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Abstract—Nowadays, the concept of Internet of
Everything (IoE) is becoming a hotly discussed topic, which is
playing an increasingly indispensable role in modern intelligent
applications. These applications are known for their real-time
requirements under limited network and computing resources,
thus it becomes a highly demanding task to transform and
compute tremendous amount of raw data in a cloud center.
The edge–cloud computing infrastructure allows a large amount
of data to be processed on nearby edge nodes and then only
the extracted and encrypted key features are transmitted
to the data center. This offers the potential to achieve an
end–edge–cloud-based big data intelligence for IoE in a
typical two-stage data processing scheme, while satisfying a
data security constraint. In this study, a deep-reinforcement-
learning-enhanced two-stage scheduling (DRL-TSS) model is
proposed to address the NP-hard problem in terms of operation
complexity in end–edge–cloud Internet of Things systems, which
is able to allocate computing resources within an edge-enabled
infrastructure to ensure computing task to be completed with
minimum cost. A presorting scheme based on Johnson’s rule
is developed and applied to preprocess the two-stage tasks
on multiple executors, and a DRL mechanism is developed
to minimize the overall makespan based on a newly designed
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instant reward that takes into account the maximal utilization
of each executor in edge-enabled two-stage scheduling. The
performance of our method is evaluated and compared with
three existing scheduling techniques, and experimental results
demonstrate the ability of our proposed algorithm in achieving
better learning efficiency and scheduling performance with a
1.1-approximation to the targeted optimal IoE applications.

Index Terms—Deep reinforcement learning, edge computing,
Internet of Everything (IoE), makespan, two-stage scheduling.

I. INTRODUCTION

THE ADVANCEMENT of communication technologies
has led to the widespread of edge computing and the

Internet of Things (IoT)-enabled devices. These interconnected
devices are capable of real-time data collection, processing,
and communication with an edge server, and form the foun-
dation of modern intelligent services [1], [2]. While these
smart devices are providing unprecedented benefits to our daily
lives, the amount of collected data and communication require-
ments are also growing dramatically. The growing quantity of
devices, data, and security requirements is all relying on sta-
ble and efficient computation and communication to ensure the
timely transfer of collected data in a secure manner [3], [4].

The growing penetration of IoT technologies is reflected in
several different sectors, such as consumer electronics, health-
care, and industrial automation [5], [6], forming the so-called
Internet of Everything (IoE). Extending from ordinary IoT
applications, applications relying on cloud–edge infrastructure
are facing more challenges in terms of efficient resource allo-
cation to ensure reliable and optimal task completion time
across the entire distributed system [7]–[9]. It is of critical
importance for modern industrial systems to support multiple
heterogeneous applications (e.g., multiple production lines),
and make efficient use of the available edge servers to com-
plete all tasks in time. How to arrange these tasks with
sequential operations on multiple executors distributed on
edge servers becomes the key problem investigated in edge
computing environments with smart IoT devices.

Different from other existing methods, we focus on a novel
methodology to pursue the optimal two-stage scheduling to
ensure a more efficient use of the available computing and
communication resources in a typical multiflowline produc-
tion system implemented through the concept of IoE. The
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diversity of multiple production lines and their correspond-
ing application requirements make scheduling an NP-hard
problem. In this article, a reinforcement-learning-based heuris-
tic scheduling method, named deep-reinforcement-learning-
enhanced two-stage scheduling (DRL-TSS), is proposed to
support a more efficient data-intensive task allocation and
execution in an end–edge–cloud infrastructure. An integrated
deep learning framework, which consists of two basic mod-
ules as Johnson’s rule-based presorter and DRL-based sched-
uler, is designed to cope with the makespan minimization
problem with multiple executors. Two algorithms are then
developed to realize Johnson’s rule-based task presorting and
reinforcement-learning-based two-stage scheduling, respec-
tively. The major contributions are summarized as follows.

1) A unique two-stage scheduling problem is addressed and
modeled to support the operation complexity in the end–
edge–cloud IoT system, aiming to improve the efficiency
of computing resources shared by devices from multiple
heterogeneous applications.

2) Johnson’s rule-based presorting scheme is designed and
applied to preprocess the two-stage tasks on multiple
executors, which can effectively avoid the worst situation
in the targeted NP-hard scheduling problem and enhance
the overall efficiency in the proposed reinforcement-
learning-based scheduling.

3) A DRL mechanism is developed aiming to minimize the
overall makespan in edge-enabled two-stage scheduling,
in which the action value function is improved based
on a newly designed instant reward that considers the
maximal utilization of each executor for data-intensive
tasks in IoE applications.

The remainder of this article is organized as follows.
Section II compares the state-of-the-art techniques in rein-
forcement learning, followed by the scheduling approaches
targeting IoE applications. Section III addresses the appli-
cation scenario and problem formulation. Section IV dis-
cusses the proposed reinforcement-learning-based scheduling
method with detailed mechanisms. We introduce the experi-
mental design and evaluate the performance of the proposed
method against existing scheduling control approaches in
Section V. Section VI concludes this study and gives promising
perspectives regarding future research.

II. RELATED WORK

Several topics relating to this study, including reinforcement
learning models in IoT systems and task scheduling algorithms
for IoT applications, are studied and analyzed, respectively, in
this section.

A. Reinforcement Learning in IoT Systems

Recently, the development of reinforcement learning has
become one of the most attractive directions of machine
learning and AI techniques in modern large-scale and com-
plex network applications, such as heterogeneous networks,
Internet of Vehicles (IoV), and IoT [10]–[12]. Jiang et al. [13]
constructed a reinforcement-learning-based framework to

optimize the number of served IoT devices for resource con-
figuration in NarrowBand IoT networks. They designed an
action aggregation method based on the deep Q-network to
improve the convergence capability in multiparameter and
multigroup scenarios using the multiagent learning strat-
egy. Wang et al. [14] proposed a so-called mobile-IoT-
based multimodal reinforcement learning service framework,
in which the action-aware transition tensor was utilized for
heterogeneous data fusion, and a Markov decision model
was applied to enhance the multimodal reinforcement learn-
ing process with the optimal tensor policy. Considering the
multihop ad hoc networks with IoT devices, Kwon et al. [15]
built an autonomous network in which each IoT device was
viewed as a decision-making agent based on the Markov
decision process. They maximized the estimated cumulative
future reward in a deep neural network, to improve the learn-
ing process with minimal transmission power consumption.
Nassar and Yilmaz [16] considered the Markov decision pro-
cess with the reinforcement learning model together to solve
the adaptive resource allocation problem. They investigated
and compared the performances of four reinforcement learn-
ing schemes in optimizing the fine-grained decision-making
policies for IoT applications in fog radio access networks.
Camelo et al. [17] focused on the parallel reinforcement
learning and developed a partitioning algorithm to optimize
communications for reinforcement-learning-based IoT appli-
cations in distributed environments. They employed a local
affinity policy to improve the reinforcement learning algorithm
with a dynamic partitioning scheme in a heuristic co-allocation
process. Xiong et al. [18] formulated the resource allocation
problem as a Markov decision process in IoT edge computing
systems. They employed DRL to improve the resource allo-
cation policy, in which the Q-network was redesigned based
on the multiple replay memories to improve the training pro-
cess. Ivoghlian et al. [19] introduced a deep Q-network-based
multiagent framework for automatic network management
targeting typical LoRaWAN-based IoT networks.

B. Task Scheduling for IoT Applications

In current years, with the prevalence of mobile and edge
computing, the scheduling algorithm has become an impor-
tant technique for task management and resource allocation
in IoT-assisted applications. Leithon et al. [20] designed a
framework to optimize the task scheduling within the off-
grid IoT nodes. They proposed a mixed linear programming
method-based online scheduling strategy with a sorting-based
mechanism, which could result in a lower computational com-
plexity. Lee and Lee [21] developed a hybrid algorithm to deal
with the centralized resource and task scheduling issues, which
aimed to minimize the average on-grid energy consumption,
and thus satisfied the minimum average data rate requirement
on each IoT device based on the distributed task scheduling.
Qi et al. [22] focused on IoV, as one specific application of
IoT in autonomous driving and applied DRL in parallel with
multitask scheduling. They proposed a model-free schedul-
ing method to improve the multitask learning problem by
assigning parallel tasks with different computing resources in a
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Fig. 1. End–edge–cloud infrastructure of an industrial workplace safety
surveillance system.

reinforcement learning architecture. Several studies [23]–[27]
developed algorithms to tackle energy efficiency problem for
IoT applications. Specifically, He et al. [25] formulated the
offload task scheduling problem as a constrained Markov deci-
sion process. They developed a deep Q-learning-enhanced
algorithm to maximize the long-term average reward, in
order to tackle the cost-constrained task scheduling problem.
Shan et al. [26] presented a two-step scheduling method to
reduce the energy consumption when offloading the task data
in transparent computing-empowered IoT devices. Different
from these existing approaches with two-stage scheduling and
the Markov feature, our work focuses more on the concur-
rent computing makespan for IoT tasks distributed on multiple
executors.

III. TWO-STAGE SCHEDULING IN END–EDGE–CLOUD

IOT SYSTEMS

In this section, to explain the proposed DRL-TSS model,
we first describe the application scenario of a typical end–
edge–cloud IoT system and then introduce an overview of the
reinforcement learning scheme incorporated with Johnson’s
rule.

A. Application Scenario

The explosive growth of IoT brings great challenges
for many industrial IoT deployments, ranging from latency,
network bandwidth, to reliability and security. Edge comput-
ing, which is a distributed information technology architecture,
is playing a more and more important role in addressing
those challenges. The client data is stored at and processed
by devices at the edge of networks rather than the central
cloud data center for lower latency and better responsiveness.
The processed results are then transferred to the cloud center
as needed.

In a typical industrial IoT system, such as a workplace
safety surveillance system, edge computing can combine and
analyze data from on-site cameras, employee safety devices,
and various other end devices to help businesses oversee work-
place conditions or ensure that employees follow established
safety protocols. As illustrated in Fig. 1, the workplace safety

surveillance system is expressed as a three-layer end–edge–
cloud system. The end layer is composed of various sensors
and end devices (e.g., cameras). The video streams captured
by cameras are generated continuously and then transmitted
to the edge layer through LAN/WAN. The edge layer is made
up of several edge nodes, which are responsible for real-time
data processing, data caching, filtering, basic analytics, and
M2M communication. Under our scenario, each edge node
is regarded as an AI box, which provides a two-stage oper-
ation for this system. The two-stage operation includes the
stage 1 data processing which splits the video stream into sev-
eral segments and keeps only the key image frames containing
the important information, and the stage 2 data transmission
that caches and transmits the processed data (the key image
frames) to the next layer. The cloud layer is a cloud data center
that is in charge of big data processing such as safety inspec-
tion or other high-level applications. The deployed scheduling
controller in this layer is responsible for conducting the task
arrangement across the entire distributed system.

Specifically, in the edge layer, each AI box is regarded as
an executor and a video stream from a camera in the end
layer is regarded as a task. Under the LAN/WAN network
environment, tasks (video streams) are assigned to multiple
executors (AI boxes) under certain rules and are processed in
a two-stage operation described previously. As captured by
different kinds of cameras, video streams vary in quality, size,
and length and contain different volumes of key image frames
that need to be transmitted. Therefore, the processing time and
transmission time for each task also vary correspondingly. To
finish all tasks with a minimum time, the scheduling controller
in the cloud layer needs to formulate a schedule that instructs
each individual AI box to retrieve and execute the required
tasks and achieves an optimal overall task completion time.

Suppose there are n two-stage tasks executed on m execu-
tors in the scheduling problem. Each task that arrives at the
scheduling controller will be allocated to an executor through
the scheduling controller. Each task in this scenario has differ-
ent durations but contains the same two-stage operations, i.e.,
data processing and data transmission, while the data transmis-
sion operation must be performed after the completion of the
data processing operation. According to the working mecha-
nism, a set of assumptions is given below in this scheduling
problem: 1) for each task, a data process operation needs to
be completed first before the transmission operation can start;
2) each executor can execute a process operation and a trans-
mission operation from different tasks simultaneously but can
execute only one operation for a specific task at one time;
3) both operations of a task are executed and completed by
the same executor; and 4) tasks cannot be preempted in this
study.

B. Problem Formulation

In this article, we consider a two-stage scheduling problem
of n tasks J = {J1, J2, . . . , Jn} scheduled to m executors
E = {E1, E2, . . . , Em}. Each task Ji contains two operations
{Oi1, Oi2} with the duration {di1, di2} for execution, where Oi1
and Oi2 represent the processing and transmission operation,
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Fig. 2. Example of executed tasks in two-stage scheduling.

respectively, and di1 and di2 are the corresponding duration of
each operation.

The goal of the scheduling algorithm is to find a feasible
policy to allocate all the tasks to time intervals on the executors
that minimize the total completion time, or makespan, denoted
as cmax. According to [28], we consider the two-stage schedul-
ing problem as a typical multiprocessor flow-shop scheduling
problem with the goal of minimizing the makespan.

Given a task Ji, we define Ti1 and Ti2 as the beginning
times for Oi1 and Oi2, ci1 and ci2 as the completion time,
respectively. Accordingly, the completion time constraint can
be concluded as follows:

ci1 = Ti1 + di1

ci2 = Ti2 + di2. (1)

A feasible two-stage schedule is given as the explanation,
which is shown in Fig. 2.

As illustrated in Fig. 2, the makespan cmax equals to the
completion time of the last executed task J8, assigned to
executor E3.

In general, the makespan cmax means the max completion
time within the m executors. Suppose task Jl is the last com-
pleted task, the makespan for the schedule can be expressed
as follows:

c∗
max = Tl2 + dl2. (2)

Therefore, the optimization goal is to minimize c∗
max, subject

to Ti2 ≥ ci1, i = 1, 2, . . . , n, which means the starting time of
the second operation should be later than the completing time
of the first for each task.

IV. DEEP-REINFORCEMENT-LEARNING-ENHANCED

TWO-STAGE SCHEDULING

A. DRL-TSS Framework

The key objective of a two-stage scheduling algorithm is
to assign tasks to executors in an optimal sequence, so as to
ensure the minimal completion time. The basic framework of
the proposed DRL-TSS is shown in Fig. 3.

Specifically, the proposed DRL-TSS model is constructed
to handle n tasks by m executors, which includes two main
modules: 1) Johnson’s rule-based presorter and 2) DRL-based
scheduler. Since the makespan minimization problem that
schedules a set of two-stage tasks in multiple executors has

Algorithm 1 Johnson’s Rule-Based Presorting
Input: Task list J = {J1, J2, . . . , Ji, . . . , Jn}, in which each task Ji
contains two operations {Oi1, Oi2} with execution durations {di1, di2}
Output: Sorted task list J′ in Johnson’s order
1: Initialize two task groups G1 = ∅, G2 = ∅, and J′ = ∅

2: for each Ji in J do
3: if di1 ≤ di2 then G1 = G1 ∪ Ji
4: else G2 = G2 ∪ Ji
5: end if
6: end for
7: Sort all tasks in G1 in ascending order based on the duration

time di1 for each task Ji ∈ G1
8: Sort all tasks in G2 in descending order based on the duration

time di2 for each task Ji ∈ G2
9: Merge the two task lists by appending G2 behind G1 as

J′ = G1 ∪ G2
10: return J′

been proved to be NP-hard, the DRL is utilized as a heuristic
approach to obtain an approximate solution for the investi-
gated two-stage scheduling problem. However, to avoid the
worst situation occurred in the scheduling process, as shown
in Fig. 3, all the tasks are preliminarily sorted into a specific
Johnson’s order and waiting for further scheduling. A schedul-
ing controller is then introduced to observe the system state
and make a scheduling action decision in the end–edge–cloud
environment. Based on the newly designed DRL scheme which
considers the maximal utilization of each executor, the con-
troller outputs the scheduled action from the probabilistic
transition according to the received cumulative rewards.

B. Johnson’s Rule-Based Presorting

Johnson’s rule has proven to be able to obtain optimal
solutions for scheduling problems in two-stage tasks with a
single executor [29]. Therefore, it is used for task presorting
in our model. It is known that the task list scheduled based on
Johnson’s rule is called Johnson’s list, which has two theorems
as follows.

Theorem 1: Johnson’s list is an optimal solution for a two-
stage, single executor scheduling problem.

Theorem 2: The subset of Johnson’s list is also
Johnson’s list.

To improve the overall efficiency of the reinforcement-
learning-based scheduling method, all the two-stage tasks
are presorted into Johnson’s list using the following scheme.
According to Theorem 2, the task list scheduled to each execu-
tor is the subset of Johnson’s list, this is also Johnson’s list.
This presorting operation can ensure all the parallel schedul-
ing in each individual executor would be an optimal solution,
respectively, following which the next issue would be how
to schedule the presorted tasks to the multiple executors and
make a global optimal.

As demonstrated in Algorithm 1, all the tasks are separated
into two groups G1 and G2 by comparing the two operations’
execution time spans di1, di2 for each task Ji. Particularly, G1
contains the tasks that satisfy di1 ≤ di2, while G2 contains the
tasks that satisfy di1 > di2. In addition, all the tasks need to
be sorted into Johnson’s list in both G1 and G2 before being
merged together finally.
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Fig. 3. Framework of DRL-TSS.

C. Deep Reinforcement Learning for Edge-Enabled
Scheduling

Generally, reinforcement learning is based on the Markov
decision process, which is characterized by the fact that the
state transition of the system is only related to the current state.
Typically, the Markov decision process-based reinforcement
learning can be described using a four-tuple as follows:

{S, A, P(st, at, st+1), Rt} (3)

where S is the state set at timestamp t, which describes the state
space of the two-stage task scheduling. st, st+1 ∈ S. A indicates
the action space, which includes all the possible arrangement
of any task Ji into any executor Ek. at ∈ A. P(st, at, st+1) refers
to the state transition probability when it moves from state st

to the next state st+1 after executing action at. Rt = R(st, at)

is the corresponding reward obtained if executes action at at
state st.

Specifically, in our scheduling problem, the Markov deci-
sion process of this scenario is formulated as follows.

State: The state st is a set of selected features for all the
tasks and executors, which can be expressed as follows:

st = (Dn1(t), Dn2(t), Cn1(t), Cn2(t), Um(t)) (4)

where Dn1(t) = {di1} and Dn2(t) = {di2} denote the set of
duration or processing time for the two stages of tasks that are
executed at t, respectively. Cn1(t) = {ci1} and Cn2(t) = {ci2}
indicate the set of completion time for the two stages of tasks
that are executed at t, respectively, the value of each element is
initialized to 0, and will be set to the corresponding completion
time ci1 and ci2 once the task Ji has been finished. Um(t) =
{uk(t)} describes the payload of all m executors, in which each
uk(t) indicates the utilization of the executor Ek.

In particular, the payload for each Ek at st can be defined
as follows:

uk(t) = ck(t)

cmax(t)
(5)

where ck(t) is the total completion time of all tasks scheduled
to executor Ek according to Johnson’s list.

It is noted that uk(t) is initialized to 0 at state s0, which is
then calculated and ranged from 0 to 1, according to the ratio
of the completion time of current executor Ek to the makespan
cmax(t) of the system at st.

Action: The action at at t is designed to determine which
executor is scheduled to process the next task according to the
action value function, until all tasks are executed.

Reward: The reward Rt stands for the instant reward at t
when taking action at at state st. The goal of the DRL-based
scheduler is to maximize the total rewards across all the states
in S after t.

Actually, the total rewards will be evaluated by all the
instant rewards in each step into the future after t. The weight
for the reward in each step is defined and calculated as
γ ∈ [0, 1], which is interpreted as the probability to accu-
mulate the reward score at every step and ensure the highest
final return. Considering the optimal objective in this study
is to minimize the ultimate makespan c∗

max and maximize the
utilization of each executor, we first quantify the overall uti-
lization of all the executors at t, which can be described as
follows:

Ut =
∑m

k=1 uk(t)

m
. (6)

It is noted that all the tasks scheduled to each executor are
presorted into Johnson’s list, according to Theorem 1, these
scheduled two-stage tasks can be considered as the optimal
solution in one executor. Thus, the overall equilibrium of the
whole payload becomes the essential issue to realize the final
optimal objective in our DRL-TSS model. Considering Ut

reflects the overall payload performance of the whole system
based on (6), it can be further used to measure the instant
reward at t.

Accordingly, the value function vπ (s) at state st = s can
be calculated as the expectation of the accumulative rewards
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Algorithm 2 Training of DRL-TSS
Input: Sorted task list J = {J1, J2, . . . , Jt, . . . , Jn} in Johnson’s order
Output: Two-stage scheduling model M

1: Initialize action value function Q and target action value
function Q′ with weights θ ′ = θ by Eq. (9)

2: Initialize learning step σ , greedy exploration probability ε,
and discounting factor γ

3: Initialize experience replay buffer set D
4: for episode eps = 1 to MaxBatchSize do
5: for t = 1 to n do
6: Select random action at that assigns Jt to a random

executor with probability ε, otherwise
at = argmaxaQ(st, a; θ)

7: Obtain state st+1 by executing action at, and calculate
reward rt by Eq. (6)

8: Store transition (st, at, rt, st+1) in replay buffer D
9: Sample random minibatch of transition (sj, aj, rj, sj+1)

from D
10: Calculate

yj =
{

rj if eps terminates at (j + 1)

rj + γ maxa′ Q′(sj+1, a′; θ ′) otherwise
11: Calculate error ej = (yj − Q(sj, aj; θ))2 and conduct

gradient descent step by ej
12: Reset Q′ = Q in every σ steps
13: end for
14: end for

after t, which can be described as follows:

vπ (s) = E(Rt+1 + γ Rt+2 + γ 2Rt+3 + · · · |st = s). (7)

Finally, the action value function can be deduced as follows:

Qπ (s, a) = R(st, at) + γ
∑

s′∈S

P
(
st, at, s′

t+1
)
vπ

(
s′

t+1
)
. (8)

The training process of the DRL-TSS model is shown in
Algorithm 2, which is an approximation algorithm aiming to
minimize the overall makespan for the edge-enabled two-stage
scheduling.

This algorithm accepts a list of no-preemptive two-stage
tasks J presorted in Johnson’s order as the input. In each
training episode, the possible scheduling, including the corre-
sponding actions and state transitions, is then generated based
on the ε-greedy exploration with ε < 10% (in line 6). By
executing the selected action at associated with the scheduled
tasks in J at state st, the system reward rt will be calculated
based on (6). To speed up the state transition during the train-
ing process, the whole transition (st, at, rt, st+1) is stored in
the replay buffer D. We sample a minibatch of the transition
from D to train the action value function Q(sj, aj; θ) to close
to yj during the gradient descent process (from lines 9 to 12).

V. EXPERIMENT AND ANALYSIS

In this section, simulation-based experiments are designed
and conducted to demonstrate the performance of our proposed
DRL-TSS in an end–edge–cloud IoT system, compared with
three baseline methods.

A. Experiment Design

To simulate the scheduling scenario of arbitrary two-stage
tasks executed on multiple executors in an end–edge–cloud

Fig. 4. Learning curves of DRL-TSS.

IoT system, totally 1000 tasks are taken into account with
randomly assigned execution and transmission time. To reflect
the actual task scheduling in a typical IoT environment, tasks
are composed of trivial tasks (processing time: 10–100 μs),
median tasks (processing time: 100–1000 μs), and heavy tasks
(processing time: 1000–10000 μs) with 30%, 45%, and 25%
proportion, respectively, according to real end–edge–cloud IoT
scenarios. The number of executors varies from 2 to 64. The
makespan of all the tasks spent on the controller is investigated
as our goal in the experiment. To mimic a real-world situation,
a random workload is assigned to each executor in the initial
state varying from 10 to 100 μs.

In addition, the DRL-TSS is compared with three two-stage
scheduling algorithms, which are described as follows.

1) Default First-in–First-Out scheduling (FIFO): FIFO
executes tasks on multiple executors by the same order
as the tasks arrive in.

2) Preprocessing List Scheduling (PLS) [30]: PLS is a
greedy algorithm that executes an ordered list of tasks by
assigning them with some priorities in a preprocessing
procedure.

3) Johnson’s Rule-based Genetic Algorithm (JRGA) [31]:
JRGA executes tasks on multiple executors by incorpo-
rating Johnson’s rule in the decoding process of GA to
optimize the makespan for each executor. Specifically,
in this experiment, the settings for JRGA are configured
as follows: the combination of TPX crossover opera-
tion and OM mutation operation, the population size
of 20, the crossover probability of 60%, the mutation
probability of 15%, and a maximum generation of 100.

The efficiency of all four methods is evaluated by the
approximation ratio as follows:

ρ = Tc

Topt
(9)

where Tc stands for the actual makespan spent for executing
all the tasks by the algorithms. Topt denotes the theoretically
optimal makespan which indicates the performance standard
to evaluate the proposed DRL-TSS and other methods.

It is noted that Topt cannot be calculated since the problem
investigated in this study is NP hard. Therefore, the bound of
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Fig. 5. Approximation ratio ρ achieved when executing specific number of tasks on 2–64 executors. Tasks executed by (a) 2 executors, (b) 4 executors,
(c) 8 executors, (d) 16 executors, (e) 32 executors, and (f) 64 executors.

the optimal is applied in (10) instead. In the following experi-
ment, the approximation ratio ρ is utilized to present how close
the makespan gained by the algorithms to the bound optimal
makespan, and we are interested in obtaining a minimum ρ in
the experiment.

B. Evaluation on Learning Performance

The learning process of DRL-TSS is investigated via
observing the reward gained along with the iterations. We set
the discount factor of DRL to 0.9 and the learning rate to
0.5 empirically. The 1000 tasks and 500 tasks were assigned
to a typical ten slave executors, respectively, to investigate how
the rewards were gained in different task scheduling processes.
The learning curves in these two situations are illustrated in
Fig. 4.

As shown in Fig. 4, both the reward curves of 1000 tasks and
500 tasks increase fast and then stabilize after a few iterations
(100 iterations for 1000 tasks and 20 iterations for 500 tasks)
during the learning process. This convergence phenomenon
depicts the fact that the proposed DRL-based scheduling
method can quickly obtain a close to the optimal action
strategy, which can be applied to the resource-constrained
environment in end–edge–cloud IoT applications. In addition,
it can be observed that the reward gained by the scenario
of 1000 tasks (around 28) is greater than that of 500 tasks
(around 13). This is likely due to the reason that more tasks
may facilitate the learning process in such a situation.

C. Evaluation on Task Scheduling Efficiency

To demonstrate the efficiency of the proposed DRL-TSS
algorithm, two evaluation scenarios are designed to investigate

the performances of all four scheduling algorithms via the
approximation ratio ρ.

First, we demonstrate how the approximation ratio ρ

changes when different number of tasks are scheduled on
varying number of executors, which means we try to inves-
tigate how the algorithms’ approximation ratio varies with
the growth of the number of tasks. The evaluation is per-
formed by scheduling 100–1000 tasks on 2, 4, 8, 16, 32,
and 64 executors, respectively. The evaluation results of the
DRL-TSS and other three baseline methods are shown in
Fig. 5.

As shown in Fig. 5(a)–(f), the proposed DRL-TSS
is compared with PLS, FIFO, and JRGA by executing
100–1000 tasks on 2–64 executors. It can be seen that all the
algorithms obtain a relatively low approximation ratio with a
larger number of tasks and a higher approximation ratio in
the cases with more executors. This is mainly due to a more
balance scheduling situation occurring when executing more
tasks on definite executors. It can be clearly observed that the
proposed DRL-TSS outperforms all the baseline methods by
achieving the lowest approximation ratio in all the tests and
achieves a 1.1-approximation ratio when the number of tasks
is 1000.

Second, we investigate how the approximation ratio ρ

changes when an explicit number of tasks is assigned
to different executors in the end–edge–cloud IoT environ-
ment. Different from the evaluation result shown in Fig. 5,
Fig. 6 presents the influence of the varying number of
executors on scheduling specific number of tasks.

As shown in Fig. 6, given a specific number of tasks, the
uplifted approximation ratio curves demonstrate that all the
algorithms perform worse when the number of executors is



3302 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 4, 15 FEBRUARY 2023

Fig. 6. Approximation ratio ρ of executing 100–1000 tasks on varying number of executors. (a) 100 tasks executed by multiple executors. (b) 500 tasks
executed by multiple executors. (c) 1000 tasks executed by multiple executors.

increasing. This is due to the fact that the increasing num-
ber of executors brings unbalance and randomness to the
scheduling process. In addition, all algorithms tend to be
relatively stable along with the increasing executors except
the JRGA, which indicates that the GA-based heuristic algo-
rithm will be affected by the complex crossover and mutation
operations. In particular, the performance of the proposed
DRL-TSS remains stable when the executed tasks increase
from 500 to 1000. Moreover, our algorithm achieves the lowest
approximation ratio among all the methods, which approxi-
mates to a 1.0-approximation ratio in tests of 500 and 1000
tasks.

VI. CONCLUSION

The growing quantity of IoT devices demands a more effi-
cient usage of shared computing and communication resources
in an end–edge–cloud environment. This is particularly impor-
tant for IoE applications, which are usually time critical and
very costly to expand their computation and communica-
tion facilities. This article introduced a DRL-TSS method
to find more efficient schedules that allow optimal use
of the available resources, especially in a distributed IoE
system that manages heterogeneous big data with multiple
executors.

Following a deep learning framework for two-stage schedul-
ing in end–edge–cloud IoT systems, two algorithms, namely,
Johnson’s rule-based task presorting scheme in multiple execu-
tors, and an improved DRL scheme that considers the maximal
utilization of each executor in a newly designed instant reward,
were developed to pursue the minimal overall makespan in
dealing with the NP-hard scheduling problem. The proposed
algorithm was evaluated in a simulated IoE setting com-
pared with three existing scheduling approaches, in terms of
learning efficiency and scheduling performance. The exper-
imental results demonstrated that our proposed DRL-TSS
algorithm could achieve a 1.1-approximation ratio to the
optimal bound makespan when handling intensive tasks in
end–edge–cloud-enabled IoE applications.

In future studies, we will investigate a more efficient deep
learning scheme for scheduling optimization in IoE environ-
ments. More evaluations in more complex situations will be
conducted to improve and examine the scheduling algorithm
with better efficiency.
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