n − 1)∆f with minimum tone spacing

∆f . To achieve the maximum baseband PAPR of sm(t), the

amplitude and phase of each tone is sc = 1, sn =
√

1/N ,

and θc = θn = 0. Then, the baseband PAPR modulated signal

has the form

s(t) =
√

2ρP dr +

√

2(1− ρ)P dr

N

N
∑

n=1

exp (j2πfnt) . (2)

In the above, we maintain the same peak value as in passband

signal, but the average power of complex envelope is 2P dr.

Hence, the PAPR of the complex envelope is given by N .

Under the CSIT assumption, precoding (matched filtering)

is performed to yield the maximum PAPR at the receiver.

With the estimated complex channel gain gn, we define

gn = [g1, . . . , gN ] for multi-tone and gc for single tone. Then,

the amplitude and phase of each tone is set to sc exp (jθc) =
g∗c/|gc| and

sn exp (jθn) =

√

1

N

g∗n
‖gn‖

(3)

where (·)∗ denotes complex conjugate. Hence, the passband

signal after precoding can be expressed as

x(t) =
√

2ρP dr cos(2πfct+ θ∗c )

+

√

2(1− ρ)P dr

N

N
∑

n=1

cos
[

2π(fc + fn)t+ θ∗n
]

= Re
{

s(t)ej2πfct
}

(4)

where θ∗c = ∠ g∗c/|gc| and θ∗n = ∠ g∗n/‖gn‖. Moreover, if

channel is frequency flat (FF), namely gc = gn = h for ∀n
(we omit the channel index v for simplicity), then the passband

signal can be simplified to

x(t) = Re

{

h∗

|h|

[

√

2ρP dr

+

√

2(1− ρ)P dr

N

N
∑

n=1

ej2πfnt

]

ej2πfct

}

= Re

{

h∗

|h| s(t)e
j2πfct

}

= Re

{

|s(t)|ej
[

θs(t)+θMF

]

ej2πfct
}

(5)

where E[|x(t)|2] = P dr, θs(t) and θMF = ∠h∗/|h| = −∠h
denote the phase of s(t) and the pre-matched filtering in FF

fading channel, respectively.

The passband signal x(t) is amplified by the HPA after the

signal generator, which causes nonlinear amplitude and phase

distortions. We assume that the HPA is memoryless, and the
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Fig. 3. Output versus input power based on SSPA (β = 1, 2) and SEL models
where data was obtained from Mini Circuits ZHL-5W-422+ HPA.

complex envelope of the HPA input signal can be expressed by

using the polar form x̃in(t) = A(t)ejφ(t). Thus, for the unified

SWIPT signal with PAPR modulation, the HPA input signal is

given by A(t) = |s(t)| with φ(t) = θs(t)+ θMF. The complex

envelope of the HPA output signal is generally written as

x̃out(t) = G[A(t)]ej{φ(t)+Φ[A(t)]} (6)

where G(·) and Φ(·) represent the amplitude-to-amplitude

modulation (AM/AM) and amplitude-to-phase modulation

(AM/PM) conversion of the amplifier, respectively. To account

for the nonlinearity of HPA, the solid-state power amplifier

(SSPA) model [31] is adopted, which is expressed as

G(A) =
gA

[

1 +
(

A
Asat

)2β
]

1

2β

and Φ(A) = 0. (7)

Here, g is the amplifier small signal voltage gain, Asat is the

input saturation level, and β is a control parameter to adjust

the AM/AM sharpness of the transition from linear region

to saturation region. Fig. 3 shows the input-output power

characteristics for the considered SSPA model. Note that as

β increases, the nonlinear transition region before saturation

is linearized, which is the same as the soft envelope limiter

(SEL) HPA model [31].

With the above SSPA model, the transmitted passband

signal after the HPA is of the form

x̂(t) = Re
{

x̃out(t)e
j2πfct

}

= Re
{

G (|s(t)|) ej
[

2πfct+θs(t)+θMF

]

} (8)

with the complex envelope x̃out(t) = G (|s(t)|) ej
[

θs(t)+θMF

]

.

The average power of the HPA output signal is evaluated as

E
[

|x̂(t)|2
]

=
1

T

∫

T

|x̂(t)|2dt = 1

2T

∫

T

g2Asat
2|s(t)|2

[

Asat
2β + |s(t)|2β

]
1

β

dt.

(9)

It is challenging to obtain the closed-form expression of the

average power with HPA above. In general, the average power

of multi-tone shaped signal is a function of the number of

tones N due to the HPA distortion [14]. On the other hand, the

average power of single tone shaped signal depends on ρ. With

ρ ≈ 1, the average power becomes nearly constant with some

compression due to the HPA nonlinearity. As ρ decreases,

however, the PAPR of the unified SWIPT signal increases due
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Fig. 4. Proposed unified SWIPT receiver and signal detection of single
tone/multi-tone waveforms. (a) Modeling of the unified SWIPT receiver. (b)
Multi-tone signal waveform in time domain. (c) Single tone signal waveform
in time domain. In (b) and (c), we normalized the signal power (i.e., the
power-splitting ratio ρr is ignored) for each PAPR estimator to compare the
received passband and baseband signals easily.

to the multi-tone portion, which incurs the same distortion as

in the multi-tone case. Consequently the average power of the

unified SWIPT signal can be expressed as a function of both

ρ and N , i.e., P(ρ,N). Note that the average power of the

transmitted signal remains constant to be P(ρ,N) = g2P dr,

regardless of ρ and N , in case of ideal amplifier.

B. Unified Receiver with PAPR Modulation: How It Works

In this section, we analyze the dual mode signal detection

of the proposed unified SWIPT receiver as shown in Fig. 4,

which can detect both single tone and multi-tone signals. For

this, we employ two PAPR estimators for FS PAPR ID and

PS PAPR ID. To simplify the receiver architecture, we may

use one PAPR estimator by having a switch between the red

Fig. 5. Output voltage versus input power of a simple diode detector. We
used the Skyworks SMS7630 Schottky diode, R = 1kΩ and C = 22pF with
matched network at -10dBm input power.

and blue signal paths in Fig. 4(a). But this switching-based

receiver architecture requires additional MS information or

optimization at the receiver, so as to identify the type of the

signal waveform (i.e., single tone or multi-tone) for switching

to the proper signal path. Note that the main purpose of the

unified receiver is to detect both single tone and multi-tone

signals without additional optimization at the receiver (e.g.,

TS, or PS of [3]). Also, the circuit power consumption of

the PAPR estimator is little compared to the conventional I/Q

demodulator. Thus, using two PAPR estimators does not cause

any burden on the power consumption at the receiver.

At the receiver, the received signal after antenna is expressed

as

y(t) = Re
{

hx̃out(t)e
j2πfct

}

+ na(t)

= |h|G (|s(t)|) cos
[

2πfct+ θs(t)
]

+ na(t)
(10)

where na(t) =
√
2Re

{

ña(t)e
j2πfct

}

is the antenna noise

and ña(t) is modeled to be a circularly symmetric complex

Gaussian (CSCG) noise with ña(t) ∼ CN (0, σ2
a).

For analysis of the unified receiver, we first consider the

operating region of a diode detector. The response of the diode

detector is generally indicated as a curve of detected output

voltage versus input power as shown in Fig. 5, where the

detector circuit is composed of diode, parallel capacitor and

resistor. At small input signal, the output voltage is closely

proportional to the input power (i.e., the square of the input

voltage). This is called the square-law region. In this region,

a 10 dB increase of input power results in a 10 times increase

of output voltage. On the other hand, the detector output

voltage is directly proportional to the input voltage at large

input signal. This corresponds to the linear region where a

10 dB increase of input power results in almost 5 times

increase of output voltage. At very large input signal, the

output voltage is saturated due to the breakdown voltage of

the diode. This region is called the saturation region. Since

the envelope detector of the proposed receiver is used for both

EH and ID, the receiver requires sufficient input power enough

to charge the battery for self-powering at the unified SWIPT

receiver. This implies that the ID component can be activated

only when the harvested power from the input signal satisfies

the minimum requirement of power consumption at the PAPR

estimator. Therefore, we assume that the operating range of

the envelope detector lies in the linear region.
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With the linear operating assumption of the diode envelope

detector above, it can track the real envelope of the signal

which yields the envelope detector output as

yenv(t) =
∣

∣|h|G (|s(t)|) + na(t)
∣

∣. (11)

We assume that the noise of the diode envelope detector

(rectifier) and the following PAPR estimator is much larger

than antenna noise (i.e., thermal noise), thus we ignore the

antenna noise. After the envelope detector, the power splitter

divides the baseband signal with ratio ρr.2 Then the signal at

the PS PAPR estimator is given by

yPS(t) =
√
ρr yenv(t) + nPS(t) =

√
ρr |h|G (|s(t)|) + nPS(t)

(12)

for the average power PPS(ρ,N) = 2ρr|h|2P(ρ,N) + σPS
2

and the PS PAPR estimator noise nPS(t) ∼ N (0, σPS
2).

Note that the average power of the signal is doubled due

to the imaginary part of the complex-valued baseband signal.

Because the diode envelope detector tracks the envelope of

the passband signal, the extracted envelope is equal to the

magnitude of the complex envelope.

Assuming a linear HPA, and ignoring the noise, the PAPR

of PS path is evaluated as

PAPRPS(N) = 2
maxt |yPS(t)|2
E
[

|yPS(t)|2
]

= 2

[√
2ρP dr +

√

2(1− ρ)NP dr

]2

2ρP dr + 2(1− ρ)P dr

≤ 2N.

(13)

Note that the maximum PAPR value of the complex envelope

at the PS PAPR estimator is N , unlike the passband PAPR of

2N . For scaling and fair comparison with the FS PAPR later,

we simply multiplied the PAPR value by 2. Therefore, the

PAPR value at the PS PAPR estimator is PAPRPS ≤ 2N and

equality holds when ρ = 0, which is multi-tone mode. This

result means that the PS PAPR estimator is suitable for multi-

tone shaped symbol demodulation. As shown in Figs. 4(b)

and 4(c), we can observe that the detected signal at the PS

PAPR estimator (red line of each figure) tracks the envelope

of the received passband signal. In Fig. 4(c), the detected

envelope of single tone shaped signal with large ρ at the PS

PAPR estimator is biased with some DC component which

is downconverted from CW at fc. Thus, the PAPR value of

single tone mode signal turns out to be small as the difference

between the peak and average values is small.

After the power splitter, (1−ρr)-portion of the signal is fed

to the baseband frequency power divider (i.e., LC circuit which

separates DC and AC components of the baseband signal),

where the series capacitance Cf and shunt inductance Lf of

LC circuit blocks the DC component of the signal, as shown

in Fig. 6(a). Using the Fourier transform pair yenv(f) of the

envelope signal in (11), the frequency-domain expression of

the input signal at the FS PAPR estimator is given by

yFS(f) =
√

1− ρrHLC(f)yenv(f) + nFS(f) (14)

2Since the conventional dynamic power-splitting (DPS) scheme requires
additional optimization at the receiver, we use the static power splitting (SPS)
to reduce complexity of the unified receiver. Also, our unified receiver can
be regarded as an integrated receiver due to the baseband PS, which requires
small portion (e.g., ρr = 10−3) of the received signal power for ID [3].

where the LC filter transfer function is HLC(f) = 1/
[

1 −
j(2πf)2LfCf

]

with cutoff frequency f cut = 1/
[

2π
√

LfCf

]

,

and nFS(f) is the Fourier transform pair of the FS PAPR

estimator noise nFS(t) ∼ N (0, σFS
2). In the above, we have

assumed the first-order LC filter for mathematical simplicity,

but it can easily be generalized to the other type of practical

filters for circuit implementation.

With proper selection of Lf and Cf values, we can filter

out the DC component in (14) which is then approximated to

yFS(f) =
√

1− ρr
[

yenv(f)− yenv(0)
]

+ nFS(f). (15)

The time-domain expression of yFS(f) is obtained using the

inverse Fourier transform as

yFS(t) =
√

1− ρr

[

yenv(t)−
1

T

∫

T

yenv(t)dt

]

+ nFS(t)

=
√

1− ρr
[

yenv(t)− ȳenv

]

+ nFS(t)
(16)

where ȳenv indicates the DC component of the signal envelope.

After subtracting out the DC component from yenv(t), yFS(t)
becomes bipolar signal, which is similar to AM demodulation

process. Furthermore, the subtraction of the DC component

incurs distortion in the PAPR value of multi-tone shaped signal

at the FS PAPR estimator, as illustrated in blue dashed line

in Fig. 4(b). This distortion results in the reduced PAPR for

multi-tone shaped signal, which yields PAPRFS < 2N . For

this reason, we consider only a large ρ value (corresponding

to single tone shaped signal) for ID at the FS PAPR estimator.

Following the approach for the PS PAPR estimator, if we

assume a linear HPA and ignore noise, we can express yFS(t)
as

yFS(t) =
√

1− ρr |h|g
{

∣

∣ss(t) + sm(t)
∣

∣− 1

T

∫

T

|s(t)|dt
}

=
√

1− ρr |h|g
{

∣

∣

∣

√

2ρP dr + Re{sm(t)}

+ j Im{sm(t)}
∣

∣

∣
− 1

T

∫

T

|s(t)|dt
}

.

(17)

Since the signal envelope can be evaluated using |s(t)|2 =
(

Re{s(t)}
)2

+
(

Im{s(t)}
)2

, (17) can be rewritten as

yFS(t) =
√

1− ρr |h|g

×
{
√

(
√

2ρP dr + Re{sm(t)}
)2

+
(

Im{sm(t)}
)2

− 1

T

∫

T

|s(t)|dt
}

.

(18)

With large ρ assumption, that is similar to preventing the over-

modulation in AM, if we can ignore the imaginary part of (18),

it can be simplified to

yFS(t) =
√

1− ρr |h|g

×
{

Re{sm(t)}+
√

2ρP dr −
1

T

∫

T

|s(t)|dt
}

.
(19)

Note that 2ρP dr =
1
T

∫

T |ss(t)|2dt ≈ 1
T

∫

T |s(t)|2dt with large

ρ, and 1
T

∫

T |s(t)|2dt ≥
(

1
T

∫

T |s(t)|dt
)2

by Cauchy-Schwarz
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inequality. Thus, the relationship between the envelope of

single tone
√
2ρP dr and the DC component ȳenv is given as

1

T

∫

T

|ss(t)|2dt ≈
1

T

∫

T

|s(t)|2dt ≥
( 1

T

∫

T

|s(t)|dt
)2

. (20)

Here, the equality holds as ρ → 1. This means that we

can cancel out the last two terms in (19), which allows to

decompose the multi-tone data embedded signal and the single

tone power signal with large ρ assumption, similar to that in

[16]. Therefore, with large ρ = ρFS, we can derive

yFS(t) ≈
√

1− ρr |h|gRe{sm(t)}

=

√

2(1− ρr)(1 − ρFS)P dr

N
|h|g

N
∑

n=1

cos
(

2πfnt
)

(21)

which is a scaled version of multi-tone, and the average power

is PFS(ρFS, N) = (1− ρr)(1 − ρFS)|h|2P(ρFS, N) + σFS
2. In

Fig. 4(c), we observe that the input signal at the FS PAPR

estimator (blue solid line) is obtained by subtracting the DC

component from the detected baseband envelope. The PAPR

of yFS(t) is then calculated as

PAPRFS(N) =
maxt |yFS(t)|2
E
[

|yFS(t)|2
]

=

(

√

2(1− ρr)(1− ρFS)NP dr

)2

(1− ρr)(1− ρFS)P dr

≈ 2N.

(22)

Consequently we validate PAPRFS = 2N , which is equivalent

to the passband PAPR value without requiring the factor of 2.

This is because the FS PAPR estimator utilizes only the real

part of the received signal.

From the above receiving process at each PAPR estimator,

we observe that the PS PAPR estimator is suitable for multi-

tone shaped signal with PAPRPS ≤ 2N , whereas the FS PAPR

estimator is for single tone shaped signal with PAPRFS ≤ 2N .

Each equality holds when ρ = 0 and ρ = ρFS, respectively.

Based on the above observation, we can choose the maximum

value between the outputs of each PAPR estimator as

PAPRID = max
{

PAPRPS, PAPRFS

}

. (23)

Here, if we consider the HPA nonlinearity at the transmitter,

the instantaneous power will likely be saturated at large N
when the instantaneous amplitude of the HPA input signal

exceeds Asat. Hence, unlike the ideal case where the transmit

PAPR is PAPRTX(N) = 2N as shown in [8], the HPA

distorts the amplitude of the input signal. Thus, the transmit

PAPR (and the resulting PAPRPS and PAPRFS) are no longer

linearly proportional to the number of tones. Due to this HPA

nonlinearity, it is intractable to evaluate the receive PAPR in

closed form. But we can still invoke a statistical approach to

analyze the error-rate performance of PAPR modulation with

the HPA nonlinearity.

For analysis of the SER, conditioned on the channel gain

|h|, the cumulative distribution function (CDF) of PAPRID in

(23) is defined as

F ID(γ,N) = Pr
{

PAPRID(N) < γ
∣

∣ |h|
}

= Pr
{

max
{

PAPRPS, PAPRFS

} ∣

∣ |h|
}

.
(24)

Since nPS(t) and nFS(t) are statistically independent, PAPRPS

and PAPRFS are also independent. Thus, the CDF is given by

F ID(γ,N) = Pr
{

PAPRPS(N) < γ
∣

∣ |h|
}

× Pr
{

PAPRFS(N) < γ
∣

∣ |h|
}

= F PS(γ,N)× F FS(γ,N)

(25)

where F PS(γ,N) and F FS(γ,N) represent the CDF’s of each

PAPR estimator, respectively.

Based on this, the CDF of PAPR modulation at each PAPR

estimator can be derived as

Fi(γ,N) =
∏

t

{

1−
∫ ∞

0

f|h|(z)×Q1/2

(

√

λi,
√
νi

)

dz

}

(26)

where i ∈ {PS, FS} for each estimator, and f|h|(z) denotes the

probability density function (PDF) of channel fading. Also, we

define Y PS(t) =
√
ρr yenv(t) and Y FS(t) =

√
1− ρr

[

yenv(t)−
ȳenv

]

. Then νi = γ Pi(ρ,N)/σ2
i and λi =

[

Yi(t)/σi
]2

. For

the detailed proof, please see Appendix A with [9], [14].

Using the above CDF, the SER of the PAPR modulation

with total Q tones is evaluated as

P SER(ρ,Q) =
1

Q

Q
∑

q=1

p(q) (27)

where p(1) = 1 − F ID(3, 1), p(Q) = F ID(2Q − 1, Q), and

p(N) = 1−F ID(2N+1, N)+F ID(2N−1, N) for 1 < N < Q.

C. Nonlinear Energy Harvesting

The unified SWIPT receiver circuit is implemented in

Fig. 6(a), where the antenna circuit is commonly modeled by

Thevenin equivalent voltage source vs(t) in series with an

impedance Rs. The maximum power is then delivered from

the antenna to the envelope detector when the impedance is

perfectly matched. The envelope detector tracks the signal

envelope with capacitor Ce, which converts RF signal to the

baseband output signal. After the envelope detector, the signal

power is split into ρr by the RF coupler which is a static

power splitter. Since ρr is small, the most of the signal power

is fed to a smoothing capacitor Cr to shape the signal while

the rest of the signal is used for PS PAPR estimation at RPS.

The shaped signal after the smoothing capacitor is divided

into two branches, in a way similar to the FS architecture

in [16], one for the FS PAPR estimator load RFS and the

other for the energy harvester load RP . If we apply the DC

analysis for wireless power transfer (WPT) which is the blue

dashed arrow in Fig. 6(a), the receiver circuit is reduced to

the equivalent rectifier circuit in Fig. 6(b) with equivalent

capacitance Crec = Ce + Cr + Cf .

Note that we have assumed a linear operating region of

the diode envelope detector for ID at the unified receiver in

Section II-B. But the unified receiver should always harvest

energy regardless of the input power range. In other words,

the unified SWIPT receiver operates EH mode even when the

received power is too low or high (i.e., square-law or saturation

region). Thus, we have to consider the nonlinearity of the diode
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Fig. 6. Circuit of (a) proposed unified receiver and (b) equivalent rectifier
circuit with matching network. (c) RF-to-DC PCE curve based on the
piecewise linear EH model (Q = 1, 2, 4, 8, 16). Data was obtained by the
ADS circuit simulation.

rectifier (envelope detector) over wide input power range for

EH at the unified receiver.

To characterize the diode nonlinear behavior (e.g., turn-on

sensitivity and saturation), [5] and [7] proposed the nonlin-

ear models based on Taylor series approximation of diode

small signal equation and logistic curve fitting for measured

experimental data, respectively. However, those models may

not be accurate when both saturation effect and small signal

model are considered for wide input power. Also, to maximize

the efficiency of the rectifier, various circuit designs (e.g.,

reconfigurable rectifier, deep learning based rectifier, etc.)

are proposed in [32]–[35], which are far from the simple

diode rectifier. Thus, the diode based mathematical model has

limitation to precisely predict the state-of-the-art results of

practical EH circuit design.

We adopt a piecewise linear EH model in [36] which

approximates the nonlinear energy harvester based on circuit

measurement or simulation data to address the nonlinear

characteristics of various rectifier designs as well as simple

diode rectifier. Here, the EH model reflects two important

nonlinear features such as turn-on sensitivity and saturation.

If the input power is less than the turn-on sensitivity Pon,

the EH circuit cannot be activated. Meanwhile, the harvested

power becomes saturated with the maximum harvested power

Pmax
EH if the input power exceeds Psat. If we let input x = Pin,

the harvested power that results from using q-tone multisine

waveforms can be expressed as

P q
EH(x) =











0 x ∈ [0, xq0),

ηqk(x− xqk−1) + yqk−1 x ∈ [xqk−1, x
q
k),

yqK x ∈ [xqK ,∞)

(28)

where {xqk}k=K
k=0 and {yqk}k=K

k=0 denote the sets of supporting

points with xq0 = P q
on, xqK = P q

sat, and yqK = Pmax,q
EH .

Fig. 6(c) shows the PCE curve of the piecewise linear

EH model with single tone/multi-tone waveforms (Q =
1, 2, 4, 8, 16). The data point of the harvested power is obtained

through ADS circuit simulation. For the rectifier, we have used

the Skyworks SMS7630 Schottky diode rectifier to simplify

the receiver circuit.3 A matching network is tuned at −10dBm

input power with series capacitor Cm = 0.25pF and shunt

inductor Lm = 11.67nH. Also, the equivalent capacitor is set

to Crec = 1nF and the energy harvester load RP = 1kΩ.

Note that we have converted the harvested power versus input

power relationship to the RF-to-DC PCE versus input power

one, defined by η = PEH/Pin. Since the harvested power is

normalized by the input power, it shows accurate EH efficiency

regardless of the input power range. It can be observed that

multi-tone shows better PCE in low input power region. On the

other hand, single tone shows better PCE due to the saturation

of the diode when the input power is high.

III. TEMPORAL CONVOLUTIONAL NETWORK BASED

ADAPTIVE CONTROL ALGORITHM

Because of the HPA and rectifier nonlinearity, there exists

the rate-energy tradeoff between the single tone and multi-tone

modes of the proposed unified SWIPT. The former can achieve

a higher data rate compared to the latter, but the RF-to-DC

PCE is not optimal at low received power due to the nonlinear

characteristics of the rectifier. Unlike this, the latter is suitable

for low received power with enhanced RF-to-DC PCE of the

rectifier but more susceptible to nonlinear distortion of the

HPA, resulting in a lower data rate at the high HPA drive

power. Therefore, it is crucial to adjust the communication

mode for optimizing performance, considering the end-to-end

efficiency of the unified SWIPT system.

For switching the communication mode adaptively, we

define the MS threshold P th so as to achieve the maximum

data rate. For instance, when the received power feedback

Pr,v is greater than the MS threshold (Pr,v ≥ P th), the single

tone signal is utilized (ρ = ρFS) and otherwise the multi-tone

signal (ρ = 0). It is obvious that both the harvested power

and achievable rate are affected largely by updating the MS

threshold in a time window. Based on the modulation index

(the number of tones) Q and power allocation ratio ρ which

3However, if other complex rectifier design is utilized to enhance the EH
efficiency, we can still adopt this EH model by fitting the model to data from
specsheet or measurement, because the piecewise linear EH model is based
on measurement of the EH circuit, not the analysis of circuit operation.
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Fig. 7. Functional description of the proposed temporal convolutional network (TCN) based adaptive control algorithm for the unified SWIPT.

are selected by adaptive control with P th, the achievable rate

of the unified SWIPT with outage probability is evaluated as

Rv =
1

T

[

1− pout(ρ,Q)
]

log2Q. (29)

Note that the outage probability pout(ρ,Q) is defined as

pout(ρ,Q) = Pr[P SER(ρ,Q) > SERtag] for a given ρ and Q,

which is the SER exceeding the target SER.

An optimization problem for adaptive control to maximize

the average achievable rate with energy constraint is given as

(P1) : max
Pth,v

Ev[Rv]

s.t. P EH ≥ PC

where PC represents the circuit power consumption at the

receiver. Note that (P1) can be viewed as mixed-time scale

optimization which is non-convex and difficult to solve directly

as both objective and constraint functions are combinatorial

with discrete MS attributes ρ and Q. Also, the objective

function involves the expectation over the channel index v. On

the other hand, the MS attributes can vary over every channel

block, as they are greatly affected by the end-to-end efficiency

(i.e., RF-to-DC PCE of the rectifier and the HPA nonlinear

distortion of each mode).

Moreover, in practice, the channel exhibits some degree of

temporal correlations because of the mobility of devices and

time-varying wireless environments. To model the temporal

correlation between fading blocks, the Gauss-Markov channel

model is considered as hv = ζhv−1 + uv, where ζ ∈ [0, 1] is

the temporal correlation coefficient and {uv} are the CSCG

random variables with zero mean and variance (1− ζ2). Note

that the channel is time-varying with respect to the channel

block index v, which affects the received power feedback

Pr,v . Therefore, it is necessary to switch the communication

mode adaptively to the received power feedback which reflects

the temporal correlation of the time-varying channel. Here,

the receiver feedbacks the measurement using the monostatic

backscatter prior to each frame transmission. To minimize the

HPA distortion to the pilot signal for backscatter and maintain

a constant transmit power level for feedback, the transmitter

always sends the pilot signal with the reference power P ref,

that is, a back-off output power level of the HPA below the

saturation point at which the amplifier will continue to operate

in the linear region. Thus, the received power feedback at the

vth fading block is evaluated as Pr,v = |hv|2P ref.

To solve the optimization problem (P1), we divide (P1)

into iterative short-term/long-term optimization. Here, P th is

updated on a long-term scale using a deep learning technique

while MS attributes (ρ, Q) are determined on a short-term

scale, as shown in Fig. 7. Especially, to handle both the

HPA and rectifier nonlinearity, and also adaptively controlling

the communication mode depending on the temporal channel

variation, we adopt the TCN based asymmetric processing.

For instance, the short-term optimization at the vth fading

block selects the power allocation ratio ρv by comparing Pr,v

with Pth,v, and the modulation index Qv is set by maximizing

the data rate while satisfying the target SER. In long-term

optimization, the previous estimated MS threshold P̂th, the

short-term optimization results (i.e., ρ, Q), and the received

power measurements Pr are all used to update the MS

threshold by the TCN. Here, we take the input data to the TCN

with sequence lengthW , namely the previousW MS threshold

estimates P̂th = {P̂th,v−w}Ww=1 and the previous W MS

attributes with the received power measurement {ρ,Q,Pr} =
{ρv−w, Qv−w, Pr,v−w}Ww=1, where w ∈ [v − W, v − 1] is a

sliding window over v. Note that all processing burden of the

proposed algorithm is shifted to the transmitter, so as to lower

the receiver complexity, by which the transmitter optimizes

the modulation index and power allocation ratio based on

the received power feedback, leading to transmitter-oriented

asymmetric processing.

We first look into the short-term optimization for a given MS

threshold Pth,v which is updated by the long-term optimization

at the vth channel block. ρv and Qv are selected by the short-

term optimization problem, which is formulated as

(P2) : max
Qv

Rv

s.t. ρv = ρFSIPth,v
(Pr,v)

P EH ≥ PC .

In the above, the inequality constraint is the energy-causality

condition for self-powering at each fading block, and IPth,v
(x)

is the indicator function such that IPth,v
(x) = 1 for x ∈ {x|x ≥

Pth,v} and otherwise IPth,v
(x) = 0. Then, if the received

power is greater than the MS threshold (Pr,v ≥ Pth,v), the

single tone mode (ρv = ρFS) is selected and otherwise the

multi-tone mode (ρv = 0). The objective function of (P2) is

monotonic increasing with the received power and Qv. Once

the received power measurement Pr,v is given at vth block,



10

Fig. 8. Illustration of TCN architecture and example of residual block with dilated causal convolution, where the dilation factor is d = [1, 2, 4] with filter
size k = 3. For residual connection, the 1×1 convolution is added when input and output have different dimensions.

the above optimization problem is the integer programming as

the modulation index Qv is discrete and a finite set. Thus, we

can solve (P2) using simple integer programming optimization

techniques such as branch-and-bound algorithm.

Next, the TCN based long-term optimization updates the

MS threshold Pth,v for iterative operation. The TCN has an

architecture that the previous sequential input data affects

the prediction of the next output. In general, the sequence

modeling problem with input sequence data {x1, ...,xW } for a

sequence length W is a function F that produces the mapping

ŷ1, ..., ŷW = F(x1, ...,xW ; θF), (30)

which minimizes the loss function between the actual outputs

{yv} and the predictions {ŷv}. For the sequence modeling

of the TCN, we define F(·; θF ) as the overall mathematical

functions of the TCN model, in which θF is the set of the

parameters (i.e., weights and biases) of the corresponding

functions. We utilize the mean-square error (MSE) as the

loss function which can also represent the deep learning

performance. The MSE loss function is defined as

L(θF ) =
1

|T |
∑

v∈T

∥

∥yv − ŷv

∥

∥

2

=
1

|T |
∑

v∈T

∥

∥yv −F({xv−w+1}Ww=1; θF)
∥

∥

2
(31)

where T denotes the set of training samples. By minimizing

the loss function of (31) with respect to θF , the proposed

algorithm can be optimized iteratively using the stochastic

gradient descent method.

Based on the above framework, we employ the TCN for

the proposed adaptive control algorithm, whose architecture is

illustrated in Fig. 8. The TCN uses 1-D fully convolutional

network (FCN) architecture, where each hidden layer is the

same as the input layer. Thus, the FCN produces an output

with the same length as the input similarly to conventional

RNN model such as LSTM. Note that the 1-D convolution

is suitable for real-time applications due to the low com-

putational requirement of array operation (not the matrix

operation of CNN). Also, the TCN uses causal convolution

to prevent the leakage of information from the future to the

past. There are no previous data missed or future data produced

when the information is transferred between the layers of the

convolutional network. In general, the causal convolution can

only look back at a certain history size which is proportional

to the depth of the network. Thus, an extremely large size of

deep network or convolution filter is required to achieve a long

effective history size or memory, which significantly increases

the computational complexity.

To tackle this problem, we employ dilated convolution [37]

which can effectively capture the long-term patterns of the

input data by enabling an exponential receptive field. More

formally, for the sequence input x ∈ R
n and the convolution

filter f : {0, ..., k−1} → R with size k, the dilated convolution

operation D(·) on the sequence element s can be defined as

D(s) =
k−1
∑

κ=0

f(κ) xs−d×κ (32)

where d is the dilation factor exponentially increasing with the

depth of the network (i.e., d = 2l at layer l of the network).

For example, the dilation factor is d = [1, 2, 4, ..., 2L−1] for

the network with L layers. Dilation consists of skipping d
values between the inputs of the convolutional operation, as

shown in Fig. 8. Note that the dilated convolution reduces to

a regular convolution when d = 1.

To increase the receptive field of the TCN, we should choose

a larger filter size k or increase the depth of the network

with a large dilation factor. However, this leads to deeper

network architecture with more training parameters. For this

reason, we can replace the convolutional layer with a residual

block to achieve network stabilization, as shown in Fig. 8. A

residual block adds the input x of the block to a series of

transformation functions G(·) to evaluate its output, namely

residual connection, which is expressed as

output = ψ(x+ G(x)) (33)

where ψ(·) denotes the activation function. More details about

the residual block can be found in [26], [29].

Note that we can utilize the TCN to solve the long-term

optimization problem since the received power measurements

Pr, the short-term optimization results (i.e., ρ, Q), and

the previous MS threshold P̂th are all sequential data with

respect to the temporal channel variations. Therefore, the input

sequence data for the proposed adaptive control algorithm is

xw = {ρw, Qw, Pr,w, Pth,w}. Since the transmitter performs
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Fig. 9. CDF of the PS PAPR estimator with HPA impairment, where P dr =
−10dBm for (a), and 0dBm for (b), respectively.

the training of the TCN via the asymmetric processing, these

input data can easily be utilized for the long-term optimization

with backscatter-based channel training. Hence, the TCN is

suitable for updating the MS threshold with the short-term

optimization results of (P2), in conjunction with the received

power feedback from low-power IoT devices.

IV. RESULTS

In the simulations, we compare the performance of the

proposed unified SWIPT with existing SWIPT systems. For

this, the bandwidth is assumed to be B = 200kHz with

carrier frequency fc = 2.4GHz. The antenna noise power

is assumed to be σ2
a = −110dBm, and the estimator noise

power is σPS
2 = σFS

2 = −100dBm for fair comparison

between PS and FS paths. Also, the tone spacing for multi-

tone is assumed to be ∆f = 10kHz. The modulation index

of the unified SWIPT is set to Q = 4, 8, 16. Thus, we use

16 tones among the 20 available tones, and the edge of the

bandwidth is unused, which can be regarded as guard band.

For the HPA nonlinearity, the parameters are assumed to be

g2 = 25 dB, Asat
2 = 10 dBm, and β = 2, which are the

circuit characteristics of Mini Circuits ZHL-5W-422+ HPA,

and P ref is 29dBm, which is −6dB back-off from 1dB gain

compression point (P1dB) of the HPA. The distance of the

transceiver is 3m with antenna gain 5dBi. For EH, we have

assumed the same rectifier circuit parameter of Section II-C.

Also, the power-splitting ratio at the receiver is ρr = 10−3.

For the adaptive control, we set ζ =0.99 and 0.9 for

Gauss-Markov Rayleigh fading channel model with path-loss

exponent 2.5.4 Also, the convolution filter size is k = 2, and

the dilation factor of each layer is set to d = [1, 2, 4, 8] for the

TCN. Meanwhile, for comparison, the number of the LSTM

RNN hidden layers is set to H = 4. For both networks, the

sequence length is set to the window size W = 20. Thus, both

networks have similar sequence modeling capabilities. The

TCN and LSTM models are trained by using 4× 104 training

samples with 15 training epochs. The performance of the

4ζ is determined by ζTcB = χ for the level of decorrelation χ [38]. We
select ζ = 0.9 as the lower bound on the channel correlation because of
typically ζ ≥ 0.99 at 2.4GHz [25].

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

PAPR

0

0.5

1

F
ID

(
,N

)

Single Tone (Simulation)
Single Tone (Analysis)

N=2 N=16

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

PAPR

0

0.5

1

F
P

A
P

R
(

,N
)

Single Tone (Simulation)
Single Tone (Analysis)

N=16N=2

(b)

Fig. 10. CDF of the FS PAPR estimator with HPA impairment, where P dr =
−10dBm for (a), and 0dBm for (b), respectively.

proposed algorithm is evaluated using 3.6× 105 test samples,

independent of the training samples. The outage probability

pout(ρ,Q) of each mode with modulation index Q is evaluated

through the Monte-Carlo simulations subject to the target SER

SERtag = 0.01. Finally, the circuit power consumption at the

unified SWIPT receiver is set to PC = 10µW, which is the

envelope detection based low-power IoT receiver [39].

Figs. 9 and 10 show the CDF of the PS and FS PAPR

estimators when Q = 16. Here we have applied multi-

tone shaped signal (ρ = 0) for the PS PAPR estimator,

and single tone shaped signal (ρ = ρFS) for the FS PAPR

estimator to assure the signal detection of each estimator. We

set ρFS = (1 − 10−3) to normalize the input signal power

of each PAPR estimator for fair comparison. We see that

the analytical results based on (25) well coincide with the

simulation ones for all N . We also confirm that the estimated

PAPR value at both PAPR estimators is linearly proportional to

N when the HPA nonlinearity is small, as shown in Figs. 9(a)

and 10(a). However, we observe that PAPRPS of the multi-tone

shaped signal is critically distorted when the drive power of

the HPA is large (i.e., P dr = 0 dBm), as shown in Fig. 9(b).

On the other hand, PAPRFS of the single tone shaped signal

is still linearly proportional to N with FS PAPR estimator in

Fig. 10(b). This is because PAPR of the transmitted passband

single tone signal is small due to the CW power signal, which

is more tolerant to the HPA nonlinearity. For this reason, the

FS PAPR estimator and single-tone shaped signal are suitable

for not only conveying high power for EH but also mitigating

the HPA nonlinearity on ID.

In Fig. 11, considering the HPA nonlinearity, the single tone

mode SER performance of the unified SWIPT is evaluated,

which varies with the duty ratio ρFS whenQ = 4, 8, 16. We can

observe that the performance is degraded as the drive power

of the HPA increases because of the distortion in PAPRFS.

We also notice that using larger ρFS results in degraded SER

performance in linear operating region of the HPA because of

decreased power allocation on ID. However, the distortion of

the HPA is also mitigated with large ρFS. This is because the

decrease in transmit PAPR can reduce the voltage swing of the

signal and prevent the compression or clipping of the signal
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waveform. Hence, we used ρFS = (1 − 10−4) for single tone

mode, provided the adaptive control algorithm devised herein

aims to mitigate the nonlinear distortion of the HPA.

In Fig. 12, considering the HPA nonlinearity, the SER

performance of the proposed unified SWIPT is evaluated when

Q = 4, 8, 16. The SER performance of the conventional PAM

based PS SWIPT with ideal power amplifier is also plotted

for comparison.5 Here, the power-splitting ratio for the PAM

based PS SWIPT is set to ρPAM = ρFS. We observe that

the performance is degraded as Q increases for both single

tone and multi-tone modes because of the decreased distance

between symbol (PAPR) constellation points. Further, these

results clearly show that the SER performance of the unified

SWIPT is comparable to the conventional SWIPT in linear

operating range of the HPA.

Since the maximum transmit PAPR increases as the number

of tones increases, the multi-tone signal with large Q is more

5Note that the conventional data modulation schemes such as OFDM with
QAM or PSK requires the I/Q based detection and FFT processing, which
consume high circuit power for ID (typically from several mW to several
hundreds of mW [39], [40]). So it is hard to assure the self-powering of low-
power IoT devices with such modulation due to high-power consumption.
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Fig. 13. Outage probability of single tone/multi-tone modes for the proposed
unified SWIPT. The target SER is assumed to be 0.01.

easily distorted by the HPA. Note that the waveform of the

multi-tone mode signal is clipped when the HPA is completely

saturated, resulting in highly compressed transmit PAPR. In

this situation, the information transmission is infeasible, which

is clearly indicated by a rapid increase of the multi-tone mode

SER in high drive power region of Fig. 12. On the other

hand, we confirm that the single tone mode with FS PAPR

estimator effectively mitigates the nonlinearity of the HPA,

compared to the PS PAPR estimator, with slightly degraded

SER performance, but it is still comparable to the conventional

PAM based PS SWIPT scheme.

Based on the SER performance of single tone and multi-

tone modes, the outage probability of the unified SWIPT is

shown in Fig. 13. The results show that the multi-tone mode is

suitable for low to moderate HPA drive power while the single

tone mode with large power allocation ratio ρ is suitable for

high HPA drive power which can cause signal distortion. This

tendency is consistent with the results in Fig. 12. We also

observe that using large Q to increase the data rate results

in more outage for ID, which reduces the reliability of data

communication. Therefore, it is important to adaptively control

ρ and Q to optimize both the performance and reliability under

the QoS of low-power IoT devices.

In Fig. 14(a), the estimated P̂ th using TCN and LSTM RNN

is shown versus the HPA drive power. We notice that the

optimal P th varies with the HPA drive power to optimize the

behavior of the unified SWIPT. At a low HPA drive power,

the receiver cannot meet the energy-causality constraint due

to the small received power. Also, the HPA nonlinearity does

not largely affect the adaptive control of the unified SWIPT

in this region. Therefore, the MS threshold is set to a constant

value, namely the receiver RF-to-DC PCE crossover point of

single tone/multi-tone to maximize the EH efficiency. As the

HPA drive power increases, the energy-causality constraint

forces the MS threshold P th to be increased. This way the

multi-tone mode is more likely selected to boost up the PCE

and ID performance. At this region, the TCN shows better

estimation performance compared to the LSTM, as shown

in the subplot of Fig. 14(a). This result coincides well with

the better sequence modeling performance of TCN discussed

in [26], [29]. At a large HPA drive power, the multi-tone
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Fig. 14. Performance comparison of the TCN and LSTM RNN based adaptive
control algorithms. (a) Average estimated P th versus the HPA input drive
power. (b) MSE versus the training epochs.

signal is largely distorted due to the HPA nonlinearity. Thus,

the adaptive control algorithm drastically decreases the MS

threshold, and the single tone mode is more likely selected.

Overall, we confirm that the TCN and LSTM RNN of the

proposed adaptive control algorithm can predict the average

optimal MS threshold.

Fig. 14(b) shows the MSE of the TCN and LSTM RNN

based algorithms versus the training epochs. We see that the

MSE decreases as the number of epochs increases, and the

training of the deep networks proceeds well. For comparison,

we also plotted some other cases; 1) the temporal correlation

coefficient ζ is reduced, and 2) the input sequence length is

large. The first case reflects more time-varying situations, e.g.,

higher mobility of devices. We observe that the converging

MSE value increases because both the TCN and LSTM RNN

have limitation in estimating P th due to the reduced temporal

channel correlation. But we still see that the TCN outperforms

the LSTM RNN while both algorithms roughly following the

general trend of P th in Fig. 14(a).

Meanwhile, when the input sequence length is increased to

W = 100, the convergence of the TCN is improved compared

to the LSTM RNN with no improvement. This is because the

TCN can retain long memory more realistically compared to

the LSTM RNN. However, the results reveal that the TCN

converges well regardless of the window size W , while the

LSTM RNN still requires a large number of iteration epochs

for convergence. Since a large sequence length increases the

computational complexity per iteration in the training of the

sequence modeling, it is desired to select a small window

size (sequence length) with the TCN to boost the convergence

speed of the proposed adaptive control algorithm.

In Fig. 15, we show the achievable rate versus the HPA
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Fig. 15. Achievable rate of the unified SWIPT with TCN based adaptive
control algorithm.

drive power, subject to the self-powering condition. When the

HPA drive power is very low, the ID of the unified SWIPT

appears infeasible as the harvested power at the receiver cannot

satisfy the self-powering condition. We see that the multi-tone

mode achieves higher data rate in low-power region, whereas

the single tone mode performs well in high-power region.

However, the achievable rate is dramatically decreased at very

high HPA drive power due to HPA nonlinearity.

Compared to the SWIPT which utilizes single tone or

multi-tone mode only, the unified SWIPT with exhaustive

search or deep learning network achieves higher data rate

through adaptive control. This is because the adaptive control

algorithm updates P th and switches the communication mode

with optimum MS attributes considering both the received

power feedback and HPA drive power, so as to maximize the

achievable rate. Note that the exhaustive search requires huge

computational complexity for real-time applications, thus it

can be regarded as an ideal case of achieving the upper bound

on the performance. We confirm that the proposed adaptive

control algorithm with TCN produces the best performance

compared to other baseline schemes. Furthermore, it offers a

better achievable rate than the LSTM RNN because of the

better estimation performance with TCN.

Finally, we compare with the non-adaptive scheme with

fixed MS threshold which is set to the receiver RF-to-DC

PCE crossover point of single tone and multi-tone modes. We

can observe that the performance is degraded compared to

the adaptive control algorithms with TCN and LSTM RNN.

Especially, the achievable rate is largely decreased at high

HPA drive power as the fixed MS threshold is not optimized

with regard to HPA nonlinearity. To the contrary, the adaptive

control algorithms iteratively estimate P th using the previous

information. Therefore, the fine-tuning of MS threshold and

MS attributes in the adaptive control algorithms results in

enhanced performance.

V. CONCLUSIONS

In this paper, we have proposed a novel unified signal and

its architecture design for SWIPT with TCN based adaptive
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control algorithm. The unified signal and integrated receiver,

which support both single tone and multi-tone signaling by

adjusting only the power allocation ratio, were proposed and

analyzed. In order to lower the computational burden of the

receiver, which is the prerequisite for realizing battery-free

IoT devices, the TCN based adaptive control algorithm was

adopted, by which the transmitter can optimize the modulation

index and the power allocation ratio in short-term scale while

updating the MS threshold in long-term scale. To validate

the system performance improvement, we have evaluated the

achievable rate under the energy-causality constraint. It was

confirmed that the proposed unified signaling and integrated

receiver can produce higher achievable rate under the self-

powering condition than the existing SWIPT. Therefore, the

proposed unified SWIPT system with adaptive control at the

transmitter side will be a promising enabler for self-powering

low-power IoT devices remotely.

APPENDIX A

PROOF OF THE CDF OF PAPR MODULATION

First, we here omit the channel index v for analytical

simplicity. By conditioning on |h|, the CDF of PAPRi(N) is

expressed as

Fi(γ,N) = Pr
{

PAPRi(N) < γ
∣

∣

∣
|h|

}

= Pr
{

max
t

∣

∣yi(t)
∣

∣

2
< γPi(ρ,N)

∣

∣

∣
|h|

}

.
(34)

Since {yi(t)} are mutually independent over t, the CDF of the

largest order statistic is derived as

Fi(γ,N) =
∏

t

Pr
{

∣

∣yi(t)
∣

∣

2
< γPi(ρ,N)

∣

∣

∣
|h|

}

. (35)

Since Yi(t) is a deterministic signal for a given symbol,

yi(t) ∼ N (Yi(t), σ
2
i ). Let us denote X = |yi(t)|2/σ2

i , then X
is noncentral chi-squared random variable with one degree of

freedom and noncentrality parameter λi = [Yi(t)/σi]
2. Thus,

the CDF is rewritten as

Fi(γ,N) =
∏

t

Pr

{

X <
γ

σ2
i

Pi(ρ,N)

∣

∣

∣

∣

|h|
}

=
∏

t

{

1− E|h|

[

Q1/2

(

√

λi,
√
νi

)]

} (36)

where Q1/2(
√
λi,

√
νi) denotes the Marcum-Q function of

order 1/2 and νi = γPi(ρ,N)/σ2
i . Unconditioning on |h|

using the channel PDF f|h|(z) completes the proof.

For example, we take the expectation of (36) with respect

to Rayleigh fading h ∼ CN (0, σ2
h), which yields

Fi(γ,N)

=
∏

t

{

1−
∫ ∞

0

z

σ2
h

exp

(

− z2

2σ2
h

)

Q1/2

(

√

λi,
√
νi

)

dz

}

.

(37)
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