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Abstract—This paper investigates a wireless powered intelli-
gent radio environment, where a fractional non-linear energy
harvesting (NLEH) is proposed to enable an intelligent reflecting
surface (IRS) assisted wireless powered Internet of Things (WP
IoT) network. The IRS engages in downlink wireless energy
transfer (WET) and uplink wireless information transfer (WIT).
We aim to improve the overall performance of the considered
network, and the approach is to maximize its sum throughput
subject to constraints of two different types of IRS beam patterns
and time durations. To solve the formulated problem, we first
consider the Lagrange dual method and Karush-Kuhn-Tucker
(KKT) conditions to optimally design the time durations in
closed-form. Then, a quadratic transformation (QT) is proposed
to iteratively transform the fractional NLEH model into the
subtractive form, where the IRS phase shifts are optimally
derived by the Complex Circle Manifold (CCM) method in each
iteration. Finally, numerical results are demonstrated to promote
the proposed scheme in comparison to the benchmark schemes,
where the benefits are induced by the IRS compared with the
benchmark schemes.

Index Terms—Intelligent radio environment, intelligent reflect-
ing surface (IRS), non-linear energy harvesting (NLEH), phase
shifts, Quadratic Transformation (QT), Complex Circle Manifold
(CCM)

I. INTRODUCTION

Intelligent radio environment has been regarded as one
of promising and revolutionized paradigms in beyond fifth-
generation (B5G) or sixth-generation (6G) networks. Its main
purpose is to introduce a holographic communication model
by adjusting wireless propagations so as to improve the net-
work throughput and energy efficiency by introducing a novel
passively reflecting communication mode, namely, intelligent
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reflecting surface (IRS) [1], [2]. An IRS is made up of plentiful
low-cost and small-size reflecting arrays/elements, each of
which aims to induce a certain phase shift to perform the
passive reception and reflection on the intended signals [3],
[4]. Hence, the IRS is a better fit to improve spectral efficiency
or system throughput for existing wireless networks without
the redesign of the network architectures and the extra energy
consumption.

In recent years, Internet of Things (IoT) has been exploited
to connect myriads of wireless devices (WDs), i.e., sensors and
machines, with the majority of them featuring small-size and
low-power, as well as being typically vulnerable to the energy-
constrained issue. Existing research endeavours focus on the
periodical maintenance or regular replacement for the IoT
sensors batteries in order to extend their operational lifetime,
as well as the design of the optimal energy-efficient policy for
IoT networks. These solutions may incur various challenges
or even are not able to enjoy energy-efficient benefits. For
instance, most of IoT sensors are employed for remote mon-
itoring for emergence services, which are generally deployed
in some challenging environments leading to difficulty for
the maintenance of the sensors’ batteries. In addition, the
energy-efficient optimization policies may introduce a very
high computational complexity, making it more difficult to
configure the hardware architecture of IoT sensors. Thus, the
energy-limited battery lifetime of IoT sensors still remains
unconquered [5].

In order to conquer the energy-constrained issue for the
battery of IoT sensors, radio frequency wireless energy transfer
(RF WET) has recently been emerged to exploit the elec-
tromagnetic wave (EW). Specifically, multiple WDs collect
energy from RF signal radiated from a dedicated energy supply
in wireless fashion, and the harvested energy is utilized for
future wireless information transfer (WIT). This procedure
facilitates a well-known name, i.e., wireless powered com-
munication network (WPCN), where a classic “harvest-then-
transmit” was adopted to coordinate the transmission time
duration for the WET and WIT [5]. By provisioning with
stable and controllable energy supplies, the WPCN is able
to effectively enhance energy-efficient performance of IoT
sensors to refurbish their own battery instead of the traditional
maintenance or replacement. Hence, the WPCN confirms its
energy-efficient highlights, which is a better fit to apply this
promising technique in IoT networks.



A. Literature Review

Recently, various existing works investigated the integra-
tion of IRS and wireless powered communications (WPC),
which aims to simultaneously improve energy collection and
information delivery capabilities by passively controlling en-
ergy/information reflection [6]–[13]. In [6], the integration
of IRS and simultaneous wireless information and power
transfer (SWIPT) was considered in a multiple-input multiple-
output (MISO) downlink system. Specifically, the weighted
sum harvested power (WSHP) is maximized to jointly design
the transmit precoders for information transmission and energy
collection, as well as the passive reflection coefficients at the
IRS. Also, the Rate-Energy (R-E) trade-off was exploited to
achieve the high passive beamforming gain and the WET
efficiency enhancement. This scenario has been extended to
a distributed IRSs case in [7], specifically, a penalty-based
approach was proposed to iteratively solve the transmit power
minimization (TPM) problem to confirm its benefits induced
by IRS for WET coverage and significant power saving perfor-
mance gain. In [8], the weighted sum rate (WSR) is maximized
in a MIMO SWIPT system subject to the constraints of
transmit power budget and energy harvesting requirement. By
exploiting the iterative block coordinate descent (IBCD) algo-
rithm, the formulated problem was decomposed into several
sub-problems, which are separately solved to jointly design
the transmit precoders and the passive IRS phase shifts.

The IRS was introduced in the WPCN to engage energy
and information reflections in [9], where multiple IoT devices
first harvest energy from RF signal actively radiated from a
power station (PS) as well as passively reflected from the IRS.
Then, each IoT device uses the collected energy to deliver its
own message to an access point (AP) with the aid of IRS by
using time-division multiple access (TDMA). The IRS beam
patterns and the time slots are jointly designed to maximize
the sum throughput at the downlink WET and uplink WIT.
The dual method and KKT conditions were employed to
derive the transmission time scheduling, and the Majorization-
Minimization (MM) algorithm was utilized to optimally derive
the closed-form IRS phase shifts. Moreover, the time switching
and power splitting protocols were applied in the IRS to
schedule a part of RF energy to guarantee its control circuit
operation [10], [11]. Specifically, the semidefinite program-
ming (SDP) relaxation and one-dimensional numerical method
were considered to determine the optimal transmission time
scheduling and IRS phase shifts [10], while [11] proposed
a novel low complexity scheme based on the Lagrange dual
method, KKT conditions, and MM algorithm to optimally
design the closed-form transmission time scheduling and IRS
phase shifts. In [12], non-orthogonal multiple access (NOMA)
scheme was introduced in an IRS assisted WPCN. Specifi-
cally, a hybrid AP (HAP) first broadcasts energy to multiple
IoT devices, which then deliver their own information using
NOMA. By maximizing the sum throughput, different IRS
passive beam patterns of downlink WET and uplink WIT
were proved to be identical, which can mitigate the extra
signalling overhead and computational complexity. Also, the
semi-closed-form IRS phase shifts can be derived by using

an alternating optimization (AO) algorithm. Similar scenario
was extended to multi-cluster case, where multiple IoT devices
were grouped into clusters [13]. The IRS participates to
passively reflect energy and information at the downlink WET
and uplink WIT durations, respectively. The hybrid TDMA
and NOMA protocol were considered to balance complexity
and performance during the WIT phase, where each cluster
transmits information by TDMA and each IoT device share
one sub-time slot by NOMA to deliver information [13].

Although the aforementioned works focused on the applica-
tion of the IRS to enhance WET and WIT by jointly optimizing
different types of IRS’s phase shifts, these references only
considered the linear energy harvesting (LEH) model at the
IoT devices, which assumes the constant energy conversion
efficiency. Specifically, the the harvested energy in the LEH
model generally considers an ideally linear function with
respect to the RF received power, which fails to capture
the saturation state in large input power level. Hence, a
more practical non-linear EH (NLEH) model is a better fit
to capture this saturation property. Recently, a few existing
works investigated the NLEH model in the integration of
the IRS and WPC [14]–[16]. The sigmoid function based
NLEH model was studied to exploit the minimization of the
transmit power [14] and the maximization of the minimum
energy efficiency [15], which alternately optimizes energy and
information beamformers, as well as the IRS beam pattern.
Also, another error function based NLEH model has been
applied in the IRS assisted SWIPT system [16], where robust
active transmit beamforming, IRS passive beam pattern, and
the users’ PS factor were designed by the IBCD algorithm.
Very recently, the NLEH model was integrated into the IRS
assisted WPCN in [17], specifically, the RF energy radiated
from the HAP was minimized to jointly design the HAP
energy and receiving information beamforming vectors, the
power allocation of the users, as well as the IRS phase shifts.
The AO and difference-of-convex (DC) programming were
applied to address this formulated problem. Although these
references characterized the NLEH models in different IRS
assisted WPC systems, these NLEH models could bring a
more complicated harvested power/energy, which further leads
to a more complicated problem formulation such that the IRS
phase shifts can only be numerically optimized, e.g., the SDP
relaxation. This may result in a loose relaxation so as to incur a
higher rank for the SDP relaxed solution, which may require
the Gaussian randomization to obtain a feasible solution of
the IRS phase shifts, thus leading to a high computational
complexity of the IRS phase shift optimization due to the
interior-point methods [10].

Inspired by this research background, this paper exploits a
novel fractional NLEH model in a wireless powered intelligent
radio environment. In the following, we summarize the main
contributions of this paper.

1) First, we investigate a wireless powered intelligent radio
environment, where an IRS operates in the passive
reflection mode to improve downlink WET and uplink
WIT capabilities. Also, we propose to apply a novel
NLEH model based on the fraction function to charac-
terize the non-linearity and saturation of practical energy



harvester. According to the best of the authors’ knowl-
edge, there is no published work that investigated this
fractional NLEH model in wireless powered intelligent
radio environment.

2) To capture the overall performance of the system model
under consideration, the sum throughput is maximized
subject to the constraints of the transmission time
scheduling, and the IRS phase shifts of the downlink
WET and uplink WIT durations. These coupled vari-
ables can lead to the non-convexity of the formulated
problem, which in turn makes it intractable.

3) In order to deal with this non-convex issue, we propose
to use the Lagrange dual methods and KKT conditions to
derive the transmission time scheduling of the downlink
WET and upplink WIT in a closed form. Next, the IRS
phase shifts can be separately derived at each uplink
WIT duration by the triangle inequality. To derive the
IRS phase shifts of the downlink WET, a quadratic
transformation (QT) is proposed to iteratively transform
the fractional NLEH model into the subtractive form
for the tractability, and the locally optimal IRS phase
shifts of the downlink WET are designed by employing
the complex circle manifold (CCM) method at each
iteration.

4) Finally, numerical results are demonstrated to validate
the convergence of the proposed algorithm, and the
effectiveness of the proposed NLEH model, which
highlights the optimality of the IRS phase shifts, and
the benefits induced by the IRS in comparison to the
benchmark schemes.

The remainder of this paper is summarized as follows. Section
II illustrates the system model. Section III exhibits the poten-
tials of the fractional NLEH model on the wireless powered
intelligent radio environment. Numerical results are presented
in Section IV to highlight the proposed scheme. Finally, this
paper is concluded in Section V.

II. SYSTEM MODEL

Fig. 1: An IRS assisted wireless powered IoT network.

This section presents a wireless powered intelligent radio
environment, in which an IRS aims to engage the passive
reflection of energy and information signals. The considered
system is made up with two phases: downlink WET and

uplink WIT. During downlink WET, multiple IoT devices (i.e.,
denoted by Uk, ∀k ∈ [1,K]) collect energy wirelessly radiated
from a PS, each of which then utilizes collected energy to
deliver its individual message to an AP during uplink WIT.
Assume that the IRS is composed of N reflecting elements,
whereas the others have a single antenna each. Generally,
it is assumed that the IRS assisted wireless powered IoT
network considers the time-division multiplexing operation
via the generic “harvest-then-transmit/reflection” protocol [9],
[11]. Without loss of generality, we assume that each channel
coherence block consists of multiple time frames and the
operation time of each frame is denoted by T . Let us denote
τ0 as the time duration of downlink WET, while the time
duration of Uk, ∀k ∈ [1,K] is denoted by τk at the uplink
WIT, and

∑K
k=0 τk = T . Although the downlink WET and

uplink WIT time slots of each IoT device are independent of
each other, it is assumed that each device is equipped with
a rechargeable battery so as to store the harvested energy
during the downlink WET to support its uplink WIT. In
addition, the IRS generates two types of passive beamform-
ing patterns to engage energy and information reflections at
downlink WET and uplink WIT, respectively. Specifically,
we set the passive beamforming as the diagonal matrix
Θk = diag [βk,1 exp(jαk,1), ..., βk,N exp(jαk,N )] , ∀k ∈
[0,K], ∀n ∈ [1, N ], where k = 0 and k = 1, ...,K
denote the respective IRS beam patterns of downlink WET
and uplink WIT. Each element of Θk represents the refection
coefficient, where βk,n and αk,n denote its amplitude and
phase shift, respectively. Note that Θk = Θβ,kΘα,k, ∀k ∈
[0,K], where Θβ,k = diag [βk,1, ..., βk,N ], and Θα,k =
diag [exp(jαk,1), ..., exp(jαk,N )]. Moreover, let us denote
gd,k ∈ C1×1, hd,k ∈ C1×1, g0 ∈ C1×N , gr,k ∈ CN×1,
hk ∈ C1×N , and hr ∈ CN×1, as the channel coefficients of
the PS-Uk, the Uk-AP, the PS-IRS, the IRS-Uk, the Uk-IRS,
the IRS-AP links, respectively. In the duration of WET τ0, we
first express the harvested energy at Uk, ∀k ∈ [1,K] as [9]

ELEH,k = ητ0P0 |g0Θβ,0Θα,0gr,k + gd,k|2 , (1)

where P0 denotes the transmit power of the PS, and η denotes
the energy conversion efficiency. Equation (1) is known as
the LEH model, and its energy conversion efficiency η is
typically set to be a constant and is adopted to approximate
a linear region of a practical non-linear harvester. However,
the energy harvesting circuits practically result in a non-linear
conversion model, where the output power is typically a non-
linear function in terms of the RF input power [10]. This is
originated from the fact that the harvested power first linearly
increases with respect to the received power and then gradually
becomes saturated with a high received power threshold. In
order to exploit the approximated non-linear EH (NLEH)
properties and the saturation region of a practical energy
harvester, this paper proposes a fractional NLEH model, where
the harvested energy at Uk is written as

ENLEH,k = τ0
(akck − bk)P0 |g0Θβ,0Θα,0gr,k + gd,k|2

ckP0 |g0Θβ,0Θα,0gr,k + gd,k|2 + c2k
, (2)



where ak = 2.463, bk = 1.635, and ck = 0.826 denote the
positive constants determined in [18].1 The fractional NLEH
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Fig. 2: Comparison between NLEH and LEH models.

model this paper employs has been experimentally validated
by the measurement data [18, Fig. 1], where it captures
the characteristics of the energy harvester, i.e., non-linear
distortion or saturation. In addition, in a practical system, such
as the wireless energy harvesting relaying or WET application,
each IoT device typically features low-power consumption,
and is vulnerable to energy-limited issue. As such, it requires
the harvest energy to support the information forwarding or
delivery. The existing LEH model typically employs a constant
energy conversion efficiency η to characterize the energy
harvester of the device. Whereas the NLEH model considers
the fractional programming to examine the practical energy
harvester such that the harvested power can be considered
as a fractional function of the received RF power, instead of
using the conversion efficiency η in the LEH model. Each
IoT device employs this fractional model to mathematically
capture the harvested power behaviour to guarantee that it
does not exceed its rechargeable battery capacity. In Fig. 2,
we provide a comparison between NLEH and LEH models
in terms of harvested power, where it can be seen that the
LEH model significantly outperforms the NLEH model, and
the gap between them becomes larger with the input power.

1Our considered NLEH model in (2) is different from that in [10], which
considered a straightforward two-piece linear EH model and is made up of
a LEH model and a saturated power threshold. The proposed NLEH model
in (2) integrally considers these two portions by using a fractional model. In
addition, the authors of [18] employed curve fitting to obtain the fractional
NLEH from the measurement data, where our paper adopts the same NLEH
parameter setup. However, [18] only focused on a wireless energy harvesting
system to formulate the harvested power model, and the performance analysis
was derived to validate the considered NLEH model for different fading
channel configurations. This model has not yet been investigated in the IRS-
assisted wireless powered IoT networks in the existing literature. This makes
our system model more complicated than [18], where the received RF power
at each IoT device is from two paths, i.e., direct PS-device link and cascaded
PS-IRS-device link. This further complicates problem formulation in this
paper, which consists of the multiple coupled variables, i.e., two passive beam
patterns and transmission time scheduling of the downlink WET and uplink
WIT, which cannot be easily solved by the existing methods [9]–[11].

This is originated from the fact that the energy conversion
efficiency η of the LEH model in (1) is ideal, providing an
upper bound on that of the NLEH model in (2). Then, each
IoT device uses the harvested energy within downlink WET
duration to deliver its individual information to the AP within
uplink WIT duration of τk, ∀k ∈ [1,K]. Thus, the achievable
throughput of Uk at the AP is given by

Rk = τk log

(
1 +

tτ0(akck − bk)t0,kt1,k
τk (ckP0t0,k + c2k)

)
, (3)

where t = P0

σ2 , t0,k = |g0Θβ,0Θα,0gr,k + gd,k|2, and t1,k =

|hkΘβ,kΘα,khr + hd,k|2.

III. SUM THROUGHPUT MAXIMIZATION OF IRS ASSISTED
WP IOT NETWORK WITH NLEH MODEL

This section aims at a maximization problem of the system
sum throughput, subject to the constraints of two different
types of IRS beam patterns and the transmission time dura-
tions of the downlink WET and uplink WIT. As such, this
formulated problem is given by

max
Θα,τ

K∑
k=1

Rk, (4a)

s.t. Θα = {Θα,k}Kk=0 , |exp(jαk,n)| = 1,

∀k ∈ [0,K], ∀n ∈ [1, N ], (4b)

τ = {τk}Kk=0 ,

K∑
k=0

τk ≤ T, τ � 0. (4c)

In problem (4), (4b) and (4c) are the unit-modulus IRS
phase shift and transmission time scheduling constraints, re-
spectively. These coupled variables, i.e., Θα and τ , lead to
the non-convexity of problem (4), which is not able to be
directly solved. To circumvent this issue, we first employ
the dual method and the KKT conditions to optimally derive
the time scheduling τ . Then, we propose the QT and CCM
methods to iteratively design the optimal IRS phase shifts in
closed-form. Now, let us consider the following mathematical
transformations to tackle the IRS phase shifts for tractability,

t0,k = |g0Θβ,0Θα,0gr,k + gd,k|2 = |θα,0ak + gd,k|2 , (5a)

t1,k = |hkΘβ,kΘα,khr + hd,k|2 = |θα,kbk + hd,k|2 , (5b)

where ak = diag (ḡ0)gr,k, bk = diag
(
h̄k
)
hr, ḡ0 =

g0Θβ,0, h̄k = hkΘβ,k, θα,k = [θk,1, ..., θk,N ] =
[exp(jαk,1), ..., exp(jαk,N )]. Accordingly, problem (4) is
equivalently reformulated as

max
θα,τ

K∑
k=1

τk log

(
1 +

tτ0(akck − bk)t0,kt1,k
τk (ckP0t0,k + c2k)

)
,

s.t. θα = {θα,k}Kk=0 , |exp(jαk,n)| = 1,

∀k ∈ [0,K], ∀n ∈ [1, N ], (6a)
(4c). (6b)



A. Optimized Transmission Time Scheduling

To solve problem (6), let us denote Ak = t(akck − bk),
Bk = ckP0, and write its Lagrange dual function as

L (τ , µ)=
K∑
k=1

τk log

(
1+

τ0Akt0,kt1,k
τk (Bkt0,k + c2k)

)
−µ

(
K∑
k=0

τk−T

)
,

(7)

where µ ≥ 0 is the dual variable with (4c). Accordingly, the
associated dual problem can be written as

min
τ∈Sτ

L (τ , µ) , (8)

where Sτ denotes the feasible set of the time durations τ in
constraint (4c). Note that (6) is a convex problem in terms of
τ for given θα, guaranteeing Slater’s condition due to τ ∈ Sτ
and (4c) [19]. Thus, the strong duality holds that the optimal
solution of τ satisfies the KKT conditions by solving (6) [9],
[11]. As such, we have

µ∗

(
K∑
k=1

τ∗k − T

)
= 0. (9a)

∂L
∂τk

= 0. ∀k ∈ [1,K]. (9b)

According to (9a), we have µ∗ > 0 to guarantee the equality
holds in constraint (4c), i.e.,

∑K
k=0 τ

∗
k = T . Then, we expand

(9b) as

∂L
∂τk

= log

(
1 +

τ0Akt0,kt1,k
τk (Bkt0,k + c2k)

)
− τ0Akt0,kt1,k
τk (Bkt0,k + c2k) + τ0Akt0,kt1,k

− µ = 0. (10)

One can observe that (10) is a kind of function, i.e., f(x) =
log(1+x)− x

1+x , where x =
τ0Akt0,kt1,k

τk(Bkt0,k+c2k)
. It is a monotoni-

cally increasing function in terms of x. Via (10), it guarantees
the following K equations of (10),

τ0A1t0,1t1,1
τ1 (B1t0,1+c21)

=
τ0A2t0,2t1,2
τ2 (B2t0,2+c22)

=, ...,=
τ0AKt0,Kt1,K

τK (BKt0,K+c2K)
.

(11)

By defining τ0Akt0,kt1,k

τk(Bkt0,k+c2k)
= 1

ρ , we get

τk =
ρτ0Akt0,kt1,k
Bkt0,k + c2k

. (12)

We substitute (12) into
∑K
k=1 τk = T − τ0 to obtain,

ρ =
T − τ0∑K

k=1
τ0Akt0,kt1,k
Bkt0,k+c2k

, (13)

which is plugged back into (12), the optimal solution of τk is
derived as

τ∗k =
Akt0,kt1,k(T − τ0)

(Bkt0,k + c2k)
∑K
k=1

Akt0,kt1,k
Bkt0,k+c2k

. (14)

By plugging (14) into problem (6), we have

max
θα,τ0

f0(θα, τ0) = (T − τ0) log

1 +
τ0
∑K
k=1

Akt0,kt1,k
Bkt0,k+c2k

T − τ0


(15a)

s.t. (6a), 0 ≤ τ0 ≤ T. (15b)

Note that (15) is still intractable due to (15a) and (6a). To solve
(15), we first derive the optimal transmission time scheduling
τ0 for given IRS phase shifts θα. To proceed, we calculate the
first-order derivative of (15a) with τ0 and set it to zero, which
is given by1+ τ0

∑K
k=1

Akt0,kt1,k
Bkt0,k+c2k

T−τ0

 log

1+ τ0
∑K
k=1

Akt0,kt1,k
Bkt0,k+c2k

T−τ0


=
T
∑K
k=1

Akt0,kt1,k
Bkt0,k+c2k

T − τ0
. (16)

Let us define z = 1 +
τ0
∑K
k=1

Akt0,kt1,k

Bkt0,k+c2
k

T−τ0 , and apply a few of
mathematical manipulations, the following equation holds,

z log(z)− z =
K∑
k=1

Akt0,kt1,k
Bkt0,k + c2k

− 1 (17)

According to (17) and Lambert W function, the optimal
solution of τ0 is derived as

τ∗0 =

[
exp

(
W

(∑K
k=1

Akt0,kt1,k

Bkt0,k+c
2
k

−1

exp(1)

)
+1

)
−1

]
T

∑K
k=1

Akt0,kt1,k
Bkt0,k+c2k

+exp

(
W

(∑K
k=1

Akt0,kt1,k

Bkt0,k+c
2
k

−1

exp(1)

)
+1

)
−1

.

(18)

B. Optimal Design of θα,k
In Section III-A, we optimized the transmission time

scheduling for given IRS phase shifts. Now, we solve problem
(15) with respect to the IRS phase shifts, i.e., θα.One can
readily verify that the maximization of f0 in (15) is equivalent
to

max
θ

K∑
k=1

Ak |θα,0ak + gd,k|2 |θα,kbk + hd,k|2

Bk |θα,0ak + gd,k|2 + c2k
,

s.t. |θα,k(n)| = 1,∀k ∈ [0,K], ∀n ∈ [1, N ]. (19)

Problem (19) is not convex due to the sum of multiple
fractional functions and the unit-modulus constraint. To solve
it, we first derive the optimal solution of θα,k, ∀k ∈ [1,K]
via the following theorem.

Theorem 1: The optimal solution of θα,k, ∀k ∈ [1,K] can
be derived as

θ∗α,k = [exp
(
jα∗k,1

)
, ..., exp

(
jα∗k,N

)
],

α∗k,n = arg (hd,k)− arg (bk[n]) , (20)

where bk[n], ∀k ∈ [1,K], ∀n ∈ [1, N ], is the n-th element
of bk.



Proof: From the objective function in (19), we can readily
verify that it is a monotonically increasing function with
respect to the term |θα,kbk + hd,k|2, which follows that the
maximization of problem (19) is equivalent to maximizing
the term |θα,kbk + hd,k|2 with the unit-modulus constraint
|θα,k(n)| = 1, ∀k ∈ [1,K], ∀n ∈ [1, N ]. As such, the optimal
solution of θα,k can be obtained by solving the following
problem,

max
θα,k

|θα,kbk + hd,k|2 ,

s.t. |θα,k(n)| = 1, ∀k ∈ [1,K], ∀n ∈ [1, N ]. (21)

To proceed, we apply the triangle inequality to obtain the upper
bound of the objective function in (21), which is given as

|θα,kbk + hd,k| ≤
N∑
n=1

|θα,k(n)bk(n)|+ |hd,k|

=

N∑
n=1

|bk(n)|+ |hd,k| , (22)

where bk(n) denotes the n-th element of bk; The equality
holds in (22) with the unit-modulus constraint |θα,k(n)| =
1, ∀k ∈ [1,K], ∀n ∈ [1, N ]. The optimal solution of θα,k can
be obtained by solving the upper bound in (22) with respect
to θα,k(n). On the other hand, this upper bound holds with
α∗k,n = arg (hd,k) − arg (bk[n]), where arg(·) is the phase
operator [9], [11]. Accordingly, the optimal solution of θα,k is
expressed as θ∗α,k =

[
exp

(
jα∗k,1

)
, ..., exp

(
jα∗k,N

)]
. Thus,

we completed the proof of Theorem 1.

C. Optimal Design of θα,0
After obtaining the optimal solution of θα,k, we denote

t̃1,k =
∣∣∣θ∗α,kbk + hd,k

∣∣∣2, and substitute it into problem (19),
then we have,

max
θα,0

K∑
k=1

Ãk |θα,0ak + gd,k|2

Bk |θα,0ak + gd,k|2 + c2k
,

s.t. |θα,0(n)| = 1, ∀n ∈ [1, N ], (23)

where Ãk = Ak t̃1,k. To solve problem (23), we first consider
the quadratic transformation (QT) [20] to transform its frac-
tional objective function into the following subtractive form
by introducing an auxiliary variable vector ξ = [ξ1, ..., ξK ]T ∈
CK×1 as below

K∑
k=1

2

√
Ãk<{conj(ξk)θα,0ak + conj(ξk)gd,k}

−
K∑
k=1

|ξk|2
(
Bk |θα,0ak + gd,k|2 + c2k

)
, (24)

where

ξ∗k =

√
Ãk (θα,0ak + gd,k)

Bk |θα,0ak + gd,k|2 + c2k
. (25)

Next, we alternately optimize the variables θα,0 and ξ. Specif-
ically, we optimally design θα,0 for given ξ, which is then

optimized by (25) at each iteration. For the fixed ξ, problem
(23) can be transformed as

max
θα,0

K∑
k=1

2

√
Ãk<{conj(ξk)θα,0ak + conj(ξk)gd,k}

−
K∑
k=1

|ξk|2
(
Bk |θα,0ak + gd,k|2 + c2k

)
,

s.t. |θα,0(n)| = 1, ∀n ∈ [1, N ]. (26)

To make problem (26) more tractable, we proceed to manip-
ulate its objective function as
K∑
k=1

2

√
Ãk<{conj(ξk)θα,0ak+conj(ξk)gd,k}

−
K∑
k=1

|ξk|2
(
Bk |θα,0ak+gd,k|2+c2k

)
,

= −θα,0Φ0θ
H
α,0+2<{θα,0 (γ1−γ0)}+(d1−d0),f1(θα,0),

(27)

where

Φ0 =

K∑
k=1

|ξk|2BkakaHk , γ0 =

K∑
k=1

|ξk|2Bkconj (gd,k)ak,

γ1 =

K∑
k=1

√
Ãkconj (ξk)ak,

d0 =

K∑
k=1

|ξk|2Bkgd,kconj (gd,k) +
K∑
k=1

|ξk|2 c2k,

d1 = 2<

{
K∑
k=1

√
Ãkconj (ξk) gd,k

}
.

Without loss of generality and for convenience, we omit the
constant term d1 − d0, then problem (26) can be equivalently
reformulated as

min
θα,0

θα,0Φ0θ
H
α,0 − 2<{θα,0γ} ,

s.t. |θα,0(n)| = 1, ∀n ∈ [1, N ], (28)

where γ = γ1 − γ0. To solve (28), we propose to utilize the
CCM algorithm to iteratively derive the optimal IRS phase
shifts θα,0. The main idea is to focus on the derivation of a
gradient descent algorithm over the manifold space [21]. To
perform this method, problem (28) is first reformulated as

min
θα,0

f3(θα,0)=θα,0 (Φ0+κIN )θHα,0−2R{θα,0γ0} ,

s.t. |θα,0(n)| = 1, ∀n ∈ [1, N ], (29)

where κ > 0 is used to control the convergence of the
CCM algorithm. Also, problem (28) is equivalent to (29)
due to κθα,0θ

H
α,0 = κN . The feasible set of problem (29)

is considered as the product of N complex circles, i.e.,
SN , each of which is one complex circle defined as S ,{
z ∈ C : conj(z)z = <{z}2 + ={z}2 = 1

}
. The set S can be

regarded as a sub-manifold of C, and the product of N circles
is accordingly a sub-manifold of CN [21]. Thus, the manifold
of (29) is given as SN ,

{
z ∈ CN : |z(n)| = 1, n ∈ [1, N ]

}
,



where z(n) is the n-th element of vector z. To proceed, we
characterize the main procedures of the CCM algorithm to
iteratively solve problem (29), which includes the following
steps at each iteration.

1) We first search the direction to minimize problem (29),
which is opposite to the gradient in Euclidean space of
f3(θ

(i)
α,0), i.e.,

ι(i)=−∇θα,0f3(θ
(i)
α,0)=−2 (Φ0+κIN )

(
θ
(i)
α,0

)H
+2γ0.

(30)

2) The optimization step is performed to find the Rieman-
nian gradient of f3(θ

(i)
α,0) at θ

(i)
α,0 ∈ SN based on the

tangent space T
θ
(m)
α,0
SN [22]. To proceed, we project the

search direction ι(i) in Euclidean space onto T
θ
(i)
α,0
SN ,

and the Riemannian gradient of f3(θ
(i)
α,0) at θ(i)

α,0 is given
as follows [22]:

PT
θ
(i)
α,0

SN (ι
(i))=ι(i)−<

{
conj(ι(i))�θ(i)

α,0

}
�θ(i)

α,0.

(31)

3) We proceed to update θ
(i)
α,0 on the tangent space

T
θ
(i)
α,0
SN , which is expressed as

θ̄
(i)
α,0 = θ

(i)
α,0 + ζPTθα,0SN (ι

(i)), (32)

where ζ is a step size that will be characterized later.
4) Then, the retraction operation is required to map θ̄

(i)
α,0

into the manifold SN , which aims to normalize each
element of θ̄(i)

α,0 to be unit as follows

θ
(i+1)
α,0 = θ̄

(i)
α,0 �

1

θ̄
(i)
α,0

. (33)

Additionally, we consider the following proposition to deter-
mine the range of κ and ζ.

Proposition 1: [21], [23] The parameters κ and ζ are
selected to guarantee κ ≥ N

8 %max(Φ0) + ‖γ‖2, and 0 <
ζ < 1

%max(Φ0+κIN ) , respectively, which ensures that the CCM
algorithm has a non-increasing behaviour until convergence.
From the above-mentioned discussion, the detailed steps of
the CCM method can be elaborated in Algorithm 1.

Algorithm 1: The CCM algorithm

1) Initialization: i, ε and θ
(0)
α,0 denote the iteration index,

the algorithm accuracy, and the initialized solution, re-
spectively. Calculate the initial objective value f3(θ

(0)
α,0).

2) Repeat:
a) Calculate the search direction ι(i) in (30).
b) Calculate the projection of ι(i), i.e.,

PTθα,0SN (ι
(i)), onto the tangent space according

to (31).
c) Update θ̄

(i)
α,0 over the tangent space via (32).

d) Retract θ(i+1)
α,0 to the manifold SN via (33).

e) Set i = i + 1 until convergence, i.e.,∣∣∣f3(θ(i+1)
α,0 )−f3(θ(i)

α,0)
∣∣∣

f3(θ
(i+1)
α,0 )

≤ ε.

3) Obtain θ∗α,0.

The optimal IRS phase shifts θ
(i+1)
α,0 can be computed in Step

2-d) of Algorithm 1, thus, Algorithm 1 can guarantee that the
objective value f3(θ

(i+1)
α,0 ) has a monotonically non-increasing

behaviour. The solution θ
(i+1)
α,0 is updated by Algorithm 1 at

the (i + 1)-th iteration to satisfy f3(θ
(i)
α,0) > f3(θ

(i+1)
α,0 ). Due

to the unit modulus constraint, Algorithm 1 can achieve the
convergence.

From the aforementioned analysis, we clarify the overall
steps of the proposed scheme in Algorithm 2.

Algorithm 2: The proposed algorithm to solve problem (4)

1) Obtain the optimal solution of θα,k, ∀k ∈ [1,K] by
Theorem 1.

2) Initialization: let ξ(0) be a feasible vector, and the
number of iteration be l = 1.

3) Repeat
a) Solve problem (23) to update θ

(l)
α,0 by the CCM

algorithm in Algorithm 1.

b) Update ξ(l) =
[
ξ
(l)
1 , ..., ξ

(l)
K

]T
, where ξ

(l)
k = ξ∗k

can be obtained by (25).
c) Set l = l + 1 until the algorithm converges.
d) Obtain the locally optimal solution θ∗α,0 and ξ∗.

4) Substitute θ∗α,k, ∀k ∈ [0,K] into (18) to calculate τ∗0 .
5) Substitute τ∗0 into (14) to calculate τ∗k , ∀k ∈ [1,K].

Now, we characterize the convergence of Algorithm 2. This
algorithm consists of an alternating procedure of CCM and
QT method to design the IRS phase shifts θα,0 by iteratively
solving the sum of fractional programmings in (26). It is
readily verified that (26) is a convex optimization problem due
to the concave-convex form of (23) [20]. Also, the first-order
condition on θα,0 for (26) for given ξ∗ is identical to problem
(23) due to the equivalent conditions in solution and objective
value [20, C2,C3]. Via every update of ξ, the objective value
of the sum of fractional programming values in (23) provides a
non-decreasing behaviour and converges to a stationary point
(θ∗α,0, ξ

∗) of (26). In addition, we numerically validate the
convergence of Algorithm 2 in Section IV.

IV. NUMERICAL RESULTS

This section demonstrates numerical results to evaluate
the considered system, where its deployment is depicted
in Fig. 3 in terms of a three-dimensional (3-D) coordi-
nate. As it can be seen, PS, AP, and IRS are deployed
at (XPS , YPS , ZPS) = (−10, 0, 0), (XAP , YAP , ZAP ) =
(10, 0, 0) and (XIRS , YIRS , ZIRS) = (−2, 6, 0), respectively.
The k-th IoT device, i.e., Uk, ∀k ∈ [1,K], is deployed at
(Xk, Yk, Zk), which is randomly distributed within a circular
area of x − z coordinate centered (0, 0) and radius 5 m.
The channel coefficients of the IRS related links, i.e., g0,
gr,k, hk, hr, are modelled as Rician fading, and the chan-
nel coefficients of the direct links, i.e., gd,k and hd,k, are
modelled as Rayleigh fading [11]. In addition, we set the
path loss model to PL = Ad

εq
q , where A = −30 dBm, dq



Fig. 3: System deployment.

and εq , ∀q ∈ {PS2IRS, IRS2U, IRS2AP,PS2U,U2AP},
represent the physical distance and the path loss exponent
between the PS and the IRS, the IRS and Uk, the IRS and
the AP, the PS and Uk, as well as Uk and the AP, respectively.
Unless otherwise specified, other simulation parameters are
summarized in Table I on the top of the next page.

To highlight the proposed scheme, we consider the follow-
ing benchmark schemes for comparison with the same setup:

1) Linear energy harvesting (LEH) model: The IRS’s phase
shifts and transmission time scheduling are jointly opti-
mized based on the LEH model [9].

2) Random phase shifts: Each phase shift is randomly
generated at [0, 2π] with the optimal design of the
transmission time scheduling.

3) Equal transmission time scheduling: The IRS’s phase
shifts are optimally designed with equal transmission
time allocation.

4) Discrete phase shifts: Each phase shift is selected from
a finite number of phase shifts, and its discrete phase
shift set is expressed as Sd =

{
0, 2π

2B0
, ..., (2

B0−1)2π
2B0

}
,

where B0 represents the bit number used to indicate the
number of phase resolutions.

5) Without IRS: The system model is degraded to a tradi-
tional wireless powered IoT network [5].

First, Fig. 4 shows how Algorithm 2 converges with different
numbers of IRS reflecting elements N and IoT devices K,
where the sum throughput exhibits an monotonically increas-
ing trend and then reaches its convergence approximately at
the fourth or fifth iteration. This validates the proposed QT and
CCM methods for iteratively designing the IRS phase shifts.

Next, the impact of the transmit power P0 on the sum
throughput is shown in Fig. 5, where all schemes provides
a monotonically increasing trend with respect to P0. Also,
the proposed NLEH model outperforms the other benchmark
schemes, i.e., equal time allocation, random phase shifts, and
without IRS, which is explained by emphasising the optimal
designs of the IRS phase shifts and the time durations. Addi-
tionally, it is expected to show that the LEH model provides
an upper bound on the sum throughput of the proposed NLEH
model, this is because the energy conversion efficiency η of
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Fig. 4: Convergence of Algorithm 2.

the LEH model leads to an ideal case which outperforms
the NLEH model. Fig. 6 illustrates the sum throughput per-
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Fig. 5: Sum throughput versus transmit power at PS P0.

formance with respect to the number of the IRS reflecting
elements N . For the IRS related schemes, i.e., NLEH, LEH,
equal time allocation, and random phase shifts, the sum
throughput shows a monotonically increasing behaviour with
N , whereas for the scheme without IRS it remains constant
with N . The proposed NLEH scheme outperforms that of the
equal time allocation, the random phase shifts, and without
IRS, which highlights the benefits induced by the IRS and
verifies the optimization of the transmission time scheduling.
Additionally, the LEH model outperforms the NLEH model by
a significant margin. Fig. 7 evaluates the impact of different
numbers of IoT devices K on the sum throughput. The sum
throughput demonstrates a monotonically increasing behaviour
as K increases, and the proposed NLEH scheme demonstrates
a better performance in comparison to that with discrete phase
shifts, with equal transmission allocation, and without IRS,



TABLE I: Simulation Parameters
Parameters Values Parameters Values

Transmit power at the PS P0 = 30 dBm or 1 W Number of IoT devices K = 5, 10, or 20
Number of reflecting elements N = 50 Whole time duration T = 1 second

Available bandwidth 1 MHz Noise power density −170 dBm/Hz
Energy conversion efficiency

Amplitude of reflection coefficient
η = 0.8

βk,n = 1, ∀k ∈ [0,K], ∀n ∈ [1, N ]
Path loss exponents εPS2IRS =εIRS2AP =2

εIRS2U =2.5, εPS2U =εU2AP =3.5
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which confirms the optimality of IRS phase shifts design, and
the benefits induced by the IRS.

Number of IoT device (K)
2 4 6 8 10 12 14 16 18

S
u
m

 t
h
ro

u
g
h
p
u
t 
(b

p
s/

H
z)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
NLEH
Discrete phase shifts
Equal time allocation
Without IRS

P
0
 = 20 dBm

P
0
 = 30 dBm

Fig. 7: Sum throughput versus number of IoT devices K.

Then, Fig. 8 demonstrates the impact of x-coordinate of the
IRS XIRS on the sum throughput. From this figure, the sum
throughput of the IRS assisted schemes first has an increasing
trend and then declines with respect to XIRS compared with
that without IRS, which remains constant with XIRS . This
highlights the optimal IRS deployment to achieve the best
performance gain. In addition, the proposed NLEH scheme
outperforms the cases with equal time allocation, random

phase shifts, and no IRS, which exhibits the optimal designs
of the time scheduling and IRS phase shifts, plus the benefits
induced by the IRS. In Fig. 9, we evaluate the impact of
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Fig. 8: Sum throughput versus x-coordinate of IRS XIRS .

the path loss exponents of the IRS related links, i.e., PS-IRS
(εPR2IRS), IRS-Uk (εIRS2U ), as well as IRS-AP (εIRS2AP ).
For the proposed scheme, the sum throughput declines with
respect to εPR2IRS , εIRS2U , or εIRS2AP , outperforming that
without IRS which remains constant with these three path loss
exponents. This releases a fact that larger-scale fading gives
rise to a weaker energy/information reflection induced by the
IRS, and in turn diminishes its beneficial role at the duration
of WET and WIT.

Moreover, we exhibit the sum throughput with different
numbers of bits B0 ∈ [1 bit, 8 bits] to characterize the discrete
phase resolution of the IRS in Fig. 10. As shown in this
figure, the case with continuous phase shifts remains constant
and provides an upper bound on its discrete counterpart, and
the performance gap between them gradually diminishes as
B0 increases. This could be due to the quantized IRS phase
resolutions causing an imperfect alignment, which degrades
system performance during the WET and WIT phases. Also, a
higher interval density of the discrete phase resolutions would
allow for more efficient energy/information reflection, with
sum throughput approaching that of the continuous counter-
part.

Furthermore, we present the optimal energy time duration
τ0 and the sum harvested energy versus N in Fig. 11 and Fig.
12, respectively. In Fig. 11, the optimal energy time τ0 shows
a monotonically decreasing behaviour with respect to N for
the LEH and NLEH models, which consume less time for
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downlink WET than that without IRS. This further implies an
energy saving at the PS, which is beneficial and leaves more
time duration for the IoT devices for uplink WIT to enhance
the throughput performance. In addition, larger number of
IoT devices K can consume less time for downlink WET,
which can be explained by the fact that more time slots may
be consumed due to larger K to guarantee the throughput
performance of uplink WIT. Fig. 12 demonstrates that the sum
harvested energy of all IoT devices monotonically increases in
terms of N , which reveals a fact that the decline of τ0 may
not at a cost of the harvested energy for the IoT devices. This
is due to the fact that the energy reflection at the IoT devices
can be effectively improved with the aid of IRS in comparison
to that with the discrete phase shifts, and without IRS, which
validates the optimal design of the IRS phase shifts and the
IRS’s beneficial role in terms of energy harvesting capability.
As such, the utilization of IRS in the wireless powered network
can not only provide a throughput improvement at the AP but
also guarantee energy saving at the PS, enjoying a spectral
and energy-efficient framework.

Finally, we examine the sum throughput versus N for larger
numbers of IoT devices, i.e., K = 10 or 20, and make a com-
parison between the proposed NLEH model and the Sigmoid
function based NLEH model [14]. Aside the similar increasing
behaviour of the sum throughput to Fig. 6, one can observe
that a larger number of IoT devices can play a positive role
in improving the network throughput performance. Also, the
proposed NLEH model significantly outperforms the existing
Sigmoid function based NLEH model, which confirms the
advantage of the proposed scheme.

V. CONCLUSION

This paper revealed the NLEH’s potential in the wireless
powered intelligent radio environment. The sum throughput
maximization problem of the considered system was formu-
lated and solved to characterize its overall performance by
jointly designing the IRS phase shifts as well as the transmis-
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Fig. 13: Sum throughput versus number of IRS reflecting elements
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the proposed scheme and the Sigmoid function based NLEH model.

sion time scheduling. To address the formulated problem, the
Lagrange dual method and KKT conditions were proposed to
optimally derive the closed form solution of the transmission
time scheduling. Also, we proposed the QT to transform
the summation of multiple fractional programmings to the
subtracted form, which was then tackled by the CCM method
to iteratively design the optimal solution of the IRS phase
shifts. Finally, simulation results was exhibited to highlight
the optimal designs of the transmission time scheduling and
the IRS phase shifts, as well as the benefits induced by the IRS
compared to the benchmark schemes. For our future work, we
will consider a novel time allocation scheme, where each IoT
device keeps active for harvesting energy while others are busy
for transmitting their own information to the AP. This scenario
may result in a more complicated problem formulation such
that the proposed scheme in this work may not be feasible,
necessitating a different approach to deal with it.
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