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EICO: Energy-Harvesting Long-Range
Environmental Sensor Nodes with
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Abstract—Intensive research on energy harvested sensor nodes
with traditional battery powered devices has been driven by the
challenges in achieving the stringent design goals of battery life-
time, information accuracy, transmission distance, and cost. This
challenge is further amplified by the inherent power intensive
nature of long-range communication when sensor networks are
required to span vast areas such as agricultural fields and remote
terrain. Solar power is a common energy source is wireless sensor
nodes, however, it is not reliable due to fluctuations in power
stemming from the changing seasons and weather conditions.
This paper tackles these issues by presenting a perpetually-
powered, energy-harvesting sensor node which utilizes a mini-
mally sized solar cell and is capable of long range communi-
cation by dynamically co-optimizing energy consumption and
information transfer, termed as Energy-Information Dynamic
Co-Optimization (EICO). This energy-information intelligence is
achieved by adaptive duty cycling of information transfer based
on the total amount of energy available from the harvester and
charge storage element to optimize the energy consumption of
the sensor node, while employing in-sensor analytics (ISA) to
minimize loss of information. This is the first reported sensor
node < 35cm2 in dimension, which is capable of long-range
communication over > 1Km at continuous information transfer
rates of upto 1 packet/second which is enabled by EICO and
ISA.

Index Terms—Energy Harvesting, energy-aware, low power,
wireless sensor networks, in-sensor analytics

I. INTRODUCTION

ADVANCES in semiconductor technology in the last cou-
ple of decades has enabled the proliferation of smart

connected devices, collectively referred to as The Internet of
Things. They have found such abundant application in all
spheres of life, from smart homes and cities, wearable and
implantable medical devices to agriculture and vehicles, that
CISCO predicts by the year 2022 there will be machine-to-
machine (M2M) communication between 14.2 billion con-
nected devices [1]. Low-power and cheap computing elements
have enabled these devices to provide complex in-situ process-
ing capabilities in a small and energy efficient form factor.
However, a significant percentage of these devices are battery
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powered and require regular replacements which is bound to
create a profound environmental impact, not to mention the
time and cost of human intervention.

➢ Maximizing information transfer for unit energy

➢ Optimizing energy consumption

➢ Perpetual Operation

➢ Minimally sized harvester element

a) Goal: Energy-Harvesting Long-Range Sensor Node

b) Metric: Energy / Information
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Fig. 1. The performance of state of the art energy-harvested long-range
wireless sensor nodes is introduced in terms of an Energy/Information metric
and the constraints to improve this metric are depicted. Finally, our proposed
solution to optimize this metric using EICO is illustrated.
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A. Background and Motivation

A long-range wireless sensor node is primarily used in
smart cities and smart agricultural fields, and has multiple
design variables ranging from the choice of transducers, power
supply, communication and in-built computation capabilities,
to cost, size, and network protocols. Batteries are typically
the choice of power source for sensor nodes deployed in
remote locations, large areas where the cost of wiring would be
unfeasible, or for mobility, such as agricultural fields, habitat
and environment monitoring [2], volcano monitoring [3], and
structural monitoring [4] to name a few. This creates a major
limitation of finite battery capacity, resulting in a finite lifetime
which adds an overhead of spending time and money to either
replace the battery or place new sensor nodes while risking
temporary loss of information. Designers could opt for larger
batteries at the cost of increasing the size, weight and price
of the device.

This has naturally sparked an increasing interest in energy
harvesting sensor nodes since they can operate for many years
at a time without requiring human intervention to replace the
battery or the node itself. However, there are few such imple-
mentations since the instantaneous power generated by energy
harvesters is not always sufficient for powering long range
communication systems which consume high peak currents
to support the high power output of the power amplifier to
support long distances. Commercially available sensor nodes
can be extremely power hungry, wherein some designs either
use solar panels to meet this power requirement, which can be
prohibitively expensive and large, or create low power systems
that duty cycle data transmission such that information is lost
in the process. Hence, its evident that there is an inconsistency
between the power available from energy harvesters and the
power consumed by wireless sensor nodes to perform the re-
quired task without compromising on the information reported.
This motivates the creation of an energy harvesting sensor
node whose goals are summarized in Fig. 1(a) capable of long
range communication using a cheap and small energy source
by optimizing its power consumption to function within the
bounds of the energy harvester, without losing any information
in the process.

B. Related Work

A multitude of software techniques have been proposed
to prolong the lifetime of battery powered wireless sensor
nodes without any energy harvesting modalities. Some of
these methods include energy-aware network protocols, duty-
cycling strategies, redundant placement of nodes, and various
in-sensor analytics [5], [6]. A prominent example is an IoT
device developed by Intel which implemented multiple energy-
scavenging techniques like duty cycling to reduce the overall
average power, however, duty cycling reduced the overall on-
time [7] with an energy/information metric shown in Fig.
1(b). These methods will prolong the time between battery
replacements but still require human intervention, often at the
cost of information loss, sensing reliability, and increased costs
due larger quantity of nodes from an increased number of hops.

Extensive research has been performed to address this prob-
lem by utilizing renewable energy through energy harvesters
to power wireless sensor nodes. Some of the prominent energy
sources include photovoltaics, thermoelectric generators, wind
energy, piezoelectic, radio-frequency based methods, etc. [8].
Due to the low power output of these sources (15µW−30mW
per cm under perfect conditions), most of the implementations
in literature are only able to meet the needs of low-energy,
short-range communication and often have low reporting
intervals with loss of information as shown in Fig. 1(b).
Long-range communication is extremely power intensive (150-
300mW) which creates a large power discrepancy. Lee, et.al.
[9], attempted to address this by proposing a floating, energy-
harvested, long-range sensor node which combined solar and
thermoelectric energy harvesting, but the power consumption
was 6.6216 Wh/day (275.9mW) and required large solar panels
to meet this demand which made the device excessively large
and expensive. Stamenkovic, et.al. [10], was able to shrink
the size of the energy source to 40.7cm2 by optimizing the
design using hybrid energy modelling but paid the price in
information loss since data was transmitted at maximum rate
of once every minute. This clearly shows that there is a dis-
crepancy between the availability of energy from a reasonably
sized energy source and the energy required to perform long
range communication with minimal loss of information.

Various methods have been explored to increase the power
harvested in wireless sensor nodes by introducing a power
management module to reduce the mismatch between the
power harvested and the power consumed by the sensor
node. These include nonlinear techniques for piezoelectric and
electromagnetic energy harvesters by toggling switches at the
appropriate time to form an LC oscillator using an inductor
or capacitor [11] and resistive or impedance matching for
maximum power transfer in energy harvesters using either
a photovoltaic, thermoelectric, or piezoelectric sources [12],
[13]. [14] proposed a combined power management mod-
ule with an energy aware program to deal with the power
mismatch by managing the energy flow from the storage
capacitor. [15] proposed a solar prediction algorithm to exploit
solar energy more efficiently by taking into account both the
current and past-days weather conditions, however, it requires
a DSP and has significant difficulties during variable weather
conditions.

To the best of our knowledge, there is no literature available
on creating an energy aware system which addresses this issue
by optimizing the power consumption of the sensor node by
varying the transmission rate of information based on the
total amount of energy available (harvested and stored), while
minimizing the loss of information through event driven com-
munication as shown in Fig. 1(d). We term this as ”Energy-
Information Dynamic Co-Optimization (EICO)”, which has
been presented in this paper leading to the first energy har-
vested wireless sensor node < 35cm2 in dimension, which
is capable of long-range communication over > 1Km at
continuous information transfer rates of up to 1 packet/second.
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Variable Description
TxminRate Minimum data transmission rate
EBATT Energy currently stored in battery
Ebuf Critical (buffer) energy level
Dmax Lifetime (days) without energy harvested
EHarv Energy harvested on the previous day
EAvail Total Energy available
PHarv Instantaneous power harvested
TxRate Instantaneous data transmission rate

TABLE I
VARIABLES FOR ENERGY-INFORMATION DYNAMIC CO-OPTIMIZATION

C. Proposed Solution

In this work, we have proposed an embedded hardware
architecture and software strategies to create a perpetually
powered, energy-harvested, long-range sensor node using ISA
and energy-aware data transmission. ISA enables the detection
of anomalies by event-driven communication and temporally
compresses data to reduce the volume of transmitted infor-
mation. Energy-aware data transmission measures the total
energy available from the energy harvester on a given day and
the state of the charge storage device to vary the data trans-
mission rate of the wireless sensor node, thereby optimizing
the transfer of information to the energy consumed by the
device. This results in increasing the transmission rate if
energy available (Eavail, Pharv) is high and reducing it in
the corollary such that perpetual operation is maintained. A
brief description of the important variables involved to enable
this is shown in Table I, with a pictorial depiction in Fig.1.
A proprietary sub-GHz transceiver from Texas Instruments
[16] was chosen over LoRa, SigFox, and NB-IoT for long
range communication since it has the best receiver sensitivity,
encryption features, and provides a sufficient range (at least 1-
5 Km). Additionally, it allows for the development of private
networks by using the unlicensed 915MHz ISM band in
Region-2 of the International Telecommunication Union.

Fig. 2 shows the top-level hardware architecture of the
proposed custom-built IOT sensor node. Digital sensors for
temperature, humidity, and light intensity (lux) are used as
the environmental sensors for information and a solar cell is
used as the source for the energy harvester for demonstration
purposes. The microcontroller SoC applies the ISA algorithm
to the discretized and quantized values read from the sensors
to detect anomalies and initiate communication when the
difference between the values crosses a predefined threshold
of variance. During the absence of anomalies, the sensor node
duty cycles the data transmission rate which is calculated
from the total energy harvested on the previous day and
the energy stored in the battery, such that the device can
function for at least Dmax (14 for the current implementation)
days if the harvester were to fail. This will optimize the
energy consumption of the device to maximize the transfer
of information and improve accuracy, while ensuring that the
device remains perpetually powered.

The rest of the paper flows as follows: We analyze the prob-
lem space to identify the design constraints and discuss the the-
oretical design trade-offs to implement an energy optimized,
perpetually powered long-range sensor node. Section III de-
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Fig. 2. Block diagram of the proposed energy-harvested, long-range commu-
nication wireless sensor ndoe.

scribes the embedded hardware architecture of the custom-
built sensor node and presents the software implementation
details of the two strategies presented in this work. Section
IV presents and analyzes the measurement results, and finally
the paper is concluded with a summary of our contributions
in Section V.

II. THEORETICAL ANALYSIS

A. Limitations of Energy Harvesting

Advances in semiconductor technology over the years has
dramatically increased the efficiency and output power of
energy harvesting systems, while opening new avenues of
energy sources like thermo-electric generators (TEG) and
targeted radio frequency (RF) sources. TEGs can generate
between 20 µW to 10mW of power per cm2 of area based
on the temperature gradient. Output power from RF sources
is largely limited to the 10 µW - a few 100 µWs range and
requires high power RF sources in close proximity. Photo-
voltaic cells produce an output power ranging from 100 µW
- 200mW based on their construction, dimensions, spectrum
of operation and light intensity. TEG and RF sources would
be more suitable for devices placed in industrial locations and
wearable devices, whereas photovoltaics would find better use
in outdoor applications. A summary of these energy sources
is shown in Table II for unit length under specific conditions.

The power intensive nature of long range communication
and limited power availability warrants the need for low power
architectures, careful selection of energy sources, and planning
of the power budget. The sensor node proposed in this paper
is primarily built for monitoring environmental variables with
applications in agricultural fields or climate studies and would
be placed outdoors in open fields, making solar power the
obvious choice.

Source Power Parameter

RF 15µW Multiband Receiver (RF: 1mW/cm2)
TEG 20.53µW/cm Ag/Ni Thermocouple (∆T=127 C)

Photovoltaic 28mW/cm2 Si-Crystalline (1KW/m2 solar radiation)
Piezoelectric 19mW/cm2 -

TABLE II
UNIT POWER OF ENERGY SOURCES [17] [18] [19]



4
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Fig. 3. Maximum, minimum, and average solar insolation received on an
average day during a given month in Indiana which serves as the design
constraint for power consumption. [20]

The sensor nodes will be deployed in Indiana, which has
approximately 3.5 times lower average solar insolation in
winter as compared to the summer months which is illustrated
in Fig. 3. The energy harvesting system and consequently
the sensor node needs to be able to operate by adapting
to the lower energy limit as shown in Fig. 1(c), thereby
selecting that as the design constraint. As shown in Fig. 3,
minimum solar insolation is in the month of December, when
an average of 1.55KWh/m2/day is received. The theoretical
power harvested is then calculated as shown in Eq. (1).

PHarvested = Prad × Area of Solar Cell × η

24
(1)

Where, Prad is the average solar power irradiated and η is
the efficiency of the cell. Assuming a dimension of 30cm2

and a conservative efficiency of 10%(η), the theoretical power
consumption limit is calculated to be 2.01mW or 173.9J of
energy per day. The design constraint for minimum power
consumption was set at 60% of 2.01mW, i.e. 1.20mW or
105J per day in order to to account for losses in the power
management system and producing surplus energy to try and
recharge the charge storage device if it is at its critical
threshold.

B. Theoretical Limits of Computation and Communication
Energy

Representing the energy per bit for computation and com-
munication to be Ecmp,u and Ecom,u, respectively, the total
energy consumed in a system for computation (Ecmp) and
communication (Ecom) is written as

Ecmp = (Ecmp,u) × No. of bits switched
Ecom = (Ecom,u) × No. of bits transmitted

(2)

Energy consumed during computation primarily comprises
of digital calculations. Therefore, it can be approximated as
the dynamic energy at a frequency of operation beyond the
leakage-dominant region, given by (Ecmp,u) = CV 2 [21]. In
an ideal technology that allows for zero device capacitance,
(Ecmp,u) reduces to its theoretical limit given by Landauer’s

principle [22]. Eq. (3) illustrates this, where κ is Boltzmann
constant and T is the absolute temperature. This translates to
an (Ecmp,u)th min of 2.85×10−21 J/bit at room temperatures
(T=298K) as shown in Fig. 4.

(Ecmp,u)th min = κT × ln 2 (3)

On the other hand, the theoretical limit of energy consumed
during communication Ecom,u is given by the free-space path
loss (FSPL) of the physical channel since the transmitter
(Tx) still needs to transmit a power level which needs to be
more than the receiver’s (Rx) sensitivity after considering the
channel loss. This is under the assumption that the receiver
consumes zero power and the transmitter has a 100% effi-
ciency. (FSPL) calculated using Frii’s equation [23] [24] and
is shown in Eq. (4), where ATx and ARx are the antenna
gains of the transmitter and receiver; λ is the wavelength, d is
the distance between the transmitter and receiver, and n is an
empirical parameter that represents fading margin (typically
between 2 to 3).

FSPL = ATx.ARx(
λ

4πd
)n (4)

For a typical sub-GHz protocol operating in the ISM band
at 916 MHz with d = 10m, FSPL can be estimated to be
48 dB (n = 2, ATx = 2 dB, ARx = 2 dB). If a state-of-
the-art Rx which has a sensitivity of −120 dBm is used in
the system,then the Tx needs to transmit a minimum of −72
dBm. This translates to a power consumption of 63.096 pW
as theoretical minimum for power consumption. The typical
data rate (DR) for sub-GHz communication is 5kbps. As
shown in Fig. 4 this results in a theoretical minimum energy
consumption of (Ecom,u)th min = 1.262×10−14 J/bit, which
is more than 107 times higher than computational minimum
given by Landauer’s principle.

HDL simulations of ISA in standard 45nm CMOS process
resulted in 80 µW power consumption at 100 MHz and a
linear increase in computation energy at a rate of ≈2 fJ/bit [5].
The preceding discussion is summarized in Fig. 4 wherein the

>    X

>    X

Fig. 4. Comparison between theoretical and practical computation and
communication energies [25] [26] shows that computation energy is 104 times
less than communication energy for the same number of bits with leakage
current ignored [5].
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contrast between Ecom and Ecmp is shown for the same num-
ber of bits transmitted, or switched [25]. Despite advances in
wireless communication transceivers [26], computation saves
at least 104 times more energy than communication for the
same number of bits processed. This makes a strong case
for incorporating ISA to process and selectively transmit data
for reducing the overall system power consumption, especially
when harvested energy is a scarce commodity. This conclusion
is valid while the ratio between the number of bits switched
during ISA and the reduction in the number of bits transmitted
is less than (Ecom/Ecmp), which we anticipate during normal
operation.

C. Communication Energy and Accuracy Trade-off

For a long-range sensor node that samples and transmits
data every N seconds, over n seconds the communication
module is on for a total time of Tcomm = bits×n

baud×N . The total
energy consumed during n seconds is then represented by Eq.
(5).

E = (Tcom.Icom + To.Icmp,lkg + 2.Ttran.Icom.
n

N
) × V (5)

Where Icom is the current consumption of the communi-
cation module (along with computation of the network stack
and leakage), To = (n − Tcom), Icmp,lkg is the computation
and leakage current consumed during sampling and data
processing when the communication module is off, and Ttran
is the transient time during switching the module on and off
(hence the factor 2) added to the initialization time. Eq. (5)
makes it evident that when Tcom � 2.Ttran.

n
N (i.e. when

bits
baud � 2.Ttran), communication energy is limited by the
energy required to turn the module on or off. Conversely,
when 2.Ttran � bits

baud , communication energy is limited by
the payload size or the number of bits transmitted.

In an effort to reduce power consumption previous methods
in literature (for example, [7], [27]) preferred a duty cycle
based approach to limit the amount of switching energy by
increasing N .This results in an increased probability of losing

important, useful information. Fig. 5 illustrates this scenario by
graphically depicting the communication energy per day and
rate of information lost as a function of N . The values were
measured for sub-GHz communication by comparing N =
100 to a baseline of N = 1, wherein we see a 50X reduction
in energy consumed at the cost of 99% loss of information.
Implementing a mechanism to avoid these losses while taking
an acceptable hit in energy consumption makes a strong case
for utilizing finely tuned in-sensor analytics and energy aware
adaptive transmission.

D. Interaction Between Energy Harvested, Storage Capacity,
and Information Transfer Rate

So far the discussion has covered the minimum energy
generated by the energy harvester and software solutions
that can be implemented to reduce energy consumption in
order to meet that design constraint while minimally affecting
performance. However, limiting the device operation to the
minimal power budget will waste massive amounts of energy
harvested throughout the year and potentially lose information
that could have otherwise been reported. These losses can be
subverted by making the device energy-aware, such that it
can vary its energy consumption by altering the information
transfer rate based on the amount of energy available.

The average energy consumed by the device (ETxRate)
for a specific data transmission rate can be simplified to Eq.
6. Icomm, Icomp, and Ioff is the current consumed during
communication, computation, and standby mode respectively;
and Tcomm, Tcomp, and Toff is the time spent performing each
of those tasks. As the information transfer rate or frequency
of reporting samples increases, the relative value of Tcomm

to the total time increases which thereby increases energy
consumption.

Eavg = V (Tcomm.Icomm + Tcomp.Icomp + Toff .Ioff ) (6)

As shown in Fig. 6 the energy harvested by the node
increases with the increase in average solar insolation (EHarv)
received during a day. Therefore, the device can safely transmit
data at a higher transmission rates throughout the entire
day while keeping the total energy consumption within the
bounds of the total amount of energy available. This is done
by increasing the minimum transmission rate (TxMinRate)

Time
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Fig. 6. Device behaviour shown as the relationship between the harvested
energy, energy consumed by the node, charging energy or battery voltage, and
long range communication transmission interval shown as a function of daily
average solar insolation and time after sunrise on a particular day.
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and the higher transmission rates will reduce the loss of
information without comprising the ability of the device to
perpetually function since the energy used to charge the battery
will remain constant. This will translate to higher transmission
rates in the summer months when more energy is available
from the harvester and consequently lower transmission rates
in the winter.

On a given day, during daylight hours the difference be-
tween the harvested power (PHarv) and the power consumed
by the node (PCons) is used to charge the energy storage
device as shown in Fig. 6. When the harvested power in-
creases beyond the minimum power consumption of the device
(governed by TxMinRate) the battery starts charging. As
the sunlight intensity changes throughout the day, the data
transmission rate is varied such that the amount of charging
power remains constant. If the energy storage device (EBATT )
is charged to capacity, the excess power available from the
energy harvester would be wasted if not consumed by the
device. Therefore the power consumed by the wireless sensor
node is increased to match the amount of power generated
by increasing the in instantaneous data transmission rate
(TxRate).

III. PLATFORM AND IMPLEMENTATION

A. Hardware

The custom long range sensor node shown in Fig. 7 can be
broadly divided into three main blocks, power management,
the microcontroller and RF chain, and the environmental
sensors. The device was designed to be modular and consists
of two vertically stacked printed circuit boards (PCB). One
PCB (top) houses only the environmental sensors to allow for
easy replacement or addition of new sensors to re-purpose the
device without redesigning the entire sensor node. The top
layer of the bottom PCB comprises of the microcontroller and
RF chain along with the power sensor and finally, the energy
harvester and battery management is placed on the bottom
layer.

A System-on-Chip (CC1352R1, Texas Instruments (TI))
integrates an ARM Cortex- M4F processor with a multi-band
(sub-GHz and Bluetooth low energy) wireless transceiver. In
this design only the sub-GHz wireless transceiver is used and
the BLE transceiver is always in the powered down state.
The primary motivation for selecting this SoC was mini-
mizing power consumption while maximizing performance
since it boasts of one of the lowest power architectures with
high receiver sensitivity (-121 dBm for 868MHz at 5.8mA)
and transmission power efficiency (+14dBm for 868MHz at
28.9mA). An integrated ultra-low power sensor controller is
used to sample and process sensor data whose operation
is independent of the system processor and draws 30uA at
2MHz. The system CPU consumes 2.9mA in active mode at
48MHz and 0.85uA in stand-by mode with 80KB of RAM
and CPU retention, making it powerful enough to run analytics
by consuming minimal power. Finally, power consumption is
further reduced by using an on-chip DC-DC converter.

Three environmental variables temperature, humidity, and
light intensity are collected by the sensor node over I2C.

CC1352 Based Environmental Sensor Node 
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Fig. 7. PCB stack of the CC1352 based energy harvested long range
sensor node shown along with its 3D printed housing. 50mm x 60mm
amorphous silicon solar cell, with BQ25505 (TI) energy harvester used for
power management. CC1352 SoC (TI) is used to implement ISA+EICO in
conjunction with the power sensor (INA233). HDC2010 and OPT3001 is used
as the environmental senors.

HDC2010 and OPT3001 by TI are used to measure the first
two and the last quantity, respectively. HDC2010 provides
data at an accuracy of 0.2 degrees Celsius for temperature
and 2% for humidity while consuming 0.55uA. OPT3001 has
a measurement range of 0.01 lux to 83K lux in the visible
spectrum. The sensors are powered up through a PMOS in
order to turn them off during sampling intervals and conserve
power.

An amorphous silicon solar cell of 60mm by 50mm is used
as the power source to an ultra-low power harvester and power
management IC (BQ25505, Texas Instruments). The device
has cold start voltage of 600mV, consumes 325nA, performs
maximum power point tracking, and can continuously harvest
energy when the input voltage is as low as 100mV. The energy
harvester converts the solar cell voltage to 4.2V, which is used
to power the system and charge the back up battery/charge
storage device. When the input power falls below the system
load, an inbuilt automatic power multiplexer draws power from
the charge storage device to prevent the voltage rails from
drooping. The sensor node is made energy aware by measuring
the battery voltage and the power drawn from the solar cell on
the high side using an ultra-precise power monitor (INA233
by TI) which typically draws 310 µA during normal operation
and 2 µA in standby mode.

B. Software

The microcontroller is programmed with an RTOS to read
the sensor values every 1 second and run a network stack
(Easylink by Texas Instruments) for sub-GHz communication.
Data is transmitted at an interval between 1 second (no com-
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pression) to 5 minutes (maximum compression). A lightweight
algorithm is implemented for anomaly detection and energy-
aware data transmission to optimize power consumption and
loss of information.

Data: Output power of solar cell
Result: Data Transmission Rate
initialization;
while power reading available do

Integrate for Energy Available;
if harvested power > 0 then

if power reading above threshold then
Increase data transmission rate;

else if power reading below threshold then
decrease data transmission rate up to minimum Tx rate;

else
if Battery charged then

Set data transmission rate to match available power;
end if

end if
else

if Sunset Time then
Measure battery voltage and compute energy stored;
Calculate new minimum transmission rate;

end if
end if

end
Algorithm 1: Energy-aware data transmission algorithm

The sensor node is made energy intelligent by measuring the
amount of energy harvested on a given day (Eqn. 7) and the
energy stored in the battery (Eqn. 8) to determine the minimum
energy consumption of the device for the following day. This
is achieved by controlling the communication energy through
adjusting the minimum transmission rate of the device, which
governs the information transfer rate at nighttime and until the
harvested power exceeds the power consumption of the sensor
node during the day and is given by Eqn. 9 and Eqn. 10.
The minimum transmission rate is evaluated from the energy
measurements once every day at sunset, when PHarv falls to
zero for the first time. The energy harvested on a given day
is shown in Eq. 7. The power sensor connected to the solar
cell is sampled once every minute and numerical integration
is performed to calculate the energy in Joules. Eq. 8 depicts
the calculation of the energy stored in the battery which is
performed by using a look up table on the measured battery
voltage. The look-up table was generated by characterizing the
battery at a discharge rate of 0.1C (23mA).

EHarv(J) = Σ(PHarv ∗ 60/1000) (7)

EBATT (J) = fBatteryChemistry(VBATT ) (8)

EAvail(J) =
EBATT − Ebuf

Dmax
+ EHarv (9)

TxminRate = min
∀TxRate

(ETxRate − EAvail) (10)

The available energy range is divided into 10 regions which
maps on to a data transmission rate between 1 sample/second

Sub-GHz Transmitter Packet Structure

Date Rate = 625bps (PL1>PL2) 

Power 

Level 1

Power 

Level 2

Header
6 Bytes

Payload
16 Bytes

Destination Address
8b

Source Address
1 bytes

Sequence Number
32b

Payload Length
8b

Data
15 bytes

Temperature
16b

Humidity
16b

Light Intensity
16b

Solar Power
32b

Time (100ms)
32b

CRC
8b

Fig. 8. TI Sub-GHz (Easylink) packet structure at 625 bps for long range
communication. Every Tx packet 22 Bytes long with a header of 6 Bytes and
payload of 16 Bytes. Packet transmission rate varies based on the total energy
available to the wireless sensor node.

(no compression) to 1 sample every 300s (maximum com-
pression). As shown in Fig. 8, each data packet is 22 bytes
long carrying 16 bytes of payload. Sensor data of humidity,
temperature, and light intensity is contained within 6 bytes,
and 4 bytes are used to convey the time of sampling. 4 Bytes
are also used to transmit information on the available power.
Each device also sends its specific software defined address
and error detecting codes.

Data: Samples from environmental sensors
Result: Anomalies detected in sampled data
Initialize the threshold (x) of the k-means clustering

algorithm;
while New sample available do

if data >= x% or <= x% from last anomaly (ISA) then
activate sub-GHz communication;
send temporally compressed data stream to the

receiver;
record new transmission time; deactivate sub-GHz

communication;
else

wait for the next anomaly/next transmission time;
stay in low-power sense and compute mode;

end
if time since last transmission = transmission interval

then
activate sub-GHz communication;
send current data point to the receiver;
record new transmission time; deactivate sub-GHz

communication;
else

wait for the next anomaly/next transmission time;
stay in low-power sense and compute mode;

end
end

Algorithm 2: Anomaly Detection followed by data trans-
mission using Long Range communication at a particular
power level

The anomaly detection algorithm is used to minimize the
loss of information when lower data transmission rates are
used. It incorporates a predefined threshold for each environ-
mental variable being sensed. When the difference between
the sensed data and the previous anomaly value crosses this
threshold an anomaly is registered and data from all sensors
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Anomaly Triggers Faster Rate of Data 

Transmission

Threshold for Anomaly Detection = 5%

Humidity Data is collected for 180s

Correlation Coefficient = 0.9974

Fig. 9. An example of humidity data logged from HDC2010 with and without
anomaly detection at a threshold of 5%.

is transmitted. These thresholds were calculated offline using
a k-means clustering algorithm over a span of more than 4
weeks.

Figure 9 shows an example of humidity data transmitted
by the sensor node using anomaly detection overlaid on all
of the samples collected by the microcontroller. In this case
a sampling frequency of 1Hz was used and 180 data points
were collected. The threshold for anomaly detection was set
at 5% with a data transmission interval of 60s. As seen a
total of 23 data points were transmitted resulting in a temporal
compression ratio of 7.83. Of these 23 data points, 21 were
transmitted due to the anomaly created between 15s and 100s
and 2 were transmitted during normal operation. Without the
introduction of an anomaly the compression ratio would have
been much higher. The compressed data has a correlation
coefficient of 0.9974 with the original sampled data.

A report of every 1 degree Celsius change in temperature is
desirable since the sensor node is primarily used for agricul-
tural and environmental monitoring purposes. Temperatures in
Indiana remain between -20 to 20 degrees Celsius for most of
the year and a 5% threshold will prevent loss of information
irrespective of the data transmission interval. In the summer
months when the temperatures cross 20 degrees Celsius, the
anomaly detector will not trigger at every degree change in
temperature. However, the sunlight intensity also increases in
this time period which will result in faster minimum data
transmission rates to prevent any loss of information.

IV. RESULTS

A. Energy Consumed by the Wireless Sensor node

The current consumption of the sensor node in different
modes of operation is measured using a precision current-
voltage analyzer (B2901A, Keysight) and shown in Fig. 10.
In standby mode the device consumes 280µA, during com-
putation 3.5mA, and a peak current of 35mA for sub-GHz
long range transmission at an output power of +14dBm. At a
supply voltage of 3.7V , this translates to a power consumption
of 1.036mW , 7.03mW , 12.95mW , and 129.5mW during
standby, sampling, computation, and communication respec-
tively. During each sampling interval, which repeats every 1
second, the microcontroller SoC spends approximately 999ms

Standby Mode: ~280µA

Sub-GHz Tx: 

35mA at +14dBm

Sensor Sampling

Computation

800µs

~3.5mA

~1.9mA

200µs

Standby
999ms

1.036mW

Sample
200µs

7.03mW

Comp
800µs

12.95mW

Standby
717ms

1.036mW

Sample
200µs

7.03mW

Comp
800µs

12.95mW

Comm
282ms
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Fig. 10. Current consumed by the wireless sensor node as measured by a
precision current-voltage analyzer and the amount of time spent and power
and energy consumed in each of its different modes of operation i.e. standby
(leakage), sampling and computation, and communication.

in standby mode, 200µs to sample the sensors, and 800µs
to implement the various algorithms, resulting in an energy
consumption of 1.04mJ . Each computation interval can vary
between 1s to 300s, during which the SoC spends 282ms
transmitting the sub-GHZ RF packet at the cost of standby
time, resulting in a communication energy of 33.25mJ . The
standby (leakage) current is relatively high since an ultra-
low noise, high PSSR, RF, low-dropout linear regulator was
selected for the design which had a typical ground pin current
of 265µA. The current consumption and consequently the
energy consumption can be driven down by selecting an
alternate voltage regulator, however, we did not make this
choice since the energy goal of our design was met.

The energy profile for the CC1352-based energy harvested
sensor node is presented in Fig. 11 for each of its different data
transmission intervals. The fastest data transmission rate of ev-
ery 1 second (no compression) occurs either during the highest
range of sunlight intensity, or when the net available energy
permits a daily energy consumption of 2872.5J . The slowest
data transmission rate of once every 300 seconds (maximum



9

32x 

Reduction in 

Energy 

Consumption

Data Transmission Interval (s)
1 2 5 10 15 20 30 60 120 300

E
n

e
rg

y
 C

o
n

s
u

m
e
d

 p
e
r 

D
a
y
 (

J
)

3
3
.2

5
 m

W

1
7
.0

9
 m

W

7
.4

0
 m

W

4
.1

7
 m

W

3
.0

9
 m

W

2
.5

5
 m

W

2
.0

1
 m

W

1
.4

7
 m

W

1
.2

0

1
.0

4

2872.5 J

90.1 J

Fig. 11. Average energy consumed by the wireless sensor node in one day
in each of its different data transmission modes used to report sensor data.

compression) occurs either when negligible amounts of energy
was harvested during the previous day (due to snow accumu-
lation, etc.) or the net available energy is at a critical value
to prioritize charging of the battery. This mode consumes an
average energy of 90.1J , which translates to a 32x reduction
in energy consumption with less than 5% loss of information.
In case the energy harvester is incapacitated due to excessive
accumulation of snow or other unforeseen circumstances, a
lifetime of between 336 hours (14 days) to 818 hours can be
obtained based on the amount of energy stored in a standard
230mAh battery.

B. Interaction Between Energy Available, Energy Consumed
and Transmission Rate

The energy harvester and power management system were
characterized by measuring the power available at the micro-
controller supply net using a solar simulator which generated
a sunlight intensity of 1KW/m2, also called as 1 sun or peak
sun. The results obtained from this setup were multiplied by
the peak sun hours seen in a day seen in Indiana during a
given month to calculate the maximum, minimum, and average
energy harvested on a given day of each month of the year.
This is shown in Fig. 12 along with the equivalent available
power for a 24 hour period, such that the charge storage
device sees a net zero power loss. These power measurements
reflect a horizontal placement of the solar cell which will
be typical during the course of using the device. Obviously,
the instantaneous power available during peak sunshine hours
can be up to 3X higher than the average value. The average
minimum energy value of 256J in December is almost 3 times
the minimum energy consumed by the device and perfectly
accommodates daily fluctuations in weather and the reduction
in efficiency over time due to the accumulation of dust.

EAvail(J) =
EBATT − Ebuf

Dmax
+ EHarv (11)

TxminRate = min
∀TxRate

(ETxRate − EAvail) (12)
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Fig. 12. (a) The maximum, minimum, and average power and energy available
from the 50x60mm amorphous silicon solar cell in a 24-hour period on an
average day of the given month in Indiana. This accounts for the losses in
the energy harvester and power management system. (b) The minimum data
transmission rate of the wireless sensor node as a function of energy available
during a 15 day period at different times of the year.

Eq. 12 describes the relationship between the total amount
of energy available (EAvail) which is derived from the amount
of energy harvested on the previous day (EHarv), energy
stored in the battery (EBATT ), and minimum data transmis-
sion rate (TxminRate) which governs the energy consumed by
the node. The equation assumes that at least EHarv will be
harvested in the subsequent days and based on the amount of
energy stored, it determines whether to give charging prefer-
ence or allow the sensor node to burn extra energy such that it
wont reach its critical threshold (EBuff ) for Dmax days. This
net energy is compared to the energy consumption of each data
transmission rate to find the closest match and determine the
minimum data transmission rate for the following day. Ebuf

represents the buffer energy in the battery (critical threshold)
which must be maintained to accommodate for future bad
predictions when energy availability is low.

Fig. 12 depicts the operation of the device over 15 days dur-
ing both, the summer (June) and winter (December) months.
The upward slopes depict charging of the battery during day
time and the downward slopes for discharge during night
time. During the summer months the minimum transmission
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Relationship Between Power Available, Power Consumed, Battery Voltage 

and Transmission Interval During The Day
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Fig. 13. Interaction between power available, power consumed, energy stored
in the battery, and data transmission rate during the course of a sunny, clear
day during March in Indiana.

rate remains steady at 30 samples/minute despite any changes
in weather conditions which varies the amount of energy
harvested and subsequently stored in the battery since the
net energy available never moves between thresholds. An
interesting point to note is that the device never enters the
highest minimum transmission rate even on sunny, clear days,
when maximum energy is harvested. This can be rectified
by either using a larger battery, solar cell, or placing the
device in a geographical location where more sunlight is
available. During the winter months, the energy stored in the
battery is typically lower and large fluctuations are seen in
the minimum transmission rate due to changes in weather
conditions to conserve the energy stored in the battery, such
that the device can remain operational. When the energy stored
in the battery reaches the critical threshold of Ebuf , we can
see the device prioritizes charging by drastically reducing the
minimum transmission rate to reduce power consumption even
when large amounts of energy was harvested.

During any given day, the relationship between the power
available from the energy harvester, power consumed by the
wireless sensor node, the energy stored, and data transmission
interval is shown in Fig. 13. This example depicts a sunny,
clear day in March, in Indiana. At night time the device
transmits data at the daily minimum data transmission rate
which is a function of the total energy available and is depicted
in Eq. 12. In this example 12 samples are transmitted every
minute at a power consumption of 7.40mW. Over the course
of that night which was 717minutes long, 318.35J of energy
was consumed. At day break, the power available from the
energy harvester slowly starts to rise and eventually becomes
greater than the power consumed by the device and the
excess power starts to charge the battery. When the available
power is 2.5X the power consumed by the device (60%
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Sensor Data For Device 1 (Transmission Interval: 300s, UV Intensity: 0) 
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Fig. 14. Device 0 and Device 1 are placed at the same location with a heating
pad and cooling fan placed on top of them to artificially create anomalies
in their sensor readings for demonstration purposes. Device 0 operates in
the maximum net energy available mode by transmitting data every second,
whereas device 1 operates in the minimum net energy available mode by
transmitting data every 300 seconds.

of available power for charging), the sensor node switches
to a higher data transmission rate. This continues as long
as the available power increases or the battery is completely
charged. Once fully charged, the device transmits data at
the highest possible rate, such that its power consumption is
within the bounds of available power.As the available power
reduces with decreasing solar insolation, the data transmission
rate decreases until it reaches the newly calculated minimum
transmission rate for the following day.

C. Accuracy of Data Reported at Maximum Compression

Fig. 14 shows data from two sensor nodes, device 1 func-
tioning at maximum compression and device 0 functioning at
minimum compression (no compression) placed at the same
location. For demonstration purposes, the devices were placed
in these modes by emulating the power sensor readings to
replicate the maximum and minimum power obtained from
the solar cell. Additionally, to demonstrate the difference in
readings reported by the devices, temperature and humidity
anomalies were artificially created using a heating pad and
a cooling fan which was programmed to turn on for 1 and
5 minutes respectively, once every hour. Device 1 transmits
data once every 5 minutes and reports temporally compressed
data when the anomaly occurs. Whereas, device 0 transmits
uncompressed data every second to make maximum use of
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the available power. Sensor data of temperature and humidity
obtained from the receiver was logged in a comma separated
value (.CSV) file on a mini-PC. That data was processed and
displayed in MATLAB as a time-varying quantity. A total of
418 data points were transmitted by device 1 as compared to
36000 by device 0, which resulted in a net compression ratio
of 86.125 and a correlation coefficient of 0.9937 and 0.9808
for temperature and humidity respectively. This demonstration
displayed a maximum energy savings of roughly 32X, due to
the difference in the transmission rate of the two devices.

V. CONCLUSION

In this paper we analyzed the trade-offs and proposed the
hardware design and software methods to implement a perpet-
ually powered, energy-harvested, long-range communication
sensor node < 35cm2 in dimension which is capable of long-
range communication over > 1Km at continuous information
transfer rates of up to 1 packet/second. This was achieved
through Energy-Information Dynamic Co-optimization and
in-sensor analytics. The proposed method varied the data
transmission rate to optimize energy consumption based on
the total amount of energy harvested and stored in the battery.
This resulted in nearly continuous transmission of samples
in the summer months because of large amounts of energy
harvested, to a steady decrease to low data transmission rates
during the winter months due to a lack of energy availability.
To minimize the loss of information due to steep duty cycling
of data transmission rates, ISA was employed to detect anoma-
lies. This resulted in maximum daily energy consumption
savings of approximately 32X . Despite these transmission rate
fluctuations and steep duty cycling, the correlation coefficient
between the transmitted sensor data and sampled sensor data
was always > 0.95, resulting in < 5% loss of information.

Although this design primarily focuses on solar power as
the energy source, it can be easily modified to work with
alternative sources like TEGs and piezoelectric generators
to achieve an identical performance. As future work, the
energy consumption would be analyzed throughout the year
to ensure reliability over different weather conditions and
network security can be improved. Additionally, since the
leakage current of the sensor node is the limiting variable for
power consumption, a custom SoC can be designed in-house
to significantly reduce leakage current and further miniaturize
the sensor node. Subsequently, faster data transmission rates
can be achieved with smaller harvesting elements.
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