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Abstract— A digital twin-enabled Internet of Medical Things 

(IoMT) system for telemedical simulation is developed, 

systematically integrated with mixed reality (MR), 5G cloud 

computing, and a generative adversarial network (GAN) to 

achieve remote lung cancer implementation. Patient-specific data 

from 90 lung cancer with pulmonary embolism (PE)-positive 

patients, with 1372 lung cancer control groups, were gathered 

from Qujing and Dehong, and then transmitted and preprocessed 

using 5G. A novel robust auxiliary classifier generative 

adversarial network (rAC-GAN)-based intelligent network is 

employed to facilitate lung cancer with the PE prediction model. 

To improve the accuracy and immersion during remote surgical 

implementation, a real-time operating room perspective from the 

perception layer with a surgical navigation image is projected to 

the surgeon’s helmet in the application layer using the digital 

twin-based MR guide clue with 5G. The accuracies of the area 

under the curve (AUC) of our new intelligent IoMT system were 

0.92, and 0.93. Furthermore, the pathogenic features learned 

from our rAC-GAN model are highly consistent with the 

statistical epidemiological results. The proposed intelligent IoMT 

system generates significant performance improvement to 

process substantial clinical data at cloud centers and shows a 

novel framework for remote medical data transfer and deep 

learning analytics for digital twin-based surgical implementation. 

 
Index Terms—Digital Twin, IoMT, Remote Surgery, Robust 

Auxiliary Classifier Generative Adversarial Network (rAC-GAN) 

model, Mixed Reality 

I. INTRODUCTION 

ith the rise of artificial intelligence (AI), the Internet of 

Things (IoT), the digital twin (DT), and mixed reality 

(MR), it is well documented that the concepts of "smart 

medicine" and "precision medicine" have been tightly linked 

to these technologies thus far [1]. Combining multiple 

technologies to build a customized medical solution testbed 

for modern medicine has become a trend. Therefore, is it 

possible to bring together deep learning technologies, digital 

twins, mixed reality, and medical IoT technologies to create a 

medical IoT platform that can serve customized medical 

solutions? Subsequently, we develop a medical IoT platform 

based on clinical lung cancer combined with pulmonary 

embolism medical data already collected and combined with a 

rAC-GAN network to create a medical IoT platform with four 

technologies. 

In China, the main difficulty in accessing medical care is 

not in the poor medical infrastructure, but in the fact that 

patients are looking for customized medical solutions from 

specialists. According to incomplete statistics, there are 24 

tertiary hospitals in Yunnan, China, which has a resident 

population of more than 47 million people. As you can 

imagine, the popularity of such customized solutions is very 

difficult. It is noted in [2] that IoMT has been used to create 

medical experimentation platforms very commonly, often in 

combination with technologies such as display augmentation, 

mixed reality, and digital twins that are now mature. With the 

next 10 billion Internet of Things (IoT) devices coming online, 

we could see trillions of connected devices over the next year, 

and the earlier “50 billion devices” figure will still be widely 

cited in 2020 [3]. In such a context, it is proposed: to create a 

digital twin experimentation platform for customized medical 

solutions based on mixed reality and IoMT technologies to 

facilitate doctors' experiments with customized medical 

solutions and improve efficiency. By combining with the 

highly robust rAC-GAN deep learning network, we build a 

medical platform that is truly fast and efficient. 

So, why do we use lung cancer combined with pulmonary 

embolism as our experimental data? On the     
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one hand, the geographical location of Yunnan, China, is 

unique in that it is home to a population with lung cancer 

combined with pulmonary embolism, which meets our goal of 

experimenting with customized medical solutions. On the 

other hand, the induction of malignancy is often associated l 

with venous thrombosis (VT) and pulmonary embolism (PE). 

In clinical studies, lung cancer is an important risk factor for 

PE [4], with a combined probability of approximately 3.7%. In 

the conventional approach, lung cancer combined with 

pulmonary embolism is determined according to the Chinese 

Society of Respiratory Medicine [5]. Therefore, the 

pathogenesis and risk factors for PE associated with lung 

cancer still need further study. Fortunately, several basic 

factors have been proposed that can be used to predict 

pulmonary embolism in combination with arterial blood gas 

analysis and X-ray [6]. However, patients rarely have time to 

listen to their physician's interpretation of their medical 

diagnosis [7]. Therefore, it is very important to implement a 

"digital twin". One of the most commonly used concepts is the 

concept of a "mediated translator". Currently, the traditional 

diagnostic processing of this mediated translator is known as 

pathological diagnosis, which leads to longer procedure times 

and increased operational risks. Therefore, algorithms from 

machine learning or deep learning [8][9] have the potential to 

assist oncologic surgeons in mining the deep relationship 

between surgical execution and medical data. However, 

predictive models developed in related studies were built on 

datasets lacking regional specificity [10]. Various results have 

shown that collinearity between variables is not easily 

resolved using regression models alone [11], which makes 

these results inapplicable to clinical decision-making. In our 

experiments, an interference-resistant rAC-GAN was used to 

classify and predict the collected data on lung cancer 

combined with pulmonary embolism and was further used to 

assist physicians in determining the correct symptoms of 

patients. 

Internet of Medical Things (IoMT) technology has been 

successfully used in various research areas due to its utility 

and high performance [12]. Meanwhile, with the rise of the 

Industrial Internet, digital twins are gradually entering the 

public eye. In layman terms, a digital twin is a cloned digital 

version of a twin [13]. The rise of digital twins provides a 

better application platform for AI and IoT platforms. In the 

industrial world, each device in the physical world can have a 

virtual digital twin in the digital space. In the virtual world, the 

operational details of an actual device can be monitored in real 

time. Conversely, virtual devices can be manipulated to 

control real-world devices, indirectly enabling spatial and 

temporal breakthroughs. A digital twin combines various 

advanced technologies to create actual mapped devices in the 

virtual space, reflecting the relevant physical devices 

throughout the life cycle process. Continuous fine-tuning and 

optimization are performed to optimize the actual devices. 

Moreover, the health of the actual equipment can be 

monitored, analyzed, and processed through its digital twin. 

Thus, a digital twin enables many savings in terms of training 

costs for maintenance, repair, commissioning, and operation 

[14]. In the context of new drug development and patient 

surgery customization, clinical trials are characterized by high 

price, time and inefficiency. It is a great challenge to develop 

clinical trials because few patients meet the criteria and are 

willing to participate in the trials. Researchers can build 

experimental groups and construct digital twin models using 

data from completed experiments [15]. Then, we can 

implement a patient's customized medical regimen with the 

digital twin first and treat the patient after the regimen is 

successful. This improves the reliability and implementability 

of the protocol treatment. 

It is pointed out in [16] that as industrial technology drives 

the continuous changes in IoT technology, digital twin 

technology will evolve exponentially with it. In [17], it is 

proposed that digital twin technology at the present stage is 

growing rapidly with IoT technology developing rapidly and 

continues to demonstrate its potential in various industries, 

while [18] suggests that digital twin technology combined 

with IoMT technology in the operating room has the potential 

to be used. However, at this stage, the use of these 

technologies is only in the collection of data and is less useful 

for medical diagnostic services. Based on this, we intend to 

build an experimental platform that can be used to experiment 

with physicians' customized medical solutions. 

Due to deep learning which could enable accurate mapping 

of input features-output variables [19], a large number of deep 

learning techniques are used to fill in the missing data. [20] 

proposed a GAN network based on generating a larger number 

of samples to solve the problem of imbalanced data for a 

certain class of faulty samples. Anusha et al [21] proposed a 

KNN attribution-based technique due to the contribution of 

deep learning in target localization scenarios. It is used to fill 

the missing data and thus change the overall accuracy of target 

localization. However, the KNN attribution technique relies on 

the continuity of data, and most of the medical text data we 

have collected is discrete. Therefore, based on the above work 

on missing data filling, we propose a filling approach based on 

the DLI technique for filling the missing values of discrete 

clinical data. 

IoMT technology has been continuously developed, and its 

connection with deep learning has become stronger and 

stronger. In [22], the feasibility of combining machine 

learning with IoMT networks was proposed, pointing out that 

some networks are not accurate and robust enough for data 

prediction. In [23], it was proposed to build a set of IoMT 

platforms using CNN networks for the diagnosis of lung 

cancer combined with pulmonary embolism, but with low 

robustness. So on the one hand, we chose the rAC-GAN 

algorithm so that the platform we built can better serve the 

physicians to experiment with customized medical solutions. 

On the other hand, we also want to be able to make our 

platform with high accuracy and robustness. rAC-GAN has 

high accuracy because the noise z present in the data is 

cleaned before the discriminator outputs the classification 

labels. It has high robustness due to its unique Nash 

equilibrium training method. 
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Our study aims to quantify and process data on lung cancer 

combined with pulmonary embolism in Yunnan and 

Chongqing provinces through a rAC-GAN model. Based on 

patient-specific data analysis and epidemiological analysis, 20 

clinical features were summarized. Combining these features 

with digital twin technology, mixed reality and medical IoT 

technology, a medical platform for experimenting with 

customized medical surgical solutions is created. Four original 

contributions are summarized as follows: 

1. The first interference-resistant rAC-GAN model for real-

time outpatient data detection is proposed and implemented. 

The model was proven to be extremely resilient in the 

intelligent prediction of whether lung cancer is paired with 

pulmonary embolism in experiments. 

2. To correct data imbalances, a deep learning-based 

imputation (DLI) data-population technique is used for 

medical data, followed by epidemiological statistics to assess 

the trustworthiness of the completed data. 

3. An end-to-end framework based on the DLI data filling 

approach and the rAC-GAN model is proposed for pathology 

prediction on mixed data (containing redundant data) of 

patients with an accuracy of over 90%. We also use cost 

learning to improve detection accuracy while addressing data 

imbalance. 

4. A novel remote surgical rehearsal platform based on 

reality augmentation technology was devised and deployed, 

combining the principles of predictive outcomes and digital 

twins to build an IoMT platform capable of completing 

customized medical service testing without injuring the human 

body. 

The rest of the paper is organized as follows. Section II 

discusses the related work. Section III presents the system 

design. The evaluation results and further discussions are 

shown in Section IV and Section V, respectively. Section VI 

concludes this paper. 

II. RELATED WORK 

A. AI-based Application for Medical Data 

Experiments on medical data based on AI contain a large 

proportion of experiments on the lung. Akilandeswari et al. 

[24] researched case screening using AI for PE data 

processing. After comparison with four different types of 

defined frameworks, the experiment concluded that the CNN 

model based on inception has a good effect on detecting 

pulmonary embolism in lung CT scan images. Therefore, in 

this paper, clinical data on lung cancer combined with 

pulmonary embolism will be used to validate the accuracy of 

our network. At a time when there were minimal references 

between LC and PE, Li et al. [25] studied substantial material 

and concluded that there was a significant relationship 

between LC and PE. Wang et al. [26] investigated the 

associations of venous thrombus embolism in patients with 

newly diagnosed lung cancer and concluded that LC patients 

commonly have a high prevalence of venous thrombus 

embolism. 

Machine learning-based traditional prediction models have 

been widely developed in clinical decision support for LC or 

PE patients, mainly because of their implementation combined 

with high reliability and interpretability. Li et al. [27] used a 

novel AI computer-aided diagnostic system to localize and 

quantitatively diagnose pulmonary embolism in CT 

angiography of the pulmonary arteries to verify the feasibility 

of AI-based intelligent diagnosis of pulmonary embolism. 

Similarly, an ML-based network model was designed to 

analyze longitudinal clinical indicators (the values of different 

clinical characteristics of patients) to generate a risk score for 

PE patients to predict the outcome of pulmonary embolism as 

clinical decision support for patients [28]. A total of 3214 

clinical data points were included in that study, and the model 

had the best accuracy. In applying machine learning to such 

tasks, the algorithmic structure of random forests was used by 

Moll to extract important clinical features. Cox regression was 

also used to predict mortality, resulting in a mortality 

prediction model for chronic obstructive pulmonary disease 

with the highest accuracy [29]. Faced with an inadequate 

clinical dataset, Wang et al. proposed predicting the incidence 

of disease over the next year based on the available data and 

adopted machine learning to make predictions to confirm the 

validity of the generated data [30]. Sequential decision-

making designed by Petousis et al. [31] is used to identify 

early-stage LC, in which multiple machine learning techniques 

are deployed to learn the decision process of partially 

observable Markov chain and then a dynamic Bayesian 

network as an observational model and inverse reinforcement 

learning is used to discover a reward function based on 

experts' decisions. The predictive results demonstrated that the 

proposed model can not only maintain a high accuracy on LC 

patients, which reaches the experts' level but also decrease the 

mistake diagnostic rate of the normal. Chen et al. [32] used 

machine learning to classify different pathological conditions 

of lung cancer patients. The experiments show that combining 

medical data and AI methods such as machine learning is an 

innovative, fast and convenient way to classify the 

corresponding pathologies. Liu et al. [33] improved the basic 

CNN network and proposed a DL-CNN model. This model 

has a higher AUC for quantitatively calculating the clot 

burden in patients with acute pulmonary embolism. Although 

rAC-GAN is not very widely used on medical data, it has 

demonstrated strong robustness and accuracy on the COVID-

19 dataset in [11]. Therefore, we chose to apply the rAC-GAN 

network to the filled lung cancer with pulmonary embolism 

data. However, to the best of our knowledge, there is still a 

lack of research to study and develop a state-of-the-art model 

based on complicated clinical features. There is a demand to 

research and develop an advanced model with high reliability 

and interpretability. 

B. The Evolution of the Internet of Medical Things 

With the rapid development of IoMT technology in recent 

years, in 2017, Abawajy et al. responded to technological 

innovation and developed a pervasive patient health 

monitoring (PHM) system infrastructure by assembling IoT 

systems to meet the increasing service requirements of 

patients, fully reflecting the strong trend that the use of IoT 

technology in healthcare has now become a trend [34]. 

However, are AI algorithms (machine learning or deep 
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learning algorithms) helpful in terms of IoMT? In 2019, Durga 

et al. performed a survey on AI algorithms in IoT healthcare 

and found that algorithms such as machine learning and deep 

learning can improve the performance of IoMT systems and 

assist doctors in monitoring, diagnosing, and focusing on 

patients [35]. This demonstrates the feasibility of using deep 

learning in IoMT. In 2020, the teams of Tuli et al. [36] and 

Bibi et al. [37] published their latest research on IoMT. In [38], 

the authors combined machine learning algorithms with cloud 

computing to create a COVID-19 tracking and prediction 

system and successfully used the cloud to predict the growth 

of the pandemic accurately and in real-time. Authors in [39] 

successfully used deep learning algorithms combined with 

cloud computing to diagnose leukemia subtypes based on both 

DenseNet-121 and ResNet-34 frameworks. The research to 

date confirms the validity of using deep learning in IoMT 

technology, which in turn confirms that the use of deep 

learning algorithms in IoMT is an inevitable trend. 

C. Digital Twin Implementations in Medical Simulation 

Digital twinning has rich applications and broad prospects 

in product design, product manufacturing, medical analysis, 

engineering construction, and smart cities. Real-time is one of 

the characteristics of a digital twin. That is, a digital virtual 

entity can represent the real-time state of a physical entity with 

a changing time axis. Nondeterministic clock errors lead to 

degraded synchronization efficiency with increased network 

resource consumption. Focusing on IoT system 

synchronization problems, Jia et al. proposed a kind of clock 

synchronization scheme based on twin technology [40]. [41] 

mainly used a marginalized collaborative system architecture 

to build a digital twin model. The clock is simulated by 

gathering continuous information on the actual device to 

predict the time offset of each node. Healthcare has 

applications that have led to the rapid growth of wearable 

device-based intelligent application categories [42]. The 

popularity of wearable devices makes it more convenient to 

use sensors to obtain a human body and physiological data. 

When a large amount of data is collected by a sensor, we can 

analyze and model the data, judge the state of the user through 

the numerical value of various characteristics, and provide the 

user with more accurate and convenient services according to 

their state. For example, a numerical twin of the human body, 

such as a bracelet, could use vibrations to remind the user to 

relax when sitting for long periods. Anglo Croatti used digital 

twinning technology to realize the application of trauma 

management. This perspective makes it possible to explore the 

use of a DT's simulation features on the agent side to support 

agent decision-making [43]. In the course of cancer treatment, 

late diagnosis is a leading cause of medical complications. Liu 

et al. present a cloud-based IoT medical system framework 

based on digital twin health care. This is a new, generic, 

extensible framework for cloud environments for monitoring, 

diagnosing, and predicting health [44]. Using AI, visualization 

inside the human body has long been at the heart of medical 

imaging. Digital, physiological modeling of the human body is 

on the horizon. Using a digital twin as a customized 

computational model of a patient could provide a lifelong and 

personalized model and be continuously updated with new 

sensor data, scans, or exams. AI frameworks combined with 

the IoT can serve as a wellness coach (i.e., IoMT), predicting 

individual risks, and moving healthcare from treating sickness 

to coaching us on how to predict disease. 

D. Mixed Reality Virtual Surgery 

With the advancement of virtual simulation technology, 

virtual medical surgery training moves from two-dimensional 

to three-dimensional. Visualization systems using mixed 

reality technology also have strong applications in case 

discussion, surgical planning, and intraoperative guidance [45]. 

In 2016, Hamacher et al. [46] discussed the application of 

virtual reality (VR) and mixed reality (MR) technology based 

on their application to urology. It was pointed out that medical 

treatments based on VR and MR technologies will see rapid 

developments. By 2020, Verhey et al. [47] studied and 

realized the application of MR technology in orthopedic 

simulation surgery. Three-dimensional reconstruction of a 

patient's imaging was achieved without fluoroscopy, along 

with the ability to interact with colleagues outside the 

operating room. These results show that MR technology can 

be applied to customized and personalized surgical protocols, 

which is an essential guide for our experiments. 

In summary, regarding the use of AI technologies in 

medicine, IoT platforms, digital twin technologies, and mixed 

reality technologies have become well established. In 

treatment, there are cases where one or more of the four 

technologies are sometimes used simultaneously to ensure 

accuracy [48][49]. This paper investigates the quantification 

and processing of data on lung cancer combined with 

pulmonary embolism in Yunnan and Chongqing provinces 

with the help of these four technologies to create a platform 

capable of experimenting with customized medical solutions. 

III. NEW SYSTEM DESIGN 

In this section, the diagnostic model of a digital twin-based 

lung cancer patient with PE, which is designed and 

implemented on intelligent IoMT through MR and a deep 

neural model, is demonstrated in Fig. 1. A new DLI-based 

rAC-GAN model is used to predict PE in lung cancer patients, 

and then an MR-based remote platform is deployed for 

diagnosis. Thereafter, 5G transmission based on the HUAWEI 

Cloud is employed for the transfer and computation of LC 

patients with a PE prediction. 

A. Learning-based Intelligent Preoperative Diagnosis System 

for LC Patients with PE 

The setup process of this preoperative diagnosis system is 

demonstrated in Fig. 2. The primary strategy of this system is 

threefold: 1) cleaning of clinical data collected manually, 2) 

novel upsampling and downsampling deep learning-based 

imputation to balance unbalanced data (here, a fill-in approach 

is used) and to eliminate the impact of sample imbalance on 

the predictive performance of retrospective cohorts of LC 

subjects and LC+PE subjects, and 3) a customized deep 

learning module for the classification task of LC+PE. 
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1) Preprocessing for Deep Learning-based Missing Data 

Imputation and Resampling 

Recording incorrect clinical data tends to be inevitable 

because of some unexpected events, such as broken statistical 

systems or human-made mistakes. It will lead to the lack of 

sufficient samples for model training due to that the entire data 

is deleted only because the data of one patient is incomplete. 

In this work, a state-of-the-art deep learning-based imputation 

(DLI) method is used to fill in missing data. DLI can provide 

higher precision than conventional imputation methods 

because of its strong nonlinear approximation capabilities and 

can complete missing values at the character level [48]. It is 

mainly divided into three parts: 1) numerical encoding (if 

needed), 2) feature extraction, and 3) imputation model. In the 

numerical encoding part, the string data in column 𝑗 are 

transformed into a representation 𝑥𝑗 ∈ {1, 2, … , 𝑁𝑗 , 𝑁𝑗+1 } , 

where 𝑥𝑗 is the index of the value in column 𝑗, 𝑁𝑗 is the size of 

the histogram of 𝑥𝑗 and 𝑁𝑗+1 represents the missing data. The 

feature prediction part is essential since DLI can perform 

surprisingly well if the significant features can be extracted 

appropriately before the training and prediction of the model. 

A mapping ∅𝑗(𝑥𝑗) ∈ 𝑅𝐷𝑗 for specific feature extraction is 

performed, where 𝐷𝑗 represents the dimensionality associated 

with a latent variable of column𝑗 and ∅𝑗(∙) is defined as an 

embedding layer fed into a single fully connected layer [49]. 

Then, all mapping results ∅𝑗(𝑥𝑗) are concatenated into a 

feature vector: 

𝑥̃ = [∅1(𝑥1), ∅2(𝑥2), … , ∅𝐶(𝑥𝐶)] ∈ 𝐷 
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Fig. 1 Customized LC with PE Diagnostic Intelligent IoMT through MR and an artificially intelligent network, which has been applied to the prevention and 
treatment of LC with PE in Yunnan. The perception layer was used in areas with a high incidence of lung cancer, especially in Qu Jing and De Hong. Patient-

specific data were gathered from the OPC of the perception layer using mobile phones, laptops, and tablets. After that, 5G transmission was used to transfer the 

surgical images and calculate the clinical data in real-time for lung cancer prediction using the 5G cloud (HUAWEI Cloud). Third, professional respiratory 

residents and thoracic surgeons from the application layer detail surgical treatment through the Intelligent IoMT application layer with high efficiency and safety. 

 

where 𝐷 is the result of summing all latent dimensions 𝐷𝑗 . 𝑦 ∈
{1, 2, … , 𝐷𝑖}  refers to the numerical representation of the 

values that are in the target column to be ready for imputation. 

Finally, the imputation model is established as follow: 

𝑝(𝑦|𝑥̃, 𝛼) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑥̃ + 𝑏) 

As we know, the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(. ) can be described as: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑞) =
𝑒𝑞

∑ 𝑒𝑞𝑚
𝑚

 

Fusing the above two equations yields: 

𝑝(𝑦|𝑥̃, 𝛼) =
𝑒(𝑊𝑥+𝑏)

∑ 𝑒(𝑊𝑥+𝑏)𝑚
𝑚

 

where 𝛼 = (𝑊, 𝑧, 𝑏) is the learned parameters, which consist 

of all parameters about the learned column features ∅𝑗 and can 

be computed by learning the minimum of the cross-entropy 

loss between labels 𝑦 and the distribution of prediction values: 

𝛼 =
arg 𝑚𝑖𝑛

𝛼
∑ −log (𝑝(𝑦|𝑥̃, 𝛼))

𝑇
𝑜𝑛𝑒ℎ𝑜𝑡(𝑦)

𝑛

1

 

where 𝑜𝑛𝑒ℎ𝑜𝑡(𝑦) is used to maintain the continuity of label 𝑦. 
As it is fed into the network for training, arg 𝑚𝑖𝑛 (. ) indicates 

the minimum value index, which is used to output the index of 

the minimum value in a set of data. 

DLI first removes some redundant data (undersampling) 

and then adds samples from the class to the lesser data 

(oversampling) in cases where the distribution of data samples 

is severely disproportionate; this widely used model is defined 

as resampling. 
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Fig. 2 Diagram of our real-time rAC-GAN-based preoperative diagnosis system for LC patients with PE.

 

2) Deep Neural Network Training Module 

Deep learning techniques have been widely used in 

medicine, such as high-performance pathological diagnosis, to 

improve the workflow of health systems. In this paper, up-to-

date deep learning, namely, a label-noise rAC-GAN, is 

employed in our system. A rAC-GAN is a modified network 

based on an AC-GAN that incorporates a noisy transition 

model into the discriminator to improve the robustness of the 

model. The additional ability of the rAC-GAN classifies the 

category of samples by expanding an auxiliary judgment layer 

in the discriminator [50]. Before the explanation of a rAC-

GAN, some notations are defined. Throughout, we use 𝑥 ∈ 𝜒 

to denote the target data, 𝑦 ∈ {1, 2, … , 𝑛} to represent the real 

label in which 𝜒 ∈ ℝ𝑑represents the space of the target data 

(𝑑is the dimension) and 𝑛 is the total number of classes. The 

superscript 𝑟  is used to denote the real distribution and 

𝑔 denotes the generative distribution. 𝑀 = (𝑀𝑖,𝑗) ∈

[0,1]𝑛×𝑛(∑ 𝑀𝑖,𝑗𝑖 = 1) is defined as the label-noise transition 

matrix. A rAC-GAN can be optimized using two different loss 

functions: the adversarial part and the auxiliary part. In the 

adversarial part, the generator 𝐺  and discriminator 𝐷 start a 

zero-sum game. 𝐺  tries to generate fake data that are 

indistinguishable by 𝐷, and 𝐷 strives to find a boundary that 

can correctly distinguish between the real and generated data. 

The adversarial loss of the rAC-GAN is formulated as follows: 

ℒ𝑟𝐴𝐶−𝐺𝐴𝑁 = 𝔼𝑥𝑟~𝑝𝑟(𝑥)[𝑙𝑜𝑔𝐷(𝑥𝑟)] + 𝔼𝑧~𝑝(𝑧),𝑦𝑔~𝑝(𝑦)[𝑙𝑜𝑔 (1

− 𝐷(𝐺(𝑧, 𝑦𝑔)))] 
where 𝑥𝑟, 𝑧, 𝑦𝑔 represent the distribution of the real data, the 

noise vector for 𝐺(∙) and the generative distribution of a label, 

respectively; 𝑥 and 𝑦 are the actual data and its corresponding 

label; and 𝑝(∙) is the probability density function. Where 𝔼 

denotes the mathematical expectation as follows: 𝔼(𝑥) =
∑ 𝑥𝑘 ∗ 𝑝𝑘

∞
𝑘=1  where 𝑥𝑘  denotes the value of 𝑥 at index 𝑘 and 

𝑝𝑘 denotes the probability of 𝑥 occurring at index 𝑘. We can 

see by the formula that the value of ℒ𝐺𝐴𝑁  is related to the 

values of 𝔼𝑥𝑟~𝑝𝑟(𝑥)[𝑙𝑜𝑔𝐷(𝑥𝑟)]  and 𝔼𝑧~𝑝(𝑧),𝑦𝑔~𝑝(𝑦)[𝑙𝑜𝑔 (1 −

𝐷(𝐺(𝑧, 𝑦𝑔)))] . Since the data generated by 𝐺  needs to be 

infinitely close to the true distribution of the data, the value of 

ℒ𝐺𝐴𝑁  needs to be the smallest. 

The auxiliary part achieves the goal of generating data 

belonging to the target class, but a rAC-GAN has a large 

difference from an AC-GAN model. A rAC-GAN constructs a 

clean label generator by incorporating a noise transition model 

𝑝(𝑦̃|𝑦) into an auxiliary model when it is optimized by the 

classification loss on real data ℒ𝑟𝐴𝐶
𝑟 : 

ℒ𝑟𝐴𝐶
𝑟 = 𝔼(𝑥𝑟, 𝑦̃𝑟)~𝑝𝑟(𝑥,𝑦̃)[−𝑙𝑜𝑔𝐶̃(𝑦̃ =  𝑦̃𝑟|(𝑥𝑟)]

= 𝔼(𝑥𝑟, 𝑦̃𝑟)~𝑝𝑟(𝑥,𝑦̃)[−𝑙𝑜𝑔 ∑ 𝑝(𝑦̃ =  𝑦̃𝑟|𝑦̂ = 𝑦̂𝑟)𝐶̂(𝑦̂𝑟|𝑥𝑟)

𝑦𝑟

] 

where 𝐶̃ is the classifier of a noisy label, 𝐶̂ is the classifier of 

clean label,  𝑦̃𝑟 is the noise label with real distribution,𝑦̂ is the 

clean label. And we use 𝑀𝑦𝑟, 𝑦̃𝑟  to represent a probability 

where each clean label  𝑦̃𝑟 is polluted by a noise label  𝑦̃𝑟 [51]. 

Since the cross-entropy loss function is utilized in the rAC-

GAN, which is a kind of proper composite loss [52], we can 

convert the above loss function into the original loss function 

under a clean distribution. The transition is formulated as 

follow: 

ℒ𝑟𝐴𝐶
𝑟 = 𝔼(𝑥𝑟, 𝑦̃𝑟)~𝑝𝑟(𝑥,𝑦̃) [−𝑙𝑜𝑔 ∑ 𝑀𝑦̂𝑟, 𝑦̃𝑟𝐶(𝑦̂ = 𝑦̂𝑟|𝑥𝑟)

𝑦̂𝑟

]

= 𝔼(𝑥𝑟,𝑦̂𝑟)~𝑝𝑟(𝑥,𝑦̂)[−𝑙𝑜𝑔𝐶̂(𝑦̂ = 𝑦̂𝑟|𝑥𝑟)] 

The main idea of this transition is that the process of 

minimizing ℒ𝑟𝐴𝐶
𝑟  on samples with noisy labels can help us to 

obtain 𝐶̂ that can classify 𝑥 based on a clean label 𝑦̂. Then, the 

part of the optimization of 𝐺  on classification loss 𝐶  can be 

formulated as: 

ℒ𝑟𝐴𝐶
𝑔

= 𝔼𝑧~𝑝(𝑧),𝑦̂𝑔~𝑝(𝑦̂)[−𝑙𝑜𝑔𝐶(𝑦̂ = 𝑦̂𝑔|𝐺(𝑧, 𝑦̂𝑔))] 

where 𝑦𝑔 is the label with a generative distribution. Based on 

the above settings, the objective can be defined as follows: 

ℒ𝐷&𝐶 = −ℒ𝐺𝐴𝑁 + 𝜆𝐴𝐶
𝑟 ℒ𝑟𝐴𝐶

𝑟  

ℒ𝐷&𝐶 = ℒ𝐺𝐴𝑁 + 𝜆𝑟𝐴𝐶
𝑔

ℒ𝑟𝐴𝐶
𝑔

 

where 𝜆𝐴𝐶
𝑟 and 𝜆𝑟𝐴𝐶

𝑔
are the trade-off parameters. In a rAC-

GAN, the clean classifier 𝐶̂ is used to optimize 𝐺. Therefore, 

learning that 𝑦̂𝑔 represents clean labels is encouraged. 

 
Fig. 3 The AC-GAN model and the rAC-GAN model are similar before the 

discriminator. The information shown on the left side of Fig. 3 is the process 

of generating data using the whole generator for both models. The data Xfake 

generated by the generator and the real data 𝑋𝑟𝑒𝑎𝑙(𝑑𝑎𝑡𝑎)  are fed to the 

discriminator. On the right side of Fig. 3, the difference between the AC-GAN 
model and the rAC-GAN model is shown, where the outputs (labeling and 

classification) of both models are the same. The difference is shown in the 

figure where the rAC-GAN model has a cleanup process for the labels before 
the label distribution output. 

The differences between the AC-GAN and rAC-GAN 

models in terms of discriminators are shown in Fig. 3. In the 

generator part for the input data, both models have the same 

structure. In the discriminator part, the rAC-GAN adds a noise 

transition module. The function of this module is to process 

the output distribution, clean up the redundant predictive 

distribution in it, and extract a predictive distribution that is 

more consistent with the true distribution. In principle, the 

processing of the rAC-GAN at the prediction distribution can 

be illustrated by transforming 𝑃(𝑦̂𝑟|𝑥𝑟)  to 𝑃(𝑦̃𝑟|𝑦̂𝑟)  to 

𝑃(𝑦̃𝑟|𝑥𝑟)  into 𝑃(𝑦̃𝑟) . 𝑃(. )  represents the conditional 

probability distribution in statistics. In the conditional 

probability distribution, 𝑃(𝐴|𝐵) represents the probability of 

occurrence of event A under the condition that event B has 

occurred. In this study, we use 𝑃(𝑦̃𝑟|𝑦̂𝑟) to clean up the noise 

in the distribution 𝑦̂𝑟  that has been obtained, resulting in a 

more accurate classification result 𝑦̃𝑟 . The probability of 

𝑃(𝑦̃𝑟)  is subsequently obtained to clean up the predictive 

distribution. The distribution of results after the discriminator 

predicts the data is represented by 𝑥𝑟. 
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TABLE I HOW THE DLI-PROCESSED DATA IS PROCESSED AFTER IT 

IS FED INTO THE RAC-GAN MODEL 

 Genetic Code Evolution 

1 for train.shape[0]/batchsize do 
2 #generator 

3 
The generator generates the text data we need using randomly 
generated noise z that matches a Gaussian distribution. 

4 #discriminator 

5 

The generated dataX𝑓 and the real data X𝑡 are input into the 

discriminator at the same time, and the validity and label of the 
results are obtained (validity is used to determine fake and real, 
and label is used to assist in classification). 

6 if(the rate of real)>(the rate of fake)do 
7 discriminator output label then 
8 a =np.argmax(label) 
9 delete the number ifa == 0 
10 return a 

 

The process of the rAC-GAN for lung cancer combined 

with pulmonary embolism data is described in Table I. First, 

the generator processes the input noise z and classification 

labels and outputs the false data x. We input the false data 

𝑥𝑓𝑎𝑘𝑒  and the real data 𝑥𝑟𝑒𝑎𝑙(𝑑𝑎𝑡𝑎)  together into the 

discriminator and finally output two sets of data: the validity 

and label. We need the label data for the final classification 

task. The output of the classification result by the 

discriminator is based on the classification distribution after 

noise processing. Therefore, compared with the results of AC-

GAN, the accuracy has been greatly improved. 

3) Contrast of Explanation Methods for the Prediction 

System 

A novel explanation algorithm, named the contrastive 

explanations method (CEM), was developed by IBM [53]. The 

CEM is regarded as an optimization problem by adding 

perturbation value δ to look for the positive/negative 

correlation between input features and the incidence of LC 

patients with PE in the deep learning model. An analysis of 

pertinent negatives (PN), 𝑋  refers to the feasible data; we 

define (𝑥0, 𝑦0), 𝑥0 ∈ 𝑋 as an example in which 𝑦0  represents 

the class label predicted by the deep learning model; 𝑥 ∈ 𝑋 is 

defined as modified feasible data, which is perturbation 

variable 𝛿 plus 𝑥0: 𝑥 = 𝑥0 +  𝛿 and 𝑦𝛿is the prediction results 

of the model. For any input 𝑥 , the CEM is devoted to 

discovering an interpretable perturbation and thus studying the 

prediction difference between 𝑎𝑟𝑔𝑚𝑎𝑥𝑖[𝑃𝑟𝑒𝑑(𝑥0)]𝑖  and 

𝑎𝑟𝑔𝑚𝑎𝑥𝑖[𝑃𝑟𝑒𝑑(𝑥0 + 𝛿)]𝑖 , where 𝑃𝑟𝑒𝑑(∙)  is the model 

prediction that is made up of probabilities for all classes. The 

implementations of the CEM are defined as follows: 

ℒ = 𝑚𝑖𝑛
𝛿∈𝑋/𝑥0

𝑐 ∙ 𝑓𝑘
𝑛𝑒𝑔 (x0,δ)+β‖δ‖1+‖δ‖2

2+γ‖x-AE(x)‖2
2 

where ℒ  is an objective function designed to find proper 𝑥 

which leads to patients to be predicted as a different class than 

𝑦0 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖[𝑃𝑟𝑒𝑑(𝑥0)]𝑖 ; [𝑃𝑟𝑒𝑑(𝑥0, 𝛿)]𝑖  refers to the 

probabilities of the 𝑖 -th class of 𝑥 ; 𝑘  refers to confidence 

parameter controlling the separation between [𝑃𝑟𝑒𝑑(𝑥)]𝑦0
and 

𝑚𝑎𝑥
𝑖≠𝑡0

[𝑃𝑟𝑒𝑑(𝑥)]𝑖 ;  𝛽‖𝛿‖1; and ‖𝛿‖2
2  is designed as an elastic 

regularizer, a parameter used in high-dimensional learning 

problems for feature selection. 

B. Digital Twin-based LC with PE Remote Surgical Platform. 

The overall network structure of the IoMT is shown in Fig. 

1 and includes a perception layer, network layer, and 

application layer. The whole structure of the network is 

subsequently explained layer-by-layer. The role of the 

perception layer is to collect customers' medical data while 

preprocessing (deleting, filling, etc.). It is responsible for 

collecting customers’ comments after use and feeding them 

back to the network layer to improve the prediction accuracy 

of the network layer. In the structure of this paper, the network 

layer adopts a stepped structure, which includes the following. 

1) A DLI structure with strong anti-interference capability for 

predicting the collected customer medical data. 2) A CLOUD, 

which is used to connect the DLI of the backend and 

application layer. With the support of 5G technology, the 

network latency of both can be controlled below milliseconds. 

3) Digital twin technology is incorporated to create a 

personalized digital twin of the customer. The application 

layer mainly serves users to experiment with customized 

medical solutions and feeds back their opinions to the 

perception layer to form a specific medical service system. 

The cyclic structure of the IoMT in this paper is as follows. 

The perception layer coordinates data to update and improve 

the whole network layer, and then the updated network layer is 

applied to the application layer to achieve the purpose of the 

IoMT, obtain technology updates in real-time, and improve 

the real-time digital twin technology. In the following, the 

construction of the digital twin and the IoMT network will be 

presented. 

1) Patient-specific Digital Twin-based CT Rendering 

 

 
 

Fig. 4 Flow chart of the digital twin-based surgery simulation system showing 
the integration of the digital twin-based remote surgery architecture with 

smart IoMT device implementation. Complete lung cancer combined with 

pulmonary embolism data is the input for soft tissue presentation, and then a 
physical deformation model is built. There are three key points in building the 

biomorphic model: geometric constraints, spring force, and external force 

constraints, and calculating the position and velocity of each mass. The 
flowchart in the lower half shows how to better obtain the three key points in 

the construction of the biomorphic model. 

Our data are provided by the First People's Hospital of 

Yunnan Province, the Third Military Medical Ta Ping 

Hospital, and the First People's Hospital of Qujing. Based on 

the clinical test characteristics provided by the physicians, we 

extracted data on age, sex, risk factors, d-dimer levels, 

electrocardiogram (ECG), TNM staging, white blood cells, 

pathological staging, pathological sites, and chest imaging 
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manifestations from the patients' electronic medical records 

(EMRs). These data were recorded between 1992 and 2019. 

Since the patient-specific data are collected manually, 

which may cause various mistakes in the data computation, we 

also invited four experienced doctors to check the data 

reliability. The CT images for the hospital's visual rendering in 

Fig. 5 demonstrate the digital twin-based rendering of a 

human lung model. The marching cube algorithm is utilized 

for the 3D mesh reconstructed model, which is implemented 

in OpenGL [54]. VTK, CTK, ITK, and IGSTK packages are 

also integrated into the simulation for medical image 

processing for visual rendering. 

 
Fig. 5 Patient-specific digital twin-based CT rendering from the perception 

layer. The second part shows the MR visual-haptic reconstruction with 
medical data. 

 

2) IoMT-based MR Simulator Hardware Design 

The IoMT-based MR simulator is designed and 

implemented in the surgeons' application layer to perform 

remote diagnoses. To achieve tactile replication for the digital 

twin system after rendering the visual framework, we also 

need to integrate a haptic force feedback framework. Due to 

the great difference in refresh rate between the visual (~60 Hz) 

and haptic rendering (~1000 Hz), an asynchronous 

transmission mechanism is used in the system design [55][56]. 

An Openhaptic plugin is developed for graphic and haptic 

integration and real-time surgical force rendering. The real 

surgical instruments for the operation are integrated into the 

hardware system, which is shown in Fig. 6. The surgeon can 

use a Maryland dissector, which is the same as in the 

perception layer, and feel the same force rendering as the real 

lung cancer patient. Fig. 6 shows the IoMT-based MR 

simulator we developed. The 3D model of the connector is 

shown in Fig. 6 (G\F). When the operator closes the surgical 

instrument, the green button will be triggered, and the virtual 

instrument will close as if grabbing a virtual object. When the 

operator opens the surgical instrument, the red button will be 

activated, and the virtual instrument will be opened as if 

releasing a virtual object. 

 
Fig. 6 IoMT-based MR simulator hardware design: A) Touch screen with an 
8K resolution. B) Logitech camera (Logitech, Switzerland) for identifying 

markers for AR development. C) Marker. D) HTCVIVE virtual reality headset 

(HTC Corporation, Taiwan, China). E) Maryland dissector surgical 
instruments. F) Geomagic Touch (Geomagic, USA) force feedback devices 

with six degrees of freedom (6-DoF). G) Linker between force feedback and 

surgical instrument. H) Desktop computer with an NVIDIA GTX 2060 GPU, 
Intel i7CPU, and 16 GB RAM. 

IV. RESULTS 

A. Model Performance Evaluation 

After filling the lung cancer combined with pulmonary 

embolism data using the DLI, they were imported into 

representative machine learning and deep learning networks 

(KNN, DNN, SVM), and the results were obtained as shown 

in Fig. 7 and Table II. The results in Fig. 7 and Table II are 

analyzed in turn. 

The receiver operating characteristic - area under the curve 

(ROC-AUC) graph obtained from the data predicted using 

different models is shown in Fig. 7. The ROC curve is also 

called the receptivity curve, where the points on the curve 

reflect the same receptivity, and the AUC is used to measure 

the "binary classification problem" and its learning algorithm 

performance. Comparing the results in Fig. 7, it can be seen 

that the rAC-GAN has the best performance among all 

networks with a score of 0.93, and the value of the ROC curve 

of the network surpasses the AC-GAN model by 0.15 and the 

DNN by at least 0.02. In summary, we can conclude that rAC-

GAN has a strong superiority in the processing of the filled 
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lung cancer combined with pulmonary embolism data. 

The data in Table II show the differences of each network in 

terms of accuracy, precision, recall, and F1 parameters, where 

the network we used (rAC-GAN) scored the highest in 

accuracy, indicating that this network is a very effective 

classifier. Accuracy and recall are usually in a reciprocal 

relationship, and to illustrate the effectiveness of the 

experimental method, we generally use the F-measure. F1 is 

used in this paper to obtain a weighted summed average of 

accuracy and recall. The rAC-GAN’s performance in the last 

three datasets shown in Table II is not the best, but it is 

average. 

By analyzing the data in Figure 7 and Table II, it is 

concluded that rAC-GAN performs very well in classifying 

lung cancer combined with pulmonary embolism data, 

compared with conventional machine learning and deep 

learning networks. The results further demonstrate that it is 

reliable to build a surgical platform based on the results of the 

rAC-GAN network after classification. 

 
TABLE II THE DIFFERENCES IN ACCURACY, PRECISION, RECALL, 

AND F1-SCORE VALUES FOR DIFFERENT MODELS. THE DATA 
FROM THE TABLE SHOW THAT the rAC-GAN HAS THE BEST DATA 

PERFORMANCE AMONG ALL MODELS 

Model Accuracy Precision Recall F1-score 

KNN 0.65 0.71 0.62 0.66 

SVM 0.69 0.71 0.65 0.68 

DNN 0.84 0.82 0.79 0.80 

AC-GAN 0.82 0.39 0.93 0.55 

rAC-GAN we used 0.92 0.57 0.73 0.64 

 

 
Fig. 7 The values of ROC curves and AUCs predicted using different models 

for the completed lung cancer combined with pulmonary embolism data. In 

the results, both the ROC curve and the value of the AUC were the best using 

the rAC-GAN model. 

To test the effectiveness of the DLI for missing clinical data, 

we executed a performance comparison between DLI-based 

prediction and KNN-based prediction. The details for the 

comparison results are displayed in Table III. A novel error 

measurement, forecasting skill (FS), is used to calculate the 

improvement percentage by comparing DLI-based prediction 

with KNN-based prediction. The formula for FS is shown 

below: 

𝐹𝑆𝐷𝐿𝐼 𝑖𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 =
𝑀𝑜𝑑𝑒𝑙 𝐷𝐿𝐼 𝑖𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 − 𝑀𝑜𝑑𝑒𝑙 𝐾𝑁𝑁 𝑖𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛

𝑀𝑜𝑑𝑒𝑙 𝐾𝑁𝑁 𝑖𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛

 

From the above equation, it is shown that DLI-based 

prediction is better than KNN-based prediction when the 

obtained result is positive. Table III shows that DLI-based 

imputation can bring a prominent promotion apart for SVM 

and XGB. The promotion for LR was the largest, which rose 

by approximately 20% for all evaluation metrics. Moreover, it 

helps our rAC-GAN obtain nearly 8% promotion on the 

current prediction task. All the results demonstrate that DLI 

imputation has superior performance to the famous KNN-

based imputation method. 

 
TABLE III. VALUES OF DIFFERENT INDICATORS OUTPUTTED BY 

THE TARGET MODEL. 

DLI imputation vs. 
KNN imputation 

FSaccuracy FSprecision FSrecall FSF1-score 

KNN 0.10 0.03 0.09 0.06 
LR 0.24 0.27 0.20 0.26 
SVM -0.04 0.08 -0.10 0.00 
RF 0.02 0.04 0.05 0.04 
XGB 0.02 0.05 -0.05 -0.05 
DNN 0.06 0.07 0.08 0.04 
CNN 0.11 0.14 0.04 0.06 
rAC-GAN we used 0.06 0.08 0.10 0.08 

 

B. Robust Performance 

In this section, we experiment to test the robustness of our 

model. The concrete procedures are as follows: (1) 60% of our 

dataset was selected randomly as a retrospective cohort, and 

the remaining were prospective cohorts. (2) The retrospective 

cohort was used to train the eight prediction models. (3) The 

prospective cohort was used to assess the performance of these 

models using F1-score metrics. (4) We repeated steps (1)-(3) 

30 times. The length of the vertical icon in Figure 8 indicates 

the change in the floating f1-score values for each model over 

30 experiments. From the figure, we find that the floating of 

the results of the rAC-GAN network over 30 experiments 

ranges from 0.75 to 0.85. The rAC-GAN has very high 

robustness compared to all the models used for the 

experiments. 
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Fig. 8 Thirty experimental results of the robustness test for different 

algorithms. 

V. DISCUSSION 

A deep learning network-based framework has been 

proposed to design a digital twin-enabled intelligent IoMT 

system for telemedical simulation. After training, LC with PE 

can be precisely predicted with or without assistance using the 

IoMT and the medical analysis results for patient data, which 

can be provided before the beginning of the operation. Based 

on the prediction results and our medical analysis system, 

experts can provide remote visual and numerical feedback via 

our IoMT application layer. 

 
Fig. 9 Confusion matrix for the different algorithms: (a) KNN, (b) LR, (c) 

SVM, (d) RF, (e) XGB, (f) DNN, (g) CNN, (h) rAC-GAN. 

A. Performance of the rAC-GAN-based LC with PE System 

Based on Table II, Table III, Fig. 8, and Fig. 9, it can be 

concluded that the DLI-rAC-GAN model has excellent 

performance and strong robustness. Next, we analyze each 

result layer-by-layer. 

Table II shows that the accuracy of the rAC-GAN is 

improved by 8% compared to the traditional DNN deep 

learning model. In principle, compared with the DNN, which 

only has a single convolutional layer to extract features, the 

rAC-GAN uses adversarial training based on Nash equilibrium, 

and the output labels used for auxiliary classification go 

through a noise transition model to clean up the noise. 

Therefore, it has higher evaluation metrics than the DNN. 

Compared with the most popular SVM in medicine, the 

accuracy of the rAC-GAN is improved by 23%. Compared to 

the SVM, the rAC-GAN belongs to a deep learning network, 

which has two significant advantages: 1) more accurate 

extraction of data features and 2) more training layers for deep 

iterations and more adequate training of data. These results 

show that the rAC-GAN can achieve high prediction accuracy. 
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The rAC-GAN has an AUC of 93%, which is the highest 

value among all models. 

Comparing the DLI attribution-based method with the KNN 

attribution method, we obtained the data shown in Table III by 

subtracting the obtained values of the two. It is easy to see that 

almost all models using the DLI attribution method have 

improved performance (from 2% to 27% compared to the 

KNN attribution method), except for the accuracy and recall 

of the SVM and the recall F1 score of the XGB. Therefore, we 

can conclude that the DLI-based attribution method provides a 

more appropriate complimentary strategy than the KNN-based 

attribution method. As mentioned above, since DLI fills the 

missing data with a nonlinear approximation, the filled data 

are closer to the original data and can give us better results. 

The results in Table III similarly demonstrate the strong 

robustness of the DLI-rAC-GAN in predicting the 

performance under the current task. 

To test whether the rAC-GAN is strongly robust to 

interference, we conducted 30 randomized experiments to 

obtain the results shown in Fig. 8, sharing the most obvious 

median and mean in terms of F1 scores. Therefore, we can 

conclude that the rAC-GAN is strongly robust to interference. 

This conclusion can likewise be obtained from the confusion 

matrix shown in Fig. 9, from which we can see that the rAC-

GAN has almost no misclassification, with only 12 errors out 

of a total of 593 patients. We can also see from Figure 9 that 

KNN has 22 data classification errors; LR has 46 classification 

errors; SVM has 43 classification errors; RF has 21 

classification errors; XGB has 29 classification errors; DNN 

has 21 classification errors, and CNN has 19 classification 

errors. From the above classification results, we can conclude 

that the rAC-GAN network has high classification accuracy. 

B. Model Interpretability and Feature Analysis 

Unlike other tasks, the results of misprediction in medical 

diagnoses may be fatal. In addition to the desire for higher 

accuracy, the requirements of rationality, which are the top 

priority for physicians to judge whether a prediction model 

can be relied on, are vital for practice. Therefore, it is 

important to visualize how the black box understands and 

gives its opinion on these clinical features. High-trust 

judgment of clinical features gives physicians insight and 

further helps them provide treatment strategies for their 

patients more effectively and accurately. The results of the 

system predictions were compared and interpreted using the 

CEM method, and the conclusions drawn are shown in Fig. 10. 

The results are highly similar to meta-analysis, a highly 

recognized method to analyze the correlation between features 

and disease in medicine in LC with PE. It is fully proven that 

our proposed system not only has accuracy but also has 

responsibility. It can be demonstrated that the use of AI for 

clinical medicine as an aid to diagnosis and treatment makes it 

feasible. There is experimental evidence that the extraction of 

features in a dataset using an AI algorithm is essentially the 

same as those extracted by an experienced clinician. It even 

exceeds the average performance of radiologists in some 

metrics [57]. The results showed that the most relevant 

features in machine learning are preoperative DD, 

hypertension, time to surgery, M, CEA, surgery, and WBC. 

Sex, T stage, diabetes, arrhythmia, age, and country were least 

relevant. 

 
Fig. 10 The clinical data analysis results of patients using CEM on the 

prospective cohort. 

C. Verification from the Statistical Results of Epidemiology 

The Statistical Product and Service Solution (SPSS) 22.0 

statistical was employed for the deep neural network 

evaluation, and the results are shown in Table IV, along with 

stratified clinical characteristics of patients with lung cancer 

and lung cancer combined with pulmonary embolism. Data on 

1372 cases of lung cancer and 90 cases of lung cancer 

combined with pulmonary embolism were included, for a total 

of 1462 patients (mean age 40-70 years). Combined with the 

experimental data, 35.7% of the patients with lung cancer 

were women with a mean age of 55 years; 34.7% of the 

patients with lung cancer combined with pulmonary embolism 

were women with a mean age of approximately 57 years. 

After p-value analysis, we found no apparent discrepancy in 

demographics, lung cancer risk factors, characteristics, or 

treatment of complications. Fig. 10 shows the features learned 

in our DLI-rAC-GAN model, and the top ten factors in order 

of prevalence are the preoperative DD, M, N, time of 

operation, CEA, WBC, smoking history, drinking history, and 

hypertension. The agreement between the selection of clinical 

features and the deep learning-based algorithm was 90%. This 

proves that our DLI-rAC-GAN network is feasible for 

building digital twin-assisted diagnostic treatment. 
 

TABLE IV. EPIDEMIC AND CLINICAL CHARACTERISTICS OF LUNG CANCER 

AND LUNG CANCER PLUS PE FACTORS 

Variable 

Patients with 

lung cancer       

(n=1372) 

Patients with 

lung cancer plus 

PE (n=90) 

p-value 

Nation minority 

Han        

1276(93) 
85(94.4) 

0.98 
Others         

96(7) 
5(5.6) 

Age (mean± SD) 57±13.37 55±13.37 0.03 

T, n (%) 

T0~2         

591(43) 
20(22.2) 

<0.001* 
T3~4        

678(49.4) 
37(41.1) 

T4+           
85(6.1) 

33(36.6) 

Females, n (%)  491(35.7) 33(36.6) 0.27 

Smoking history, n 

(%) 
625(45.5) 20(22.2) 0.000* 

Drinking history, n 

(%) 
409(29.8) 26(28.9) 0.55 

N, n (%) 

N0          
792(57.7) 

15(16.6) 
<0.001* 

N1~2         38(42.2) 
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522(38) 

N3+           

39(2.8) 
37(41.1) 

M, n (%) 

M0        
1269(92.4) 

30(33.3) 

<0.001* 
M1           

60(4.3) 
29(32.2) 

M2~6         

24(1.7) 
31(34.4) 

Preoperative 
DD(mean± SD) 

1.97 19.94 0.023* 

Operative time 

(mean± SD) 
2.54 4.96 <0.001* 

Lesion location   0.003* 

Radiotherapy, n (%) 41(2.98) 11(12.2) 0.042* 

CEA(mean± SD) 40.45 267.01 0.307 

Surgery, n (%) 633(46.1) 13(18.8) <0.001* 

Hypertension, n (%) 600 50 0.15 

Arrhythmia, n (%) 220(16) 29(32.2) 0.32 

Diabetes 94(6.8) 26(28.8) 0.012 

Chemotherapy, n (%) 613(44.6) 31(34.4) 0.12 

WBC(mean± SD) 12.37 
11.32[9.82-

12.81] 
0.952 

 

VI. CONCLUSION 

In this study, we found that the clinical approach to 
impute DIL for missing data outperformed the traditional 
KNN imputation method. At the same time, it was also 
found that the IoMT digital twin customized surgical 
operation platform built with deep learning had higher 
accuracy. We performed a MATA analysis of the data and 
concluded that the features we used in our experiments were 
the same as the clinical features. However, in the research, 
we found that the IoMT surgical operation platform built 
with cloud technology had high requirements on the network 
transmission rate in real-time. When processing medical 
clinical data of various structures, the requirements for 
equipment configuration were high. Based on the above 
observations, we have the following prospects in the future: 
(1) The IoT technology based on the same local area 
network might be used to enhance the IoMT surgical 
platform based on cloud technology, reducing the 
requirements for network transmission rate; (2) Improve the 
utilization of code for reducing the demand for high-
configuration equipment in the experimental part; (3) 
Strengthen the basis of the original deep learning network to 
further improve the accuracy and reliability of clinical 
diagnosis. 
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