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Abstract—In this paper, we provide, for the first time, a
comprehensive understanding of LoRa waveform theory in or-
der to quantify its orthogonality. We present LoRa waveform
expressions in continuous and discrete time domains, and analyze
measures of orthogonality between different LoRa spreading
factors (SFs) through cross-correlation functions. The cross-
correlation functions are analytically expressed in a general
form and they account for diverse configuration parameters
(bandwidth, SF, etc.) and different cases of signal displacements
(time delay shift, frequency shift, etc.). We quantify their mean
and maximum in all time domains. We highlight the impact of
the temporal displacement and different bandwidths. The general
result is that LoRa modulation is non-orthogonal. Firstly, we
observe that for same bandwidths the largest maximum cross-
correlation happens for same SF and is equal to 100% due to same
symbols; whereas for different bandwidths, the largest maximum
cross-correlation is no longer observed at the same SF. Secondly,
the maximum cross-correlation is less than 26% between different
SFs, is higher for closer SFs and decreases as the difference
between SFs increases. After downchirping, the maximum cross-
correlation increases and the mean decreases compared to those
before downchirping. Moreover, the maximum cross-correlation
is insignificantly impacted by the temporal delay which makes it
valid to adopt for the performance analysis of both synchronous
and asynchronous systems. Finally, we analyze by simulation the
bit error probability statistics for different bandwidth ratios and
highlight their correlated behaviour with the insights obtained
from the maximum cross-correlation expressions.

Index Terms—Chirp modulation, LoRa, orthogonality condi-
tions.

I. INTRODUCTION

Internet of Things is a new paradigm standing for a
collection of "things" that are connected to Internet, per-
forming complex monitoring and computational operations
using embedded objects (sensors, actuators, processors, etc.),
and exchanging data for a plethora of applications [1]. IoT
applications cover many aspects of everyday life and can be
of personal, commercial, industrial, and governmental use. Ex-
amples of IoT applications include environmental monitoring,
asset management, smart cities, smart agriculture, healthcare
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monitoring, etc. [2]. IoT has unveiled an increasing growth
with an actual number of 11.3 billion connected IoT in 2020
predicted to reach more than 27 billion IoT connection by
2025 by IoT analytics [3]. The global IoT market is expected
to reach $1.567 billion by 2025.

Low power wide area (LPWA) networks have attracted
tremendous research and industrial interest as the main drivers
of IoT growth. Indeed, 2 billion LPWAN devices are expected
to be operating by 2025 [3]. LPWA networks promise low
power consumption over long range communication while
using low cost devices. Several LPWA technologies are com-
peting to answer the challenging requirements of massive
connectivity, broad coverage, and low energy consumption.
These technologies range from ultra-narrowband (NB) solu-
tions like Sigfox [4], narrow-band solutions like NB-IoT [5],
to wide-band solutions like Long Range (LoRa) [6]. Recently,
LoRa has gained attention among both research communities
and commercial stakeholders thanks to the trade-off between
energy, cost, and data rates, that it offers. LoRa also provides
an adaptive rate mechanism to enable the tailoring of config-
urations to better suit a large array of IoT applications.

LoRa was developed by a French startup company named
Cycleo and acquired by Semtech in 2012 [7]. The name of
technology LoRa refers to the physical layer stack consisting
of its patented modulation scheme [8]. Whereas, LoRa Wide
Area Network (LoRaWAN) refers to the network layer proto-
col maintained by the LoRa Alliance [9]. The technical details,
signal processing and the theoretical descriptions of the LoRa
modulation scheme, are patented and not publicly disclosed
[8]. Few recent papers have tried to provide a comprehensive
illustration of LoRa modulation with few basic equations [10]–
[12]. Some other current works looked at LoRa without any
concrete characterisation of its physical layer configuration
[11]–[20].

However, it is important to reveal LoRa’s behavioural prop-
erties. Theoretical investigation regarding its signal theory is
not only useful for the user developer but also for the academic
community. For example, such concrete characterisation plays
a primordial role of identifying implementation scenarios
where LoRa is vulnerable to interference and interception.
Additionally, this lack of comprehension has led to a non-
universal agreement on the nomenclature of LoRa’s modula-
tion scheme. Some researchers tend to use it interchangeably
with the chirp spread spectrum (CSS) modulation [10], [12],
[21], which is quite different as it is not necessarily band-
limited compared to LoRa modulation. Some other researchers
refer to it as chirp modulation [15], [22] or frequency modu-
lation [16] or wideband linear frequency modulation [13], and
some others assigned to it novel names such as frequency shift
chirp modulation (FSCM) [23].
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To the best of the authors’ knowledge, there has been no full
rigorous signal, theory-based characterisation of LoRa’s SF
imperfect orthogonality. Motivated by this, as well as by the
heterogeneity of the spreading factors’ co-rejection thresholds
used in the literature, we choose to delve further into LoRa
modulation properties. The main objective of our work is
to provide a better understanding of LoRa orthogonality and
investigate whether its non-orthogonality can be described
as it is commonly believed or if there is a different/novel
way to describe it. The main contributions of this work are
summarised as follows:

• We provide a comprehensive description of a LoRa
signal theory and we present a general formulation of
its waveform expressions in continuous and discrete time
domains before and after downchirping. We also provide
an illustrative example of transmitted LoRa waveforms in
absence/presence of interference and their corresponding
Fast Fourier transforms (xFFT) to highlight impact of
nonorthogonality for different SFs and bandwidths.

• We derive the analytical expression of the cross-
correlation function in continuous/discrete time domains
(before and after downchirping) with possible time de-
lays and frequency shift. The provided cross-correlation
function expressions are general since they account for
diverse cases of displacements (time delay, frequency
shift, bandwidth, sampling rate, and initial frequency).

• We analyse the orthogonality conditions between different
LoRa spreading factors through the derivation of the max-
imum and the mean of the cross-correlation functions. We
also validate the analytical expressions against numerical
evaluations.

• We confirm that LoRa modulation is not perfectly orthog-
onal and its orthogonality cases depend on the value of
the SF , bandwidth, time delay, etc.

• For same bandwidths, we observe that: (i) the maximum
cross-correlation is 1 for the same SF and is mainly
due to the transmission of the same symbols, (ii) the
largest maximum cross-correlation between different SFs
is 26% before sampling and 20% after sampling, (iii) the
maximum cross-correlation is higher for closer SFs and
decreases as the difference between SFs increases, (iv)
the lower SFs impacts more than the higher SFs, and
(v) the maximum cross-correlation after downchirping
increases hugely and is given by

√
SF1
SF2

for SF1 ≤ SF2

in both continuous and discrete time domains.
• We observe also that the mean of cross-correlation is less

than 10% and the largest value is observed by the lowest
SFs, and the mean of the cross-correlation in the discrete
domain is given by 1√

SF1SF2
before/after downchirping.

For different bandwidths, we observe that the largest
maximum cross-correlation is no longer observed for the
same SF and that the largest maximum cross-correlation
occurs for SF2 = SF1 +

B2
B1

for B2 > B1 and for SF2 =

min
(

5,SF1 − B1
B2

)
for B2 < B1.

• To validate the impact of orthogonality coefficients on
the performance of packet transmission, we simulate the
Bit Error Rate statistics for each spreading factor under

both an additive white Gaussian noise (AWGN) and
interference from the same or different SF using Matlab
simulator. The impact of SFs on their BER statistics
validates our work by demonstrating an aligned behaviour
with the obtained cross-correlation factors.

• We also run a small experiment composed of two LoRa
transmitters and a receiver where we quantify the per-
formance of packet delivery ratio (PDR) and we confirm
the alignment of its performance with our derived cross-
correlation factors.

II. RELATED WORKS

LoRa has captured a lot of research interest to investigate
its spectral efficiency [24]–[26], energy efficiency [27]–[29],
coverage performance [11], [12], [17]–[20], error probability
[13], [14], [30], [31]. Some works were based on real-
life experiments [13]–[15], [32]–[34] and on custom-build
LoRa simulators [11], [16]; while some others are based on
computer simulations [12], [17]–[20], [24]–[29]. Some papers
investigate the use of emerging technologies such as energy
harvesting [24], [26], [32]–[34], nonorthogonal multiple access
techniques [25], [26] in LoRa networks.

However, only few current studies have investigated fun-
damentals about LoRa signal theory [23], [35]–[37]. These
studies were limited to the perfect orthogonality case, i.e.
interaction between LoRa waveforms happens only within
the same spreading factor (SF), and the case with different
SFs has yet to be investigated. In what follows, we refer
to cases with same SFs having an assumed perfect orthog-
onality, while the use cases with different SFs are referred
to as assuming imperfect orthogonality. Under the perfect
orthogonality assumption, LoRa’s modulation was investigated
either in the continuous time domain (before sampling) [35]–
[37] or in the discrete time domain (after sampling) [23], [37]
where only synchronous transmissions were studied. In [23],
LoRa modulation was described as with a frequency shift-
ing chirp modulation (FSCM) and its uncoded performance
was compared to frequency shifting (FSK) modulation with
both additive white Gaussian noise (AWGN) and frequency-
selective channels. However, the investigation of LoRa’s wave-
form orthogonality was limited to chirps in the discrete time
domain for synchronous transmissions, again using the same
SFs. In [35], the LoRa waveform was described as chirp spread
spectrum (CSS) which is not fully faithful to the modulation
described in the LoRa patent. The orthogonality conditions
in [35] were derived using the same SF in the continuous
time domain only. The authors concluded that the maximum
modulation rate achieves the Nyquist signalling rate, but the
validity of their results is irrelevant as it cannot be attributable
to LoRa. Similarly, [36] tackled the perfect orthogonality
scenario for continuous synchronous transmission only and
compared the LoRa modulation performance to binary phase
shift keying (BPSK) and FSK. Again, in [37], LoRa waveform
properties were investigated for both continuous and discrete
cases, not only was the perfect case assumed, but they only
examined the power spectrum and spectral efficiency and did
not give a full picture of LoRa waveform properties in terms
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Symbol Definition
SF Spreading factor ∈ {5, . . . ,12}
k Symbol ∈ {0, . . . ,2SF −1}
B Bandwidth ∈ {125kHz,250kHz,500kHz}
T 1/B

Ts = T 2SF Transmission time
fmin Initial frequency
t0 Starting time
tk Shrink point of symbol k

φk(·) Instantaneous phase of symbol k
fk(·) Instantaneous frequency of symbol k

τ Time delay
fd Differential frequency shift
Td Sampling time

sC
k (·) Continuous waveform of symbol k

sC
d,k(·) Continuous waveform of symbol k after downchirping
sD

k (·) Discrete waveform of symbol k
sD

d,k(·) Discrete waveform of symbol k after downchirping

TABLE I: List of Notations

of other performance metrics such as bit error rate, or packet
delivery ratio. [23], [35], [37] examined the orthogonality
conditions when same SF is used and different symbols are
transmitted and concluded that LoRa is orthogonal in the
discrete time domain while nonorthogonal in the continuous
time domain.

The validity of the aforementioned works is questionable
given their assumptions of perfect orthogonality, especially
since recent publications are now describing that LoRa’s mod-
ulation as "imperfect", "quasi", and "pseudo". Yet no research
has quantified "how orthogonal is LoRa’s modulation?". Sev-
eral works have used the assumption of nonorthogonality in
their research, but without running a rigorous characterisation
[11], [17], [19], [24], [25], [38]–[40]. A first initiative in
investigating LoRa’s imperfect orthogonality was conducted
in [11] where the authors derived the co-rejection thresholds
between two SFs. The co-rejection thresholds were derived
through Matlab simulations and experimental analysis of the
bit error rate (BER) of a desired user transmitting with a
certain SF in the presence of only one interfering user, using
either a different or the same SF. This approach neglects
the impact of noise, although there is an interdependence
between the signal to interference ratio (SIR) threshold and
the LoRa receiver sensitivity, as emphasised in [31]. Further,
the obtained co-rejection thresholds become inapplicable when
more than one interfering user is present, especially in a
massive connectivity scenario.

Considering the limitations of related works, this paper
proposes to provide a theoretical-foundation of LoRa sig-
nal theory and characterise its orthogonality in function of
different physical layer parameters (SF, Bandwidth, initial
frequency, etc.) as well as in function of different cases of
displacements (time delay, frequency shift, etc.).

III. LORA TECHNOLOGY: OVERVIEW

LoRa operates in the licence-free frequency spectrum.
Initially, LoRa was developed to use the sub-GHz band. Its
exact range varies from one region to the other. For instance,
LoRa uses the EU industrial, scientific, and medical (ISM)
frequency bands like 433 MHz and 863−870 MHz in Europe,

915−928 MHz in Australia, 902−928 MHz in North America
and Southeast Asia, 915−928 MHz in Asia, etc. [7]. Within
this, there are eight physical configurations: six with spreading
factors from 7 to 12 with a bandwidth of 125 kHz each,
additionally one with SF 7 on 250 kHz, and another providing
Gaussian frequency-shift keying (GFSK) allowing a 50 kbps
data rate. Recently, LoRa frequency ranges have been extended
and new chips operating in the 2.4 GHz band have been
introduced in the market [41]. While LoRa’s physical layer
stack is private, LoRa’s network layer stack, LoRaWAN, is
open to public and is maintained by the LoRa Alliance. For
the medium access control (MAC), LoRa end devices access
the channel using a pure ALOHA-like protocol to transmit
their packets.

LoRa’s physical layer consists of a chirp spread spectrum
(CSS)-based modulation scheme also defined in some works
as a frequency shifting chirp modulation [23]. An important
parameter of this modulation is the spreading factor which
defines the number of bits to be encoded in a symbol (i.e. a
chirp). The spreading factor influences the data rate, hence,
the time a transmitted packet spends on air. In the liter-
ature, there are discussions indicating that these spreading
factors are pseudo or quasi orthogonal. These declarations
were frequently interpreted as follows: (i) user transmissions
assigned to different spreading factors do not interfere, and (ii)
those within the same spreading factor are able to overcome
interference when their signal strength is sufficiently higher
than the interferer. In order to check the validity of these
technologies and whether there is a novel way to describe its
nonorthgonality, this work aims to characterize and provide
a better understanding of LoRa orthogonality that was never
provided in the literature. Table I states the list of notations
used throughout the paper.

IV. LORA MODULATION: WAVEFORMS AND PROPERTIES

B
Ts

B
Ts

B

fmax

fmin

f0;k

Ts

t0 t0 + Tstk

Time

Frequency

Fig. 1: LoRa Modulation

The principle of the LoRa modulation is known to be based
on varying frequency over time (see Fig. 1). The frequency
variation starts at an initial time t0 from an initial frequency fk
(related to the transmitted symbol k) and whenever it reaches
the maximum frequency fmax, it starts again from the mini-
mum frequency fmin and varies again the frequency until the
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transmission time ends. The difference between fmax and fmin
is equal to the bandwidth B ∈ {125 kHz,250 kHz,500 kHz}.

For LoRa, SF is an integer number belonging to the space
{5, . . . ,12}. The slope of the frequency variation is defined
by which SF is used and is equal to B

Ts
, where Ts is the

transmission time and is equal to Ts = 2SF T and T = 1
B .

For each SF , we have 2SF number of possible symbols, i.e.
k ∈ {0,1,2, . . . ,2SF −1}. The symbol k is a binary number of
length equal to the spreading factor SF . The symbol k defines
the initial frequency fk expressed as fk = fmin + k B

2SF . The
symbol k defines also the shrink point tk in the time domain
[t0, t0 +Ts] as

tk = T
(

2SF − k
)
. (1)

It should be noted that the frequency at which starts the
variation fk is the same as the frequency at which ends the
variation.

A. Continuous-Time Domain

The instantaneous frequency variation standing for each
symbol k during Ts is given as

fk(t) =

 fmin +
B

2SF

(
t−t0

T + k
)
, if 0 ≤ t − t0 ≤ tk,

fmin +
B

2SF

(
t−t0

T + k−2SF
)
, if tk ≤ t − t0 ≤ Ts,

(2)

= fmin +
B

2SF mod
(

t − t0
T

+ k,2SF
)
, (3)

where mod (x,y) is the modulo operator that gives the rest
of the integer division between x and y. Given that φk(t0) = 0,
the instantaneous phase can be written as

φk(t) = φk(t0)+
∫ t

t0
fk(τ)dτ (4)

=



(
fmin +

B
2SF

(
t−t0
2T + k

))
(t − t0),

if 0 ≤ t − t0 ≤ tk,(
fmin +

B
2SF

(
t−t0
2T + k−2SF

))
(t − t0),

if tk ≤ t − t0 ≤ Ts.

Property 1. The instantaneous phase of the LoRa modulated
continuous waveform has a memoryless property only if fmin ∝

1
2SF T , i.e.

φk(t0 +Ts) =

(
fmin +

B
2SF

(
t0 +Ts − t0

2T
+ k−2SF

))
× (t0 +Ts − t0) = fmin2SF T mod 2π. (5)

Subsequently, the continuous waveform sC
k (t) correspond-

ing to the k’th symbol transmitted during Ts is given by

sC
k (t) =

1√
Ts

e j2πφk(t) (6)

=


1√
Ts

e
2 jπ
(

fmin+
B

2SF

(
t−t0
2T +k

))
(t−t0)

, if 0 ≤ t − t0 ≤ tk,

1√
Ts

e
2 jπ
(

fmin+
B

2SF

(
t−t0
2T +k−2SF

))
(t−t0)

, if tk ≤ t − t0 ≤ Ts.

If we multiply sC
k (t) by the down chirp using the same SF, the

dechirped continuous waveform is given by

sC
d,k(t) =

e2 jπ
(

2 fmin+B+ B
2SF k

)
(t−t0), if 0 ≤ t − t0 ≤ tk,

e2 jπ
(

2 fmin+
B

2SF k
)
(t−t0), if tk ≤ t − t0 ≤ Ts.

(7)

B. Discrete-Time Domain

We sample the transmitted waveform s̃k(t) corresponding
to the symbol k with a sampling rate 1/Td . Ideally, if Td =
T , we obtain 2SF samples at time instants t = nT where n ∈
{0,1, . . . ,2SF −1}. Otherwise, we get Ts

Td
number of samples.

The n’th sample of the continuous transmitted waveform sC
k (t)

corresponding to the k’th symbol can be written as

sD
k (nTd) =



1√
2SF e

2 jπ
(

fmin+
B

2SF

(
nTd−t0

2T +k
))

(nTd−t0)
,

if 0 ≤ n Td
T − t0

T ≤ 2SF − k−1,

1√
2SF e

2 jπ
(

fmin+
B

2SF

(
nTd−t0

2T +k−2SF
))

(nTd−t0)
,

if 2SF − k ≤ n Td
T − t0

T ≤ 2SF −1.

(8)

Remark 1. If Td = T and t0 is a multiple of T , i.e. t0/T = m0,
then,

sD
k (nT ) =

1√
2SF

e2 jπ fmin(n−m0)T e2 jπ
(

n−m0
2 +k

)
n−m0
2SF . (9)

Also, if fmin is a multiple of B, then sD
k (nT ) further simplifies

to sD
k (nT ) = 1√

2SF e2 jπ
(

n−m0
2 +k

)
n−m0
2SF .

If we multiply sD
k (nTd) by the down chirp using the same

SF , the n’th sample of the dechirped transmitted waveform
corresponding to the k’th symbol is given by

sD
d,k(nTd) =



1√
2SF e2 jπ

(
2 fmin+B+ B

2SF k
)
(nTd−t0),

if 0 ≤ n Td
T − t0

T ≤ 2SF − k−1,
1√
2SF e2 jπ

(
2 fmin+

B
2SF k

)
(nTd−t0),

if 2SF − k ≤ n Td
T − t0

T ≤ 2SF −1,
(10)

Remark 2. If t0 is a multiple of T , i.e. t0/T = m0, then,

sD
d,k(nT ) =

1√
2SF

e4 jπ fmin(n−m0)T e2 jπk n−m0
2SF . (11)

Also, if fmin is a multiple of B and t0/T = m0, then

sD
d,k(nT ) =

1√
2SF

e2 jπk n−m0
2SF . (12)

C. Illustrative Example of LoRa Nonorthogonality

In this part, we present an illustrative example using LoRa
Matlab simulator (more details in Section VII) to highlight
LoRa nonorthogonality and support the objective of this work.
Fig. 2 shows the spectrogram of a sequence of chirps corre-
sponding to the symbols {0,50,75,125} and modulated using
SF1 =7. We can see how the chirp varies with the symbol
and how the initial frequency varies as the symbol increases.
We can see also that the frequency whenever reaches the
maximum frequency, resets back to the minimum frequency.
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In Fig. 3, we have plotted the FFT amplitude of a LoRa
chirp modulated using SF1 = 7 under different interference
scenarios. In Fig. 3a, the chirp is sent through an AWGN
channel (no interference), while in the remaining subplots we
have a simultaneous transmitted interfering chirp modulated
using SF2 over bandwidth B2 with a SIR value 0 dB. We can
see how the peak in the amplitude spectrum is impacted by
the interfering SF2 as well as by the bandwidth B2. For the
interfering scenarios in Fig. 3b and 3d, the interfering signal
is weak and the decoding of the desired signal at the receiver
is still successful as the peak of FFT amplitude spectrum
is similar to the non interference case in Fig. 3a. For the
interfering scenarios in Figs. 3c and 3e, the interfering signal
is strong enough to diminish the decoding of the desired signal
at the receiver. As such, the peak of FFT amplitude spectrum
does not correspond always to the same-SF interfering signal.

We believe that identifying impacting interference scenarios
is directly correlated with the values of SF and bandwidth of
the interfering signal and how different they are from those of
the desired signal, which is the objective of this work.

V. CROSS CORRELATION FUNCTIONS

In this section, we propose to derive the cross-correlation
between two LoRa waveforms transmitting two symbols k1
using SF1 and k2 using SF2 over bandwidths B1 and B2,
respectively, in the continuous and discrete time domains.
The corresponding symbol transmission times are Ts,1 and Ts,2
and let Tj = 1/B j, with j = 1,2. The starting frequencies of
symbols k1 and k2 are f1 and f2, respectively. Let us assume
SF1 < SF2 and SF2 = SF1 + s, with s ∈ {1, . . . ,7}. We aim to
examine the orthogonality conditions as well as some other
properties.

A. Continuous-Time Domain

First, we study the continuous time domain. The cross-
correlation function between the two continuous waveforms is
defined as

R C
k1,k2

(τ, fd) =
∫ t0+Ts,1

t0+τ

sC
k1
(t)
(

sC
k2
(t − τ)

)∗
dt. (13)

where τ is the time delay (TD) and fd is the frequency
differential shift (DFS) between the starting frequencies, i.e.
fd = f2 − f1.

Theorem 1. The cross-correlation between two continuous
transmitted waveforms is expressed by (14), where

Ka12

(
bk1,k2 , t1, t2

)
(15)

=



e
2 jπck2 e

− jπ
b2
k1 ,k2
a12√

Ts,1Ts,2

erf

(√
πa12

j

(
t0 + t2 +

bk1 ,k2
a12

))

−erf

(√
πa12

j

(
t0 + t1 +

bk1 ,k2
a12

)), if a12 ̸= 0,

e
2 jπck2 e

jπbk1,k2
(2t0+t1+t2)sinc

(
πbk1 ,k2 (t2−t1)

)
(t2−t1)√

Ts,1Ts,2
, if a12 = 0,

with µ j =
B j

2SFj
for j = 1,2, a12 = µ1

T1
− µ2

T2
, bk1,k2 = f1 +

µ1k1 − f2 − µ2k2 +
µ2τ

T2
, ck2 =

(
f2 +µ2k2 − µ2τ

2T2

)
τ, mk1,k2 (τ) =

min
(
tk1 ,τ+ tk2

)
, Mk1,k2 (τ) = max

(
tk1 ,τ+ tk2

)
, and Bc =

B1u
(
tk2 + τ− tk1

)
−B2u

(
tk1 − tk2 − τ

)
, u(·) is the step function,

and 1(·) is the indicator function.

Proof. The proof is in Appendix B.

Corollary 1. If we denote by La(t1, t2) = e2 jπat2−e2 jπat1
a , the

cross-correlation between two continuous transmitted wave-
forms reduces to (16) if the condition a12 = 0 is satisfied, i.e.
µ1
T1

= µ2
T2

.

Proof. The proof is an immediate result of Theorem 1.

Corollary 2. The cross-correlation between two continuous
dechirped transmitted waveforms R C

d,k1,k2
(τ, fd) is also given

by (16) but after substituting c̃k2 = (2 f2 +B2 +µ2k2)τ instead
of ck2 and b̃k1,k2 = µ1k1 − µ2k2 + 2 f1 − 2 f2 +B1 −B2 instead
of bk1,k2 .

Proof. The proof follows the same procedure in Appendix B
and using Appendix C.

Corollary 3. The maximum cross-correlation between two
continuous synchronized transmitted waveforms over the same
SF with no time delay and no differential frequency shift is
equal to

|R C
k1,k2

(0,0) |= 2SF

π

|sin
(

π
(k1−k2)

2

2SF

)
|

|k1 − k2|
(
2SF −|k1 − k2|

) ≤ 1

π

(√
2SF

2 − 1
2

) ,

(17)

which happens at |k1 − k2| =
⌊√

2SF

2

⌋
and |k1 − k2| = 2SF −⌊√

2SF

2

⌋
, is upper bounded by 0.0909 for SF = 5, . . . ,12, and

vanishes as SF goes to infinity.

Proof. The proof is in Appendix D.

1) Special Cases
Few special cases can be derived from the general expres-

sion in (14).
• Same SF with no TD and no DFS: If SF1 = SF2 = SF ,

B1 = B2 = B, τ = 0, and fd = 0, the cross correlation
function becomes

R C
k1,k2

(0,0) =
e

2 jπ
2SF (k1−k2)

(
t0
T −k1

)
2 jπ

 e2 jπκ0
t0
T

2SF −|k1 − k2|
+

1
|k1 − k2|


×
(

1− e
2 jπ
2SF (k1−k2)

2
)
, (18)

with κ0 =
k2−k1
|k2−k1| .

• Same SF with no TD and with DFS: If SF1 = SF2 = SF ,
B1 = B2 = B, τ = 0, and fd ̸= 0, the cross correlation
function becomes

R C
k1,k2

(0, fd) =
e

2 jπ
2SF

(
k1−k2−

fd 2SF

B

)(
t0
T +2SF

)
2 jπ

 1− e2 jπ fd 2SF

B

k1 − k2 − fd2SF

B
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Fig. 2: Spectrogram of a LoRa symbols sequence {0,50,75,125} modulated with SF1 = 7 and B1 = 125 KHz.

+

e
− 2 jπ

2SF

(
k1−k2−

fd 2SF

B

)
k2 − e

− 2 jπ
2SF

(
k1−k2−

fd 2SF

B

)
k1


×

 κ0

k1 − k2 − fd2SF

B

− e2 jκ0π
t0
T

2SF +κ0

(
k1 − k2 − fd2SF

B

)
.

(19)

• Different SFs with no TD and no DFS: If B2 = 2sB1 (i.e.
T2 = 2−sT1) and SF2 = SF1 + 2s such that a12 = 0, the
cross correlation function becomes as given in (20), with
A = k1 −2−sk2 +

τ

T1
− fd

µ1
.

After examining these special cases, we were able to deduce
some orthogonality cases in Table II.

B. Discrete-Time Domain

Next, we consider the case of discrete transmitted wave-
forms with different SFs. Let Td be the sampling time and let
B1 = 2s1/Td , B2 = 2s2/Td , and SF2 = SF1 + s3. Let m0 = t0

Td
,

and m1 =
τ

Td
.

Theorem 2. The cross correlation between two discrete
transmitted waveforms with different SFs is
R D

k1,k2
(τ, fd) = (21)

e
2 jπck2 e

− jπa12

(
bk1 ,k2

a12

)2

√
2SF1 2SF2

∑
2SF1−s1−1
n′=m1

e
jπa12

(
n′Td+

bk1 ,k2
a12

)2

,if a12 ̸= 0,

e
2 jπck2 e

2 jπbk1 ,k2
Td m1 e

jπ
(

2SF1−s1−m1−1
)

bk1 ,k2
Td√

2SF1 2SF2
cosec

(
πbk1,k2Td

)
×sin

(
π

(
2SF1−s1 −m1

)
bk1,k2Td

)
, if a12 = 0&bk1,k2 ̸= 0,

e
2 jπck2√

2SF1 2SF2

Ts,1−τ

Td
, if a12 = 0&bk1,k2 = 0,

Proof. The proof is in Appendix E.

Theorem 3. The cross correlation between two dechirped
discrete transmitted waveforms with different SFs is

R D
d,k1,k2

(τ, fd) (22)

=



e
2 jπc̃k2 e

2 jπb̃k1 ,k2
τ

√
2SF1 2SF2

e jπ(2SF1−s1−m1−1)b̃k1 ,k2 Td

×sin
(

π

(
2SF1−s1 −m1

)
b̃k1,k2Td

)
×cosec

(
πb̃k1,k2Td

)
, if b̃k1,k2 ̸= 0,

e
2 jπc̃k2√

2SF1 2SF2

Ts,1−τ

Td
, if b̃k1,k2 = 0,

Proof. The proof follows similar steps as in Appendix E.

Corollary 4. If both symbols are i.i.d., the mean of the cross
correlation between two discrete transmitted waveforms with
different SFs is

Ek1,k2

[
R D

k1,k2

]
=


1√

2SF1 2SF2
, if τ = 0,

0, if τ ̸= 0.
(23)

The same result applies to the mean of the cross correla-
tion between two dechirped discrete synchronized transmitted
waveforms with different SFs.

VI. CROSS-CORRELATION FACTORS

In this section, we aim to characterize the cross-correlation
factors of LoRa modulation, in terms of mean and maximum
of cross-correlation functions over all possible symbols, as
well its cumulative distribution function. We aim also to study
the impact of time delay and different bandwidths on the
maximum cross-correlation functions. In all the plots, we have
compared the analytical and numerical evaluation of cross-
correlation function and we have verified their agreement.

A. Maximum, Mean and CDF of Cross-Correlation Functions

In Fig. 4, we plotted the maximum cross-correlation
functions in the continuous and discrete time domain before
and after down-chirping with τ = 0 and fd = 0. These plots
were validated analytically and numerically. The numerical
values which led to this figure are also provided in Tables
III-V. We observed a couple of properties:

• In both time domains (continuous and discrete), the
maximum cross-correlation between the same SFs is more
significant than the maximum cross-correlation between
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(b) With Interference: SF2 = 6, B2 = B1
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(c) With Interference: SF2 = 7, B2 = B1
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(d) With Interference: SF2 = 7,B2 = 2×B1
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(e) With Interference: SF2 = 9,B2 = 2×B1

Fig. 3: FFT amplitude spectrum of received signal transmitted using SF1 = 7 under (a) only AWGN channel (SNR = 0 dB)
and (b)-(e) different interference scenarios (SIR = 0 dB)

R C
k1,k2

(τ, fd) =



Ka12

(
bk1,k2 −B1,τ,Ts,1

)
, if tk1 ≤ τ < Ts,1 ≤ τ+ tk2 ,

Ka12

(
bk1,k2 −B1,τ,τ+ tk2

)
+ e−2 jπB2τKa12

(
bk1,k2 −B1 +B2,τ+ tk2 ,Ts,1

)
, if tk1 ≤ τ < τ+ tk2 < Ts,1,

Ka12

(
bk1,k2 ,τ, tk1

)
+Ka12

(
bk1,k2 −B1, tk1 ,Ts,1

)
, if τ < tk1 < Ts,1 ≤ τ+ tk2 ,

Ka12

(
bk1,k2 ,τ,mk1,k2 (τ)

)
+ e−2 jπB2τu

(
tk1−τ−tk2

)
Ka12

(
bk1,k2 −Bc,mk1,k2 (τ) ,Mk1,k2 (τ)

)
1
(
tk1 − τ ̸= tk2

)
+e−2 jπB2τKa12

(
bk1,k2 −B1 +B2,Mk1,k2 (τ) ,Ts,1

)
, if τ < tk1&τ+ tk2 < Ts,1.

(14)

R C
k1,k2

(τ, fd) =



e
2 jπ
(

ck2
+bk1 ,k2

t0−
t0
T1

)
2 jπ

√
Ts,1Ts,2

Lbk1 ,k2−B1

(
τ,Ts,1

)
, if tk1 ≤ τ < Ts,1 ≤ τ+ tk2 ,

e
2 jπ
(

ck2
+bk1 ,k2

t0−
t0
T1

)
2 jπ

√
Ts,1Ts,2

Lbk1 ,k2−B1

(
τ,τ+ tk2

)
+ e2 jπB2(t0−τ)Lbk1 ,k2−B1+B2

(
τ+ tk2 ,Ts,1

), if tk1 ≤ τ < τ+ tk2 < Ts,1,

e
2 jπ
(

ck2
+bk1 ,k2

t0

)
2 jπ

√
Ts,1Ts,2

Lbk1 ,k2

(
τ, tk1

)
+ e−2 jπ t0

T1 Lbk1 ,k2−B1

(
tk1 ,Ts,1

), if τ < tk1 < Ts,1 ≤ τ+ tk2 ,

e
2 jπ
(

ck2
+bk1 ,k2

t0

)
2 jπ

√
Ts,1Ts,2

Lbk1 ,k2

(
τ,mk1,k2 (τ)

)
+ e

−2 jπ
(

B2τu(tk1−τ−tk2)+Bct0
)

Lbk1 ,k2−Bc

(
mk1,k2 (τ) ,Mk1,k2 (τ)

)
1
(
tk1 − τ ̸= tk2

)
+e2 jπ(−B2τ+(−B1+B2)t0)Lbk1 ,k2−B1+B2

(
Mk1,k2 (τ) ,Ts,1

), if τ < tk1 &τ+ tk2 < Ts,1.

(16)
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R C
k1,k2

(τ, fd) (20)

=



e2 jπck2 e
2 jπA
2SF1

t0
T1

2 jπ
√

2s

LA

(
τ

2SF1 T1
,

2s
(

2SF1− k2
22s

)
+ τ

T1
2SF1

)
+ e2 jπ −2sτ+2st0

T1 LA+2s2SF1

(
2s
(

2SF1− k2
22s

)
+ τ

T1
2SF1

, 2SF1−k1
2SF1

)

+e2 jπ
−2sτ+(−1+2s)t0

T1 LA−2SF1+2s2SF1

(
2SF1−k1

2SF1
,1
), if τ < τ+ tk2 ≤ tk1 < Ts,1,

e2 jπck2 e
2 jπA
2SF1

t0
T1

2 jπ
√

2s

LA

(
τ

2SF1 T1
, 2SF1−k1

2SF1

)
+ e−

2 jπt0
T1 LA−2SF1

(
2SF1−k1

2SF1
,

2s
(

2SF1− k2
22s

)
+ τ

T1
2SF1

)

+e2 jπ
−2sτ+(−1+2s)t0

T1 LA−2SF1+2s2SF1

(
2s
(

2SF1− k2
22s

)
+ τ

T1
2SF1

,1

), if τ < tk1 < τ+ tk2 < Ts,1,

e2 jπck2 e
2 jπA
2SF1

t0
T1

2 jπ
√

2s

LA

(
τ

2SF1 T1
, 2SF1−k1

2SF1

)
+ e−2 jπ t0

T1 LA−2SF1

(
2SF1−k1

2SF1
,1
), if τ < tk1 < Ts,1 ≤ τ+ tk2 ,

e2 jπck2 e
2 jπA
2SF1

t0
T1

2 jπ
√

2s e−
2 jπt0

T1

LA−2SF1

(
τ

2SF1 T1
,

2s
(

2SF1− k2
22s

)
+ τ

T1
2SF1

)
+ e2 jπ −2sτ+2st0

T1 LA−2SF1+2s2SF1

(
2s
(

2SF1− k2
22s

)
+ τ

T1
2SF1

,1

), if tk1 ≤ τ < τ+ tk2 < Ts,1,

e2 jπck2 e
2 jπA
2SF1

t0
T1

2 jπ
√

2s e−
2 jπt0

T1 LA−2SF1

(
τ

2SF1 T1
,1
)
, if tk1 ≤ τ < Ts,1 ≤ τ+ tk2 ,
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Fig. 4: Maximum of cross-correlation factors between SFs in
the continuous/discrete time domains before/after downchirp-
ing with τ = 0 and fd = 0.

different SFs. The difference is much larger before down-
chirping. This behaviour means that the origin of LoRa
non-orthogonality behaviour is due to the same SF and
not due to the different SFs. Also, it should be noted
that this maximum for the same SF happens when the
same symbol is transmitted, i.e. k1 = k2, otherwise the
maximum cross-correlation factor would be almost zero.

• Before down-chirping, lower SFs are more impactful
than higher SFs as their maximum cross-correlations are
higher. Also, closer SFs impact the maximum cross-
correlation more.

• Before down-chirping, the maximum cross-correlation
has slightly decreased in the discrete time domain com-

pared to the continuous time domain and this can be
explained by the sampling time not being infinitesimally
small enough to apply the Riemann integral which ap-
proximates the integrals by a sum expression for infinites-
imally small steps.

• After down-chirping, the maximum cross-correlation be-
tween different SFs has increased compared to those
before down-chirping.

• After down-chirping, the maximum cross-correlation be-
tween SFs is independent of the time domain, whether
continuous or discrete.

• The maximum of the cross-correlation functions after
down-chirping is symmetric around the same SF (i.e.
SF1 = SF2) and its exact expression can be mapped to
the expression

√
SF1
SF2

, with SF1 ≤ SF2, and it is the same
in the continuous and discrete time domain.

In Fig. 5, we have plotted the mean of the cross-correlation
functions between SFs in the continuous and discrete time
domain, before and after down-chirping, with τ= 0 and fd = 0.
These plots were validated analytically and numerically. The
numerical values which led to this figure are also provided in
Tables VI-VIII. We have also observed several properties:

• In the continuous time domain, the mean cross-correlation
is higher than that in the discrete time domain.

• In the continuous time domain, the mean cross-correlation
has decreased after down-chirping.

• In the discrete time domain, the mean cross-correlation
is the same before and after down-chirping, confirming
Corollary 4.

Fig. 6 shows the cumulative distribution function (CDF) of
the cross-correlation magnitude in the continuous time domain
before/after down-chirping with SF1 = 8. The CDF explains
why we see that the mean of cross-correlation of different SFs
is higher than that of same SF. Indeed, the same SF has the
maximum cross-correlation of 1 for the case of same symbols;
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otherwise, the maximum cross-correlation is lower than 0.03
(For SF = 8 ). The CDF justifies also why after dechirping
the mean of the cross-correlation function has decreased. We
can see how the cross-correlation values span a small interval
comparing to the undechipred case. We can see also how the
maximum cross-correlation after downchirping is higher than
the one before downchirping.

B. Impact of Bandwidth

In Figs. 7 and 8, we have plotted the maximum of the
cross-correlation functions for different bandwidth values B1
and B2 in the continuous and discrete time domain before and
after down-chirping. The sampling rate for the discrete time
domain is always equal to 1/B1 for both waveforms. We have
observed interesting properties:

• The maximum of cross-correlation functions is no longer
the largest for the same SF for all time domains.

• The maximum of cross-correlation functions varies only
if the ratio B1

B2
varies. For example, we have the same

behaviour for the pairs B1 = 125 kHz and B2 = 250 kHz,
and for the pairs B1 = 250 kHz and B2 = 500 kHz.

• Before down-chirping, the maximum cross-correlation
behaves similarly for the continuous and discrete time do-
mains. If B2 > B1, the largest maximum cross-correlation
occurs for SF2 = SF1 +

B2
B1

. For example, for SF1 = 5 and
B2 = 2×B1, the maximum cross-correlation is 0.7 which
happens at SF2 = 7 while it is less than 0.4 for the other
SF2s.

• If B2 < B1, the largest maximum cross-correlation hap-
pens for SF2 = min

(
5,SF1 − B1

B2

)
.

• After down-chirping, the largest maximum cross-
correlation is obtained for same SF if B2 = 2×B1 and
B2 = 0.5×B1.

• The largest maximum cross-correlation occurs for SF2,
not necessarily equal to SF1, in the discrete time domain
after down-chirping. If B2 = 2×B1, the largest maximum
is obtained for SF2 = 6. If B2 = 4×B1, it is obtained for
SF2 = 7. If B2 < B1, the largest maximum is obtained for
SF2 = 5 independently of SF1.

C. Impact of Temporal Displacement

In Figs. 9 and 10, we have plotted the maximum of
cross-correlation functions versus the time delay for same and
different symbols in the continuous and discrete time domains,
before and after down-chirping. We have observed a couple
of properties that are completely different; before and after
performing the down-chirping. The common behavior is that
the maximum of the cross-correlation function decreases as
the delay increases, except for the case with same SFs and
different symbols after down-chirping. Before down-chirping,
we have observed in Fig. 9 that:

• For same symbols, the maximum cross-correlation for
different SFs is higher than the one for same SFs for
both continuous and discrete cases (when τ is not close
to zero).

• For same symbols and different SFs, the maximum cross-
correlation follows the same values as for the zero time
delay scenario, up to a certain value of τ. This observation
confirms that the maximum cross-correlation with zero
delay can be generalized to the asynchronous case.

• For different symbols, the maximum cross-correlation for
the same SFs is higher than half, in both the continuous
and discrete time domains, which makes the demodula-
tion process difficult to succeed.

• The maximum cross-correlation for same SFs is higher
than that for different SFs in both the continuous and
discrete cases (when τ is not close to zero).

• For different symbols and different SFs, the maximum
cross-correlation function follows the same value as that
for the zero time delay scenario up to a certain value of
τ.

• The temporal displacement graphs show that for the same
SF in both continuous and discrete time, when τ is
perfectly 0 the cross correlation is 0 or near 0 however
when τ goes slightly above 0, the cross correlation cor-
relation reaches a pick and this counterintuitively implies
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Fig. 7: Maximum of cross-correlation factors between SFs in the continuous time domain with τ = 0 and fd = 0 for different
B1 and B2.
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Fig. 8: Maximum of cross-correlation factors between SFs in the discrete time domain with τ = 0 and fd = 0 for different B1
and B2.

that the probability to decode symbols that are perfectly
synchronised could be higher than when they are slightly
asynchronous.

After down-chirping, we have observed in Fig. 10 that:
• For same symbols, the maximum cross-correlation is

higher for the same SFs than those observed for different
SFs in the continuous/discrete cases.

• The maximum of the cross-correlation function achieving
higher than half happens only for same SF scenarios and
some different SFs (precisely when SF1 and SF2 are close)
in both the continuous and discrete time domains.

• For different symbols, the maximum cross-correlation
being higher than half happens only for different SFs
(precisely when SF1 and SF2 are close) in both continuous
and discrete time domains. For example, the maximum of
cross-correlation function between SF1 = 6 and SF2 = 7

are higher than 0.5 for a time delay τ less than 20T1.
Also, the maximum of cross-correlation function between
SF1 = 7 and SF2 = 8 are higher than 0.5 for a time delay
τ less than 40T1.

• The maximum of cross-correlation function is higher for
different SFs than for same SFs in the continuous/discrete
cases.

• The maximum of cross-correlation is less than half for
the same SFs in both the continuous/discrete case after
down-chirping.

VII. BIT ERROR RATE ANALYSIS

Before LoRa symbols are generated using the LoRa mod-
ulation, the message bit sequence goes through a pipeline
of operations at the transmitter side and their corresponding
inverses at the receiver side. This pipeline includes a Gray
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Fig. 9: Maximum cross-correlation functions versus time delay
τ/T1 before downchirping.
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Fig. 10: Maximum cross-correlation functions versus time
delay τ/T1 after downchirping.

coding, a Hamming coding operation that ranges from a
simple parity check to an extended Hamming code of rate
4/(4+CR) based on the chosen coding rate parameter CR∈
{1,2,3,4} and an interleaving operation that aims to avoid the
propagation of adjacent errors through a diagonal interleaver
of size (SF ∗ (CR + 4)) [8]. We built our LoRa’s physical
layer simulator on Matlab based on the processing pipeline
explained in [11], [42]. Fig. 11 shows the BER performance
of different spreading factors under an additive white Gaussian
channel for the case of a 4/7 hamming coding scheme. We
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Fig. 11: Coded LoRa BER performance under AWGN for
different SFs

choose to conduct the investigation of the orthogonality impact
on the BER performance without considering the coding and
interleaving operations in order to isolate the impact that these
operations may induce on the BER performance.

To account for the inter-relation between noise and the
interference highlighted in [31], we evaluate the BER while
considering different signal to interference ratios (SIR) and
signal to noise ratios (SNR) values. Indeed, we calculate the
BER of each SF1 under both additive white Gaussian noise
(AWGN) and a random interfering packet for which we varied
its SF2. For each interfering SF2, we considered a given SNR
value based on the sensitivity range, from Table 1 in [31]
of the evaluated SF1, and we varied the amplitude of the
interfering signal by varying its SIR ratio. The desired packet
is fixed to N bytes (25 for the following graphs) rounded to a
number of blocks. The desired packet information sequence is
modulated using SF1 and then impaired using a second random
bit sequence that is modulated using SF2. The overall received
signal R(nT ) = S0(nT )+ Sint(nT )+W (nT ) goes through the
demodulation process which is based on a down-chirping
operation followed by a Discrete Fourier Transform (DFT)
[42]. The decoded symbol is detected by the position of the
maximum in the DFT amplitude spectrum of R.

To evaluate the impact of LoRa SFs orthogonality and
equate it to the obtained cross-correlation factors detailed
in the previous section, we plotted the BER for different
combinations of BWs and for different SFs. We found that the
behaviour of the BER statistics is aligned with the behaviour of
the maximum cross-correlation functions in the discrete time
domain. By examining the subplots in Fig. 12, we can see
how the dominant SF is not always the same SF as the desired
one (i.e. SF1); it changes based on the BW ratio between the
desired and the interfering SF as was shown previously in Fig.
8a. The dominant interfering SF is the one that has the highest
cross-correlation factors in Table V.
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Fig. 12: LoRa BER performance under interference from
different SFs before downchirping with τ = 0 and fd = 0 for
different B1 and B2.

VIII. EXPERIMENTAL ANALYSIS OF PACKET DELIVERY
RATIO (PDR)

In this section, we run a small experimental setup made
up of three LoRa end users (2 transmitters and 1 receiver)
in Fig. 13a. Each LoRa end user is represented by Semtech
SX1280 2.4GHz transceiver [43]. One transmitter is set to
be the desired user and the second transmitter is set to be the
interfering user. We set the transmit power of both transmitters
to 22 dBm. We varied the SFs and bandwidths of each
transmitter and we quantified the packet delivery ratio (PDR)
which is defined as the ratio between the correctly received
packets over the transmitted packets. In Figs. 13b, 13c, and
14, we have plotted the PDR versus the SF of desired user
SF1 for different values of interferer’s SF SF2 ∈ {5, . . . ,12}.
The SF of desired user SF1 is between 5 and 12 in Fig.
13b, while it is between 5 and 8 for the others. In Figs.
13b and 13c, we look at the case of same bandwidths at
the desired user and interferer. However, in Fig. 14, we look
at the case of different bandwidths between the desired user
and interferer, i.e. B1/B2 ∈{0.25,0.5,2,4}. Firstly, we observe
that for the same bandwidths in Figs. 13b and 13c, PDR is
performing badly for the same SF and is exactly equal to
zero in most cases. This behaviour is highly aligned with
the maximum cross-correlation factors for the same SF which
we have shown that they are equal to one for the same SF.
Secondly, when we have different bandwidths as in Fig. 14,
PDR is the worst when the difference between SFs is exactly
equal to the ratio between bandwidths when B2 > B1. This
behaviour is explained due to the fact that the maximum
cross-correlation factor is the largest for SF2 = SF1 +B2/B1
with B2 > B1. Also, when B2 < B1, PDR vanished when
SF2 = min

(
5,SF1 −B1/B2

)
which is also aligned with the

behaviour of our cross-correlation factors.

IX. SUMMARY

In this paper, we provided, for the first time, a general
expression of a LoRa waveform transmitting a certain symbol
using a specific SF over a certain bandwidth for an initial fre-
quency and a nonzero starting time. We analytically expressed
the cross-correlation functions between two LoRa waveforms
transmitting two symbols (not necessarily different) using
possibly different SFs and bandwidths for a possible time
delay and a differential frequency shift. We considered both
the continuous and discrete time domains, and before and after
downchirping (multiplying with a down chirp at the receiver).
Special cases were analyzed for no time delay, no differential
frequency shift, or different bandwidths (B2 multiple of 2 of
B1). Based on the special cases in Section IV-A-1), some
orthogonality conditions are summarized in Table II. We have
expressed the maximum cross-correlation in the continuous
time domain using the same SF, and we have shown that
the mean of cross-correlation functions in the discrete time
domain is the same before and after downchirping and is
given by 1√

2SF1 2SF2
for different SFs and zero otherwise.

Furthermore, we have numerically evaluated the maximum and
mean of cross-correlation functions in continuous/discrete time
domains before/after downchirping. For the same bandwidths,
we have observed that the largest maximum cross-correlation
is obtained by the same SF; whereas, for different bandwidths,
the largest maximum cross-correlation is not always obtained
by the same SF. For example, if B1 > B2, the largest max-
imum cross-correlation happens at SF2 = SF1 +

B2
B1

. While if
B2 < B2, the largest maximum cross-correlation happens at
SF2 = min

(
5,SF1 − B1

B2

)
.

We have also observed that closer SFs have higher max-
imum cross-correlation than farther SFs, and the maximum
cross correlation after downchirping is symmetric around the
same SFs. We deduced that its expression can be fitted to the
value

√
SF1
SF2

for SF1 < SF2.
We have examined the non-zero time delays and we

have observed that for same symbols, the maximum cross-
correlation is higher for different SFs than for same SFs;
whereas, for different symbols, the maximum cross-correlation
is higher for same SFs than for different SFs. Also, for
different SFs, the maximum cross-correlation function has the
same value as those with zero time delay for different SFs up
to a certain value of time delay τ. The temporal displacement
graphs illustrate that the maximum of the cross-correlation
functions is insignificantly impacted by the temporal delay
which makes it safe to adopt for the performance analysis of
both synchronous and asynchronous systems.

To highlight the impact of LoRa nonorthogonality, we sim-
ulated the bit error rate of LoRa using a Matlab simulator and
we ran a small set of experiment made of three LoRa nodes
where we calculated the packet delivery ratio (PDR) metric.
We have highlighted that their performance is aligned with the
behaviour observed by the maximum cross-correlation factors.
To further confirm the orthogonality analysis and properties,
we are planning to run extensive experiments to quantify the
bit error rate and confirm if its behaviour is exactly aligned
with all of our orthogonality conditions.
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(a) Experimental setup using three
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(b) B1 = B2 = 203 MHz, SF1 ∈ {5, . . . ,12} and
SF2 ∈ {5, . . . ,12}.
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(c) B1 = B2 ∈ {203, . . . ,1624} MHz, SF1 ∈
{5, . . . ,8} and SF2 ∈ {5, . . . ,12}.

Fig. 13: Experimental analysis of packet delivery ratio (PDR) of desired transmitter using same bandwidth and different SFs:
(a) experimental setup using Semtech SX1280 2.4GHz transceivers, (b) same bandwidth B1 = B2 = 203 MHz, and different
values of same bandwidths.
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(a) B1 = 2B2 and B1 = 0.5B2
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(b) B1 = 4B2 and B1 = 0.25B2

Fig. 14: Experimental analysis of packet delivery ratio (PDR) of desired transmitter using different bandwidths and different
SFs: SF1 ∈ {5, . . . ,8} and SF2 ∈ {5, . . . ,12}

APPENDIX A

We aim to express the integral
Ik1,k2(τ, t1, t2) (24)

=
∫ t2

t1
e

2 jπ
(

f1+µ1

(
t

2T1
+k1

))
t
e
−2 jπ

(
f2+µ2

(
t−τ

2T2
+k2

))
(t−τ)

dt

= e2 jπ
(

f2+µ2k2−
µ2τ

2T2

)
τ
∫ t2

t1
e2 jπ

(
µ1k1−µ2k2+ f1− f2+

µ2τ

T2

)
te jπ

(
µ1
T1

− µ2
T2

)
t2

dt

(25)

= e2 jπck2

∫ t2

t1
e jπ

(
2bk1 ,k2 t+a12t2

)
dt (26)

=

e
jπ

2ck2−
b2

k1 ,k2
a12

 ∫ t2
t1 e

jπa12

(
t+

bk1 ,k2
a12

)2

dt, if a12 ̸= 0,
e2 jπck2

∫ t2
t1 e2 jπbk1,k2 tdt, if a12 = 0,

(27)

=



√
j

πa12
e

jπ

2ck2−
b2

k1 ,k2
a12

 ∫√ πa12
j

(
t2+

bk1 ,k2
a12

)
√

πa12
j

(
t1+

bk1 ,k2
a12

) e−x2
dx,

if a12 ̸= 0,
e2 jπck2 e jπbk1 ,k2 (t1+t2)

×sinc
(
πbk1,k2 (t2 − t1)

)
(t2 − t1) , if a12 = 0,

(28)
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TABLE II: Orthogonality Conditions

Time SFs Bws Time Freq Orthog.
Domain Shift Shift Conditions

Continuous SF1 = SF2 B1 = B2 τ = 0 fd = 0 SF even & |k1 − k2| ∝
√

2SF

fd ̸= 0 SF even & fd ∝
B

2SF &|k1 − k2 − fd 2SF

B | ∝
√

2SF

τ ̸= 0 fd = 0 SF even & τ ∝ T & |k1 − k2 +
τ

T | ∝
√

2SF

fd ̸= 0 SF even & τ ∝ T & fd ∝
B

2SF &|k1 − k2 +
τ

T − fd 2SF

B | ∝
√

2SF

Discrete SF1 = SF2 B1 = B2 τ = 0 fd = 0 k1 − k2 ̸= 0
fd ̸= 0 fd ∝

B1
2SF1

& k1 − k2 − fd
2SF1
B1

̸= 0

τ ̸= 0 fd = 0
(

2SF1 − τ/T1

)(
k1 − k2 +

τ

T1

)
∝ 2SF1

fd ̸= 0 fd ∝
B1

2SF1
&
(

2SF1 − τ/T1

)(
k1 − k2 +

τ

T1
− fd

2SF1
B1

)
∝ 2SF1

Dechirped SF1 = SF2 B1 = B2 τ = 0 fd = 0 k1 − k2 ̸= 0
Discrete fd ̸= 0 fd ∝

B1
2SF1

& k1 − k2 −2 fd
2SF1
B1

̸= 0

τ ̸= 0 fd = 0
(

2SF1 − τ/T1

)
(k1 − k2) ∝ 2SF1

fd ̸= 0 fd ∝
B1

2SF1
&
(

2SF1 − τ/T1

)(
k1 − k2 −2 fd

2SF1
B1

)
∝ 2SF1

SF2 = SF1 +2s B2 = 2sB1 τ = 0 fd = 0 fd ∝
B1

2SF1
&
(

k1 − k2
2s +(1−2s)2SF1

)
̸= 0

fd ̸= 0 fd ∝
B1

2SF1
&
(

k1 − k2
2s −2 fd

2SF1
B1

+(1−2s)2SF1

)
̸= 0

τ ̸= 0 fd = 0
(

2SF1 − τ/T1

)(
k1 − k2

2s +(1−2s)2SF1
)

∝ 2SF1

fd ̸= 0 fd ∝
B1

2SF1
&
(

2SF1 − τ/T1

)(
k1 − k2

2s −2 fd
2SF1
B1

+(1−2s)2SF1

)
∝ 2SF1

SF1 ̸= SF2 B1 ̸= B2 ∀τ ∀ fd fd ∝
B1

2SF1
&
(

2SF1 − τ/T1

)(
k1 − B22SF1

B12SF2
k2 −2 fd

2SF1
B1

+(1− B2
B1
)2SF1

)
∝ 2SF1

=



√
j

2
√

a12
e

jπ

2ck2−
b2
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a12

erf

(√
πa12

j

(
t2 +

bk1 ,k2
a12

))

−erf

(√
πa12

j

(
t1 +

bk1 ,k2
a12

)), if a12 ̸= 0,

e2 jπck2 e jπbk1 ,k2 (t1+t2)

×sinc
(
πbk1,k2 (t2 − t1)

)
(t2 − t1) , if a12 = 0,

, (29)

with a12 =
µ1
T1
− µ2

T2
, bk1,k2 = µ1k1 −µ2k2 + f1 − f2 +

µ2τ

T2
, ck2 =(

f2 +µ2k2 − µ2τ

2T2

)
τ.

APPENDIX B
PROOF OF THEOREM 1

The cross-correlation between two continuous transmitted
waveforms with different SFs is given by

R C
k1,k2

(τ, fd) =
∫ t0+Ts,1

t0
sC

k1
(t)
(

sC
k2
(t − τ)

)∗
dt (30)

=
1√

2SF12SF2

∫ t0+Ts,1

t0+τ

sC
k1
(t)
(

sC
k2
(t − τ)

)∗
dt.

(31)

Let us denote by µ j =
B j

2SFj
for j = 1,2, a12 =

µ1
T1
− µ2

T2
, bk1,k2 =

f1 +µ1k1 − f2 −µ2k2 +
µ2τ

T2
, and ck2 =

(
f2 +µ2k2 − µ2τ

2T2

)
τ. We

have five possible cases based on which we express the cross-
correlation function as in (32). Then using Appendix A, we
get the results in Theorem 1.

APPENDIX C

We aim to express the integral

Jk1,k2(τ, t1, t2) =
∫ t2

t1
e2 jπ(2 f1+B1+µ1k1)te−2 jπ(2 f2+B2+µ2k2)(t−τ)dt

(33)

= e2 jπ(2 f2+B2+µ2k2)τ
∫ t2

t1
e2 jπ(µ1k1−µ2k2+2 f1−2 f2+B1−B2)tdt

(34)

= e2 jπc̃k2

∫ t2

t1
e2 jπb̃k1 ,k2 tdt (35)

=


e2 jπc̃k2 e jπb̃k1,k2 (t1+t2)

×sinc
(

πb̃k1,k2 (t2 − t1)
)
(t2 − t1) , if b̃k1,k2 ̸= 0,

e2 jπc̃k2 (t2 − t1) , if b̃k1,k2 = 0,

(36)

with c̃k2 = (2 f2 +B2 +µ2k2)τ, b̃k1,k2 = µ1k1 − µ2k2 + 2 f1 −
2 f2 +B1 −B2.

APPENDIX D
MAXIMUM CROSS-CORRELATION OF CONTINUOUS

WAVEFORMS

The argument of the cross-correlation between two contin-
uous synchronized transmitted waveforms over the same SF
exists for 0 ≤ |k1 − k2| ≤ 2SF and is given by

|R C
k1,k2

(0,0) |= 2SF

π

|sin
(

π
(k1−k2)

2

2SF

)
|

|k1 − k2|
(
2SF −|k1 − k2|

) (37)
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R C
k1,k2

(τ, fd) = (32)
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(
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)
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(
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)
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(
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(
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)
, if tk1 < τ < Ts,1 < τ+ tk2 .

First, |R C
k1,k2

(0,0)| is symmetric around 2SF

2 . In addition, the
numerator of (37) is an increasing function with respect to
|k1 − k2| whenever we have one of these conditions

√
2SF l < |k1 − k2|<

√
2SF

(
l +

1
2

)
, (38)

for l = 0,1,2, . . . ,2SF −5. (39)

Otherwise, it is a decreasing function. The maximums of the
numerator of (37) happens at

|k1 − k2|=

√2SF

(
l +

1
2

) , for l = 1,2,3, . . . ,2SF −3.

(40)

Also, the denominator of (37) is an increasing function for
0 ≤ |k1 − k2| ≤ 2SF/2, and a decreasing function for 2SF/2 ≤
|k1 − k2| ≤ 2SF −1. So, the maximum of |R C

k1,k2
(0,0)| should

happen at |k1 −k2|=
⌊√

2SF

2

⌋
and |k1 −k2|= 2SF −

⌊√
2SF

2

⌋
,

and it is equal to
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π

(√
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2 − 1
2

) (41)

=
SF=5→12

[
9.09,6.17,4.24,2.94,2.05,1.44,1.01,0.71

]
×10−2.

(42)

APPENDIX E
PROOF OF THEOREM 2

Let Td be the sampling time and let B1 = 2s1/Td , B2 =
2s2/Td , and SF2 = SF1 + s3. Let m0 = t0

Td
, and m1 = τ

Td
. The

cross-correlations between two discrete transmitted waveforms
is given by
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∑
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with m1 =
τ

Td
, a12 =

µ1
T1
− µ2

T2
=
(

1−22(−s1+s2)−s3
)

µ1
T1

, bk1,k2 =
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APPENDIX F
TABLES OF LORA CROSS-CORRELATION FACTORS

In this section, we provide in Tables III-VIII the numerical
values of the maximum and mean cross-correlation factors
that were validated analytically using our expressed cross-
correlation functions and which are the object of the plotted
figures 4 and 5 with τ = 0, fd = 0, and B1 = B2.
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TABLE III: Maximum of cross-correlations functons in con-
tinuous time domain

5 6 7 8 9 10 11 12
5 1 0.253 0.149 0.098 0.068 0.048 0.034 0.024
6 0.253 1 0.182 0.104 0.068 0.048 0.034 0.024
7 0.149 0.182 1 0.126 0.072 0.047 0.033 0.024
8 0.098 0.104 0.126 1 0.089 0.051 0.033 0.023
9 0.068 0.068 0.072 0.089 1 0.063 0.036 0.023
10 0.048 0.048 0.047 0.051 0.063 1 0.044 0.025
11 0.034 0.034 0.033 0.033 0.036 0.044 1 0.031
12 0.024 0.024 0.024 0.023 0.023 0.025 0.031 1

TABLE IV: Maximum of cross-correlation functions in con-
tinuous & discrete time domains after downchirping

5 6 7 8 9 10 11 12
5 1 0.707 0.5 0.354 0.25 0.177 0.125 0.088
6 0.707 1 0.707 0.5 0.354 0.25 0.177 0.125
7 0.5 0.707 1 0.707 0.5 0.354 0.25 0.177
8 0.354 0.5 0.707 1 0.707 0.5 0.354 0.25
9 0.25 0.354 0.5 0.707 1 0.707 0.5 0.354
10 0.177 0.25 0.354 0.5 0.707 1 0.707 0.5
11 0.125 0.177 0.25 0.354 0.5 0.707 1 0.707
12 0.088 0.125 0.177 0.25 0.354 0.5 0.707 1

TABLE V: Maximum of cross-correlation functions in discrete
time domain

5 6 7 8 9 10 11 12
5 1 0.204 0.127 0.084 0.059 0.042 0.030 0.021
6 0.204 1 0.147 0.088 0.059 0.042 0.030 0.021
7 0.126 0.147 1 0.104 0.062 0.041 0.029 0.021
8 0.084 0.088 0.104 1 0.073 0.043 0.029 0.020
9 0.059 0.059 0.062 0.073 1 0.052 0.030 0.020

10 0.042 0.042 0.041 0.043 0.052 1 0.037 0.021
11 0.030 0.030 0.029 0.029 0.030 0.037 1 0.026
12 0.021 0.021 0.021 0.020 0.020 0.021 0.026 1

TABLE VI: Mean of crosscorrelation functions in continuous
time domain

5 6 7 8 9 10 11 12
5 0.069 0.103 0.080 0.059 0.042 0.030 0.021 0.015
6 0.103 0.037 0.071 0.057 0.042 0.030 0.022 0.015
7 0.081 0.071 0.020 0.049 0.040 0.030 0.021 0.015
8 0.059 0.057 0.049 0.010 0.034 0.028 0.021 0.015
9 0.042 0.042 0.040 0.034 0.006 0.024 0.020 0.015
10 0.030 0.030 0.030 0.028 0.024 0.003 0.016 0.014
11 0.021 0.021 0.021 0.021 0.020 0.016 0.002 0.012
12 0.015 0.015 0.015 0.015 0.015 0.014 0.012 0.001

TABLE VII: Mean of crosscorrelation functions in continuous
time domain after downchirping

5 6 7 8 9 10 11 12
5 0.067 0.069 0.042 0.027 0.018 0.012 0.008 0.006
6 0.069 0.037 0.038 0.024 0.015 0.010 0.007 0.005
7 0.042 0.038 0.020 0.021 0.013 0.008 0.005 0.004
8 0.027 0.024 0.021 0.010 0.012 0.007 0.005 0.003
9 0.018 0.015 0.013 0.012 0.006 0.006 0.004 0.002
10 0.012 0.010 0.008 0.007 0.006 0.003 0.003 0.002
11 0.008 0.007 0.005 0.005 0.004 0.003 0.002 0.002
12 0.006 0.005 0.004 0.003 0.002 0.002 0.002 0.001

TABLE VIII: Mean of crosscorrelation functions in discrete
time domain before & after downchirping

5 6 7 8 9 10 11 12
5 0.031 0.022 0.016 0.011 0.008 0.006 0.004 0.003
6 0.022 0.016 0.011 0.008 0.006 0.004 0.003 0.002
7 0.016 0.011 0.008 0.006 0.004 0.003 0.002 0.001
8 0.011 0.008 0.006 0.004 0.003 0.002 0.001 0.001
9 0.008 0.006 0.004 0.003 0.002 0.001 0.001 0.001

10 0.006 0.004 0.003 0.002 0.001 0.001 0.001 0.001
11 0.004 0.003 0.002 0.001 0.001 0.001 0.001 0.0003
12 0.003 0.002 0.001 0.001 0.001 0.001 0.0003 0.0002
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