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Abstract—In existing computing systems, such as edge com-
puting and cloud computing, several emerging applications and
practical scenarios are mostly unavailable or only partially im-
plemented. To overcome the limitations that restrict such applica-
tions, the development of a comprehensive computing paradigm
has garnered attention in both academia and industry. However,
a gap exists in the literature owing to the scarce research, and
a comprehensive computing paradigm is yet to be systematically
designed and reviewed. This study introduces a novel concept,
called aerial computing, via the amalgamation of aerial radio
access networks and edge computing, which attempts to bridge
the gap. Specifically, first, we propose a novel comprehensive com-
puting architecture that is composed of low-altitude computing,
high-altitude computing, and satellite computing platforms, along
with conventional computing systems. We determine that aerial
computing offers several desirable attributes: global computing
service, better mobility, higher scalability and availability, and si-
multaneity. Second, we comprehensively discuss key technologies
that facilitate aerial computing, including energy refilling, edge
computing, network softwarization, frequency spectrum, multi-
access techniques, artificial intelligence, and big data. In addition,
we discuss vertical domain applications (e.g., smart cities, smart
vehicles, smart factories, and smart grids) supported by aerial
computing. Finally, we highlight several challenges that need to
be addressed and their possible solutions.

Index Terms—6G, Aerial Access Networks, Aerial Computing,
Edge Computing, Enabling Technologies, Vertical Applications.

I. INTRODUCTION

Research communities have started to define roadmaps for
sixth-generation (6G) networks [1]. As various Internet-of-
Things (IoT) applications are set to emerge in 6G, additional
data need to be collected and transmitted. However, IoT de-
vices are constrained by factors, such as batteries, transmission
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power, and processing capacity. To facilitate data transmission
from IoT devices worldwide, several studies have investigated
aerial access networks (AANs), which can offer line-of-sight
(LoS) communication links, favorable channels, and improved
coverage. An AAN generally consists of three primary compo-
nents: low-altitude platforms (LAPs), high-altitude platforms
(HAPs), and low-Earth-orbit (LEO) satellites [2]. These plat-
forms fully complement the conventional terrestrial access net-
work to create a future access network in 6G that can provide
wireless services with global coverage and diverse quality of
service (QoS). Moreover, to better support emerging compute-
intensive applications, such as fully autonomous vehicles,
flying taxis, holographic communications, and virtual reality
(VR), edge computing (e.g., fog computing and multi-access
edge computing (MEC)) is a promising concept owing to the
availability of powerful computing and storage resources at the
edge of the network [3]. The amalgamation of AANs and edge
computing introduces a novel concept referred to as aerial
computing. Aerial computing is expected to provide advanced
services, such as communication, computing, caching, sensing,
navigation, and control, at a global scale.

Aerial computing is considered a promising paradigm that
enables local data analysis and real-time service provisioning
in the air. Facilitated by advantages, such as high mobility,
fast deployment, global availability, scalability, and flexibil-
ity, aerial computing complements conventional computing
paradigms (e.g., cloud computing, fog computing, and MEC)
and is thus considered a pillar of the comprehensive computing
infrastructure in future 6G networks [4]. For example, in [5],
IoT data over small areas could be collected and processed
cooperatively by a set of unmanned aerial vehicles (UAVs) at
low altitudes, whereas IoT data over large-scale areas could
be executed by HAPs at high altitudes. In [6], UAVs were
leveraged as intermediate points between vehicles and the
network edge to enable data collection and task preprocessing
and thus facilitate data transfer in smart vertical domain
environments. Meanwhile, in the race toward global Internet
connectivity among tech giants, such as SpaceX, Google,
Amazon, and Facebook, several LEO satellite systems have
been deployed to provide Internet services to users, particu-
larly in rural and hard-to-reach areas, with a performance that
is comparable to that of the current terrestrial mobile network
[7]. However, these systems have not yet been integrated into
current computing systems as key components.

The above observations emphasize the importance of a
comprehensive computing architecture for future 6G systems.
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As a native constituent, aerial computing is composed of
low-altitude and high-altitude computing platforms as well as
satellite computing platforms. It can carry its full complement
of conventional terrestrial computing paradigms. Conceptually,
aerial computing can facilitate various smart industrial appli-
cations, such as smart cities, smart vehicles, smart factories,
and smart grids. Moreover, it is expected to provide a reference
6G computing architecture for future studies.

A. Visions Toward a Comprehensive Computing Infrastructure

In recent years, several surveys on edge computing and
mobile networks have been conducted. For example, enabling
MEC technologies, including virtual machines (VMs), net-
work function virtualization (NFV), software-defined network-
ing (SDN), and network slicing were reviewed in [8]. The use
of MEC for IoT applications, such as critical and massive IoT,
wearable IoT, smart energy, and IoT automotive, was discussed
in [9]. Computation offloading, resource management, and
optimal placement problems in edge computing systems were
discussed in [10]–[12]. The amalgamation of MEC and AI,
referred to as edge intelligence and intelligent edge, has been
reviewed in several studies [13], [14]. Further, certain reviews
focused on the integration of edge computing with emerging
technologies, such as blockchain [15] and fifth-generation (5G)
and beyond networks [16]. More recently, privacy/security
issues and solutions of MEC services were reviewed [17].

MEC is a key enabler of many wireless services offering
better QoS. Moreover, MEC has the potential to be closely
integrated with emerging technologies and systems [15], [16].
In addition, these studies elaborate on the various challenges of
MEC that need to be examined in beyond-5G networks, such
as resource optimization, security and privacy, and real-time
implementation. With the expected extraordinary populariza-
tion of the next-generation Internet and the emergence of killer
applications, such as VR, space tourism, fully autonomous
vehicles, holographic communications, and deep-sea sight, the
current MEC infrastructure needs to be further expanded both
vertically and horizontally to complement existing edge com-
puting systems. However, the aforementioned reviews [8]–[17]
primarily focus on 5G network scenarios, technologies, and
applications, but the new requirements for a comprehensive
6G computing infrastructure have not been reviewed yet.

Future 6G systems have been envisioned in recent studies.
For example, the authors of [18] discussed their vision for
use cases, enabling technologies, and overcoming the chal-
lenges of 6G networks. In [19], a set of key performance
indicators (KPIs) were defined for 6G, such as peak data rate
>100 Gbps, traffic density >100 Tb/s/km2, network density
>10 million connections per km2, mobility >1000 km/h,
centimeter-level positioning accuracy, reliability >99.999%,
receiver sensitivity <-130 dBm, 3-times spectral efficiency,
and 10-times energy efficiency. Six technical trends were
discussed in [19], namely, coverage expansion, new resources
and bandwidth spectrum, new modulation techniques, enhanc-
ing the system capacity, adding computing and intelligence
capabilities, and three-dimensional (3D) network architecture.
Regarding 3D networks, several studies have reviewed UAV

communications [20], HAP networks [21], airborne communi-
cations [22], satellite communications [23], terrestrial-satellite
integrated networks [24], and future aerial networks [25].
Recently, the primary aspects of aerial radio access networks,
such as architectures, network design, enabling technologies,
and applications, were reviewed in [26]. Owing to excellent
features and numerous applications, many researchers believe
that AI techniques are a key component of many 6G systems.
For example, machine learning (ML) is considered a double-
edged sword for privacy in 6G [27]. Moreover, AI is an integral
part of future networks, such as sensing AI at receivers, on-
device AI, access AI (i.e., transmission at PHY, MAC, and
network layers), and data-provenance AI [28].

The above surveys mainly concentrate on the KPIs, enabling
technologies, potential applications, and major challenges of
6G. The existing reviews emphasize the importance of a
comprehensive computing infrastructure for the foundation of
6G in the next 10 years. However, despite promising studies
and an urgent need for a comprehensive computing infrastruc-
ture, a large gap exists in the existing studies because aerial
computing has not been systematically reviewed. This paper
attempts to bridge this gap by introducing a new computing
architecture that can be employed in future network systems.
This paper also presents a comprehensive review of aerial
computing. Table I summarizes the existing surveys on edge
computing and aerial communications. It also highlights the
contributions of the present study.

B. Contributions and Research Methodologies

As discussed above, aerial computing is a promising concept
for providing computing resources and wireless services on
a global scale. This paper attempts to bridge the gap in the
existing literature by presenting an in-depth review of aerial
computing with a vision toward a comprehensive computing
infrastructure in future 6G networks. The review covers the
following aspects.

Fundamentals and Designs (Section II): First, to enrich
the full understanding of the concept of aerial computing,
we present the system architecture, which is illustrated in
Fig. 1. This comprehensive computing architecture is expected
to be the key enabler of many computationally intensive
applications that will be available in 6G systems. Following
the analysis of the proposed architecture, we elaborate upon
the important features of aerial computing, including ubiquity,
mobility, availability, simultaneity, and scalability, and further
differentiate between aerial computing from other computing
paradigms. Further, we present important design problems for
an aerial computing system, including computation, commu-
nication, energy consumption, and latency models.

Enabling Technologies (Section III): To realize aerial com-
puting in 6G systems, we discuss a set of key enabling
technologies, which include network softwarization, energy
refilling, frequency spectrum, multi-access techniques, and AI
and big data. In particular, energy refilling is crucial for main-
taining the sustainable operations of aerial components. With
regard to the operational management of aerial computing
systems, we review state-of-the-art studies on softwarization
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TABLE I
SUMMARY OF EXISTING SURVEYS ON EDGE COMPUTING AND FUTURE WIRELESS NETWORKS.

Reference Main theme Key Contributions Limitations
6G/AI MEC AAN

[8] X Enabling technologies of MEC systems, such as VM, contain-
ers, NFV, SDN, and network slicing, are reviewed.

This paper does not focus on aerial comput-
ing and its role.

[9] X MEC applications for IoT service realization in 5G networks. The role and applications of aerial comput-
ing have not been presented.

[10]–[12] X Reviews of seminal MEC architectures, computation offloading
issues, resource management, and optimal placement problems.

The role and applications of aerial comput-
ing are not discussed.

[13], [14] X Interactions between AI techniques and MEC systems; that is,
intelligent edge and edge intelligence.

The role of aerial computing in enabling a
comprehensive computing infrastructure in
6G is not considered.

[15] X Integration of blockchain and MEC systems. Only the integration of blockchain into edge
computing systems is presented.

[16] X
Integration of MEC with 5G technologies, such as cloud radio
access networks, massive multi-input multi-output (MIMO),
unmanned aerial vehicle (UAV) communications, and AI.

Only the integration of MEC with 5G tech-
nologies is reviewed, while the role and ap-
plications of aerial computing are ignored.

[17] X Comprehensive survey on privacy/security issues and solutions
in MEC systems.

The paper reviews only the security and
privacy aspects of MEC systems.

[18] X A speculative study on promising applications and major tech-
nologies in future 6G networks.

Only the vision of future 6G networks is
discussed.

[19] X A vision of KPIs, technologies, technical trends, and challenges
of 6G networks.

Only a brief discussion of future 6G net-
works is presented.

[20]–[25] X
3D networking, such as UAV communications [20], HAP
systems [21], airborne communications [22], satellite commu-
nications [23], terrestrial-satellite integrated networks [24], and
wireless communications for future AANs [25].

These papers primarily focus on the com-
munication aspects of AAN, while the com-
puting aspects and the role of aerial comput-
ing are ignored.

[26] X X
Technical aspects of AANs in the 6G context and key enablers. The computing aspects and applications of

aerial computing are not presented.
[27] X A comprehensive survey of the alliance between ML and 6G

privacy.
The paper focuses only on privacy aspects
and its alliance with ML.

[28] X
Four important domains of AI in 6G are reviewed, namely,
sensing AI, on-device AI, access AI, and data-provenance AI.

The paper focuses on the role and applica-
tions of AI in future networks.

This paper X X X
A comprehensive survey of aerial computing. In particular,

• We introduce a novel architecture of aerial computing,
which complements the existing computing infrastruc-
tures. Important features of aerial computing, such as mo-
bility, availability, scalability, flexibility, and simultaneity,
have also been analyzed in detail.

• We provide in-depth discussions of key enablers of aerial
computing and the use of aerial computing in important
vertical applications, including smart cities, smart vehi-
cles, smart factories, and smart grids.

• Key challenges of aerial computing are presented along
with potential solutions and future research directives.

techniques, including VM, network slicing, NFV, and SDN.
These softwarization techniques are important for facilitating
flexible and programmable operations and the deployment
acceleration of aerial computing systems. In addition, we
discuss frequency spectrum and multi-access techniques (e.g.,
massive MIMO, intelligent reflecting surface (IRS), and non-
orthogonal multiple access (NOMA)), used in aerial comput-
ing systems. Finally, AI and big data analytics are considered
important technologies for exploiting massive data generated
from aerial computing, thus improving system performance.

Vertical Domain Applications (Section IV): The integration
of wireless technologies into industrial automation systems has
shown great potential in creating more efficient and productive
vertical domain applications (i.e., smart cities, smart vehicles,
smart factories, and smart grids). Further, we present an
extensive review of state-of-the-art studies on these vertical
domain applications in the context of 6G aerial computing. In

this regard, we discuss the manner in which aerial computing
can support vertical domain applications.

Research Challenges and Potential Directions (Section V):
To further drive research into aerial computing in the future,
we discuss the major challenges, possible solutions, and
potential directives. Aerial computing systems face critical
challenges, such as energy efficiency, efficient resource man-
agement, and network stability. Further, large-scale network
optimization is another critical issue for embedding distributed
and learning approaches such that aerial computing systems
can efficiently operate on a large scale. Finally, security,
privacy, and trust are important aspects of aerial computing
but have not been adequately addressed by existing studies.

II. FUNDAMENTALS AND DESIGN

In this section, we present the system architecture and
fundamental features of aerial computing.
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Fig. 1. A novel comprehensive 6G computing architecture.

A. System Architecture

As shown in Fig. 1, we propose a novel aerial computing-
based 6G architecture wherein the aerial components are
positioned in a hierarchical manner. In addition to conventional
computing infrastructure, the proposed aerial computing archi-
tecture consists of four main entities: IoT devices, low-altitude
computing (LAC) platforms, high-altitude computing (HAC)
platforms, and satellite computing platforms, along with ver-
tical domain applications and key enabling technologies.

IoT: This layer refers to any IoT device that generates data
and comprises compute-intensive applications that need to be
executed by aerial computing systems. For example, wearable
devices, such as smart watches, eyeglasses, fitness trackers,
and body-mounted sensors are responsible for monitoring and
collecting the health information (e.g., heart rate, physical
activity, and blood pressure). These devices may offload col-
lected data to an edge node for further processing because
they are typically resource-constrained and have a relatively
small size. Aerial components (e.g., UAVs and drones) can be
a part of this IoT layer when they are dispatched to collect
data from ground sensors. To maximize the flight time and

data collection efficiency, the UAV offloads the collected data
to a terrestrial MEC server and/or other more powerful UAVs.

Terrestrial Computing: This layer comprises conventional
terrestrial computing paradigms, such as fog computing, MEC,
and cloudlet. Typically, computing nodes are deployed at
preset locations. According to [16], the potential deployment
locations of an MEC server include routers, IoT gateways,
macro base stations (BSs), small cell BSs, optical network
units, radio network controller sites, and wireless fidelity
(WiFi) access points, whereas the common locations of a fog
node are gateways, intermediate nodes (between the cloud and
end devices), and network elements (e.g., routers and switches)
[29]. The collaborative and hierarchical MEC framework uti-
lizes the advantage of many applications and services, as edge
devices with different capabilities can collaboratively perform
data processing and task execution [30].

Low-Altitude Computing: The LAC platform is positioned
in the lowest tier of aerial computing systems with an altitude
of 0–10 km above the Earth’s surface. This platform offers
several advantages, such as cost-effectiveness, rapid deploy-
ment, and LoS communication links. Hence, LAC systems are
highly effective for emergency scenarios, military surveillance,
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temporary events, and IoT data collection and processing
[31]. The authors of [32] demonstrated that the UAV can
be leveraged for data collection, aerial relaying, and aerial
computing of the tasks offloaded from ground IoT devices.
The primary components of the LAC platform are drones and
UAVs equipped with computing capabilities, which typically
have limited battery capacities, low computing resources, and
low endurance. Consequently, several solutions have been pro-
posed to address these challenges, such as wireless- and solar-
powered UAV-MEC and task offloading to more powerful
terrestrial and HAC-MEC servers [33]. There exist two types
of LAC servers: fixed-wing and rotary-wing. The former does
not hold up in the air and needs to move forward continuously,
whereas the latter can take off and land vertically.

High-Altitude Computing: The HAC platform comprises
both manned and unmanned aerial components (e.g., airplanes,
airships, and balloons) that operate at an altitude ranging from
17 to 50 km. The advantages of HAC systems over other
platforms include large-area coverage with the cell size of up
to 10 km, adaptability to traffic demands, rapid deployment
compared to terrestrial computing and satellite computing,
high endurance compared to LAC platforms, and green op-
eration capability with solar power [34]. At the World Radio
Conference (WRC)-19, several frequency bands were allocated
to HAC systems by the ITU Radio communication Sector,
including the 31–31.3 and 38–39.5 GHz bands for worldwide
use, 47.2–47.5 and 47.9–48.2 GHz for administration use,
and 21.4–22 and 24.25–27.5 GHz for fixed services in ITU
Regions 2 [35]. In recent years, several industrial projects have
been observed in LAC platforms for wireless and computing
services, such as flying cells on wings [36], Google Skybender
[37], and ApusDuo [38]. Owing to the quasi-stationary feature,
HAC platforms can form a collaborative HAC-MEC server
with more powerful capabilities and higher time endurance,
aiding in the execution of the computation tasks that are
offloaded from LAC and/or satellite systems.

Satellite Computing: This layer is composed of LEO
satellites with computing capabilities. LEO satellites typically
operate at an altitude of approximately 80–2000 km above
the Earth’s surface. For example, SpaceX launched 60 LEO
satellites at altitudes not greater than 580 km in May 2019.
These satellites can provide Internet services globally with a
data rate ranging from 50 to 150 Mbps and a latency ranging
from 20 to 40 ms (www.starlink.com/). Amazon also initiated
a satellite project called Kuiper, which plans to launch a
constellation of 3200 satellites at an altitude of approximately
610 km [39]. These LEO satellites are expected to provide
various wireless and computing services, particularly when
other computing platforms are temporarily unavailable and/or
satellite computing is the only option. Unlike in LAC and
HAC platforms, users are not usually connected with satellite
computing systems because of the excessive hardware cost
incurred when MEC servers are embedded in LEO satellites.
Instead, LEO satellites can act as relays to receive and transmit
computation tasks/results between users and MEC servers.
However, computing directly at the satellite edge server is
beneficial for applications with sparse users; that is, users are
located at different geographical locations [24], [40].

Industrial Applications: Aerial computing supports and
enables (new) industrial applications owing to its distinctive
features, such as high mobility, always-available computing,
and scalability (discussed in Section II-B). For example, aerial
computing systems can support large-scale vehicle systems
and/or advanced traffic signal infrastructures to improve the
experience of in-car infotainment applications and reduce
traffic congestion by deploying massive MEC on roadside
units, power systems, buildings, and highway infrastructure.
In Section IV, we comprehensively discuss the use of aerial
computing for four primary industrial applications: smart
cities, smart vehicles, smart factories, and smart grids.

Enabling Technologies: The realization of aerial computing
is facilitated by several key enabling technologies, including
network softwarization, energy refilling, frequency spectrum,
multi-access techniques, and AI and big data. A thorough
discussion of these technologies in the context of aerial
computing is presented in Section III.

B. Desirable Features

Aerial computing retains the base features of the concept
of edge computing, including on-premises, proximity, lower
latency, location awareness, and network contextual infor-
mation. In addition, it has certain fundamental features that
differentiate it from other computing paradigms (e.g., fog
computing and cloudlet), which are discussed as follows.

• Mobility: Aerial platforms can be deployed quickly to
support on-demand computing applications. While LAC
platforms can enable the rapid roll-out of computing
services, the deployment of a terrestrial computing system
is time-consuming owing to planning procedures and
civil works involved. From the perspective of the user,
the overlaying architecture of LAC, HAC, and satellite
computing helps aerial computing systems flexibly satisfy
different computation tasks from end IoT devices.

• Availability: Aerial computing systems are usually avail-
able as they are not much affected by natural disas-
ters, unlike terrestrial computing, and can be easily and
quickly deployed for particular computation tasks. The
availability of aerial computing also relies on its hierar-
chical architecture with different computing platforms at
different altitudes and coverage distances.

• Scalability: Aerial computing systems can provide on-
demand computing services as well as applications with
geographically distributed users. As the aerial compo-
nents can collaboratively form computing clusters, mas-
sive IoT devices can be served, thereby improving user
satisfaction and guaranteeing service continuity.

• Flexibility: Unlike terrestrial computing, wherein MEC
and fog nodes are typically deployed at pre-specified
locations, aerial computing entities can be changed easily
to flexibly suit different situations. Further, enhanced
computing services may be provided via additional aerial
computing platforms, such as LAC and HAC.

• Simultaneity: Different aerial computing platforms can
provide computing services to geographical users simul-
taneously. Thus, users in different countries can request

www.starlink.com/
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TABLE II
COMPARISON OF AERIAL COMPUTING WITH OTHER EDGE COMPUTING PARADIGMS.

Cloudlet Fog Computing MEC Aerial Computing
Introduced
by

Satyanarayanan, 2009 [41] Cisco, 2012 ETSI, 2014 This work, 2021

Purpose Moving cloud computing capabilities to the network edge Making computing capabilities
available at all times, at both
the network edge and air

Deployment Business premises (e.g., shop-
ping malls, companies, and
personal computers)

Strategic locations both indoors
and outdoors (e.g., IoT gate-
ways, routers, and switches)

Various locations within radio
access networks (RANs) (e.g.,
radio towers and gateways)

Locations in the air and within
RANs (e.g., radio towers,
UAVs, and LEO satellites)

Application
Examples

Locally resource-intensive and
interactive applications

Smart vertical domain appli-
cations (e.g., smart cities and
smart health) and video surveil-
lance

Content caching, autonomous
vehicle, augmented reality
(AR), data analytics

On-demand applications and
applications with sparse user
distribution

Internet
Connectivity

Autonomous operation (e.g.,
WiFi)

Autonomous operation or inter-
mittent Internet connectivity

Autonomous operation or mo-
bile Internet

Autonomous operation or mo-
bile Internet

Service
Coverage

Local Less global Less global Global

Latency Low Low Low Medium
User
Proximity

Low Relatively low Low Various, from low to long

Architecture Localized Distributed/hierarchical Localized/hierarchical Localized/hierarchical/on-
demand

Storage
Capacity

Dependent on deployment scenarios [29], [42] High High

Computational
Power

Dependent on deployment scenarios [29], [42] High High

Power
Consumption

Low [43] Low [43] High [43] Low

Availability High [44] Very high
Scalability Low High [44] Very high
Mobility Low [44] High [44] Very high
Security Medium High
Context
awareness

Medium High High High

Local
Awareness

High [17]

Standard
Organizations

NIST OpenFog Consortium ETSI, 3GPP, ITU-T -

Virtualization
support

VM VM, NFV, network slicing, and other virtualization technologies

Operation
Mode

Standalone only Cloud-connected support Both cloud-connected and stan-
dalone operation

Both cloud-connected and stan-
dalone operation

computing services to LEO satellite computing services
concurrently. Therefore, aerial computing is regarded as
a full complement of terrestrial computing infrastructure,
which is usually used for localized computing services.

After analyzing these features, we draw a comparison be-
tween aerial computing and other edge computing paradigms,
as presented in Table II. Based on the above explanations,
aerial computing can support other computing concepts, such
as in-network computing and cloud-native computing. How-
ever, resource and operation constraints of aerial computing
limit its capability to enable high-performance services in in-
network computing and scalable applications in cloud-native
computing. Therefore, the integration of aerial computing with
edge computing, in-network computing, and AI techniques is
necessary to provide advanced services and applications in the
future. For example, network elements in aerial computing, as
edge devices, can partially perform computation tasks before
pushing them into the network elements (e.g., switches and

routers) for further processing. The integration shows great
potential to respond to heterogeneous network scenarios and
application requirements in 6G, but several challenges and
limitations should be addressed [45].

C. Network Design

This part explains the important models for designing and
optimizing an aerial computing system.

1) Computation Model: The first component of aerial
computing involves computing models with the following
fundamental aspects:

• computation offloading decision,
• deployment locations of edge servers,
• collaborative and hierarchical computation.
Computation offloading decision: A computation task I

can be modeled by a tuple I = (C,D, T ), where C is the
computation workload (CPU cycles per bit), D is the task
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Layer 0: Ground IoT users

Layer 1: LAC platform

Layer 2: 

HAC platform

UAV

                                     IoT devices: sensory dataLAC platform: data 

collection from IoT devices

HAC platform: processes the 

computation tasks received 

from the LAC platform

LAC platform: offloads the 

tasks to the HAC platform 

for remote execution

Fig. 2. Collaborative computation between LAC and HAC platforms.

size (bits), and T is the completion time deadline (seconds).
Fundamentally, an offloading decision results in either local
computing at the devices, full execution at the edge server, or
partial offloading at both. In the case of partial offloading, the
task size D is divided into smaller parts for local execution and
remote execution at the edge servers and/or nearby devices.

Deployment location: Computation in aerial computing may
have the following deployment location possibilities: 1) local
devices, 2) terrestrial edge servers, 3) LAC servers, 4) HAC
servers, 5) LEO satellites, and 6) centralized clouds. Each
deployment location of the edge servers has both advantages
and disadvantages. For example, the first scheme (i.e., local
computing at the end devices) does not incur any transmission
latency, but poor computing resources render it unsuitable
for many emerging applications and new services, such as
extended reality (XR) and smart cities. Further, computation
and content caching at the satellite computing platforms (e.g.,
LEO satellites) is highly beneficial to applications with users
in remote areas (e.g., mountains and islands) but might result
in a higher latency and hardware cost compared to those of
terrestrial computing and LAC/HAC platforms [24], [40].

Collaborative and hierarchical computation: However, re-
liance on only an aerial computing node/platform (i.e., LAC
or HAC only) to perform emerging compute-intensive applica-
tions is highly impractical. This is due to the onboard energy
limitations of LAC platforms, intermittent harvested energy
of HAC platforms, and hardware cost of satellite computing
platforms for big data applications. The synergy between LAC
and HAC platforms in aerial computing systems is discussed
in [33]; herein, it is illustrated in Fig. 2. In such a scenario, the
more powerful HAC platform and fixed-wing LAPs can assist
the long-term operation and computation tasks of rotary-wing

LAPs, which are mainly responsible for data collection from
ground IoT users [33], [46].

2) Communication Model: The communication model
plays an important role in aerial computing systems for
guaranteeing efficient communications among computing plat-
forms (e.g., between IoT devices and LAC servers). Several
communication models have been proposed for this purpose.
In the literature, orthogonal multiple access (OMA), NOMA,
and MIMO have been typically adopted for the achievable
rate formula. When OMA (e.g., time division multiple access
(TDMA), frequency division multiple access (FDMA), and
orthogonal frequency-division multiple access (OFDMA)) are
widely used for ease interference management. In addition,
there are studies on hybrid OMA-NOMA computing systems
[47]. They demonstrated that hybrid NOMA systems are
highly advantageous compared to conventional OMA systems.
Thus, the use of such hybrid OMA-NOMA approaches in
aerial computing systems is a promising approach.

3) Energy Consumption Model: Energy efficiency is an
important design requirement for aerial computing systems.
Energy is consumed in several aspects, including local compu-
tation, communication, remote computing, and operation. The
other part is the energy consumed by the aerial components
(i.e., aerial users and servers), which is important for designing
sustainable operations of aerial computing systems, particu-
larly LAC platforms with limited onboard batteries. However,
various factors, such as flying modes, flying speed, payload,
and external conditions (e.g., weather and wind speed) can
affect the energy model of aerial components. In an effort
to incorporate this, the authors of [48] modeled the power
consumption of multirotor helicopters in hover and vertical
moving modes. The power consumed by the UAV to remain
afloat in the horizontal moving mode is modeled in [49]. These
models have been studied to improve the energy and power
efficiency of aerial computing [50]. Moreover, the possibility
of aerial computing in terms of energy and power consumption
can be realized by integrating aerial computing with emerging
technologies in 6G, as discussed in Section III.

4) Latency Model: A benefit of aerial computing is the
incorporation of LEO satellite computing platforms, which
provide a global coverage but have lower latency compared
to geostationary Earth orbit (GEO) and medium Earth orbit
(MEO) platforms. As reported in [51], the OneWeb LEO
satellite system can provide Internet services for 1 billion
users with an average latency of 30 ms. The Starlink system
promises a latency between 25 and 35 ms, while the Telesat
system aims to achieve latency from 30 to 50 ms, and the
average latency of the SpaceX system is less than 20 ms.
Moreover, positioned in the lowest tier of the comprehensive
aerial computing architecture, LAC platforms are expected to
provide much lower latency and thus are suitable for latency-
critical services. Further, in the middle tier, HAC platforms
aim to balance latency and computing service availability.
Therefore, aerial computing can provide computing services
with different latency requirements while offering desirable
features, such as mobility, availability, scalability, flexibility,
and simultaneity.

Other latency sources in aerial computing include com-
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putation, queuing, and fronthaul and backhaul transmission.
Latency also occurs when the server executes the computation
task remotely and broadcasts the processed results to the
users in the downlink. Consequently, aiming to minimize
the maximum latency among users, [52] investigated a joint
problem of two-dimensional LAC placement, fronthaul and
backhaul bandwidth allocation, computing resource allocation,
and caching decision. Further, in [53], the joint optimization
of task allocation, scheduling, power control, and LAC server
trajectory was studied to minimize the total energy consump-
tion. To manage the latency requirement, the LAC server must
execute a minimum number of bits offloaded from each user.

D. Summary

This section presents the system architecture of aerial
computing, fundamental features, and key design aspects.
Complementing conventional terrestrial computing systems,
the proposed aerial computing framework provides computing
services to massive IoT users worldwide. Compared to other
edge computing paradigms, aerial computing offers several
desirable features, such as mobility, availability, scalability,
flexibility, and simultaneity. Moreover, four key design aspects
of aerial computing have been reviewed, namely, computation,
communication, energy consumption, and latency. Because
many emerging applications will be available in the near
future, more thorough investigations are required to explore
the potential advantages of aerial computing.

III. ENABLING TECHNOLOGIES

Enabling technologies of aerial computing are presented in
this section. These technologies include network softwariza-
tion, energy refilling, edge computing, frequency spectrum,
multi-access techniques, AI, and big data. To enrich the
understanding of the integration of aerial computing with
enabling technologies, we illustrate the manner in which
enabling technologies support aerial computing in Fig. 3.

A. Network Softwarization

Virtualization has enabled network operators to design,
implement, and manage systems and network services with
improved efficiency. NFV and SDN are two promising tech-
nologies that facilitate virtualization. NFV decouples net-
work functions from proprietary hardware (e.g., firewalls and
routers), thereby providing equivalent network functionality
with general-purpose servers. SDN separates the control plane
from the forwarding plane, thereby enabling network operators
to configure and manage network functions in a centralized
manner through the software. Other commonly used virtu-
alization technologies include network slicing and VM. We
briefly introduce the fundamentals of these technologies and
thereafter discuss their application in aerial computing.

1) Network Function Virtualization: The concept of NFV
was first proposed in 2012, with an aim to reduce the capital
and operating expenses of telecom networks, as well as to
facilitate the deployment of new services. Its primary idea is
to decompose the network functions from physical network

equipment via virtualized network functions (VNFs). A typical
NFV architecture consists of three main elements: infrastruc-
ture, management, and orchestration. The NFV infrastructure
represents computing, storage, and network hardware as well
as software (abstractions of physical resources) resources
constituting the environment where VNFs are deployed. In
addition, a VNF is an implementation of a network function,
for example, a firewall, deployed on virtual resources such
as VMs. Furthermore, NFV-Management and Orchestration
(MANO) is the management and orchestration framework
needed to provide the VNFs.

NFV provides many opportunities for network service pro-
visioning, e.g., independent deployment and maintenance of
software and hardware, flexible and agile service deployment,
and dynamic resource allocation. Therefore, NFV can benefit
aerial computing. For instance, NFV can allocate additional re-
sources from another LAC/HAC/satellite computing platform
to alleviate computing congestion in one platform.

2) Software-Defined Networking: SDN is an emerging net-
work architecture that intelligently controls the network by
decoupling the control plane and efficiently managing the
network via programming operations [54]. Driven by its key
features, including separated control plane and data plane,
centralized controller, open interfaces, and programmable op-
erations, an SDN can intelligently operate the network at a
low operating cost. Thus, it can support intelligent applications
through simplified hardware, software, and management [8].
Despite these advantages, SDN has several key challenges in
the 6G network: 1) efficient and intelligent maintenance of
the dynamic network topology [55], 2) intelligent network
management and orchestration via AI/ML, and 3) traffic
engineering with heterogeneous QoS requirements [56].

In aerial computing, wireless networks support heteroge-
neous IoT devices/users, LAC/HAC platforms, 6G technolo-
gies, and configuration interfaces. SDN can provide logically
centralized control by abstracting the underlying network
infrastructure. For instance, SDN controllers can handle aerial-
computing-related VNFs and VMs as another type of resource
that can be dynamically managed. Therefore, SDN can provide
an efficient solution for managing aerial computing systems
and services.

3) Network Slicing: Network slicing is a virtualization
technology that allows multiple logical networks (slices) to run
on a unified physical network infrastructure [57]. Each logical
network is independently configured to satisfy the required
network characteristics, such as bandwidth, delay, and capac-
ity, to provide diverse services of expected scenarios. Each
logical network also contains computing and storage resources
that are capable of realizing specific network functions via
NFV or service function chains. In contrast, VM can provide
fine-grained control to instantiate and terminate tasks and
processes at any time without affecting the hardware on aerial
platforms. Each VM shares computing, storage, memory, and
network resources from aerial computing systems, while its
operation is entirely isolated from that of the host and guest
VMs. Further, AI/ML can be employed to intelligently allocate
virtual resources of VMs in aerial computing.

In aerial computing, network slicing can be utilized to
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Fig. 3. Integration of aerial computing with enabling technologies.

slice the entire network into individual networks considering
computing services and IoT services, which can be optimized
by specific requirements and services. However, an AI-enabled
intelligent management and orchestration framework should be
designed to efficiently support network slicing in 6G networks.

B. Energy Refilling

1) Energy Harvesting: Energy harvesting is a novel ap-
proach to utilize renewable energy sources. For example, solar
energy can be converted into electric energy by deploying
photovoltaic (PV) cells on UAVs, and the electric energy
can be stored in rechargeable batteries [58]. However, natural
energy sources are highly dependent on climate variability. For
instance, solar power harvesting can be severely affected by
weather conditions.

Some non-electromagnetic field-based charging technolo-
gies have been used, including gust soaring, PV arrays, laser
beaming, and battery dumping [59]. Dynamic soaring involves
harvesting energy from wind and airflow by adjusting the
trajectory of UAVs to prolong their flying duration [60]. For
PV arrays, solar irradiation energy is harvested by PV cells to
power a drone or recharge its battery, which is used for the
operation during the night. This technology can be applied
to fixed-wing drones because a certain amount of space is
needed for PV panels. In laser-beaming technology, a laser
fed by an external source of energy produces a concentrated
and streamlined beam of light with a certain frequency to the
specific PV cells on a drone. The PV cell can then convert the
laser beam into energy to recharge the battery of the drone.

2) Wireless Power Transfer: Another popular application of
energy harvesting is that energy is usually harvested from am-
bient radio frequency electromagnetic signals. In simultaneous
wireless and information power transfer (SWIPT), energy can
be harvested, usually partially, from the transmitted signals via
power switching or time switching techniques. A strong user
with a high channel gain can forward data to a weak user with
a low channel gain by using the harvested energy from the
transmitted signals. Wireless power communication networks
(WPCNs) are used to harvest energy from radio transmission,
wherein sequential energy is transferred wirelessly to the
intended users, which supports dedicated wireless charging
[61]. Aerial components at different computing platforms (e.g.,
UAVs at the LAC platform and balloons at the HAC platform)
have been proposed to be integrated with WPCN. This flexible
implementation allows aerial components to be charged or
to charge a set of ground users, thus providing sustainable
solutions for aerial computing systems [62], [63]. Besides,
aerial components can be equipped with solar-powered cells
and large energy storage to store energy harvested from solar
powers in the environment.

Wireless power transfer (WPT) has been proven to provide
power for UAVs wirelessly without landing for energy re-
fueling [64]. Moreover, the coordination of LAC servers at
the LAC platform and edge servers on different platforms
(i.e., LAC, HAC, and satellite) is a promising approach
to better provide computing services over large-scale areas
[63]. Since WPT from the air is quite limited due to the
severe path loss, many factors (e.g., antenna size) need to be
considered for practical implementation. To further support
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low-power IoT/mobile devices, emerging technologies, such
as backscatter communications and IRS, can be deployed. For
example, [65] considered IoT devices as backscatter-assisted
users, which harvest energy from the ground gateway to
perform computation offloading. Similarly, aerial components
can assist low-power users in performing necessary data
transmissions and computation tasks.

C. Frequency Spectrum

1) Sub-6 GHz and mmWave: To meet the extremely high
data rate requirements of 5G systems, high-frequency spec-
trum bands are exploited. In particular, millimeter waves
(mmWave) can provide gigabit-per-second data rates owing
to the radio frequency spectrum in the range of 30–300 GHz,
whereas the sub-6 GHz range can provide large coverage with
high cost efficiency with a spectrum band below 6 GHz [66].
Driven by the increase in IoT devices, such as XR services en-
compassing AR, mixed reality, and VR, some studies proposed
the integration of mmWave and Sub-6 GHz to balance the
high data rate and large coverage in next-generation wireless
communication systems. Specifically, mmWave can be used in
tiny cells for mobile and fixed access, whereas sub-6 GHz can
be used in small cells. For example, the use of the mmWave
band in aerial computing was considered in [67], wherein a
hierarchical architecture of a satellite computing server, two
terrestrial MEC servers, and a set of vehicles was considered.

2) THz: Terahertz (THz) band, in the frequency range
of 0.1–10 THz, has been explored in the next-generation
wireless communication systems to achieve the terabits per
second data rate with low latency. Potential use cases for
THz communications include close proximity communication,
extremely high data rates for indoor communications, and
wireless backhauling and fronthauling technologies. Thus,
THz can be utilized in LoS and high data transmission among
aerial components in aerial computing systems [68].

3) Other High-Frequency Bands: At WRC-12, the ITU
identified the C-band for the use of control and non-payload
communication. The C-band refers to a frequency range of
4–8 GHz and is used primarily for satellite communications.
Moreover, the K-band in the frequency range of 14–27 GHz
is typically used for short-range communications owing to
the high atmospheric attenuation. The K-band can be used
in satellite communications, astronomical observations, and
radar. Radars in this frequency range provide a short range
and high throughput.

D. Artificial Intelligence and Big Data Analytics

AI technology aims to train machines to perform human
tasks. It has been applied to various areas, such as image
recognition, robotic vehicles, machine translation, and game
AI. Further, ML, which is a promising subset of the AI
technique to learn from the data and impart intelligence
to existing systems, has been employed to render wireless
communication and networks highly efficient and adaptable.
Intelligent wireless network can provide efficient support for
aerial computing. The advantage of applying ML in wireless
network operation is that it enables the network to monitor,

learn, and predict various communication-related parameters,
such as wireless channels, traffic patterns, user context, and
device locations. In general, ML algorithms include supervised
learning, unsupervised learning, reinforcement learning (RL),
deep learning (DL), deep reinforcement learning (DRL), and
federated learning (FL) [69].

1) Supervised Learning/Unsupervised Learning: In super-
vised learning algorithms, both the input and desired outputs of
the used datasets are available. However, supervised learning
algorithms can only be employed in scenarios with sufficient
labeled data, for example, classification. In contrast, in unsu-
pervised learning, the dataset used for training does not include
labeled output or target values. The purpose of unsupervised
learning is to extract key features of the data for better
prediction. Further, unsupervised learning algorithms can be
applied to scenarios, such as clustering based on the available
data. In aerial computing, supervised learning/unsupervised
learning can be used for user clustering/grouping to provide
better service.

2) Deep Learning: DL algorithms have been developed
to deal with complex input–output mappings. DL consists
of multiple layers for feature extraction and transformation.
DL can be used for in-depth analysis in a complex scenario
with massive data and to realize different control schemes for
different protocol layers. For example, in [70], DL was used
to classify cloud images captured by satellite clouds in aerial
computing systems.

3) Reinforcement Learning: The main idea of RL is to train
the agent to generate actions according to the current environ-
ment. In RL, the problems are solved by employing a sequence
of actions that use the trial-and-error rule. RL algorithms
have been extensively used in wireless network optimization
to obtain the optimal policy, for example, user grouping
decisions or actions. DRL is a DL framework developed
based on RL; it relies on updated samples in practice instead
of the ideal transition probability in theory. DRL involves
learning from the feedback that evaluates the actions taken
rather than learning from the correct actions. DRL algorithms
have been applied to wireless networks for multiple aspects,
including mobile networking, resource allocation, schedular
design, and routing [71]. Furthermore, it can promptly make
a decision under dynamically changing network conditions,
such as channel state information [72].

4) Federated Learning: FL is an AI approach that enables
users to collaboratively learn a shared model with data main-
tained on their own devices [73]. In contrast to a standard
ML algorithm that requires a centralized training dataset in the
data center, FL allows devices to train a learning model locally
and transmit the training parameters instead. Thus, it addresses
concerns, such as user privacy and limited data transmission
resources (e.g., bandwidth) [62], [73]. A potential application
of aerial computing for FL-enabled wireless networks is aerial
aggregation [74]; that is, a computing server (e.g., LAC,
HAC, and satellite computing) in aerial computing acts as the
aerial server and performs model aggregation in the air, as
shown in Fig. 4(a)]. Moreover, as shown in Fig. 4(b), aerial
computing can extend the learning coverage of terrestrial FL-
enabled networks, particularly when certain obstacles prevent
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Fig. 4. Applications of aerial computing for FL-enabled wireless systems [2].

model updating and broadcasting between FL users and the
aggregation server. Further, aerial components (e.g., LAC,
HAC, and satellites) can be FL users, which train local AI
models and share updates with the central cloud [75].

5) Big Data: The features of big data have been commonly
described by five “V”s: volume, variety, velocity, veracity, and
value. Certain attempts have been undertaken to apply big
data analytics to wireless communications [76]. The increas-
ing complexity of networks and complicated wireless traffic
patterns make big data analytics appealing. ML algorithms
coupled with edge computing can be used to process big data
in 6G [77]. MEC has become the primary computing method
for big data analysis in heterogeneous 6G.

AI and big data, combined with other enabling technologies
mentioned in this section, have been widely introduced to
aerial computing in 6G owing to the advantages of intelligent
management and automatic self-improvement. In particular,
AI/ML can be used in intelligent UAV/drone trajectory design,
virtual resource management, data processing, task computa-
tion, and channel estimation. In addition, AI and big data can
be used in NFV and SDN-based networks to achieve intelligent
network management and optimization [78]. RL approaches
have also been conducted to improve resource utilization and
service provision [79]. Further, advantages of the other ML
techniques, such as meta learning and transfer learning, can be
exploited. For example, the benefits of transfer learning with
knowledge preprocessing in LAC systems have been demon-
strated in [80]. However, major challenges should be answered
to further improve the effectiveness of transfer learning in
heterogeneous aerial computing systems. More specifically, we
need to determine the source agent and transferred knowledge,
and optimize scheduling and resources.

Certain challenges need to be addressed to realize aerial
computing in 6G, including data security/privacy, learning effi-
ciency, communication cost, and the tradeoff between learning
accuracy and convergence. AI/ML is recognized as the most
promising solution for providing intelligent wireless commu-

nications and signal processing computation task control for
increasingly complex and heterogeneous networks.

E. Other Wireless Techniques

1) Non-orthogonal Multiple Access: NOMA is considered
a promising technology in 5G and beyond owing to its high
spectrum efficiency and massive connectivity. It is broadly
classified into two categories: power-domain NOMA and
code-domain NOMA. Power-domain NOMA uses the power
domain for multiple access, whereas code-domain NOMA
exploits sparse code for multiple access. NOMA can support
more users than the number of available subcarriers, thereby
improving wireless communication performance with multiple
features, including massive connectivity, low latency, high
spectral efficiency, and high energy efficiency.

• First, as NOMA enables multiple users to be multiplexed
on the same channel simultaneously, it is suitable for a
scenario with a large number of connections (e.g., IoT
applications). Therefore, NOMA can be applied in aerial
computing to support multiple devices/users to offload
their tasks to aerial servers, as shown in Fig. 3.

• Second, compared with OMA where users must wait until
a resource block is available to transmit or receive data,
NOMA can provide grant-free transmission with flexible
scheduling. Therefore, the offloading/downloading delay
of the devices/users in aerial computing can be signifi-
cantly reduced.

• Third, NOMA can achieve higher spectral efficiency and
user fairness than OMA [86]. Further, NOMA users
can utilize the entire frequency bands for transmission,
whereas OMA users can only use a fraction of the entire
spectrum for communication. In aerial computing, high
spectrum efficiency can also be achieved in the communi-
cations between LAC/HAC platforms when using a high-
frequency spectrum [67].

2) Massive MIMO: The concept of massive MIMO has
been proposed to drastically increase data rates, spec-
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TABLE III
SUMMARY OF ENABLING TECHNOLOGIES OF AERIAL COMPUTING.

Category Enabler Advantages Key Challenges

Network
Softwarization
[54]–[56],
[81]–[83]

NFV High flexibility and low operational cost Service heterogeneity
VM Sufficient computing resources Intelligent management of virtual resources
Network slicing Flexibility, resource efficiency and Security Intelligent management and orchestration framework design
SDN High flexibility and low operational cost SDN controller placement

Energy Refilling
[58], [59], [61],
[63], [84], [85]

Energy harvest-
ing

Ambient natural energy source Highly dependent on weather conditions

WPT (SWIPT
and WPCNs)

Harvest energy from radio transmission Trade-off between harvested energy and consumed power and
joint resource allocation

Frequency
Spectrum [66],
[68]

Sub-6 GHz High bandwidth and high data rate Severe attenuation and blockage and low range
THz High bandwidth and high data rate Severe attenuation and blockage and low range
C-Band K-Band Satellite communications and high through-

put
Atmospheric attenuation

Multiple Access
Techniques
[86]–[90]

NOMA High spectral efficiency and massive con-
nectivity

Decoding complexity for multiple users

Massive MIMO High statistical multiplexing gain and high
spectral efficiency

High implementation cost, intelligent environment adaption
and channel prediction

IRS High channel gain and low implementation
costs

Intelligent optimization of IRS

AI/Big Data
Analytics [69],
[71]–[73],
[76]–[79]

ML Automatic features, predictions Computational complexity
DL Automatic features, predictions Computational complexity
RL Generate optimal decisions in a dynamic en-

vironment and require the Markovian model
and high computation

High dimensionality of the states and action spaces

FL Protects user data privacy Communication cost and tradeoff between learning accuracy
and convergence

Big data
analytics

Prediction of user preference distribution Feature extraction and data modeling

tral/energy efficiency, and coverage of wireless networks by
aggressive spatial multiplexing. In massive MIMO, a BS
equipped with a few hundred antenna arrays serves tens of
users simultaneously. It is considered a promising technology
in 6G owing to the following advantages [87].

• Multiplexing gain: Aggressive spatial multiplexing can
increase the data rate dramatically in the spatial domain.
Further, the offloading delay of the computation task is
significantly reduced for remote aerial computing.

• Energy/spectral efficiency: The energy efficiency can be
improved via massive MIMO as it is inversely propor-
tional to the number of antennas at the BS.

• Increased robustness: Due to a large number of antennas,
the propagation channel provides additional diversity
gains, which also increases the link reliability. Thus,
MIMO can provide reliable links in aerial computing,
where the uncorrelated noise and intra-cell interference
can vanish with an increasing number of antennas.

Various multiple access technologies, such as OMA and
NOMA, can be combined with massive MIMO to further
improve the communication performance [91]. In massive
MIMO-OMA systems, the maximum ratio combing and zero-
forcing can be utilized to achieve a high spectral efficiency in
underloaded systems. However, some studies proposed mas-
sive MIMO-NOMA to support a large number of users; that is,
the overloaded system, and to meet the massive connectivity
requirement of 6G [89]. However, there exist challenges for the
realization of massive MIMO, which are the 1) deployment of
extremely large antenna arrays, 2) adaptation to the intelligent

wireless environment, and 3) limitation in channel prediction.
Equipped with full-dimensional large arrays, ground BSs can
apply adaptive fine-grained 3D beamforming to mitigate the
strong interference between high-altitude UAVs and low-
altitude terrestrial users.

3) Intelligent Reflecting Surface: IRS has been proposed as
a promising technology in 6G to alter the wireless channel by
intelligently adjusting the amplitude and/or phase shift of each
element of the IRS [90]. Extensive deployment of IRSs in the
wireless network and smart coordination of the reflections can
result in the flexible reconfiguration of the wireless channels
between transmitters and receivers to expand the commu-
nication coverage and improve the wireless communication
capacity and reliability. IRS has various advantages.

• Low cost: The reflecting elements of IRS are low-cost
printed dipoles, which only passively reflect the signal
without transmitting the signal.

• Full-duplex mode: Different from the traditional relay
system with half-duplex relay, IRS can work in a full-
duplex mode.

• Auxiliary device: IRS has great flexibility and compati-
bility to be integrated into the existing wireless networks
such as WiFi or cellular.

Thus, IRS can be massively deployed in wireless networks
and combined with other promising technologies, such as
NOMA [92], massive MIMO, and UAVs. However, IRS is
still in its nascent stages, and certain potential challenges
need to be addressed: 1) The deployment of IRS, especially
for air computing, the location IRS can significantly affect
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the channel condition for data transmission; 2) The reflection
of IRS is sensitive to the angle of arrival, which affects the
channel model of the IRS in practice [90].

IRS can be applied in various scenarios to improve the
communication performance [68]. The most important task
for aerial computing is to prolong the battery life of UAVs,
LAC servers, and IoT devices. Energy harvesting or WPT
techniques can be implemented using IRS to overcome the
high-power loss over long distances. For example, a highly
efficient energy charging zone can be created by deploying
IRSs in the proximity of devices or UAVs. In addition, if
IRSs are deployed on UAVs, the UAVs can flexibly establish
strong LoS links with the ground nodes to improve the
communication quality for aerial computation task offloading
and downloading.

F. Summary and Discussion

In this section, we have presented a set of enabling tech-
nologies of aerial computing. Table III presents a summary of
the enabling technologies and their advantages and challenges.
These technologies can be flexibly implemented in future
6G networks to efficiently provide fast computing services,
better mobility, and higher scalability and availability. Further,
these technologies can facilitate the process of addressing
challenges, such as intelligent communication and computa-
tion resource allocation design, joint optimization of UAV
trajectory and placement design, user association and grouping
design, and secure computing and communications. However,
certain challenges need to be addressed, as highlighted below.

• Intelligent Control: The cooperation of enabling tech-
nologies should allow for intelligence in aerial comput-
ing. The joint intelligent optimization of computing re-
sources (LAC, HAC, and satellite computing platforms),
communication link design with different multi-access
techniques, and network control/scheduling can be inves-
tigated in future studies.

• Secure Control: For aerial computing, the user data need
to be transmitted and shared with the aerial server, which
leads to security concerns and data transmission over-
head. Therefore, FL and blockchain can be exploited to
protect data privacy and improve security by transmitting
the training parameter to the server for global aggregation
[93], [94].

• Aerial Intelligence: AC, HAC, and satellite computing
platforms can enable aerial intelligence by collecting
surrounding data and then executing onboard intelligent
algorithms. The aims of intelligent algorithms include
autonomous collision avoidance, adaptive flight gesture
adjustment, and trajectory optimization for data collec-
tion. Therefore, the design of intelligent algorithms can
efficiently support aerial computing in terms of energy
savings, large coverage, delay minimization, etc.

IV. VERTICAL DOMAIN APPLICATIONS

Aerial computing is expected to serve different vertical do-
main applications that require service provision from different
perspectives. In this section, we explore the impact of aerial

computing on relevant domains: smart cities, smart vehicles,
manufacturing, and smart grids.

A. Smart City

The IoT involves all devices that are connected to the
Internet on Earth. Due to the potential of these devices in
improving the quality of human lives, they are sensitive to
latency, storage, bandwidth, and security. With the increasing
popularity of the IoT, cities are becoming smarter, and the
concept of smart cities is gaining traction and a new dimen-
sion. Aerial computing can aid in better understanding the
potential of the IoT in developing new strategies for smart
cities, thus reducing costs and improving safety. Furthermore,
new endeavors, such as 5Gcity [95] and SynchroniCity [96],
can help realize the idea of a future city. According to [95],
there are four possible major themes in smart cities, which
are data communication and processing, MEC support, urban
planning and management, and surveillance and security. In
Fig. 5, we provide an example of a smart city through the use
of aerial computing technologies.

1) Data Communication and Processing: With embedded
multiple sensors, LACs, HACs, and satellite computing plat-
forms have great potential for sensing data in IoT environ-
ments and providing social services to smart cities. In [97],
the authors proposed a joint scheme of 3D placement, com-
putation, and communication resource allocation for multiple
HACs in an uplink IoT network, where the task distribution
among HACs and communication resources were considered.
The solution scheme was developed based on the K-means
method, a Hungarian-based algorithm, and an iterative method.
The simulation results illustrate that the total transmission
power of the IoT nodes is significantly minimized through
the proposed algorithm. In [98], a technique referred to as
AirComp was developed to receive data from multiple sen-
sors simultaneously by utilizing the superposition property of
multi-access channels, as shown in Fig. 5. A near-optimal
equalizer was derived using differential geometry to facilitate
multimodal sensing technology in the proposed technique.
Finally, an efficient channel feedback mechanism was designed
to facilitate the acquisition of the entire channel information
from many sensors simultaneously. In [99], a novel and
efficient control algorithm for LACs was proposed to manage
sensing and their movement using DRL techniques. The pro-
posed method extracts features using the convolutional neural
network (CNN) and infers decisions following the multi-agent
deep deterministic policy gradient (DDPG) method. However,
swarms of LACs and HACs may face difficulties owing
to their limited storage and computation capacities during
crowd sensing. To resolve this issue, in [100], edge/cloud
computing technologies were introduced to the swarm for
enhancing their QoS. Based on a case study of latency-
critical applications, their simulation results illustrated that
the proposed approach could effectively improve the QoS of
the swarm servicing entity. Furthermore, to enhance the poor
coverage of information-centric IoT networks, the authors of
[101] optimized the coverage of such a network via LACs and
HACs at a low cost. The proposed scheme was designed based
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Fig. 5. Illustration of a smart city using aerial computing.

on an improved rolling horizon strategy (IRHS). Through
comprehensive experiments compared to previous studies, the
authors demonstrated that the proposed scheme can improve
the coverage ratio (by 21.42%) and reduce the cost ratio (by
13.335% to 34.32%).

Aiming to track a moving target using synthetic aperture
radar (SAR) based on compressive sensing technology, the
authors of [102] considered applying the multi-channel pro-
cessing technique to the SAR computation unit. Because of the
joint consideration of the magnitude and phase, the proposed
weight-adjusted sparse algorithm in the computing unit could
improve the performance of clutter suppression. In another
work [103], the same authors determined a different method to
track moving targets with the assistance of compensated target
motion in the SAR computing unit. The motion compensation
procedure in the SAR computing unit consisted of two steps:
the SPECAN processing was first applied to the frequency
and azimuth domain, and then the correction of the residual
component was incorporated into the sparse imaging outcome.
Further, the authors also overcame the challenges associated
with the motion of the target and the imaging of multiple mov-
ing targets using a novel parametric sparse imaging approach
and an orthogonal matching pursuit method, respectively.

2) MEC Support: In [104], a novel online HAC-assisted
edge server management scheme was proposed to provide
flexible edge computing services. Several hot-spot areas were
extrapolated by geographically merging the tasks, and the
corresponding HACs were dispatched to the appropriate lo-
cations for the necessary service. A simple illustration of this
use case is provided in Fig. 5. Through extensive simulation
with real-world data, the authors showed that the proposed
mobile server dispatching scheme could serve more users with
a high utilization of resources. The authors of [105] proposed

a fairness-aware task distribution and trajectory optimization
scheme in LAC systems, in which a fixed-wing LAC played
the role of a flying computing server for mobile terminals.
Under fairness consideration, the authors aimed to minimize
the maximum energy consumption of all mobile terminals.
The non-convex problem was converted into a convex one,
and an iterative algorithm was proposed to solve the problem.
Further, under the assumption that the communication between
the LAC and mobile terminals followed the NOMA technol-
ogy, the authors in [106] proposed an iterative algorithm to
minimize the maximum energy consumption of all mobile
terminals by controlling the trajectory, task data, and com-
puting resources in an adaptive manner. The simulation results
illustrated that the proposed algorithm could effectively reduce
the highest energy consumption among mobile terminals while
considering the fairness issue. The work in [107] introduced
a highly diversified urban scenario, which was served by
multiple LAC servers. Two non-convex programming prob-
lems were sequentially formulated to optimize the delay and
energy performance of uplink and downlink communication
scenarios for AR applications, which were solved by convex
approximation techniques. Through experiments, the authors
verified that the proposed network model could serve cellular
users in a satisfactory manner.

3) Urban Planning and Management: Extracting building
anatomy through remote sensing technologies is crucial for
urban planning and management. Considering diverse scales
and appearances, assisted by HACs, the authors of [108]
proposed an automatic method to extract building instances.
The proposed HAC unit consisted of an improved hybrid
task cascade method, which had three components for three
different consecutive tasks: high-resolution representation, def-
inition of guided anchor, and formation of focal loss. Com-
prehensive experiments on a real dataset revealed that the
proposed method was shown to perform better compared to the
conventional R-CNN method in terms of extracting building
instances. As of the LAC server, in [109], a target tracking
algorithm to locate LAC-captured targets, such as pedestrians
and vehicles, was proposed using the sparse representation
theory. Upon implementation with real data, the results prove
that the proposed tracker can achieve better performance com-
pared with existing tracking algorithms. Further, to monitor
urban environments, the authors of [110] proposed the use of
heterogeneous aerial computing (e.g., LACs, HACs, and satel-
lite computing) and investigated a collaborative methodology
to share the workload. A simple illustration picture of this
collaboration feature is provided in Fig. 5. For a particular
set of degrees of freedom (e.g., a number of tasks and
vehicles), an efficient algorithm was proposed to maximize the
overall weight of completed tasks. Through simulations, the
authors determined that the proposed algorithm significantly
outperformed the other heuristic algorithms.

With the growing trend of industrialization, air pollution
has reached a significant level in urban areas. Consequently,
monitoring air pollution has become a matter of great concern
in recent years. To this end, the authors of [111] presented
an efficient and cost-effective air quality monitoring system
using LACs and HACs. The three major aspects of the system
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proposed in [111] were data processing, deployment, and
power control. The system was deployed at Peking University
and Xidian University, and about 100,000 samples have been
collected since February 2018. A partial illustration of this
system is provided in Fig. 5. Using a 360-degree panoramic
camera in HACs, the authors of [112] designed a novel air
quality indicator (AQI) monitoring system, AQ360, to detect
the air quality level (shown in Fig. 5). Upon solving the
recognition problem of images, they optimized the placement
of the corresponding LAC to achieve the optimal outcome.
Through the implementation of the system under realistic
scenarios, they showed that the system can perform better
compared to existing studies in terms of AQI recognition error
and energy consumption. Further, using microwave downlink
sensor networks, the authors of [113] studied a rainfall moni-
toring system via a satellite computing platform. The proposed
method was implemented in the satellite computing unit, and it
was compared with the Ligurian regional tipping-bucket rain
gauge (TBRG) network at a city in Italy. The performance
of these two types of monitoring systems was found to be
similar, based on the rain events that occurred over the time
period between January 2017 and December 2018.

Fine-grained driving lines are crucial components of high-
definition maps for the smooth operation of autonomous
vehicles. To this end, the authors of [114] presented a semi-
automated driving line generation method utilizing a mobile
laser scanning computing system, as shown in Fig. 5. Through
simulations on real datasets, the authors demonstrated that
the proposed method achieved an average recall, precision,
and F1-score of 90.79%, 92.94%, and 91.85%, respectively.
Further, using the same mobile laser point clouds, the authors
of [115] proposed an image-translation-based method to ob-
tain the 3D vectors of typical road markings, as shown in
Fig. 5). Another method for extracting road networks using a
satellite computing platform was proposed in [116], wherein
a novel aperiodic directional structure measurement (ADSM)
technique was adopted. In contrast, to facilitate city planning
via swarms of fully automated LACs, the authors of [117] pro-
posed a holistic distributed framework equipped with various
effective and efficient skills, which could be adjusted based
on the requirements of the LACs and environments. Through
experiments, the authors demonstrated that a swarm of LACs
equipped with the proposed framework could effectively sat-
isfy the requirements of diverse applications. The authors of
[118] presented an efficient framework for extrapolating urban
tree inventories by using 3D point clouds acquired by a HAC-
borne laser scanning system (shown in Fig. 5). The high-level
processing steps of the proposed HAC framework are individ-
ual tree cluster extraction, geometric parameter estimation, and
tree species classification. Through experiments, the authors
demonstrated that the detection accuracy of the roadside tree
was over 93% with an average error of approximately 5%,
and the overall classification accuracy was approximately
78%. Another application of the point clouds collected by
the computing system is the modeling of an underground
parking lot [119]. The method utilized in the HAC consists of
two parts: a joint localization and mapping algorithm based
on sparse point clouds and a semantic modeling algorithm.

The results from comprehensive experiments indicated that the
proposed algorithm achieves centimeter-level accuracy with a
precision of 84.8%.

4) Surveillance and Security: The concept of a smart city is
vulnerable to security and privacy issues since the collection,
dissemination, management, and processing of data in aerial
computing platforms can be interrupted by malicious users.
Thus, evidenced by certain existing reports, we discuss the
way in which aerial computing platforms (e.g., LACs, HACs,
and satellites) could be the means of resolving security and
privacy issues in smart cities.

With the assistance of 3D simulation and a set of robot
operating system-equipped LACs, the authors of [120] demon-
strated an autonomous navigation system to control the phys-
ical security of smart buildings. The results from the ex-
periments indicated that the proposed approach achieves an
acceptable level of accuracy in terms of mapping the indoor
environment of smart buildings. In [121], a novel framework
was proposed to monitor suspicious links by utilizing the
characteristics of LACs. Particularly, the system consists of
a suspicious transmission link and an LAC unit for mon-
itoring. Further, in the LAC system, the wireless resource
allocation problems, including trajectory planning and energy
minimization, can be solved using the popular successive
convex approximation method.

Video surveillance applications are associated with several
challenges in smart cities, such as scalability, integrity, and
latency. In [122], a series of optimal scheduling and control
algorithms were designed to address these challenges. A
network with full coverage was established via an LAC cluster,
and the scheduling problem was solved using the bi-objective
fragile bin packing technique. Thereafter, extensive simula-
tions with realistic parameter settings were conducted, and the
effectiveness of the proposed scheme was verified in terms of
many systems and video-specific performance metrics. The
authors of [123] introduced a surveillance model for a multi-
domain IoT environment using heterogeneous smart HACs and
LACs (shown in Fig. 5). A heuristic method was used to
minimize the maximum movement of LACs while avoiding
collisions among them. Extensive simulations were conducted
considering heterogeneous scenarios with multiple HACs and
LACs to verify the merits of the proposed method.

In addition to limited storage and computation power,
security and privacy are two of the alarming concerns for data
dissemination schemes in aerial environments. To this end, the
authors of [124] presented a low-cost computationally efficient
short proxy signature (CB-PS) scheme for the LAC server,
which was oblivious to secret key information in conventional
ID-based schemes. To further enhance the security of such
tasks, the authors of [125], presented a novel blockchain-based
strategy to facilitate multi-party authentication among multiple
LACs and HACs. Specifically, this strategy is useful for P2P
and group communications among LACs and HACs while
ensuring the efficiency of data dissemination. Through com-
prehensive experiments and simulations, the authors verified
the merit of the proposed technique in terms of authentication
among multiple LACs and HACs. Subsequently, to satisfy the
connectivity, data, and service demands of an exponentially
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Fig. 6. Illustration of smart vehicles using aerial computing.

growing number of IoT devices in smart cities, the authors
of [126] envisioned a 5G network environment supported by
blockchain-enabled LACs and HACs. The objective of this
network was to provide Internet connectivity to IoT devices
via blockchain-enabled multiple LACs and HACs and to
facilitate decentralized service delivery and routing facilities
in a reliable and secure manner.

B. Smart Vehicle

Over the last 30 years, intelligent transportation systems
(ITS) have been investigated to improve the safety and effi-
ciency of the transportation industry. Along this line, IEEE
developed a protocol called IEEE 802.11p [127]. However,
this standard is not sufficiently competent to meet the real-
time requirements of the emerging vehicular industry. Conse-
quently, existing studies have emphasized the merits of aerial
computing for efficient ITS [128], [129] to achieve reliable
and low-latency, smart, and seamless vehicle-to-everything
communication. Along with benefits, several research chal-
lenges still exist in aerial vehicular computing, which can be
overcome by leveraging emerging technologies, such as IRS
and AI. For example, [128] showed that AI-enabled LAPs
help improve the service performance of vehicular networks
compared with ones without AI and LAP deployment.

Furthermore, in recent years, the 5G Automotive Asso-
ciation (5GAA) defined a new concept, namely cooperative
intelligent transportation systems (C-ITS), which considers
aerial computing as an enabling technology for V2X com-
munications [130]. According to this standard, we highlight
a few main use cases in the context of C-ITS, such as
traffic management, safety and security, MEC provision, and
infotainment. Fig. 6 illustrates a few applications served by
aerial computing platforms in smart vehicles.

1) Traffic Management: With the growing number of vehi-
cles in recent years, vehicle detection has become a vital part
of the ITS, which assists in resolving various information and
management issues, such as traffic and vehicle flow statistics
and road network management. By acquiring high-resolution
images using HACs, the authors of [131] designed a vehicle

detection algorithm (shown in Fig. 6). Implemented at the
HAC server, the detection method considers sparsity in data
as well as multiple features. Further, through experiments, the
authors verified the utility of the proposed algorithm in terms
of detecting a large number of vehicles in metropolitan cities.

2) Safety and Security: Based on the data collected by
the LAC server, the authors of [132] proposed the Siamese
Interaction Long Short-Term Memory (SILSTM) network to
identify the behavior of collision-prone vehicles. Upon learn-
ing the interaction scenarios of a vehicle with its neighbors,
the SILSTM network can predict accident-prone interactions
in advance. Subsequently, through extensive experiments with
a real dataset, the authors verified the merit of the proposed
approach in terms of detecting collision-prone trajectories at
four different intersections. A collision-prone scenario and its
resolution are illustrated in the intersection of Fig. 6. Traffic
surveillance is one of the core components of next-generation
ITS. LACs or HACs can act as relays to facilitate quick data
delivery between vehicles and edge nodes, which is associated
with a high risk of information leakage. To this end, for the
LAC server, the authors of [133] proposed an optimization
model based on a probabilistic data structure (PDS)-based
strategy with a triple Bloom filter that can detect cyber threats
of smart vehicles in advance.

3) MEC Support: During unexpected events, e.g., adverse
weather conditions and extreme traffic congestion, LAC/HACs
can act as flying RSUs. Such a scenario was described in
[134], providing the required infrastructure for diverse traf-
fic applications for the improvement of the QoS (shown in
Fig. 6). Through simulation, the authors demonstrated that the
proposed method could achieve satisfactory performance in
terms of network coverage and latency. In the context of social
Internet of Vehicles (SIoV) to strengthen social relationship
among vehicles, an LAC platform for SIoV, consisting of a
three-layer integrated architecture, was adopted in [135]. The
aim of the architecture was to jointly optimize the transmission
power of vehicles and the LAC trajectory under realistic con-
straints. Through simulations compared with existing schemes,
the authors demonstrated that the proposed architecture in the
LAC platform could effectively maintain social relationships
among vehicles.

4) Infotainment: To disseminate information (e.g., news
and entertainment), [136] proposed a new LAC-based wire-
less access infrastructure using the RaptorQ-protected content
diffusion technique. A simple illustration of this function
is shown at the right-hand side of Fig. 6. Through exper-
iments using real vehicles and LAC platforms, the authors
demonstrated that the RaptorQ-based content dissemination
mechanism in LAC platforms was highly efficient and cost-
effective in terms of transmitting information to multiple
moving receivers simultaneously. For the same purpose, in
[137], a 3D LAC-based simulation model was constructed
using the OMNET++ simulator with the objective of passing
information from the LACs to cars. Various path loss and
elevation models were considered to render the simulation
more realistic.

Disseminating data efficiently is one of the core tasks in
V2X networks. To this end, the authors of [138] proposed
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a novel LAC-based scheduling protocol that consists of a
proactive caching policy and a file-sharing strategy. Subse-
quently, through simulations, the authors demonstrated that the
proposed scheduling strategy could enhance the performance
of the system in terms of throughput and latency. Further,
to enhance the security of V2X communications, in [139], a
few physical layer security (PLS) strategies were proposed for
LACs and HACs. Comprehensive simulations were conducted,
the outcome of which revealed that the proposed strategies
in LACs and HACs could effectively handle many emerging
security threats in V2X communications.

C. Smart Factory

Among the many enabling technologies, 6G, industrial
IoT (IIoT) and aerial computing have been integrated with
cognitive skills and innovation to aid industries in increas-
ing production and delivering customized products more
quickly [140]. Such enabling technologies constitute Industry
5.0, an advanced production model focusing on the interac-
tion between machines and humans. This collaborative work
facilitates human capabilities, realizing higher productivity
and exceptionally easy automation for individuals and small
businesses. Such a feat was not possible a few years back.
Here, we provide a few examples of manufacturing models
with the assistance of LACs and HACs, the corresponding
schematic of which is illustrated in Fig. 7.

With the increasing trend of automation, IIoT has become
prevalent in smart factories for data communication and pro-
duction management. Wireless sensor networks (WSNs), the
most important components of the IIoT, are used for numerous
tasks in indoor industrial environments, such as irrigation and
the inspection of machines. However, these networks have a
low computational capability. Therefore, in [141], a WSN-
based safe navigation algorithm was proposed for micro aerial
robots (i.e., LACs) in the IIoT. A WSN with a 3D ranger
was used as a computational tool for micro flying robots
to detect obstacles in an indoor industrial environment, as
shown in Fig. 7. Through extensive simulations with multiple
micro flying robots, the authors verified the merit of the
proposed algorithm in terms of obstacle-aware monitoring
in dynamic factory environments. Meanwhile, agriculture is

becoming increasingly automated with the development of
robots and smart tractors. However, to guide these machines
in an automated manner, the accurate detection of crop rows
is crucial. In [142], based on images acquired by LACs,
the authors proposed a learning CRowNet model to detect
crop rows (shown in Fig. 7). The corresponding LAC server
was equipped with a model formed using SegNet (S-SegNet)
and a CNN-based Hough transform (HoughCNet) technique.
Through extensive numerical simulations compared with tra-
ditional methods, the authors demonstrated that the CRowNet
model achieved 93.58% accuracy.

D. Smart Grid

Smart grids have been widely used in recent years. A large
number of new power lines have been under real operation,
resulting in a significant growth of transmission line mileage
and power equipment. However, the monitoring, detection,
and maintenance of power transmission systems are essential
to ensure uninterrupted operations. Having noticed the risk
of failure in conventional manual monitoring methods, many
researchers have been working on the automation of power
line inspection, monitoring, and management using the latest
technologies [143], [144], such as aerial computing, image
processing, AI, and DL. Most of the existing studies emphasize
two crucial aspects of smart grid automation: 1) monitoring
and inspection and 2) control and management. We focus on
the computational aspect of aerial technologies in performing
these tasks. In Fig. 8, we briefly illustrate a few use cases of
the smart grid domain using aerial computing.

1) Monitoring and Inspection: Insulators are prevalent in
high-voltage transmission lines and play a key role in electrical
insulation and conductor conjunction. Insulator faults (e.g.,
glass insulators self-blast) pose a grave threat to power systems
as they can cause cascade failure. Considering the difficulty
of manual inspection, [145] proposed a new DL framework to
detect the location of broken insulators by capturing images
using HACs (shown in Fig. 8). Specifically, the proposed DL
model in the HAC server works in the low-SNR regime with
the assistance of two modules: R-CNN to detect objects and
U-net to classify pixels. Using a real dataset, via experiments
compared with the other methods, the authors showed that
the proposed approach achieves real-time accuracy. After
capturing images of transmission lines using HACs, [146]
also proposed an improved insulator defect detection method
based on an improved ResNeSt and region proposal network.
Through suitable experiments on a real dataset, the authors
showed that the proposed method deployed in the HAC server
can achieve 98.38% accuracy in detecting insulator defects.
Further, aerial computing is a feasible solution to inspect
power transmission lines. Consequently, while solving the
battery limitation problem of aerial computing platforms (e.g.,
HACs and LACs), a new idea was proposed in [147], suggest-
ing the use of a smart hangar as an assistant to achieve full
power automation, a path planning model for the LAC server
was developed. Through simulations, the authors demonstrated
that the proposed scheme in the LAC server is effective in
solving existing inspection problems.
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With the growing popularity of wind power, more turbines
are being deployed in remote areas. [148] considered the
deployment of HACs and LACs for inspecting turbines (shown
in Fig. 8). Using the forecasted wind conditions obtained
by the HAC-borne edge intelligence, two algorithms were
developed to minimize the flight time of the HAC and to
optimize power generation by the turbine. Through simulation
using a real dataset, it was shown that the proposed method
can generate 44% more power and reduce the flight time by
25% compared to an existing scheme. With the growth of
rooftop solar PV arrays in power generation, [149] designed a
new system called SolarFinder, which can be implemented in
a satellite computing platform to detect distributed solar PV
arrays over an area in a cost-effective and autonomous manner,
as shown in Fig. 8. The intelligence of SolarFinder is built on
the support vector machine (SVM) model and a deep CNN
approach jointly. Over 269,632 images captured by satellite,
the performance of SolarFinder was evaluated, and the results
showed that the pre-trained SolarFinder achieved a Matthews
correlation coefficient (MCC) of 0.17.

2) Control and Management: According to the require-
ments of a smart grid network, controlling non-technical losses
(e.g., electrical theft) is one of the most alarming concerns
in developing countries. In [150], the authors discussed a
possible communication network and a framework using LAC
platforms to control non-technical losses (i.e., tampering of
electrical devices) in energy distribution systems. An example
of this use case is shown in Fig. 8. For the effective man-
agement of power distribution networks, which consist of nu-
merous sparsely distributed grids, LEO satellites were utilized
as the key components of the communication infrastructure
to manage active networks [151]. Such a scenario is shown
at the left corner of Fig. 8. The effectiveness of the proposed
LEO satellite-equipped framework in terms of managing future
power supply networks was established through extensive ex-
periments. In [152], the feasibility of satellite communication
for connecting a smart grid with remotely located actuators
was also studied. In addition to the routing and channel
access mechanism, the possible optimization of computation
resources was studied. In [153], images were captured using a

satellite, and a hybrid solar forecasting method was proposed
to run the smart grid in a cost-effective manner. For the core
computing unit, desirable features and cloud cover factors
were extracted from the images using certain intermediate
mathematical formulae and a modified CNN, respectively.
Coupled with meteorological information and cloud cover
factors, a final forecasting model was developed.

E. Summary and Discussion

In this section, important vertical domain applications sup-
ported by aerial computing, including smart cities, smart
vehicles, smart factories, and smart grids, have been discussed.
A summary of the applications is presented in Table IV.

Data communication, processing, and management of
ground sensors and IoT nodes are crucial tasks to facilitate
applications in smart cities. Aerial computing platforms (e.g.,
LACs, HACs, and satellites) are effective in performing these
tasks owing to their flexible deployment and LoS communica-
tion features in air-to-air or air-to-ground links. However, even
with the use of aerial computing, several research challenges
require to be solved to obtain optimal performance, such as 3D
deployment, joint computation and communication resource
management, coverage, and trajectory design. Several existing
studies have addressed these challenges by adopting cutting-
edge techniques, such as convex optimization, graph theory,
and AI/ML tools. Because of security breaches, smart city
applications are associated with several challenges, such as
designing low-cost and efficient signature and authentication
protocols. Few studies have adopted the CB-PS scheme and
blockchain to solve these problems to a certain extent. Further,
aerial computing is a promising solution for realizing MEC
with other communication technologies, which is associated
with several challenges as well, such as task data allocation,
computation and communication resource management, and
aerial device deployment issues. City planning and manage-
ment are also crucial aspects of smart cities. Certain useful
tasks in the context of this use case are target tracking to facili-
tate city design, air pollution monitoring, and city map designs.
In addition to providing certain functional requirements, aerial
computing may aid in achieving surveillance and security
in smart cities. The effective utilization of aerial computing
is associated with certain challenges, such as the HAC/LAC
navigation strategy, deployment, and resource management.

In the domain of smart vehicles, aerial computing platforms
can be effectively utilized for various purposes, such as
traffic management, safety and security, flying RSUs, and
infotainment. Despite serving all these use cases, several
research challenges need to be solved, such as computation
and communication resource management, trajectory design of
aerial computing platforms, data analysis, and routing strategy.
Several existing studies have addressed these issues via AI/ML
techniques, probabilistic approaches, and optimization tools.

Finally, monitoring, inspection, and management are the
primary applications of aerial computing platforms in smart
manufacturing and smart grid domains. However, certain tech-
nical problems must be solved to obtain optimal outcome
from aerial computing platforms in these domains, such as
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TABLE IV
SUMMARY OF VERTICAL DOMAIN APPLICATIONS.

References Use Cases Analytical Tools Relevant Lessons

Sm
ar

t
C

iti
es

– [97]–[103]
– [104]–[107]
– [108]–[119]
– [120]–[126]

– Data collection, high-mobility mul-
timodal sensing, control and manage-
ment of sensing, enhancement of QoS
in crowd sensing, improvement of in-
formation coverage, and tracking mov-
ing targets.
– Serving IoT devices with effi-
cient resource utilization, task data al-
location, and trajectory optimization
with/without NOMA, and serving as
cache-enabled edge computing nodes.
– Automatic extraction of building
instances, target tracking, monitor-
ing urban environments, air quality
monitoring, rainfall monitoring, semi-
automated driving line automation,
building road networks, city planning,
extraction of urban tree inventory, and
modeling an urban parking lot.
– Physical security of smart buildings,
monitoring suspicious links, mitigat-
ing challenges of video surveillance
applications, constructing surveillance
models for multi-domain IoT, ensur-
ing security in data dissemination, and
trustworthy authentication.

– K-means method, Hungarian
algorithm, differential geometry,
CNN and DDPG, edge/cloud
computing, IRHS, sparse
algorithms based on compressive
sensing technology, and a novel
parametric sparse imaging
approach.
– Geographic merging of tasks,
optimization algorithms, and
convex approximation.
– Sparse representation theory,
collaborative workload sharing
algorithm, system development,
placement optimization, satellite
microwave downlink sensor
networks, inverse distance
weighted method, a novel
ADSM technique, decentralized
agent-based control architecture,
classification-based method, and
SLAM algorithm.
– Jamming signal, an
optimal scheduling algorithm,
optimization, low-cost CB-PS
scheme, and blockchain.

– Minimize the total transmission power
of IoT nodes, outperforms three existing
schemes, improves QoS, improves the cover-
age ratio of information by 21.42%, and can
track moving targets accurately.
– Provide energy-efficient AR services to
mobile users under tight delay constraints.
– Enhance performance compared with the
mainstream Mask R-CNN method; achieve
good precision compared with state-of-the-
art works; maximize the total weight of
completed tasks; achieve a lower AQI recog-
nition error; has close agreement with other
existing methods; achieve an average recall,
precision, and F1-score of 90.79%, 92.94%,
and 91.85%, respectively; achieve an overall
accuracy of 78%; and achieve centimeter-
level accuracy with a precision of 84.8%.
– Achieve an acceptable accuracy for indoor
environments, effectively monitor a suspi-
cious link, make video surveillance applica-
tions work efficiently, enhance the security
of the LAC server, perform authentication
tasks effectively, and proves that blockchain
is effective in collaborative security among
multiple LACs and HACs.

Sm
ar

t
Ve

hi
cl

es

– [131]
– [132], [133]
– [134], [135]
– [136]–[138]

– Vehicle detection for traffic manage-
ment and road network planning.
– Traffic collision detection and cyber
threat detection.
– Flying roadside units, and social
relationships among vehicles.
– Disseminating news and entertain-
ment information among vehicles and
sharing files in V2X.

– ML technique.
– SILSTM network and a PDS-
based scheduling technique.
– Algorithm and optimization
tools.
– RaptorQ-based content dissem-
ination mechanisms and opti-
mized scheduling policies.

– Achieve satisfactory performance in vehi-
cle detection.
– Can detect collision-prone interaction tra-
jectories and cyber threats effectively.
– Can achieve full network coverage under
different scenarios and optimize the transmit
power in vehicles and LAC trajectory.
– Can deliver infotainment service effec-
tively.

Fa
ct

or
ie

s – [141]
– [142]

– Monitoring industrial environments.
– Detecting crop rows in agriculture.

– A navigation algorithm.
– A model formed with SegNet
(S-SegNet) and HoughCNet.

– Can navigate accurately while detecting
obstacles.
– Can detect crop row with the accuracy of
93.58%.

Sm
ar

t
G

ri
ds

– [145]–[149]
– [150]–[153]

– Detecting insulator defects in trans-
mission lines, inspecting power trans-
mission lines, inspecting wind tur-
bines, and detecting distributed solar
PV arrays.
– Controlling non-technical losses in
energy distribution systems, manag-
ing active power distribution networks,
connecting two power distribution net-
works, and forecasting solar energy for
the smooth operation of smart grids.

– DL and customized neural net-
works, optimization tools, and
integration of an SVM model
with deep CNNs.
– Design of a suitable com-
munication network; integration
of LEO satellites, optimiza-
tion tools, and CNN-based ap-
proaches.

– Achieve 93.58% accuracy, achieve 44%
improvement in power generation and 25%
reduction in flight time, achieve an MCC of
0.17, which is 3 times better than a pre-
trained CNN-based approach, proves that a
smart hanger can effectively solve the limited
battery capacity problem of LACs/HACs.
– Can detect tampering of electrical devices,
show that LEO satellites are effective in man-
aging remote power generation sites, and can
forecast solar energy for smooth operation.

obstacle-aware monitoring a factory environment [141] and
crop row detection (using ML tools) in agriculture field
[142]. Furthermore, a few more problems in smart grids
using aerial computing, such as the detection of insulator
defects, management of solar PV array, and inspection of
power line and wind turbine, need to be resolved. In terms of
control and management, the main problems are electrical theft
detection, active and power distribution network management,
and forecasting solar energy for the smooth and continued
operation of smart grids, which can be addressed by equipping
special hardware and software in aerial computing platforms,

AI/ML, and optimization tools.

V. CHALLENGES AND FUTURE DIRECTIONS

In this section, we identify interesting research challenges
and highlight possible future directions for aerial computing.

A. Energy Efficiency

In aerial computing, achieving sustainable energy manage-
ment at LAC and HAC platforms and energy-efficient satellite
computing is a major concern. Data communications and
service delivery in satellite environments and space travel with
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airplanes, require large energy resources to ensure network
operations. In addition, the power consumption of aerial com-
ponents may vary depending on the operation mode. For exam-
ple, average power consumption of the UAV is 8.2412 W in the
idle mode and 245.2815 W in the horizontal movement mode,
and average power consumption is 8.2618 W and 8.2637 W
when the UAV performs communication transmissions with
WiFi and GPS, respectively [154]. Thus, we need to focus
on energy-efficient designs to realize sustainable and green
aerial computing. For example, the authors of [155] suggested
a space-air-ground architecture with a focus on maximizing
the system energy efficiency enabled by the joint optimization
of uplink transmission power control, sub-channel selection,
and deployment of aerial relays. This can be achieved by
dividing the original problem into two sub-problems, optimal
subchannel selection and power control policy, which are ob-
tained by available aerial relay deployment. Moreover, energy
refilling techniques to exploit renewable energy resources can
be useful for building sustainable aerial computing systems.
Aerial devices and satellites can harvest power from ambient
environments, such as wind, solar, vibration, and thermal
power, at the LAC platform to support their operations, e.g.,
data communications over aerial links.

B. Resource Management

Aerial computing accommodates data collection and com-
putation tasks to serve end IoT devices via different computing
platforms (e.g., LAC and HAC) and supports edge services
in future 6G networks. Compared to terrestrial computing
infrastructures, such as cloud data centers and cloudlet, com-
puting platforms in aerial computing possess limited storage
resources and battery capabilities, which would hinder the de-
ployment of aerial computing services, such as airplane-based
civil monitoring for terrestrial IoT environments [156]. Thus,
resource management strategies are urgently required to satisfy
seamless service delivery in space. Moreover, in the future 6G
era, intelligent aerial computing is expected to be a dominant
research area, where AI functions can be integrated into aerial
devices at the LAC platform to enable self-controlled and
autonomous aerial systems. In this context, training DL models
on these aerial devices with massive datasets may be infeasible
because of the high demands of computation and memory
resources, particularly when training with large-scale audio
and image data [157]. Therefore, optimizing on-device AI/DL
models is of paramount importance for solving the computa-
tional burden posed on aerial devices in the air. Consequently,
several solutions have been proposed to facilitate resource
management in aerial computing. For example, the authors of
[158] considered a resource management solution for aerial
computing systems wherein a joint optimization of task of-
floading, resource allocation mechanism, and the trajectory of
aerial devices in the air was derived with respect to terrestrial
users’ latency requirements. Thus, the energy of the aerial
devices was minimized, while a longer flight duration was
achieved. Moreover, it is also necessary to develop on-device
learning solutions to support self-learning aerial computing
systems. For example, improved network architecture, training

optimization, and hardware design were used to accelerate on-
device data training [159]. A streamlined slimming framework
was developed and combined with a consecutive tensor layer
to improve the training rates. Simulation results show that the
proposed method can enhance the training rate by up to 30%
compared to traditional approaches without compromising
learning accuracy. Thus, this approach provides opportunities
for designing intelligent flying devices in aerial computing.

C. Network Stability

The topology of aerial computing fluctuates with the number
of nodes, battery levels, and varying communication condi-
tions. The trajectories and speeds of aerial components and
flying devices also vary owing to the terrestrial application
requirements and environmental dynamics, e.g., different al-
titudes of buildings in smart cities in the LAC platform and
different orbital altitudes of multiple LEO satellites. Further,
the operational complexity and unpredictability of aerial com-
ponents in space can make the involved aerial computing
system unstable. In fact, aerial nodes can join and leave
unpredictably, or their flight can be stationary, slow, or fast.
Thus, achieving network sustainability in aerial systems is
critical. As a promising method, an optimal tracking policy
was constructed in [160] for each aerial device in an aerial-
based network to mitigate the varying network topology issues
in aerial computing operations, e.g., flying trajectories of
UAVs. The key focus was on achieving an adaptive surround-
ing network configuration for varying channel quality and
communication bandwidth resources. Subsequently, a particle
swarm optimization algorithm was developed to optimally
schedule the energy allocation among a set of aerial nodes,
while the prediction error of the surrounding node locations
was minimized. Another study in [161] built an observer,
which could monitor surrounding unmanned aerial nodes in
an aerial environment using Kalman filtering with respect to
the maximum number of parallel targets, measurement time,
measurement success rate, and measurement noise. Thus, the
optimal measurement policy was obtained for network topol-
ogy monitoring, aiming to achieve an accurate prediction of
trajectory topology in autonomous aerial computing systems.
Moreover, blockchain can help build scalable aerial comput-
ing networks thanks to its decentralized feature for enabling
large-scale interconnection among servers and devices, e.g.,
unmanned aerial components in the HAC platform [162]. Each
aerial device works as a blockchain node to build decentralized
data services, such as data sharing, data communications, and
data storage, without the need for a central server for better
networking scalability.

D. Large-Scale Network Optimization

In aerial computing, aerial devices operate on a large scale,
and cooperative optimization is needed to utilize the advan-
tages from multiple and distributed network datasets, such as
diverse channel features and environment properties, while
improving the network quality. For example, performing an
optimal trajectory control policy for all manned and unmanned
aerial components is a challenge on the HAC platform if only
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the characteristics of an aerial device are obtained [163]. More
importantly, the datasets of future intelligent aerial networks
are distributed over large-scale networks rather than being cen-
trally located. Therefore, there is an urgent need for distributed
and large-scale optimization approaches to enable scalable
and intelligent aerial computing applications. A large-scale
trajectory optimization solution was proposed in [164] for the
Internet of aerial devices, for example, UAVs and balloons,
through the use of a multi-agent DRL algorithm. This enables
aerial devices to collaboratively develop a distributed sense-
and-send protocol in an aerial computing setting, facilitating
large-scale sensing and data task transfer in cellular networks.

E. Security, Privacy, and Trust

Although 6G-based aerial computing can offer global cov-
erage and diverse QoS provision to industrial applications,
critical issues related to security, privacy, and trust must be
solved. Adversaries may attack aerial communication chan-
nels and deploy data breaches in the flying BSs on the
HAC platform, as the management of lower altitude-based
servers is limited owing to the physical distance [165]. AI
techniques are extensively used to enable intelligent aerial
computing, but they often require centralized data collection
for training, which raises potential privacy issues owing to
the exposure of sensitive information in the air. Moreover, the
deployment of satellite-terrestrial communications in space can
face critical challenges caused by untrusted environments, as
third parties and attackers can compromise the data exchange
among aerial devices, BSs, and terrestrial IoT users. There-
fore, blockchain is a promising solution [166] for building
trust and establishing secure decentralized satellite-ground
communications for aerial computing systems. Blockchain,
with its traceability and trustworthiness, can provide enhanced
security for aerial computing systems [167]. The data from
aerial communications, such as device location and channel
information, can be stored in the data ledger where blocks
are built based on immutable transactions. This makes the
information in the blockchains resistant to data modifications
or threats. The elimination of centralized authority of the
blockchain also helps mitigate single-point failures in involved
aerial networks. In addition, smart contracts can be used as
self-executing software running on blockchain for providing
automatic authentication and verification to ensure reliable
aerial communications [166]. This technique attains further
relevance in the 6G era because aerial computing systems tend
to be decentralized and deployed on a large scale, which can
be realized using the decentralization feature of blockchain. To
preserve data privacy in aerial computing, perturbation tech-
niques, such as differential privacy and dummy operations, are
particularly helpful in protecting data leakage against external
threats during data exchange. For example, differential privacy
was adopted in [168] to realize privacy-enhanced intelligent
aerial communications by introducing artificial noise into the
trained gradients at aerial devices. This solution helps hide
sensitive information while guaranteeing convergence, such
that adversaries cannot retrieve useful data samples.

VI. CONCLUSION

Edge computing has become an indispensable component of
the present network infrastructure, but it also has various lim-
itations owing to the emergence of new services and applica-
tions and the expansion of the network. We highlighted the fact
that the current computing infrastructure does not meet new
demands and requirements. In this regard, the concept of aerial
computing was introduced and comprehensively reviewed in
this study. First, we presented an overview of aerial computing,
starting from the system architecture to the reference model
and fundamental features, and compared it with conventional
computing paradigms, such as cloudlet, fog computing, and
MEC. Next, we presented a set of key enabling technologies
and discussed the use of aerial computing in vertical domain
applications. Finally, we discussed the research challenges and
promising future directions pertaining to aerial computing. As
the development of aerial computing is still in a preliminary
stage and there are many unexplored issues, we believe that
this paper has revealed certain important lessons and key ideas
that will drive further research and unlock the full potential of
a comprehensive 6G computing infrastructure in the future.
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