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Abstract—With increasing penetration of Distributed Energy
Resources (DERs) in grid edge including renewable generation,
flexible loads, and storage, accurate prediction of distributed
generation and consumption at the consumer level becomes
important. However, DER prediction based on the transmission
of customer level data, either repeatedly or in large amounts, is
not feasible due to privacy concerns. In this paper, a distributed
machine learning approach, Federated Learning, is proposed to
carry out DER forecasting using a network of IoT nodes, each
of which transmits a model of the consumption and generation
patterns without revealing consumer data. We consider a simula-
tion study which includes 1000 DERs, and show that our method
leads to an accurate prediction of preserve consumer privacy,
while still leading to an accurate forecast. We also evaluate
grid-specific performance metrics such as load swings and load
curtailment and show that our FL algorithm leads to satisfactory
performance. Simulations are also performed on the Pecan street
dataset to demonstrate the validity of the proposed approach on
real data.

Index Terms—DER Forecast, Internet of Things, IoT, Feder-
ated Learning, Privacy

I. INTRODUCTION

Internet-of-Things (IoT) is becoming attractive in a wide
range of applications in energy, transportation, healthcare,
manufacturing, and others. The rapid adoption of IoT and
IoT-networks are leading to an unprecedented growth in the
volumes of data that are generated by these devices. Juniper
Research forecasts that the total number of IoT device end-
points will hit 83 billion by 2024 [1]. Specifically, utilities
are expected to one of the highest users, with 1.37 billion
endpoints. Gartner Inc.’s report also states that “Electricity
smart metering, both residential and commercial will boost
the adoption of IoT among utilities” [2]. Cloud computing
has been proposed as a method for storing and analyzing
such large volumes of data, due to the several advantages
such as cost efficiency, and computing and storage capabilities
[3]. However, a pure centralized cloud-based data storage and
analytics approach becomes unrealistic due to the ever-rising
data privacy concerns. General Data Protection Regulation
(GDPR) in Europe lays out strict guidelines for users’ data
privacy, while similar laws are present in US Consumer Pri-
vacy Bill of Rights [4]. Distributed methods that can efficiently
and privately communicate the desired information and enable
decisions are becoming more and more attractive.

The work reported here is based upon work supported by the Department
of Energy under Award Number DOE-OE0000920. V. Venkataramanan,
S. Kaza, and A. M. Annaswamy are with the Department of Mechanical
Engineering, Massachusetts Institute of Technology, Cambridge, USA e-mail:
{vvenkata,skaza7,aanna}@mit.edu.

In addition to privacy, other challenges that limit a central-
ized approach for analyzing IoT-data are the need for fast pro-
cessing, low latency and sufficient bandwidth of the underlying
communication network [5]. The cloud data centers are often
deployed in locations that are far from those of data owners
leading to high latency in communication, and insufficient time
for real-time operation. At the same time, enabling technolo-
gies such as edge computing, wherein edge nodes such as
smartphones, sensor, micro servers, autonomous vehicles and
home gateways are increasingly becoming smarter [3]. This in
turn implies that a distributed framework with fast computing
as well as fast and reliable communication to other agents in
the network is becoming a feasible and viable alternative.

The focus of this paper is the application of IoT net-
works in forecasting of DERs in distribution systems while
ensuring privacy and security for the users. In this paper,
we define DERs as electricity producing assets such as solar
PV and other distributed generation (DG), and controllable
loads that are capable of providing a grid function [6]. In
general, distribution system operators have limited visibility
into their systems, as very few measurements are available.
As DER penetration grows, this limitation becomes even more
of a concern and can compromise power balance of supply
and demand and therefore grid reliability. Load forecasting
is an essential in distribution system operation, with long-
term forecasting necessary for planning studies while mid-
term and short-term load forecasting are key in day-to-day
operations [7]. However with the increase in DERs short-term
load forecasting (STLF) has been proven to be a challeng-
ing task because of increased volatility. DG forecasting has
also experienced similar problems, with prediction accuracy
still posing challenges during operation [8]. State-of-the-art
benchmarks [9], [10] have found that deep neural networks
(DNN) are a promising solution for the STLF problem at the
household level, due to their ability to capture complex and
nonlinear patterns. However, neural networks require a lot of
accurate and diverse training data to accurately capture these
nonlinear behaviors, which is a challenge at the consumer
level.

The challenges of privacy as well as the requirement of
large training data can be met using a distributed machine
learning paradigm, Federated Learning (FL) [11]–[14]. FL is a
machine learning framework where each device participates in
training a central model without sending actual data, but only
exchanges gradient information in training phase and sends
prediction estimates in deployment. Current state of the art
such as [15], [16] requires that all data records are transferred
from smart meters to a centralized computational infrastructure
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Fig. 1. An overview of the DER prediction process using federated learning

through communication networks for the training of the ML
models. Consumer data is typically privately owned, and
sharing of this sensitive behavioral data might have negative
consequences. A solution based on FL and the use of IoT
networks overcomes this hurdle of revealing consumer data
to third parties. A lack of diverse training data often leads
to overfitting [17] while deploying ML approaches. This can
also be overcome using the FL method by accessing data from
different nodes in a diverse IoT network such as data from
several home energy managers, DGs, and Electric Vehicles. A
general overview of the DER prediction process is shown in
Fig. 1.

The two most common issues that arise when it comes to
IoT networks are privacy and security. In the context of the
latter, a compelling example that has been cited in the literature
is the MIRAI botnet attack [18] which demonstrates that a
power grid disruption can occur when a large number of IoT
devices are compromised. In this paper, we focus our attention
on privacy. The equally important issue of security with the
use of IoT networks is not addressed in this paper.

The contributions of this paper are as follows: (i) the
development of a privacy-preserving algorithm based on Fed-
erated Learning, that allows exchange of information between
IoT nodes and a global server leading to useful decisions,
(ii) validation of the proposed algorithm using a simulation
study of 1000 IoT nodes, with each node representing DERs
such as home energy managers, electric vehicles, and solar
photovoltaics, (iii) demonstration of grid services such as
prediction of load swings and load curtailments based on the
FL-based DER forecast, and (iv) validation of the proposed
approach using real field data, Pecan street dataset [19].

The overall organization of this paper is as follows. In
Section II, related work is presented. The DER prediction
approach using FL and neural networks is described in Sec-
tion III. In Section IV, the simulation setup for validating

the proposed approach is described. Simulation scenarios for
demonstrating the accuracy of the proposed approach, as well
as validation using real world data is presented in Section V.
Finally, we wrap up with some discussion and conclusion in
Section VI.

II. RELATED WORK

In what follows, we summarize the current state of the art
grouping the related work into three different categories, DER
prediction, Federated Learning, and IoT in smart grids.

A. DER prediction

Apart from forecasting at the bulk energy level and at
the substation level, recent efforts of grid modernization has
led to an increased focus of load forecasting closer to the
consumer [15], [20]–[24]. The need for load forecasting at the
consumer level is driven by the increasing number of DERs,
and the need for finer tuned control of resources that DER
penetration necessitates. The authors of [15] apply a clustering
technique to provides a forecast for aggregated residential
load based on the practice theory of human behavior. Similar
clustering techniques have been adopted for a day-ahead pre-
diction successfully [20]. The authors of [21] focus on the load
forecasting of a residential building with a one-hour resolution,
while the authors of [22] forecast at both individual and
aggregate levels with half-hourly data. Thanks to monitoring of
the household appliances by separate meters, single customer
forecasting improves through correlations between specific
appliances [23]. In [24], the authors show that the spatial
correlations between different appliances used in a household
can be leveraged to increase the accuracy of single household
load forecasting.

The studies listed above focus only on load forecasting,
with a particular focus at residential level. An aggregate level
forecasting has begun to be attempted only recently [25]–[27].
The authors of [25] propose a forecasting model at feeder level
which estimates the PV penetration, and then integrates this
information into load forecasting [25] for considering different
PV penetration scenarios at the aggregate level to achieve
an effective demand-side management approach. The authors
of [26] investigate the short-term net energy forecasting for a
micro-neighborhood consisting of 75 single houses, with 15
minutes’ temporal resolution data. Reference [27] illustrates
the use of aggregated net energy forecasting in the context
of a secure energy trading platform. These studies reveal that
the PV generation behind the meter increases the uncertainty,
which in turn, the complexity of the net energy forecasting
problem even at low-aggregate level. Much of the above liter-
ature, however, does not address the problem of user privacy
when dealing with load prediction either at the consumer-level
or at the aggregated level.

B. Federated learning

Federated learning (FL) is a new machine learning paradigm
that trains the ML algorithm in a distributed fashion, al-
lowing the user data to remain local. This opens up new
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applications for ML algorithms, where privacy is paramount.
However, several challenges still need to resolved before FL
can be successfully applied to power grid problems. The
reader is referred to [11]–[13] for surveys on FL approaches.
References [12] and [13] discuss the performance of FL
as compared to ML, which becomes important for critical
infrastructure applications, as accuracy and implementation
constraints undergo greater scrutiny for such applications.

The studies listed above provide a general overview of the
federated learning process. The work in [14], [28], on the
other hand, address the specific problem as in this paper, the
application of FL to load forecasting. Authors in [14] adopt
the FL framework with a well designed parameter server-client
architecture, and apply this architecture for estimating HVAC
performance within a building. In this paper, we utilize an
architecture very similar to that in [14] for grid-wide services
such as DER forecasting and load swing prediction. We pay
close attention to how the neural network is designed and how
its hyperparameters are selected so as to meet the constraints
of the data and the overall problem of DER prediction. Authors
in [28] also address load forecasting using FL, with a focus
on communication efficiency of edge equipments as well as
personalization of the local data at the global model so as to
ensure accurate forecasting at the household level. In contrast,
we focus in this paper on grid-wide needs at the distribution
grid, and develop a new FL implementation, and show how
the FL algorithm can be trained so as to ensure privacy of
consumer data and at the same time lead not only to accurate
DER forecasts but also desired grid-services.

C. IoT device application in smart grids

IoT devices are experiencing an exponential growth in all
sectors including transportation and smart cities [29]. With
much of the innovation in smart grids occurring at the grid
edge, IoT is poised to play a major role in enabling dynamic
power balance at all points of the grid, especially at the dis-
tribution grid level. Much of the existing literature focuses on
applications of IoT devices to smart homes, demand response,
and related smart communities based applications [30]–[34].
IoT devices have already become ubiquitous at the home
level, with the proliferation of smart home devices such as
Nest thermostats, and platforms such as Google Home and
Alexa [30]. IoT devices have been proposed in the manage-
ment of extended outage conditions, such as automated fault
location, isolating and service restoration (FLISR) in [31].
IoT devices also provide a way to determine the position of
the defective parts, separates them, and applies switching task
to recover the largest number of healthy part of the affected
energy feeder by having increased sensors deployed in control
devices [32]. Also, at the advanced level, this function can
be developed by using self-healing methods that are able
to activate the participation of the customers as well as of
dispersed generation units [32]. Various real-world deploy-
ments detail the benefit of increased sensing using IoT devices
for various applications ranging from traffic management to
urban innovation [33]. Implementing these strategies leads to
increase the reliability, power quality and profits [34]. Further

applications of IoT technology in the power system domain
can be found in the survey [34].

In the specific context of this paper relating to accurate
DER forecast, IoT technology is poised to play a major role.
The two major hurdles in its implementation are privacy and
security. This paper pertains to the first, and proposes the use
of Federated Learning so as to ensure privacy preservation and
leverage the IoT technology to lead to accurate DER forecasts.

III. DER PREDICTION USING FEDERATED LEARNING

We begin with an overview of the neural network procedure
to be utilized in FL. The underlying problem is a nonlinear
mapping f(·) between a vector of inputs x and an output y. A
neural network is an extraordinarily effective tool in learning
this mapping, and constitutes a bulk of the ML approaches
used for learning [8], [10], [22]. A typical process by which
a neural network learns the nonlinearity f(·) is through a
training and testing phase.

The training phase consists of a vector of inputs xt collected
at epoch t, each of which leads to an output yt. The total
number of samples in epoch t is defined as n. A typical neural
network architecture, referred to as a deep-learning network
consists of multiple layers, interspersed with activation func-
tion with the output yt related to xt in the form indicated
in (1).

yt =

N∑
i=1

wt
2iφ(wy

1ixt + bi) (1)

where φ(·) denotes an activation function, N is the number
of neurons, and wji are the weights of layer j, bi is a bias
term, and represents the input-output relation for a network
with one hidden layer. The training procedure then consists of
adjusting the weights wji as

wt+1
ji = wt

ji + δt (2)

where δt corresponds to the gradient of a loss function L
which is defined as,

δt = − η∇Lt|wt (3)

where η is a learning rate, and wt is a vector of all weights wt
ji

at an iteration at epoch t. A typical loss function L is a mean
squared prediction error over n samples which is defined as,

Lt =
1

n

n∑
i=1

(Yi − yi)2 (4)

Through a repeated training of these weights, the output yt
of the neural network is then allowed to approximate the true
value, Yt. The testing phase then consists of using a distinct
set of x, which is different from the training phase, and using
the trained neural network to predict the corresponding output
y.

One can use the above neural network to forecast the power
consumption (or generation) of a device d (or a renewable
generation source) in the following manner. Suppose y denotes
P̂d(T ), the power-consumption forecast at time T , and the
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input x denotes a vector {Pd(T −n1), Pd(T −n2), . . . Pd(T −
nM )}, where T−ni corresponds to a past instant relative to T ;
that is, the power consumption on a given day at a given hour
may be correlated with power consumptions at the same hour
during the previous day, the power consumption a few minutes
before T , or a combination thereof. The underlying relation
between such a vector of previous consumptions before T , x,
and the consumption y at time T can be viewed as a nonlinear
relation f(·). The neural network as in (1) is tasked with
learning this mapping using the training procedure using which
the weights wt are trained using several samples until the loss
function Lt falls below a threshold ε. That the neural network
has indeed been satisfactorily trained is tested by fixing the
neural network with the converged weights and evaluating the
loss function for a distinct set of inputs xt not utilized for
training and testing using the procedure as described above.
We shall refer to this overall neural network as a global model
G. That is, the global model G can perform the computations
in (1)-(3) repeatedly to forecast the power consumption of a
device d. This is the typical procedure using in any ML that
uses neural networks.

It should however be noted that the above procedure implies
that data from device d in the form of x has to be sent to
a global model repeatedly during the training process. That
is, every device d will then have to share the data {Pd(T −
n1), Pd(T−n2), . . . Pd(T−nM )} for every T and every device
d repeatedly. Given the pervasive and large number of IoT
devices that generate this data, it is unrealistic to expect all
users to consent to their data being accessed to create machine
learning models in such a manner, especially if the devices
are not owned by the utility. For this purpose, we introduce
a variation in the ML training process, using the tenets of
FL [11], and is described below.

Fig. 2. The schematic of neural network training using federated learning is
shown here. The steps (1)-(6) are repeated until Lt ≤ ε

In what follows we assume that all IoT devices under
consideration can be grouped into two types, Hi and Ei,
where Hi corresponds to home energy managers that may
manage a collection of home appliances including HVAC,

smart thermostats, smart refrigerators, dishwashers, laundry
machines, and other home appliances. Devices Ei correspond
to rooftop solar panels, EVs, and storage units. Both types of
devices are assumed to be connected to the secondary feeder
network, with the total number of devices given by NH and
NE , with NH + NE = NIoT . The power consumed by Hi

and Ei at time T is given by PHi
(T ) and PEi

(T ). We refer
to each of these devices Hi and Ei as a federate Fi for the
FL process. During the training process, the adjustment of the
weights wt of the neural networks proceeds described in (1)-
(3) in the following manner.

The global model sends initial weights wt
G at time t = 0.

The local model then generates several samples xt that corre-
sponds to a range of time-instants T as well as the resulting
true output Yt, and the predicted yt for the weights wt

G using
(1). The corresponding loss function Lt is then computed by
the local model as in (4) and the gradient δt as in (3). The
local model, which corresponds to federate Fi, then sends this
gradient δti to the global model G. The global model then
updates its weights wt

G as wt+1
G using the collection of all

gradients from the federates Fi, i = 1, . . . , NIoT as,

wt+1
G = wt

G +

NIoT∑
i=1

αiδ
t
i (5)

where αi is a pre-determined set of weights that combines all
gradients. The global model then sends the updated weight wt

G

back to each of federates Fi. The federate Fi in turn collects
new input-output pairs (xt, yt) using the updated weights wt

using (1), computes the new loss function Lt using (4), and
the new gradient using (3). This new gradient is then sent
by the federate Fi to the global model wG, and the whole
training process repeats. The output yt of the neural network
corresponds to the predicted outputs P̂Hi

(T ) or P̂Ei
(T ) for

federate Fi, at time T . The overall schematic of the neural
network training using FL is presented in Fig. 2.

It should be noted that throughout the training process, each
local model only sends the gradient δti to the global model,
does not need to send xt. As a result, the actual data xt,
Yt, and the predicted data yt stays local to the federate Fi.
The only information revealed to the global model is δt and
therefore preserves privacy of the device Fi. In addition, the
FL procedure described above is such that the global model
is able to utilize a large variety of federates i = 1, . . . N , and
therefore leverage a rich variety of training data leading to be
better prediction. Finally, our procedure is applicable in equal
measure to both IoT devices of type Hi and Ei, and therefore
includes both distributed generation and distributed loads.

A typical process of DER-forecast can occur in the follow-
ing manner. Collect the input-output pair [xt, P̂

t(T )] for a fed-
erate Fi for several samples n. An example of xt = [P t(T −
15), P t(T − 30), P t(T − 60), P t(T − 120), P t(T − 1440)],
where P t(T −m) denotes the actual power consumption, and
m denotes the minutes prior to time T . The number of samples
n=2880, obtained by collecting data every 15 minutes over a
period of 30 days. The overall training procedure of the FL-
based neural network is summarized in Algorithm 1.
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Algorithm 1: Federated Learning Algorithm

1 Algorithm FL()
2 Set t = 0;
3 For t ≤ 150;
4 Initialize weights wt

G at the global model G;
5 Send wt

G to each federate Fi;
6 LocalTraining(Fi, w

t
G);

7 Set δti = δt;
8 Compute wt+1

G using (5);
9 Set t = t+ 1;

10 Repeat until Lt < ε, a pre-determined tolerance;
11 return;
12 FL
13 Procedure LocalTraining(Fi, w

t
G)

14 Set wt = wt
G in (1);

15 Fi ← (xt, yt) of n samples using (1);
16 Compute Lt using (4);
17 Compute δt using (3);
18 return δti ;

TABLE I
NEURAL NETWORK HYPER-PARAMETERS

Hyper-parameter Result

Mini-batch size nb 96 samples
Learning rate η 0.001

Maximum epoch ne 150

A more simplified training procedure can be adopted, com-
pared to Algorithm 1, and is utilized in the results reported
in the subsequent sections. This is briefly described here. The
total number of samples available each day for training is 96.
Rather than use 96 samples from all 30 days, a day was chosen
at random, and the computations at each Federate were carried
out using the mini-batch of samples from that day. A tolerance
of ε = 0.001 was chosen. A total of 150 epochs was found
to be sufficient to achieve this desired tolerance. The neural
network consisted of 2 hidden layers with 20 neurons in each
layer. All of these hyperparameters of the simplified training
procedure are shown in Table 1.

In the testing phase, the model performance is evaluated by
testing with a new set of data from the next month, from a
similar season to ensure that the model is still valid. In the
case studies, we will use the root mean square error (RMSE),
which coincides with the square root of the loss function L
defined in (4) to quantify the performance of the FL algorithm.
That is,

RMSEt =
√
Lt (6)

IV. SIMULATION SETUP

To validate the concept of federated learning for privacy
preserving load prediction, we create a numerical testbed that
comprises of three components - (1) Power physics simulation,
(2) Federated learning platform, and (3) Grid service model.

Fig. 3. A simple peak shaving algorithm to minimize power swings

A. Power physics simulation

The physical layer simulation needs to generate the IoT level
data corresponding to the various grid components. Various
physics simulators such as building models, GridLAB-D, and
others can be used for this purpose. GridLAB-D [35] provides
detailed models for various power system components, with
active ongoing upgrades to existing models. GridLAB-D uses
an advanced algorithm to solve the power system simulta-
neously by solving the states for all the different devices
at the same time, and not sequentially and therefore offers
the flexibility to develop complex models, and implement
user developed algorithms for various control purposes. In the
context of the current problem, we will utilize GridLAB-D
to generate physical data from the distribution system ranging
from the primary feeders and secondary feeders, all the way to
consumer buildings, and individual IoT devices such as HVAC
units, EVs, and rooftop PVs. This makes the platform suitable
to validate the overall forecast using the FL Algorithm 1.

B. Federated Learning platform

To implement federated learning, we leverage the approach
in [14] denoted as the Building Federated Learning (BuildFL)
platform. BuildFL adopts the popular parameter server (PS) ar-
chitecture, in which a server is created to store the parameters
of the ML model (in this case, the weights wt

G of the neural
network) and then serves them to the clients, which are the
federates Fi. The federates creates a local update by training
with the data set it collects and exchanges model parameters
to the global model G. In BuildFL, building sites are workers
and a cloud server is created to serve as the parameter server.
The BuildFL platform integrates machine learning libraries
such as PyTorch, which is mainly used for computer vision
or natural language processing, and its library only supports
gradient-based models. To support other models that facilitate
building analytics, such as bagging and boosting algorithms,
BuildFL integrates Scikit-Learn, which includes the library of
models such as random forest, boosting tree, etc.



6

Fig. 4. Load prediction using Federated learning

BuildFL provides a uniform function template for dis-
tributed training of different models. As detailed in Section
II, a DNN with two hidden layers was chosen as the ML
architecture in this paper. The hyper-parameters of the neural
network have been defined in Table I and stochastic gradient
descent (SGD) [36] is chosen as the optimization algorithm to
update the weights.

C. Grid service model

In order to demonstrate the impact of accurate DER forecast
using our proposed FL method, we carry out a particular grid
service using the forecast, which corresponds to predicting
load swings and curtailing them using a peak shaving algo-
rithm. Such a load swing prediction is of growing importance
with increased DER penetration, as evidenced by the focus on
the ”duck curve” problem [37]. This problem corresponds to
the large unserved load and its increase over a short period
of time as solar based resources disappear, which occurs on
a daily basis at dusk. We assume that a certain percentage
of the loads are flexible and directly controlled by the utility,
and that once these loads are accurately forecasted, then they
can be commanded to follow a particular command signal.
One such algorithm is described in Fig. 3, and we will utilize
this to demonstrate the impact of the FL-based DER forecast
described in Section II.

The details of the load swing prediction proceed as follows.
First, a threshold value PT is computed by generating a time-
series ∆Pt, which corresponds to power consumption change
in P over [t−1, t], and determining the 90th percentile of ∆Pt

over a 24-hour period. A load swing is said to occur at T0 if
∆PT0

> PT . One can therefore predict load swings using the
power consumption forecast that is carried out using the FL
method described above by computing ∆P̂t and determining
load swings using PT . Once these load swings are predicted,
the next step in the grid-service model is to command a flexible
load to be curtailed as described in Fig. 3. In the next section,

we will demonstrate this grid service using data obtained from
1000 nodes.

V. USE-CASES

In this section, we validate the proposed FL-method for
DER forecast using a use-case of a distribution feeder with
1000 nodes. The goal is to (i) predict over a (a) 24-hour
period the power consumption at time T of 1000 nodes at
15 minutes prior to T , i.e., at T − 15 for all 1000 nodes (b)
the number of load swings of these nodes at also T − 15, and
(ii) curtail these load swings at some of these nodes using a
peak shaving procedure detailed in Fig. 3. GridLAB-D is used
to simulate the distribution feeder with 1000 nodes, each of
one was modeled to emulate a distribution feeder node. The
GridLAB-D model was built as one distribution feeder with
1000 nodes, and the load shapes were synthetically generated.
We accomplished this by starting from a single default load
profile from GridLAB-D, and created the other 999 load pro-
files synthetically using a standard Gaussian distribution (zero
mean, σ = 0.1) around this single load profile. Algorithm
1 was then employed to predict the power consumption of
each of those nodes. The input vector was chosen to be a
six-dimensional vector as in Section II, with n1 = 15min,
n2 = 30min, n3 = 60min, n4 = 90min, n5 = 120min, and
n6 = 1440min.

The results from the load prediction and the peak shaving
procedure are presented below. Finally, an evaluation of this
method is carried out using a realistic dataset from the Pecan
Street Inc. Dataport [19].

A. Prediction of load

We illustrate in Fig. 4 the prediction of the power consump-
tion of a node over a 24-hour period. This prediction (shown
in orange) is compared with the actual consumption (shown in
blue). The prediction and data correspond to a node picked at
random out of 1000 nodes. The training occurred over several
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Fig. 5. Time of maximum power swings

Fig. 6. Reduction in power swings in consecutive days

epochs of data collected every 15 minutes over a 30 day
period. The results illustrate the accuracy of the FL approach
in estimating the power consumption by the nodes. The pre-
diction accuracy is observed to improve with larger amounts of
training data, and sensitive to the hyper-parameters. Weekends
are observed to have a significant difference over weekday
consumption, which is a characteristic of the nature of the
chosen distribution feeder. An RMSE was calculated as in (6)
and averaged for all the 1000 nodes and was found to be 1.642,
validating the accuracy of the proposed FL method.

We illustrate the usefulness of the power consumption pre-
diction using a second performance metric. For this purpose,
we first plot the average number of load swings for the 1000
nodes over a 30 day period in Fig. 5, with a load swing
as defined above in Section III. The X-axis represents the
time of day at which the load swings happen over a 24
hour period, and the Y-axis represents the average number
of swings that occur at that time over a month. The orange
curve represents the actual number of load swings determined
from the GridLAB-D data, while the blue curve represents the
predicted load swings from the FL procedure. It is observed
from the figure that the FL procedure is able to predict the
time of swings accurately, as evidenced by the peaks occuring
at the same time in both curves, even though with an under-
prediction in the magnitude. More sophisticated procedures for

defining load swings may help improve this prediction.

B. Reduction in power swings

We now utilize the load-swing prediction to carry out a load-
curtailment, assuming that flexible loads that are compatible
with Demand Response are present among the 1000 nodes.
The threshold PT was set to 31kW based on the 90th percentile
of all power consumption over the 1000 nodes over a 2-month
period. When at T − 24h, if it was observed that P̂ (T ) >
31kW at a particular node, a direct load control signal was
sent to curtail the power consumption at that node by enforcing
a reduction of 31kW, as indicated in Fig. 3. Figure 6 illustrates
the result of such a peak-shaving algorithm over a 24 hour
period. The orange bar represents the power swing without
any load curtailment, while the blue bar represents the load
swings after peak shaving. While the results indicate an overall
reduction in the number of load swings on most days, it clearly
illustrates that the power prediction is not able to mitigate all
swings from happening. The negative ticks are also a result of
an over-prediction of the power swings.

We have made an assumption here that a peak shaving
algorithm as in Fig. 3 can be implemented, in deriving a grid
performance as shown in Fig. 6. This requires not only the
loads to be flexible but also curtailable when demanded by the
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Fig. 7. Comparison of prediction and actual data from Pecan street dataset for a week long period

utility. Such a direct load control may not always be possible
and may require a transactive control architecture with suitable
incentives or rebate programs [38].

C. Pecan street validation

The FL procedure is also tested on real world data from
Pecan street. Pecan street is a project that provides data
of household consumption and DER behavior from various
locations such as Austin [19]. As in the earlier Gridlab-D
exercise, here too the neural network is trained for using
data from a single building collected specifically over 30
weekdays, and then the trained model is used to predict the
load for a random weekday in the next month. Fig. 7 shows
the comparison between the actual load consumption and the
prediction, and the RMSE value for the model’s prediction is
1.98, once again demonstrating the accuracy obtainable using
the proposed FL method. A similar procedure can be adopted
for predicting power consumption over weekends by suitably
collecting training data over weekends rather than weekdays,
over a period of time.

D. Discussion

It is important to note the effect of selecting the right
features on the accuracy of the trained neural network
model [39]–[41]. The underlying data associated with the
DER demonstrates a significant periodicity, which is evident
in Fig. 4 and Fig. 6. It is important to pick appropriate features
of the historical data to ensure that the model estimates the
non-linearities properly. Authors in [39] have made such an
observation that a choice of similar days for training drastically
improves the forecast accuracy. Previous studies have shown
that filtering out weekends, public holidays, and other out-of-
normal consumption patterns can also significantly improve
prediction accuracy [41]. In the Pecan street experiment in
particular, we have only focused on weekdays, and filtered
out other holidays from the data. When such a filtering was
not included, the prediction error was observed to significantly
increases, to as much as 30%. In addition to historical data,
other features can also be used to improve the prediction

accuracy, such as weather, ambient temperature, wind speed,
and price of electricity (especially with demand response).

The accuracy of the FL approach has been observed to
be somewhat less accurate than the traditional centralized
ML one [12], [14]. We have not carried out a comparison
of the proposed FL approach with a general ML in this
paper, as our objective was to demonstrate a DER prediction
mechanism that ensures user’s privacy. Further research and
experimentation is required to better explore the trade-offs
between privacy and accuracy in an FL method.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper, we have considered the problem of DER
prediction in a distribution grid at the consumer level using
IoT nodes. Each IoT node is assumed to represent DERs such
as renewable resources (ex. solar PV), storage such as electric
vehicles, and home energy managers consisting of an aggre-
gated set of flexible loads such as HVAC and thermostatically
controlled appliances. The problem of accurate DER predic-
tion is of paramount importance in distribution grids, not only
because distribution systems have limited sensing capability
but also because they can directly impact grid-specific perfor-
mance such as power balance. The challenge, however, is that
typical approaches used for DER forecast are data-centric and
require consumers to share their consumption/generation data
that can compromise their privacy. The contribution of this
paper is a distributed algorithm that is based on Federated
Learning which transmits a model of the consumption and
generation patterns without revealing consumer data. We have
described in this paper this privacy-preserving algorithm in
detail, and carry out its validation using a simulation study of
1000 IoT nodes, leading to a forecast with an RMSE of 1.3.
We have also demonstrated grid services such as prediction
of load swings and load curtailments based on the forecast.
Finally, we validated the proposed approach using real field
data, with an RMSE of 1.98. Future research will involve a
more detailed incorporation of grid physics such as optimal
power flow and DER constraints such as adjustable loads,
communication efficiencies of FL, and market structures with
transactive energy and related incentives.
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