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Abstract—Nowadays, the industrial Internet of Things (IIoT)
has played an integral role in Industry 4.0 and produced massive
amounts of data for industrial intelligence. These data locate
on decentralized devices in modern factories. To protect the
confidentiality of industrial data, federated learning (FL) was
introduced to collaboratively train shared machine learning
models. However, the local data collected by different devices
skew in class distribution and degrade industrial FL perfor-
mance. This challenge has been widely studied at the mobile
edge, but they ignored the rapidly changing streaming data and
clustering nature of factory devices, and more seriously, they
may threaten data security. In this paper, we propose FEDGS,
which is a hierarchical cloud-edge-end FL framework for 5G
empowered industries, to improve industrial FL performance
on non-i.i.d. data. Taking advantage of naturally clustered fac-
tory devices, FEDGS uses a gradient-based binary permutation
algorithm (GBP-CS) to select a subset of devices within each
factory and build homogeneous super nodes participating in FL
training. Then, we propose a compound-step synchronization
protocol to coordinate the training process within and among
these super nodes, which shows great robustness against data
heterogeneity. The proposed methods are time-efficient and can
adapt to dynamic environments, without exposing confidential
industrial data in risky manipulation. We prove that FEDGS has
better convergence performance than FedAvg and give a relaxed
condition under which FEDGS is more communication-efficient.
Extensive experiments show that FEDGS improves accuracy by
3.5% and reduces training rounds by 59% on average, confirming
its superior effectiveness and efficiency on non-i.i.d. data.

Index Terms—AI, Federated Learning, Industrial IoT, Data
Heterogeneity, Client Selection, Cluster Learning.

I. INTRODUCTION

In recent years, the Internet of Things (IoT) has played
an increasingly integral role in the industrial community.
Taking logistics sorting and automatic object identification
as examples. Optical character recognition (OCR) cameras
on logistics pipelines detect and read characters on packing
boxes in order to sort them [1]. At the same time, the
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surrounding surveillance cameras are constantly monitoring,
automatically identifying objects through optical recognition
of the characters on their badges, and confirming whether
the machines, robots, vehicles, and workers in the factory
are legal entrants [2]. These optical sensors collect a huge
amount of industrial data. In order to tap the value of these
data, advanced data mining technologies are needed, especially
machine learning (ML). However, gathering the industrial big
data to the cloud leads to unbearable transmission overhead,
and also violates data privacy regulations. Taking the idea
of task offloading, federated learning (FL) [3] sinks model
training from the cloud to the edge. OCR cameras use local
optical data to train local OCR models, then upload their local
model updates to the cloud to update the global model. The
global model is then synchronized to OCR cameras. These
steps are repeated until the global model converges. In this
way, FL preserves data confidentiality because the raw data
does not leave the devices.

The combination of industrial IoT (IIoT) and FL opens a
door for smart industry [4]–[6]. FL provides powerful privacy-
preserving tools for mining decentralized industrial data, and
IIoT technologies such as smart sensors and mobile robots
provide rich resources (e.g., data, computation) for FL. Despite
these benefits, compared with OCR in natural scenes, FL in
industries requires higher accuracy to ensure the reliability of
industrial operations. However, sensors’ local data distribu-
tions can be highly heterogeneous due to differences in times,
locations, functions, and so on. Taking the logistics industry
of cross-border e-commerce as an example, the Singapore
warehouse transports more packing boxes to Singapore than
other countries, so the optical characters in the word “Singa-
pore” appear more times than other characters. For this reason,
the number of optical images of each character captured by
different OCR cameras (in different warehouses) is skewed and
inconsistent. Other examples are device failure detection [7]
and object detection [8], which also prove the existence of data
heterogeneity in real-world IIoT. These skewed distributed
data are called non-independent and identically distributed
(non-i.i.d.) and can lead to FL performance degradation [9],
which becomes more challenging when local data of sensors
are constantly changing.

The non-i.i.d. data challenge has inspired the research field
of heterogeneous FL, especially the field of mobile edge
computing (MEC) [5], [10]–[19], which currently remains
open. These kinds of literature have achieved great success
in the context of MEC, but the following characteristics of
IIoT make them still limited:
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1) Higher requirements for data security. Industries (e.g.,
manufacturing, logistics, and transportation) often face
even more serious data threats due to owning a vast
amount of valuable information, so they possess the
most urgent and critical requirement to increase security
to protect data. Therefore, any form of disclosure [10]–
[13] or tampering [14]–[16] of the confidential raw data
is not allowed.

2) Rapidly changing streaming data on data-intensive
sensors. Data-intensive IIoT sensors such as OCR cam-
eras require high sampling rates to capture the real-time
phenomenon information and produce large amounts of
data. In order to save storage space, these data will
overwrite the old data that has been processed, forming
a data stream similar to a first-in-first-out (FIFO) data
queue. In such a dynamic environment, static approaches
no longer work for IIoT, for example, [17], and the K-
Center clustering algorithm in [18].

3) Natural geographical clustering property. In modern
industrial parks, IIoT devices in each factory are geo-
graphically adjacent, which makes them naturally clus-
tered into groups and interconnected by highly reliable
networks, for example, through regional 5G base stations
(see Fig. 1). However, this valuable property is often
ignored, and the rich communication resources at the
edge are not fully utilized [12], [19], [20], which limits
the improvement of industrial FL.

The above characteristics distinguish “FL in IIoT” from
“FL in non-IIoT” (e.g., FL in Edge). Few literature has been
proposed to tackle the non-i.i.d. data challenge of FL in
IIoT, such as approaches based on centroid distance weighted
averaging [7], reinforcement learning [21], and kmeans-based
cohorts [22]. However, none of them take into account the
changing local data distribution or the natural geographic
clustering property of devices in IIoT. More importantly,
they do not address the fundamental problem causing FL
model performance to degrade, namely the divergence in class
distributions [9].

To address the root cause of non-i.i.d. data, this paper aims
to propose an effective approach to minimize the divergence
in class distributions among heterogeneous devices. Taking
advantage of the natural property of geographical clustering,
we can select a subset of devices in each factory to con-
struct “FL super nodes” with consistent class distributions.
These super nodes can be treated as homogeneous clients
participating in FL training, without exposing the confidential
industrial FL process in risky data manipulation. However,
designing such an approach is not trivial. Firstly, selecting a
subset of devices in each group to minimize the class distribu-
tion divergence among groups is a 0-1 integer programming
problem with vector weight constraints, which is proved to
be NP-complete. More challenging, this procedure needs to
be invoked frequently to adapt to rapidly changing local data
and the mobility of mobile IIoT devices (e.g., robots, drones),
which places high demands on execution latency. Secondly,
even if class distributions among FL super nodes are forced
to be homogeneous, devices’ local data in each FL super node
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Fig. 1: A network architecture example in the modern industrial park.
End devices within each factory submit locally trained ML models to
nearby 5G edge base stations. Edge servers synchronize these models
and upload the synchronized models to the cloud server for global
synchronization. The cloud center can be located on the cloud to
synchronize ML models from multiple industrial parks, or it can be
a micro data center located in an industrial park to synchronize ML
models of edge servers in this park.

can still be skewed. If not handled properly, these challenges
will still degrade FL model performance.

To minimize the data heterogeneity among groups and
realize efficient client selection, this paper proposes a novel
gradient-based binary permutation optimizer GBP-CS to solve
the above NP-complete client selection problem. GBP-CS runs
a constraint-preserving gradient descent optimization proce-
dure directly in the 0-1 integer space, and can build homoge-
neous FL super nodes in a very short time. Then, we propose
Federated Group Synchronization (FEDGS), which is a hi-
erarchical cloud-edge-end FL framework for 5G empowered
modern industries, to improve industrial FL performance on
non-i.i.d. data. FEDGS uses a compound-step synchronization
protocol to train ML models, which can suppress data hetero-
geneity within and among FL super nodes. More specifically,
FEDGS uses a single-step synchronization protocol (e.g.,
SSGD [23]) within super nodes because of its robustness
against data heterogeneity, and a multi-step synchronization
protocol (e.g., FedAvg [24]) among homogeneous super nodes
to reduce communication overhead. Theoretical analysis shows
that FEDGS has both the convergence upper bound and
optimality gap better than FedAvg in the presence of non-i.i.d.
data, and can be more time-efficient under a relaxed condition.
Finally, we evaluate FEDGS on the most widely adopted
non-i.i.d. benchmark dataset FEMNIST [25], and compare it
with 10 advanced approaches, including FedAvg, FedMMD
[26], FedFusion [27], FedProx [28], IDA [29], CGAU [30],
FedAvgM [31], and FedAdagrad, FedAdam, FedYogi from
[32]. The main contributions of this paper are summarized
as follows.
• We propose a hierarchical cloud-edge-end FL framework

FEDGS for 5G empowered modern industries, which
uses a novel compound-step synchronization protocol to
coordinate the training process within and among groups.
The new protocol is robust against data heterogeneity and
can effectively improve industrial FL performance.

• We propose a novel GBP-CS algorithm to select a subset



3

of devices from each group to build homogeneous FL
super nodes, which can find a desirable selection strategy
in a very short time. GBP-CS is a general optimizer for
constrained 0-1 integer programming problems and can
be used for other practical cases such as game matching.

• We analyze the convergence rate and optimality gap
of FEDGS and give a relaxed condition under which
FEDGS is more time-efficient than FedAvg. Theoretical
results show that FEDGS not only converges closer to the
optimal, but also faster.

• Extensive experiments compared to 10 advanced ap-
proaches show that FEDGS improves FL accuracy by
3.5% and reduces training rounds by 59% on average.
The results highlight the superior effectiveness and effi-
ciency of FEDGS on non-i.i.d. data.

II. RELATED WORK

In this section, we categorize related works into four types
according to the techniques they use.

Data Sharing and Augmentation. This type of approach
aims to minimize the class distribution divergence among de-
vices by sharing or augmenting FL clients’ local datasets. For
the sharing-based approaches, Zhao et al. propose to distribute
a small portion of globally shared data (e.g., open available
data) to clients’ devices [9]. Yao et al. collect metadata shared
by voluntary clients to perform controllable meta updating
[10]. Yoshida et al. reward FL clients for contributing local
datasets and propose a hybrid learning mechanism wherein the
server updates the model using the shared data and clients’
local models [11]. These approaches achieve a considerable
improvement in FL accuracy, but they are suspected of leaking
private data due to the need to share clients’ local datasets.
Besides, open-available datasets do not always exist, especially
in fields where data is highly confidential.

For the augmentation-based approaches, Duan et al. observe
that the imbalance among different classes can also degrade
FL accuracy [14]. Hence, they augment classes with fewer
samples by simply random offset, rotation, cropping, and
scaling. Jeong et al. [33] propose to generate new samples
using a globally trained conditional generative adversarial
network (CGAN) to build unskewed local datasets. Similarly,
Wang et al. generate synthetic data in the minority class
based on linear interpolation to re-balance local datasets on
edge devices [15]. These approaches avoid the leakage of FL
clients’ private data. However, they still bring credibility crises.
Speculative clients can use the synthetic data generated out of
thin air to participate in FL training while hiding their original
data. Also, they can pretend that the synthetic data is a large
volume of high-quality data for more rewards. Therefore, these
operations (i.e., data sharing, data augmentation) are high risk
and should be prohibited.

Hyperparameter Tuning. Hyperparameters play an im-
portant role in FL training convergence. Some works have
been explored in hyperparameter tunings, such as tunning the
number of local iterations and the learning rate. Wang et al.
point out that the optimal performance can be achieved when
the number of local iterations equals one [34]. However, the

constrained resources (e.g., bandwidth, time, power) prevent
us from doing this. In practice, large local iterations are
more commonly used. For example, Yu et al. carefully set
the number of local iterations and obtain a considerable
convergence rate [35]. In addition, Li et al. point out that
decaying the learning rate is necessary for FL convergence
with large local iterations [36]. For a strongly convex and
smooth objective function, FedAvg can converge to the optimal
after applying learning rate decay, with a convergence rate
of O(1/T ), where T is the total number of local updates
on a single device. These works give rigorous proofs for
convergence analysis, which guides follow-up optimization on
FL. However, carefully tuning these hyperparameters (e.g.,
number of local iterations, learning rate, and decay rate)
requires multiple attempts and incurs high time costs.

Client-Side Adaption. This type of approach emphasizes
that FL clients should adaptively retain global knowledge
while improving local knowledge. Some examples are given
to integrate them. Yao et al. point out that the global model
contains more global knowledge and should be kept as a refer-
ence, rather than simply thrown away. Based on this idea, they
adopt a two-stream model to transfer the global knowledge
to the local model [26]. By minimizing the maximum mean
discrepancy (MMD) loss, the two-stream model can extract
more generalized features and learn better local representa-
tions. Then, in [27], they use the 1 × 1 convolution, vector
weighted average, and scalar weighted average operators to
fuse the global and local features. Li et al. point out that
too many local updates will cause the FL training to diverge,
especially under the non-i.i.d. data setting [28]. Hence, they
add a proximal penalty term to local objective loss functions
to constrain the local model to be closer to the global model
and avoid excessive divergence. Rieger et al. point out that
clients express representations in different patterns and their
shared knowledge may be obfuscated after synchronization
[30]. Hence, they adopt conditional gated activation units to
enable clients to condition their units. In this way, clients can
identify whether the global feature is expressed and how to
modulate the global pattern. These approaches impose more
storage footprint and computation on resource-constrained
client-side devices, requiring higher resource allocation and
also higher energy consumption.

Server-Side Adaption. This type of approach explores
how local models can be adaptively aggregated and how the
global model can be adaptively optimized on the server-side.
Yeganeh et al. aggregate clients’ local models according to
their weights, by capitalizing an adaptive weighting approach
based on the inverse distance between the local model param-
eters and the averaged model parameters [29]. By using this
approach, out-of-distribution models will be weighed down
and the global model can have a lower variance. The authors
also explored the combination with other metrics, such as the
training accuracy and the data size. However, these variants did
not perform well in our experiments, probably because some
honest but “out-of-distribution” devices were over-suppressed.
On the other hand, inspired by the ability of momentum
accumulation to dampen oscillations [37], Hsu et al. adopt
the momentum optimizer on the server-side and observe a
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TABLE I: Summary of Main Symbols.

Symbol Explanation
L Loss function (e.g., cross-entropy).
R Maximum training rounds.
T Number of iterations in each round.

K, Km Number of devices (in factory m).
L Number of devices to be selected per factory.

Lrnd Number of devices to be randomly pre-sampled per factory.
Lsel Number of devices to be selected by GBP-CS per factory.
M Number of factories (also the number of groups).
F Number of classification classes.
η Local learning rate.
ωt Parameters of the global ML model at t-th iteration.
ωm
t Parameters of the ML model on BS m at t-th iteration.

ωm,k
t Parameters of the local ML model on device k in factory

m at t-th iteration.
Dm,k Local dataset of device k in factory m.
Dm,k

t A mini-batch data of device k in factory m at t-th iteration.
Nm,k Size of local dataset of device k in factory m.
n, nm,k Batch data size (of device k in factory m).
nm Total size of data batches in factory m.
am,k
t Data size vector of F label classes of mini-batch dataDm,k

t .
Am

t Data size matrix of am,k
t of Km − Lrnd devices.

bm
t Total data size vector of the pre-sampled Lrnd devices.
Cm Set of all devices in factory m.
Cmt Set of L selected devices in factory m at t-th iteration.
Pm,k Local data distribution of device k in factory m.
Pm,k
t Local data distribution of mini-batch data Dm,k

t .
Pm
t Mean data distribution of Pm,k

t over selected devices Cmt .
Preal Real-world global data distribution.

significant improvement in FL accuracy [31]. Then, Reddi et
al. introduce three advanced adaptive optimizers (i.e., Adagrad
[38], Adam [39], and Yogi [40]) to update the server-side
global model [32]. These adaptive federated optimizers enable
the use of adaptive learning rates for different gradients and
achieve great success, but unfortunately, they also require
careful tunning of initial learning rates, and we observed
drastic accuracy oscillation in the experiments.

III. SYSTEM MODEL

IoT devices in modern industrial parks can be divided
into two types: Fixed devices (e.g., monitoring cameras,
temperature and humidity sensors) and mobile devices (e.g.,
patrol drones and logistics robots). In the industrial park,
due to the advantages of improved performance, reduced
communication cost, and decentralized scalability, FL plays an
important role in many industrial applications. For example,
an anomaly detection application based on on-device federated
monitors could be applied for IIoT scenarios, where sensing
and monitoring devices may locate in harsh environments
with high voltage and high radiation, and they may move
around the factory, making them impractical to access wired
networks [41]. 5G mobile networks have been considered to
be enhanced to support key performance features of industrial
applications such as high throughput, low latency, and high
scalability [42]. These features enable industrial FL applica-
tions to transmit model data of a large number of IIoT devices
at a high cycle frequency, with a high data rate and low latency.
Therefore, we consider a hierarchical cloud-edge-end network
architecture empowered by 5G cellular wireless networks for
training industrial FL applications, as shown in Fig. 1.
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Devices

Multi-Step Synchronization

One-Step 
Synchronization
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WAN
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Fig. 2: Overview of FEDGS framework and workflow. 1© Each BS
selects L devices to form a super node. 2© Each selected device
trains its local model for one mini-batch SGD step. 3© Each BS
synchronizes local models in its group. 4© Top server synchronizes
models of BSs. 1© 2© 3© loop T times every 4©.

In this case, a modern industrial park has M factories, each
factory m has Km smart devices. We consider the devices in
the same factory as a group. These devices are equipped with
embedded computing chips to perform lightweight processing,
for example, training ML models on local data streams. The
devices connect to the nearby base station (BS) (also identified
as m) through 5G cellular wireless networks. Then, BSs
communicate FL model data with the cloud center through
the Internet. Specifically, the device k of factory m collects
streaming sensory data in real-time and changes the local
dataset Dm,k, whose class distribution is defined as Pm,k.
The class distributions of different devices can be highly
heterogeneous due to diverse local usage patterns. Thus, we
have Pm1,k1 6= Pm2,k2 6= Preal(∀m1 6= m2, k1 6= k2), where
Preal is the real-world global class distribution. The goal of
industrial FL is to find the optimal model parameters ω∗ that
can minimize the global loss function,

ω∗ , argmin
ω

M∑
m=1

Km∑
k=1

L
(
ω,Dm,k

)
. (1)

The traditional workflow is briefly described below. In each
round, a small subset of devices is randomly selected to
participate in FL training. These devices utilize local datasets
for several epochs to train their local ML models and upload
these local models to connected BSs. BSs aggregate these
local models and upload the aggregated models to the top
server in the cloud. The top server globally aggregates BSs’
models, updates the global ML model, and synchronizes the
updated model back to all BSs and end devices. These steps
are repeated until the global model parameters ω∗ converge.
However, this approach causes performance degradation to
industrial FL due to data heterogeneity among devices, and
it ignores the streaming nature of industrial data. Hence,
in Section IV, a data heterogeneity-robust federated group
synchronization approach is presented to address this issue.

We summarize the main symbols used in this paper in Table
I. The framework and workflow of the proposed FEDGS are
illustrated in Fig. 2.



5

IV. FEDGS: FRAMEWORK AND WORKFLOW

The core idea is to strategically select a small subset of de-
vices in each group to form FL super nodes with homogeneous
data distributions. Then, these super nodes can be regarded
as homogeneous clients to participate in FL. To resolve the
heterogeneity in local datasets of devices inside each super
node, the one-step synchronization protocol (e.g., SSGD) can
be useful because it was proved to be equivalent to centralized
SGD, which gives it robustness against data heterogeneity.
Meanwhile, the multi-step synchronization protocol (e.g., Fe-
dAvg) can be used to keep FEDGS communication efficient,
since the class distributions of super nodes are aligned. In this
way, the problem of data heterogeneity is decomposed from
the entire population of devices to a small number of devices
in multiple groups, making it efficiently and effectively solved
by the compound-step synchronization protocol. In this way,
the performance degradation of industrial FL is addressed.

The detailed design is given in Alg. 1. In the initialization
stage, the top server first initializes the global ML model
parameters ω0 and synchronizes ωm0 ← ω0 to BSs. Then, it
collects local class distributions Pm,k(∀m, k) from all devices
to estimate the real-world global class distribution Preal,

Preal = norm

(∑
m∈M

∑
k∈Km

Nm,kPm,k
)
, (2)

where Nm,k is the local data size of device k in group m,
and norm(·) is a probability normalization function.

Client Selection. In each iteration t, each BS m selects L
devices from its group Cm to obtain a homogeneous super
node Cmt via the Select-Clients-Via-GBP-CS interface. The
detailed algorithm GBP-CS is presented in Section V.

Local Training. In each group m, each selected device k
fetches a mini-batch of data Dm,kt from local dataset Dm,k
with batch size nm,k. These mini-batch streaming data are one-
shot and will not be used again. Then, the device k downloads
the model ωm,kt−1 ← ωmt−1 from the connected BS m and trains
ωm,kt−1 for one mini-batch gradient descent step with learning
rate η,

ωm,kt ← ωm,kt−1 −
η

nm,k
∇ωL

(
ωm,kt−1 ,D

m,k
t

)
. (3)

Internal Synchronization. The locally trained model ωm,kt

will be uploaded to BS m for internal synchronization,

ωmt ←
∑
k∈Cmt

nm,k

nm
ωm,kt , (4)

where nm =
∑
k∈Cmt

nm,k is the total data size of all used
mini-batches in Cmt . Then, the BS m updates its model with
ωmt and synchronizes ωmt in its group.

We call the above client selection, local training, and in-
ternal synchronization as a one-step synchronization iteration
because the local update on each device is only performed
once before each synchronization. The one-step synchroniza-
tion will loop T iterations before each round of external
synchronization.

Algorithm 1 Federated-Group-Synchronization (Main)

Input: Number of iterations in each round T ; Maximum
training rounds R; Number of groups M ; Number of
selected devices per group L.

Output: Well-trained global FL model ωTR.
1: Initialize ω0 and ωm0 ← ω0 and estimate Preal by Eq. (2);
2: for each internal synchronization t = 1, · · · , TR do
3: for each BS m in 1, · · · ,M in parallel do
4: Client Selection: Select L devices from group
Cm to form a homogeneous super node Cmt : Cmt ←
Select-Clients-Via-GBP-CS (L, Cm,Preal);

5: for each device k in Cmt in parallel do
6: Local Training: Fetch a mini-batch of data
Dm,kt and update the local model ωm,kt by Eq. (3);

7: end for
8: Internal Synchronization: BS m aggregates local

models {ωm,kt |∀k ∈ Cmt } by Eq. (4) and update ωmt ;
9: if t%T == 0 then

10: External Synchronization: The top server
globally aggregates {ωmt |∀m} by Eq. (5), and synchro-
nizes the updated global model ωt to BSs: ωmt ← ωt;

11: end if
12: end for
13: end for
14: return ωTR;

External Synchronization. For every time that the one-
step synchronization is performed T iterations, BSs can upload
their model ωmt to the top server for global aggregation,

ωt ←
1

M

∑
m∈M

ωmt . (5)

The globally aggregated model ωt will be used to update the
global model on the top server and synchronized to BSs.

Since the external synchronization is performed every T
one-step synchronization iterations, we call it a multi-step
synchronization round. The above steps will be repeated R
rounds (i.e., TR iterations) to obtain the converged model
parameters ω∗ ← ωTR.

The above workflow can be seen as an equivalent version
of FedAvg, which performs local updates on FL super nodes
for T iterations with larger batch sizes, but homogeneous local
datasets among super nodes. By capitalizing on an effective
client selection strategy to make these super nodes homo-
geneous, the FL training process can be robust against data
heterogeneity, and FL model performance can be improved.
In the following section, we give our solution GBP-CS.

V. CLIENT SELECTION VIA GBP-CS

In this section, we formulate the client selection problem
as a 0-1 integer programming problem with vector weight
constraints, and present our novel Gradient-based Binary Per-
mutation approach, namely GBP-CS, to solve this problem in
an acceptable short time, with a desirable solution.
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A. Problem Modeling

Given a factory (i.e., group) m with Km industrial devices
Cm (|Cm| = Km). The next batch data of device k follows
the distribution Pm,kt ( 6= Preal) and the data size vector of
F label classes is am,kt = nm,kPm,kt ∈ ZF×1. Our goal is
to select L devices from group m at iteration t to form a FL
super node Cmt whose overall class distribution Pmt satisfies,

min
Pm

t ,E[{Pm,k
t |∀k∈Cmt }]

∥∥Pmt − Preal
∥∥
L2
. (6)

Note that if Pm,kt is fixed, Eq. (6) will always find a fixed
device set Cmt and other devices Cm\Cmt will have no chance to
be selected. To keep the randomness of client selection so that
each device has the same probability to be selected, we use a
trick to randomly pre-sample Lrnd devices before strategically
selecting the remaining Lsel = L − Lrnd devices. Formally
speaking, in group m, we first sample Lrnd devices at random
to obtain Cmrnd, whose next data batches have a total data size
of vector bmt ∈ ZF×1. Then, Lsel devices are further selected
from the remaining Km − Lrnd devices Cm\Cmrnd, whose
data size matrix is Am

t =
[
am,1t ,am,2t , · · · ,am,K

m−Lrnd
t

]
∈

ZF×(Km−Lrnd), with the goal to minimize Eq. (6).
We use the following mathematical model to describe the

above problem. Let eTKm−Lrnd
∈ 11×(K

m−Lrnd) and eTF ∈
11×F , the objective is to find a solution xmt ∈ Z(Km−Lrnd)×1,
where xmt (i) ∈ {0, 1} and eTKm−Lrnd

· xmt = Lsel, that

min
xm
t

∥∥∥∥ Am
t xmt + bmt

eTF (Am
t xmt + bmt )

− Preal

∥∥∥∥
L2

, (7)

s.t. xmt (i) ∈ {0, 1} , (8)

eTKm−Lrnd
· xmt = Lsel. (9)

Let batch sizes of all data batches be the same n =
nm,k (∀m, k), then we have eTF (Am

t xmt + bmt ) = nL and
a simplified model,

min
xm
t

‖Am
t xmt − ymt ‖L2

, (10)

s.t. ymt = nLPreal − bmt , (11)
xmt (i) ∈ {0, 1} , (12)

eTKm−Lrnd
· xmt = Lsel. (13)

Note that in the mathematical model above, we considered
data size and data quality in the objective (i.e., minimizing
the distribution divergence) for client selection, but assumed
that IIoT devices have similar hardware capabilities. However,
if system heterogeneity should be considered, ESync [43] is
compatible and can be useful. Then, we give a simple proof
to show that the above problem is NP-complete.

Lemma 1 (Problem A): Given an integer matrix A and an
integer vector y, the goal is to find whether there is a 0-1
vector x such that Ax = y. This 0-1 integer programming
problem is NP-complete [44].

Proposition 1 (Problem B): Let Lemma 1 hold and constrain
the number of 1 in x to be Lsel (Eq. (13)). This variant problem
is at least NP-complete.

Proof 1: To solve problem A, we can solve problem B for
K times with Lsel = 1, 2, · · · ,K, where K is the size of

Algorithm 2 Select-Clients-Via-GBP-CS

Input: Number of selected devices per group L; Device set
Cm of group m; Global class distribution Preal.

Output: L selected devices Cmt .
1: Pre-sample Lrnd devices Cmrnd at random, and construct

bmt from Cmrnd and Amt from Cm\Cmrnd;
2: Initialize s← 1, ymt by Eq. (11), and x1 by Eq. (14);
3: Calculate the distance ds = ‖Am

t xs − ymt ‖L2
;

4: repeat
5: Calculate the gradient gs = ∇xds;
6: Select an index pair (i0→1, i1→0) by Eq. (15)-(16);
7: Make a copy xs+1 ← xs and permute xs+1 (i0→1)

and xs+1 (i1→0) by Eq. (17);
8: Update the distance ds+1 = ‖Am

t xs+1 − ymt ‖L2
;

9: s← s+ 1;
10: until ds > ds−1;
11: Construct the set of L selected devices Cmt = Cmrnd ∪ Cmsel,

where Cmsel is defined as Eq. (18);
12: return Cmt ;

vector x. This input transformation has a linear complexity
O (K). Problem B outputs YES if Eq. (10) could reach 0,
otherwise, it outputs NO. This output transformation has a
constant complexity O(1). Hence, problem A can reduce to
problem B in a polynomial complexity, which makes problem
B also NP-complete.

We can see from Proposition 1 that it is almost impossible
to find the optimal solution in a polynomial complexity. To
make FEDGS time efficient, a sub-optimal but fast solution is
preferred, as described in the following subsection.

B. Gradient-based Binary Permutation Client Selection

To make the NP-complete client selection problem solvable,
in this paper, we propose a novel gradient-based approximate
approach, namely GBP-CS. The core idea is to permute (0,1)
pairs of binary selection variables in x with the steepest
opposite gradients. In other words, the variable x(i) with the
selection value of 0 and the smallest gradient will be permuted
with the variable x(j) with the selection value of 1 and the
largest gradient. In this way, the number of variables whose
selection value equals one (i.e., the vector weight constraint) is
maintained, and constraints (12) and (13) can be satisfied. This
binary permutation operation will be performed iteratively to
minimize the objective Eq. (10).

The pseudo code of GBP-CS is given in Alg. 2. Given the
data size matrix Am

t and ymt = nLPreal −bmt , GBP-CS first
initializes the solution variable x1 as follows,

x1 ,
{
TLsel

(x̃1)|x̃1 = (Am
t )
−1

ymt

}
, (14)

where (Am
t )
−1

ymt is the Moore-Penrose Inverse solution,
TLsel

(x̃1) means to set the largest Lsel values of x̃1 to 1,
and the others to 0. Then, GBP-CS calculates the objective
distance ds = ‖Am

t xs − ymt ‖L2
and the gradient gs = ∇xds.

The gradient gs(i) indicates the opposite direction in which
xs(i) should be updated. The greater the absolute value of
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gs (i), the smaller the ds can be obtained by updating xs (i), so
gs (i) appears as a key gradient [45]. Based on this idea, GBP-
CS selects a pair of selection variables (xs (i0→1) ,xs (i1→0))
with opposite key gradients for permutation. More specifically,
i0→1 is the identity of the device with the selection value of
0 and the smallest gradient,

i0→1 , argmin
i
{gs (i) |xs (i) = 0,∀i ∈ [1,Km − Lrnd]} .

(15)
Similarly, i1→0 is the identity of the device with the selection
value of 1 and the largest gradient,

i1→0 , argmax
i

{gs (i) |xs (i) = 1,∀i ∈ [1,Km − Lrnd]} .
(16)

Then, GBP-CS permutes the values of xs (i0→1) and
xs (i1→0) to obtain a new solution xs+1,

xs+1 (i0→1) = 1, xs+1 (i1→0) = 0. (17)

Eqs. (15)-(17) will be repeated until the objective distance ds
no longer decreases. Finally, we can construct

Cmsel , {device i|x∗(i) = 1,x∗ = xs−1,∀i ∈ [1,Km−Lrnd]},
(18)

and obtain the set of L selected devices Cmt = Cmrnd ∪ Cmsel.
GBP-CS has a complexity of O(F 3 + αF 2 + α2Fτ + L),

where α = Km − Lrnd and τ is the number of GBP-
CS iterations. In our experiment, GBP-CS can obtain a very
desirable solution close to the optimal and has a high execution
efficiency comparable to the random sampling approach.

VI. PERFORMANCE ANALYSIS

In this section, we analyze the optimality gap and conver-
gence rate of FEDGS, and qualitatively compare them with
those of FedAvg in the presence of non-i.i.d. data. Then, we
give the condition under which FEDGS is time efficient.

A. Convergence Analysis

Assumption 1: The local function L are µ-strongly convex,
β-smooth, and ρ-Lipschitz.

Proposition 2: For the gradient gmt on FL node m in
the federated setting and the gradient gct in the centralized
setting, we have an upper bound δm of the gradient divergence∥∥∥(Pmt )

T · gmt −
(
Preal

)T · gct∥∥∥ proportional to the distribution
divergence

∥∥Pmt − Preal
∥∥.

Proof 2:∥∥∥(Pmt )
T · gmt −

(
Preal

)T · gct∥∥∥
=

∥∥∥∥∥ (Pmt )
T · gmt − (Pmt )

T · gct
+(Pmt )

T · gct −
(
Preal

)T · gct
∥∥∥∥∥

≤
∥∥∥(Pmt )

T · (gmt − gct)
∥∥∥+ ∥∥∥(Pmt − Preal

)T · gct∥∥∥ = δm.

It is easy to know that δm captures the impact of divergence
in class distributions

∥∥Pmt − Preal
∥∥. Generally speaking, the

smaller the distribution divergence, the smaller the upper
bound of the gradient divergence δm.

Proposition 3: Let δ , E [δm], the convergence upper
bound of FEDGS is O( 1

R(T−δh(T )) ) , and its optimality gap

is bounded by O( 1
TR + δh(T ) + o(

√
δh(T )
T )).

Proof 3: As mentioned above, the convergence performance
of FEDGS is theoretically equivalent to that of FedAvg, in
which M FL super nodes run mini-batch SGD with batch size
nL for T local iterations in each round. Then, the convergence
upper bound of FEDGS after TR iterations can be inferred
from Lemma 2 in [34],

L (ωTR)− L (ω∗) ≤
1

TR
(
ηϕ− ρδh(T )

Tε2

) ,
where h (T ) , 1

β ((ηβ + 1)
T − 1) − ηT . When η ≤ 1

β , the
optimality gap G = L(ω(f))− L (ω∗) is bounded by

G ≤ 1

2ηϕTR
+ ρδh (T ) +

√
1

4η2ϕ2T 2R2
+
ρδh (T )

ηϕT

≤ 1

ηϕTR
+ ρδh (T ) +

√
ρδh(T )

ηϕT
.

Since GBP-CS forces FL super nodes to have aligned class
distributions, FEDGS has an upper bound of the gradient
divergence smaller than FedAvg δFEDGS < δFedAvg. Therefore,
it is easy to infer from Proposition 3 that, FEDGS has both
the convergence upper bound and the optimality gap smaller
than those of FedAvg, thus it can improve the FL convergence
speed and accuracy performance.

B. Time-Efficiency Condition

We analyze the time cost of FEDGS in each round (T one-
step synchronization iterations) and that of FedAvg in each
round (T local iterations), and give the condition under which
FEDGS can achieve higher time efficiency than FedAvg.

Time Cost of FEDGS. The time cost of FEDGS TFEDGS
is determined by communication, computation and client se-
lection. The communication delays are brought by internal
synchronizations T int

comm and external synchronizations T ext
comm.

For the internal synchronization, the delay of uploading local
models of size S from L devices to their BS is SL

Bint
up log2(1+γBS)

,
and the delay of synchronizing the model of size S from the
BS to L devices is SL

Bint
down log2(1+γdevice)

, where Bint
up and Bint

down

are the uplink and downlink bandwidths between devices and
BS, γBS and γdevice are the received signal-to-noise ratio
(SNR) of BS and devices. For the external synchronization,
the delay of uploading models of size S from M BSs to the
top server is SM

Bext
up log2(1+γtop)

, and the delay of synchronizing
the global model of size S from the top server to M BSs is

SM
Bext

down log2(1+γBS)
, where Bext

up and Bext
down are the uplink and

downlink bandwidths between BSs and the top server, γtop is
the SNR of the top server. Hence, we have the communication
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time cost for each internal synchronization and each external
synchronization as follows,

T ext
comm =

SM

Bext
up log2 (1 + γtop)

+
SM

Bext
down log2 (1 + γBS)

,

(19)

T int
comm =

SL

Bint
up log2 (1 + γBS)

+
SL

Bint
down log2 (1 + γdevice)

.

(20)

Let the delay of each local update be Tcomp and the delay of
client selection procedure be Tselect. Each round the internal
synchronization is performed T times, the total delay is

TFEDGS = T ext
comm + T ·

(
Tselect + T int

comm + Tcomp

)
. (21)

Time Cost of FedAvg. The time cost of FedAvg TFedAvg

is mainly determined by communication and computation be-
cause the client selection procedure is simple random sampling
so that the selection delay is negligible. The communication
delays come from the uplink and downlink model transmission
between the top server and devices. The delay of uploading
local models of size S from ML devices to the top server is

SML
Bext

up log2(1+γtop)
, and the delay of synchronizing the global

model of size S from the top server to ML devices is
SML

Bext
down log2(1+γdevice)

. Hence, we have the communication time
cost for each round of synchronization as follows,

T̃ ext
comm =

SML

Bext
up log2 (1 + γtop)

+
SML

Bext
down log2 (1 + γdevice)

.

(22)
Then, the total time cost when FedAvg performs T local
updates and one round of synchronization is

TFedAvg = T̃ ext
comm + T · Tcomp. (23)

In order to simplify the analysis result, we make the
following assumptions.

Assumption 2: (a) The uplink and downlink bandwidths are
equal: Bext

up = Bext
down = Bext, Bint

up = Bint
down = Bint; (b) The

SNRs of the top server, BSs, and devices are equal: γtop =
γBS = γdevice = γ.

Then, we can give the following condition for hyperpa-
rameter setting, under which FEDGS can achieve higher time
efficiency than FedAvg.

Proposition 4: Let Assumption 2 hold and β = log2(1+γ),
the time cost per T iterations in each round satisfies TFEDGS <

TFedAvg if TL
M(L−1) <

Bint

Bext , where

TFEDGS =
2SM

βBext
+ T

(
Tselect +

2SL

βBint
+ Tcomp

)
, (24)

TFedAvg =
2SML

βBext
+ TTcomp. (25)

Proof 4: Eq. (24) can be obtained by combining Eqs. (19)-
(21), and Eq. (25) can be obtained by combining Eqs. (22)-
(23). Let TFEDGS − TFedAvg < 0, we have

2SM (1− L)
βBext

+
2TSL

βBint
+ TTselect < 0

⇒ Bext

Bint
SL+ Tselect ·

βBext

2
<
SM (L− 1)

T
.
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Fig. 3: Distribution divergence optimization curves of GBP-CS with
different initializers.

In our experiment, GBP-CS is quite fast, whose time cost
(15 milliseconds) is negligible compared to other delays.
Therefore, we assume Tselect ≈ 0 to simplify the result and
obtain

Bext

Bint
SL <

SM (L− 1)

T
⇒ TL

M (L− 1)
<
Bint

Bext
.

In modern industrial applications, 5G enables indoor in-
dustrial use cases that were impossible before, supported
by high data rate, ultra-low delay, and extreme density of
wireless communications [46]. In reality, the data rate of
5G edge is about 10-100 times of that in WAN, that is,
Bint/Bext ∈ [10, 100]. Therefore, we can easily set T,M,L
to satisfy the condition in Proposition 4, so that the time
efficiency of FEDGS can be guaranteed.

VII. EXPERIMENTAL EVALUATION

A. Experiment Setup

Environment and Hyperparameter Setup. In the experi-
ment, we consider an IIoT application where OCR technology
is used in the identification of packing boxes, machines,
robots, vehicles, and workers, through recognizing the optical
characters on their badges. To this end, we aim to train a high-
accuracy OCR model in the federated setting, where sensors’
local character images are confidential and skewed in the
class distribution. The real-world FEMNIST [25] dataset is
chosen to train our federated OCR model, as it is built by
partitioning 805,263 optical digit and character images into
3,550 devices, following non-i.i.d.-like class distributions and
uneven data sizes. Our experiment platform contains K = 350
OCR cameras and M = 10 factories, each factory m has
Km = 35 OCR cameras (hereinafter referred to as devices).
In each iteration, L = 10 devices are selected from each
factory to participate in the federated OCR training. A four-
layer convolutional neural network [Conv2D(32), MaxPool,
Conv2D(64), MaxPool, Dense(2048), Dense(62)] is used as
the training model because it is lightweight and suitable
for resource-constrained industrial devices. Unless otherwise
specified, we use the standard mini-batch SGD to train local
ML models, with the learning rate η = 0.01, the batch size
n = 32, the number of iterations per round T = 50 and the
maximum number of rounds R = 500.
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Fig. 4: Comparison of (a) distribution divergence, (b) execution time, and (c) optimization curve among different samplers.

GBP-CS Initialization. The choice of the initial point x1

in GBP-CS is critical to the quality of the solution, because
a bad initial point may cause GBP-CS to fall into a local
minimum. In the experiment, Lrnd = 2 devices are pre-
sampled at random, and the other Lsel = L − Lrnd = 8
devices are selected using GBP-CS, with the following three
initialization methods.

1) Random Initialization. Set Lsel values in x1 to 1 at
random and leave other values at 0.

2) Zero Initialization. All values in x1 are first initialized
to 0. Then, a warm-up step is performed to meet the
vector weight constraint Eq. (13), in which one value
x1 (i) with the smallest gradient is set to 1 iteratively
until the number of value 1 in x1 reaches Lsel. The
warm-up step requires additional Lsel iterations.

3) Moore-Penrose Inverse Initialization (MPInv). MP-
Inv is first used to solve the least square solution
x̃1 = A−1y of the unconstrained objective function
min
x
‖Ax− y‖L2

. Then, Lsel elements with the largest
values in x̃1 are set to 1 and others are left at 0 to obtain
the initial point x1.

Comparison Algorithms. To highlight the efficiency and
effectiveness of the proposed GBP-CS, we consider the follow-
ing five benchmark client selection methods for comparison.

1) Random Sampler (Random): From each group, Lsel

devices are uniformly and randomly sampled.
2) Monte Carlo Sampler (MC): Repeat the random sampler

1000 times and the solution minimizes Eq. (10) is used.
3) Brute Sampler (Brute): Brutely search for the optimal

Lsel devices by traversing all feasible solutions to meet
Eqs. (10)-(13).

4) Bayesian Sampler (Bayesian): Search for a sub-optimal
Lsel devices using Bayesian optimization [47] to meet
Eqs. (10)-(13). By default, we set the number of initial
points to 5 and exploration iterations to 25.

5) Genetic Sampler (GA): Search for a sub-optimal Lsel

devices using genetic algorithm [48] to meet Eqs. (10)-
(13), in which the constrained 0-1 vector solutions are
regarded as genes and suffer from selection, crossover,
mutation and elimination. By default, we set the popu-
lation size to 100, the mutation probability to 0.001, and

the number of generations to 100.
Except for the baseline FedAvg [24], other nine advanced

approaches are also experimentally compared with FEDGS in
the presence of non-i.i.d. data. They are FedMMD [26], Fed-
Fusion [27], FedProx [28], IDA [29], CGAU [30], FedAvgM
[31], and FedAdagrad, FedAdam, FedYogi from [32].

Implementation. We implement FEDGS on a standard
FL simulator Leaf-MX1 (an MXNET [49] implementation of
LEAF [25]). The code implementation is open-available on
Github: https://github.com/Lizonghang/fedgs.

B. Results and Discussion

Comparison of initialization methods in GBP-CS. The
optimization curves of the class distribution divergence of
Zero, Random, and MPInv initializers are shown in Fig.
3. Both Zero and MPInv initializers successfully find high-
quality solutions (0.029 and 0.030, respectively) close to
the optimal of the brute force search (0.028). Instead, the
Random initializer falls into a poor local optimal (0.044).
Furthermore, the MPInv initializer is much faster because it
does not require an additional warm-up procedure like the
Zero initializer. Therefore, GBP-CS is default initialized with
MPInv initializer.

Comparison among GBP-CS and other samplers. Since
the procedure of GBP-CS client selection is performed every
iteration, both the quality and time cost of the solution are
critical to FEDGS performance.

We first compare the distribution divergence (defined as
Eq. (6)) among GBP-CS and other five benchmark samplers.
Generally speaking, the smaller the gap between the class
distribution Pmt of the group m and the global distribution
Preal, the smaller the distribution divergence and the better
the sampler. The distribution divergence of M = 10 factories
is shown in Fig. 4a. As expected, the most commonly used
random sampler in FedAvg leads to a high divergence in class
distribution (0.072 ∼ 0.105) and causes non-i.i.d. data among
groups, while the brute force sampler can always minimize
the divergence (0.026 ∼ 0.038). The random sampler and the
brute force sampler give the upper and lower bounds of the
distribution divergence, and solutions of other samplers should

1Leaf-MX: https://github.com/Lizonghang/leaf-mx

https://github.com/Lizonghang/fedgs
https://github.com/Lizonghang/leaf-mx
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Fig. 5: Accuracy surface of FEDGS over different (a) batch size n
and iterations per round T ; (b) number of groups M and number of
selected devices per group L.

locate in this interval, among which GA and GBP-CS samplers
perform best (0.028 ∼ 0.041 and 0.029 ∼ 0.042, respectively).

In terms of execution time, FEDGS prefers samplers with
a very short execution time, because high-frequency client se-
lection may introduce a non-negligible latency to FEDGS and
significantly slow down FL training. Fig. 4b compares the
execution time of the above samplers. Let us focus on the brute
force, GA, and GBP-CS samplers, because their solutions
are of the best quality. The brute force sampler requires
979 seconds to find the optimal solution, whose latency is
too long to be acceptable. Therefore, FEDGS prefers a sub-
optimal solution in an acceptable short time. GA and GBP-
CS samplers seem to be good choices, and the proposed
GBP-CS sampler is 66× faster than the GA sampler, with a
negligible 15 milliseconds and a loss of distribution divergence
by only 0.001.

To highlight GBP-CS more intuitively, we draw the op-
timization curve of distribution divergence over execution
time in Fig. 4c. The results show that the proposed GBP-
CS sampler converges to a high-quality solution 0.029 closest
to the optimal 0.028 in the shortest time, demonstrating the
superior effectiveness and efficiency of GBP-CS.

Effects of hyperparameters in FedGS. Hyperparameters
may have great effects on FEDGS. To explore these effects,
we perform a grid search on experimental hyperparameters,
including the batch size n, the number of iterations per round
T , the number of devices selected per group L, as well as the
environmental hyperparameter, the number of groups M . Fig.

TABLE II: Test accuracy, test loss and convergence speed of
FEDGS vs ten federated approaches.

Test Accuracy Test Loss Rounds To 82%

FedAvg (Baseline) 82.1% 0.587 478

FedProx 82.0% 0.586 497

IDA 81.0% 0.628 ×
IDA+INTRAC 81.0% 0.618 ×
IDA+FedAvg 80.5% 0.687 ×

CGAU 83.3% 0.509 202

FedMMD 83.0% 0.564 378

FedFusion+Conv 81.7% 0.624 ×
FedFusion+Multi 82.0% 0.591 486
FedFusion+Single 80.7% 0.627 ×

FedAvgM 84.4% 0.820 68
FedAdagrad 83.8% 0.583 264

FedAdam 85.0% 0.662 71

FedYogi 84.6% 0.590 76

FEDGS 86.0% 0.435 147

5a visualizes the test accuracy over different n and T settings,
where n is chosen from {8, 16, 32, 64} and T is chosen from
{10, 30, 50}. The results show that a moderately large T can
improve the accuracy of FEDGS, while the batch size n has
little effect. Fig. 5b visualizes the test accuracy over different
M and L settings, where M is chosen from {5, 10, 20} and
L is chosen from {5, 10, 20, 40}. Without loss of generality,
both more groups and more selected devices can bring gains
in FL model accuracy because more devices’ data is included.
In this paper, n = 32, T = 50 and L = 10 are used by
default to meet the condition in Proposition 4. Please note
that M = 10 is determined by the real-world environment
instead of an adjustable hyperparameter.

Comparison among FEDGS and other federated ap-
proaches. We take ten advanced federated approaches for
comparison to show the state-of-the-art performance of the
proposed FEDGS in the presence of non-i.i.d. data. The test
accuracy, test loss, and training rounds required to reach the
accuracy of 82% are listed in Table II, and detailed training
curves are given in Fig. 6. Unless otherwise specified, all
the comparison approaches use the local epoch e = 5 by
default. In the following, we will compare these approaches
and analyze their results, respectively.

FEDGS vs FedProx. FedProx adds a proximal term to local
loss functions to penalize divergent local models. We tune
the penalty constant µ = {0.05, 0.1, 0.5, 1.0} to find the best
result in Figs. 6a and 6d. However, FedProx performs poorly
in our case, with the accuracy of 82.0%, not even exceeding
the baseline accuracy of 82.1% of FedAvg. The reason may
be that the proximal penalty term will slow convergence by
forcing local models closer to the starting point [28]. Instead,
the proposed FEDGS improves the baseline accuracy by 3.9%
and achieves the accuracy of 86.0%.

FEDGS vs IDA. IDA weighs model parameters of devices
based on their inverse distance to the averaged model parame-
ter during aggregation. We combine IDA with inverse training
accuracy coefficients (IDA+INTRAC) and normalized data
size coefficients (IDA+FedAvg) as suggested by the authors.
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Fig. 6: Comparison of FEDGS and FedAvg, FedProx, IDA, CGAU, FedMMD, FedFusion, FedAvgM, FedAdagrad, FedAdam, FedYogi.
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(d) FedYogi

Fig. 7: Accuracy Heatmap of (a) FedAvgM, (b) FedAdagrad, (c)
FedAdam and (d) FedYogi.

However, Figs. 6b and 6e shows that IDA-series approaches
suffer an accuracy degradation (80.5% ∼ 81.0%). That is
because devices with large parameter deviations are over-
suppressed, causing the global model to lose data knowledge
on these devices. Besides, IDA should cache model parameters
uploaded by all devices until the average model parameter
and inverse distance coefficients are calculated, which takes
up huge memory space on the server.

FEDGS vs CGAU. CGAU uses gated activation units on
top of a pre-trained model to enable client-specific expres-
sion of heterogeneous data. We train a 1-layer and a 2-
layer CGAU classifier with 256 units, respectively (namely
FineTunning+1×CGAU and FineTunning+2×CGAU). The
dropout layer is not used as the authors did because we
observed a 3.3% drop in accuracy after using them. Figs. 6c
and 6f show that FineTunning+1×CGAU achieves a higher
accuracy of 83.3%, which improves the baseline accuracy by
1.2% and benefits from the fast convergence speed of the pre-
trained model. Despite these gains, the proposed FEDGS can
still achieve 2.7% higher accuracy, lower test loss, and faster
convergence.

FEDGS vs FedMMD. FedMMD uses transfer learning [50]
to better merge the knowledge of the global model into the
local model. As suggested by the authors, we use the MMD
distance and the penalty coefficient γ = 0.1. As shown in
Figs. 6g and 6j, FedMMD improves the baseline accuracy by
0.9% and achieves the accuracy of 83.0%, but the proposed
FEDGS further improves that by another 3%.

FEDGS vs FedFusion. FedFusion fuses the global and local
features using operators such as 1 × 1 convolution (FedFu-
sion+Conv), vector weighted average (FedFusion+Multi) and

scalar weighted average (FedFusion+Single). However, the
results in Figs. 6h and 6k show that FedFusion+Multi and
FedFusion+Conv only achieve the accuracy similar to the base-
line (82.0% and 81.7%, respectively), and FedFusion+Single
even decreases the accuracy by 1.4%. Instead, the proposed
FEDGS is obviously better and faster.

FEDGS vs FedOpt. FedOpt is a general paradigm for a
series of adaptive federated optimizers, which dynamically ad-
justs learning rates of all gradients to accelerate convergence,
including FedAvgM, FedAdagrad, FedAdam, and FedYogi.
Preliminary experiments show that the convergence perfor-
mance of these approaches has indeed significantly improved,
but they are particularly sensitive to initial learning rates. As
the authors did, we search for the best setting of the client-
side and server-side initial learning rates in Fig. 7 and give the
best results in Figs. 6i and 6l. Other hyperparameters follow
the authors’ setting, for example, β = 0.9 for FedAvgM,
β1 = β2 = 0 for FedAdagrad, β1 = 0.9, β2 = 0.99
for FedAdam and FedYogi, and τ = 0.001. The results
show that these approaches can improve the baseline accuracy
by 1.7% ∼ 2.9% with fast convergence speed, especially
FedAdam. However, the accuracy of the proposed FEDGS is
still 1% higher.

To sum up, FedAvgM, FedAdagrad, FedAdam, and FedYogi
are generally better than other comparison approaches (some
of which cannot even reach the accuracy of 82%, marked with
“×” in Table II). Instead, FEDGS achieves the state-of-the-art
accuracy of 86.0%, which is 3.9% higher than the baseline
and 3.5% higher than the averaged accuracy. In addition,
FEDGS can also reach the accuracy of 82% in only 147
rounds, which is 3.3× faster than FedAvg and reduces training
rounds by 59% on average. These comprehensive experiments
prove the effectiveness and efficiency of FEDGS.

VIII. CONCLUSION

FL in IIoT is emerging as a field of great value with
increasing interest from both academia and industry, however,
it still faces the challenge of non-i.i.d. data, which currently
remains open. In this paper, we propose FEDGS, which is a
hierarchical cloud-edge-end FL framework for 5G empowered
modern industries. To minimize the divergence in data distri-
butions among factories, we propose a constrained gradient-
based optimizer, namely GBP-CS, to select a subset of devices
in each factory to construct homogeneous FL super nodes.
GBP-CS can find a desirable selection strategy in a very short
time, and can also be used for other practical cases such as
game matching. Then, to eliminate the impact of residual non-
i.i.d. data within the super nodes, we use a compound-step
synchronization protocol to coordinate the training process.
This protocol uses the data heterogeneity-insensitive one-step
synchronization protocol within the super nodes to suppress
the negative impact of data heterogeneity, then uses the multi-
step synchronization protocol among the super nodes to reduce
communication frequency. The proposed approach takes into
account the natural geographical clustering property of factory
devices and can adapt to rapidly changing streaming data
at runtime, without exposing confidential data in high-risk
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data manipulation. Theoretical analysis shows that FEDGS has
both the convergence rate and optimality gap better than the
benchmark FedAvg, and can be more time-efficient under
a relaxed hyperparameter condition. Extensive experiments
compared to ten advanced approaches demonstrate the state-
of-the-art performance of FEDGS on non-i.i.d. data.
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[34] Wang, Shiqiang, Tiffany Tuor, Theodoros Salonidis, et al.: “Adaptive
federated learning in resource constrained edge computing systems.”
IEEE Journal on Selected Areas in Communications (JSAC) 37, no. 6,
pp. 1205-1221, 2019.

[35] Yu, Hao, Sen Yang, and Shenghuo Zhu: “Parallel restarted sgd with
faster convergence and less communication: Demystifying why model
averaging works for deep learning.” In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence (AAAI) 33, no. 1, pp. 5693-5700, 2019.

[36] Li, Xiang, Kaixuan Huang, Wenhao Yang, et al.: “On the convergence
of fedavg on non-iid data.” In: International Conference on Learning
Representations (ICLR), 2020.

[37] Nesterov, Yu: “Gradient methods for minimizing composite functions.”
Mathematical Programming 140, no. 1, pp. 125-161, 2013.

[38] Ward, Rachel, Xiaoxia Wu, and Leon Bottou: “AdaGrad stepsizes: Sharp
convergence over nonconvex landscapes.” In: International Conference on
Machine Learning (ICML), pp. 6677-6686, 2019.

[39] Kingma, Diederik P., and Jimmy Ba: “Adam: A method for stochastic
optimization.” In: International Conference on Learning Representations
(ICLR), 2015.

[40] Zaheer, Manzil, Sashank Reddi, Devendra Sachan, et al.: “Adaptive
methods for nonconvex optimization.” In: 32nd Conference on Neural
Information Processing Systems (NeurIPS), Montréal, Canada, 2018.
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