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Abstract—In this paper, a cost-effective ultra-wideband (UWB)
communication system for gesture recognition in a smart home
environment is proposed, which uses gesture trajectories and a
deep learning model. Most previous studies of gesture recognition
using UWB technology used electromagnetic signals directly,
which may bring problems like radar clutter, signal coupling,
multi-path, fading, and interference. However, instead of using
UWB’s high-frequency pulse signals, the proposed method only
uses gesture trajectories by data positioning. To this end, firstly,
a dataset of four gesture activities was created. Then, this
dataset was trained using a convolutional neural network (CNN)
integrated with a squeeze-and-excitation (SE) block, namely the
SE-Conv1D model. Finally, the system was prototyped to interact
with appliances in practical smart homes. The experimental data
was used to demonstrate the superiority of the SE-Conv1D model
in comparison with four baselines: support vector machines, K-
nearest neighbor, random forest, and binarized neural networks.
Experimental results show that all collected gesture activities
are correctly recognized with an overall accuracy of over 95%,
among which the proposed SE-Conv1D model achieves the best
accuracy of 99.48%. The proposed system is a complete end-
to-end sensing system specifically designed for tracking and
recognizing human gestures, which is robust against interference
and changes in distance or direction. In addition, the proposed
system can tackle the device selection problems for smart homes,
which means it is reliable for real-world applications.

Index Terms—Gesture recognition, Smart home, Squeeze-and-
excitation, Trajectory, Ultra-Wideband

I. INTRODUCTION

Gesture recognition is one of the most critical sub-topics
in human activity recognition (HAR), and plays a key role
in the development of multiple applications, including smart
homes [1], health care [2], and virtual reality [3]. Gesture
recognition is able to control devices remotely, which is
convenient and efficient for users [4]. Recent developments in
gesture recognition applied to smart homes, e.g., SeleCon [5],
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have attracted great attention in using gestures to control smart
devices.

A. Limitation of State of the Art

Previous attempts for gesture recognition used different
sensing modalities like cameras, audio-based approaches, Wi-
Fi, radio-frequency identification (RFID), and Bluetooth tech-
niques. However, these approaches suffer from inherent draw-
backs, including privacy leakage, inconvenience, as well as
limited sensing range and interference. For example, vision-
based approaches have to deal with well-known environmental
challenges, where the line-of-sight (LoS) is strictly required
between the camera and users [6]. In addition, the feasibility
of the vision-based recognition is impacted by the variability
in brightness, contrast, and exposure [7]. It is worth noting that
both vision-based and speech-based recognition approaches
may violate users’ privacy because the recorded video and
audio data are released to remote cloud servers. To overcome
privacy issues, Wi-Fi, RFID, and Bluetooth techniques are
more applicable. However, Wi-Fi is limited by the low spatial
resolution, signal strength, multi-path reflections, as well as
electromagnetic interference [8]. Bluetooth and RFID are
greatly restricted to the short-range sensing capability [9].

Recently, radar-based gesture recognition [10] has been
considered as alternatives for overcoming the problems men-
tioned above. Radar-based recognition has no privacy and
LoS issues, which stands as a potential solution for gesture
recognition [11]. However, radar-based recognition also suffers
from interference from other devices and multi-path effects,
which dramatically decrease the signal-to-interference-noise-
ratio of the wireless signals [12]. Most of the solutions
utilize digital signal processing techniques for mitigating co-
channel interference. However, it is still hard to distinguish
the interference for gesture recognition in practice.

Another challenge is that previous studies of gesture recog-
nition have not thoroughly tackled the device selection prob-
lem, especially for smart home applications. Only a few
existing gesture recognition solutions can select a device and
control it without increasing the number of tags needed in
the different objects [5]. In most studies, different gestures
are assigned to various devices in a smart home. However,
assigning semantic tags for each device, such as ‘light 1’ or
‘light 2’, results in an increased burden to users. With the
increasing number of devices in smart homes, this process
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Fig. 1: Architecture of the proposed UWB communication system.

becomes cumbersome. It is natural to ask if it is possible to
simultaneously control and select a specific device without
defining a massive number of gestures.

B. Motivations

To solve the mentioned problems, a practical solution that
can be applied to smart homes is strongly needed. Therefore,
this paper presents a cost-effective communication system
based on Ultra-Wideband (UWB) technology with a wide
bandwidth (≥500MHz). Previous research mainly focused
on using electromagnetic signals directly to perform gesture
recognition, e.g., UWB radars [13]. However, these existing
studies using UWB radars do not completely address problems
like signal coupling, multi-path, fading, and interference. In
addition, if gesture verification is performed at a distance or
direction that is not used for training, the accuracy may be
reduced.

Different from the previous studies, this paper focuses on
the high localization accuracy of UWB, which is regarded
as one of the most accurate and promising technologies. A
novel solution that uses gesture trajectories instead of using
electromagnetic signals directly to recognize human gestures
is proposed based on UWB technology. Additionally, a deep
learning model is developed to recognize human gestures. In
this way, the proposed UWB communication system can solve
the problem of interference and device selection for smart
homes.

C. Contributions

A trajectory-based solution for gesture recognition using
the UWB communication system is proposed, which aims
to overcome the constraints of the existing works. A deep
learning model is presented for recognizing dynamic human
gestures. It is worth noting that the proposed system is not
just a sensor chip or a new learning algorithm. As shown in
Fig. 1, it is a complete end-to-end sensing system specifically
designed for tracking and recognizing human gestures. The
main contributions of this paper are summarized as follows:

• A novel solution of recognizing human activities only
using trajectories of human activities based on a cost-
effective UWB communication system is proposed. Then,

a dataset of four pre-defined gestures, e.g., turning on/off
the LED light, was collected in a laboratory that simulates
a room of a smart home. Finally, the trajectories of pre-
defined gestures from different directions and distances
were produced.

• A novel framework for gesture recognition is proposed,
namely the SE-Conv1D model, which achieves excellent
gesture recognition performance of 99.48% overall ac-
curacy. All of these gestures are also correctly classified
with an accuracy of over 95% by the four baseline mod-
els. It proves that the proposed solution is robust against
interference, and it works robustly against changes in
distance or direction, which means it is more reliable for
real-world applications.

• The proposed system was prototyped to interact with
appliances in smart homes. The proposed system provides
a practical method of device selection for smart homes
only using gestures. It proves that the proposed system
is a complete end-to-end sensing system specifically
designed for tracking and recognizing human gestures.

• The archived UWB gesture datasets and code1 have been
already published, which may provide the basis for the
comparison of techniques and improvements.

D. Organization

The rest of this paper is organized as follows. Section II
presents the related work. Section III presents the system
overview. Section IV presents a detailed review of the UWB
technology, double-sided two-way ranging, and the proposed
learning model. Section V shows the evaluation setup. The
experimental results and analysis are illustrated in section VI.
Section VII presents the limitations and future work. Finally,
Section VIII concludes this paper.

II. RELATED WORK

Human gesture recognition is a widely concerned research
field. Given the enormous volume of research conducted on
this topic and space limitation, the three most relevant aspects

1Data and code available at https://github.com/Annaliisme/UWB-based-
gesture-recognition.
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to this paper are introduced: UWB-based gesture recognition,
trajectory-based gesture recognition, and squeeze and excita-
tion (SE) blocks.

A. Gesture Recognition based on Ultra-Wideband Technology

Recently, there has been renewed interest in UWB tech-
nology. UWB technology is regarded as one of the most
accurate technologies for providing high localization accuracy,
high immunity against multi-paths, and low output power [14].
Most previous work [15] focused on indoor localization based
on UWB technology, but few focused on gesture recognition.

An early study for gesture recognition using UWB technol-
ogy was published in 2016, where Park et al. [16] recognized
human gestures by using an impulse radio UWB radar. With
the help of the principal component analysis (PCA) method,
the features were successfully extracted from the received
signals. Then, support vector machines (SVMs) were used
for training and classifying six gestures using the extracted
features. Lately, Khan et al. [17] improved this system with
a particular focus on user-friendliness and flexibility. They
proposed a new hand-based gesture recognition algorithm that
can be used to control different electronic devices inside
a car. Based on this work, Ahmed et al. [18] developed
a convolutional neural network (CNN) model for counting
fingers based on gestures to control electronic devices in
cars, which achieved approximately 97% overall accuracy.
Recently, several research efforts have started to focus on
gesture-driven applications for smart homes. Alanwar et al. [5]
proposed a pointing approach to interact with different devices
in smart homes based on a UWB equipped smart-watch. Their
results demonstrated that it achieves 84.5% accuracy for device
selection and 97% overall accuracy for gesture recognition.

The above methods based on UWB technology showed
exciting gesture recognition accuracy in the corresponding
dataset. However, radar-based gesture recognition suffers from
the interference of nearby moving objects and multi-path
effects (shown in Fig. 2). In addition, most of the studies
mentioned above are not sensitive to users’ orientation. For
example, if users perform gestures differently from any of
the directions where the training samples are collected, the
systems’ accuracy would suffer. It is essential to note that few
works have investigated the problem of equipment selection
without increasing the tags for each device.

B. Trajectory-based Gesture Recognition

Trajectory-based methods provide a means of solving the
problem of interference [19]. Most of the previous research
on trajectory-based gesture recognition used cameras. The
Time of Flight (ToF) sensors (e.g., Kinect 2.0) were widely
used in the fields of computer vision. ToF sensors have
been reported to be quite efficient and robust to the hand’s
orientation, size, and distance measurement task, which can
be utilized to recognize complex hand trajectory gestures [20].
ChaLearn [21] is a well-known trajectory gesture dataset that
consists of 50,000 hand and arm gestures video recorded
with a Microsoft KinectTM camera that can provide both
RGB and depth images. However, trajectory-based approaches

Fig. 2: The difference between UWB radar and the proposed
UWB communication system.

using cameras have failed to address the problem of small
visual scope because the trajectories extracted from a video
heavily depend on the azimuth and inclination of the camera.
In addition, the privacy issue is still a much-debated question.

Lately, real-time wearable hand gesture recognition can be
used for gesture detection, e.g., Chen et al. [22] proposed
a novel wearable wrist camera-worn sensor, the WristCam,
for recognizing hand trajectory gestures. By dividing the
video into gesture segments, they finally achieved an accu-
racy of 97.6%. Vu et al. [23] explored the possibility of
using wrist-worn devices based on the trajectory tracking
solution to track the hand movement and gestures for gesture-
driven applications accurately. They built a Hidden Markov
Model (HMM)-based framework, which achieved 95% stroke
recognition accuracy. It should be noted that few studies
have focused on trajectory-based gesture recognition using the
UWB communication system.

C. Squeeze and Excitation (SE) Blocks

In the last decade, machine learning techniques have been
widely used for gesture recognition, which have laid a good
foundation for gesture recognition and met the requirements
of typical applications for recognition accuracy. Due to the
complexity and diversity of gesture movement, classification
models have gradually developed from manual feature extrac-
tion to model training of the deep network.

Since it was reported in 2018, SE blocks have attracted
a lot of interest and some achievements have been made.
Rundo et al. [24] incorporated SE blocks into U-Net for
prostate zonal segmentation of multi-institutional Magnetic
Resonance Imaging (MRI) datasets. Their research revealed
that SE blocks could provide superior intra-dataset gener-
alization in multi-institutional scenarios. In [25], an end-to-
end intelligent recognition of epileptic electro-encephalogram
(EEG) seizure detection framework was proposed by using
a channel-embedding spectral-temporal SE network. Experi-
mental results demonstrated the effectiveness of their proposed
framework in recognizing epileptic EEGs, indicating its pow-
erful capability in automatic seizure detection. In [26], a faster
region-based CNN by using SE mechanisms was proposed for
ship detection. The authors claimed that their proposed method
outperforms the state-of-the-art methods.
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TABLE I: The parameter setting of the proposed UWB com-
munication system.

Parameters Values
Centre Frequency 3 GHz
Bandwidth 500 MHz
Bit Rate 11520 bps (UART)
Range 0-9 meter

The SE blocks have not been used in gesture recognition
systems even though they have achieved some signs of success
in many fields. This paper incorporated the SE blocks in
the one-dimensional CNN to improve gesture recognition
accuracy for smart home applications.

III. SYSTEM OVERVIEW

Throughout the paper, this paper assumes that human ges-
tures may be accurately recognized by the trajectories of dif-
ferent hand movements obtained by the UWB communication
system. With the help of deep learning models, trajectories of
human gestures can be used directly to classify meaningful
gestures. A deep learning-based UWB communication system
is designed to verify the hypothesis in the rest of this paper.
The framework used in this paper has three stages (shown in
Fig. 1): data collection, data processing, and gesture recogni-
tion.

Data collection: A UWB communication system is em-
ployed, which enables the integration of sensing and wireless
data transfer into a single step. The user wears the tag, and
the anchors can be placed in the room. The human motions
are spatially translated and oriented during physical activities,
which change the relative location. Collecting the received ToF
signals transmitted from the UWB communication system can
model the relative location of human motions to represent dif-
ferent human gestures, which can be expressed as a sequence
of coordinates containing spatial and temporal information.

Data processing: The collected point sets are grouped
into different clusters that represent various human activities
in a scene. This paper uses points-based segmentation to
process trajectories obtained from the UWB communication
system, splitting trajectories into several segments with the
same number of points.

Gesture recognition: A deep learning model is applied to
classify geometric features extracted upon these point clusters
for detecting human gestures. It consequently enhances the
accuracy of the proposed UWB communication system in
recognizing human gestures.

IV. METHODOLOGY

This section gives an overall review of the UWB
technology-based on DWM10002, the theory of double-sided
two-way ranging (DS-TWR), SE blocks, and the proposed SE-
Conv1D model.

2The DWM1000 module is based on DecaWave’s DW1000 Ultra-Wideband
(UWB) transceiver IC. For further information on this, please refer to
www.decawave.com.

Fig. 3: The theorem of double-sided two-way ranging system.

A. The Ultra-Wideband Technology based on DWM1000

UWB technology is one of the most potent choices for
critical positioning applications that require highly accurate
results [27]. In this research, one type of sensor (DWM1000
module) was utilized, which is compliant with the IEEE
802.15.4-2011 UWB standard. The module size is 54 mm ×
20 mm × 2.9 mm, and it integrates antennas, all RF circuits,
power management, and clock circuitry in one module. As
shown in TABLE I, the centre frequency is 3 GHz, bandwidth
is 500 MHz, and the bit rate is 11520 bps by universal
asynchronous receiver-transmitter (UART).

B. Double-sided Two-way Ranging (DS-TWR)

UWB ranging is suitable for real-time locating systems
(RTLS) [28]. In addition, the wide frequency bandwidth al-
lows for high-resolution channel impulse response estimation,
along with accurate ToF measurements in a dense multi-path
environment [29]. The system used in this research is based on
the double-sided two-way ranging (DS-TWR) [30], in which
two round trip time measurements are used and combined to
give a ToF result. The core of a DS-TWR exchange is shown
in Fig. 3.

In this paper, three DWM1000 modules were configured
as anchors (anchor A, anchor B, anchor C), while another
was configured as a tag. The trilateration solver gives two
solutions equidistant from each side of the plane of the
anchors, which are assumed to be all horizontal. Each device
precisely time-stamps the transmission and reception times of
the messages. The remark is the part of the frame that is
assumed to be time-stamped at the device antennas. The final
message communicates the tag’s Tround and Treply times to
the anchors. Assuming that any two anchors can communicate
between them. The resultant ToF estimate, T̂prop, which is the
propagation time of the message between tag and anchors, is
calculated by:

T̂prop =
(Tround1 · Tround2 − Treply1 · Treply2)

(Tround1 + Tround2 + Treply1 + Treply2)
, (1)

where Tround1 represents the time from sending the polling
signal to Anchor A to receiving the response signal of the
tag; Tround2 represents the time from sending the response
signal to the Rx to receiving the ranging information sent by
anchor A; Treply1 represents the time from the tag receiving
the polling signal to the time when the response signal is sent;
Treply2 represents the time from the Anchor A receiving the
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Fig. 4: The scheme of SE module.

response signal to the time sending the ranging information.
Finally, the tag’s position can be estimated by TOF from
anchors. This paper assumes the speed of the radio waves
through the air is equal to the speed of light c, then the distance
between the tag and anchors can be expressed by:

Distance = c · T̂prop. (2)

C. The Proposed Model Architecture

Recently, squeeze-and-excitation (SE) blocks [31] have been
proposed to become the integral parts of models, which are
used to rescale the input feature map to highlight valuable
channels. These blocks are lightweight to decrease the model
complexity and computation time and ease the training of the
network by improving gradient flow. The general scheme of
the SE module is shown in Fig. 4. For an input feature map
UW×H×C , a squeeze operation is utilized to aggregate the
feature map across dimensions W × H to produce a channel
descriptor, which embeds the global distribution of channel-
wise feature responses [32]. This is achieved by using global
average pooling to generate channel-wise statistics as:

zc =
1

W×H

W∑
i=1

H∑
j=1

uc(i, j). (3)

where H and W are the height and width of the features from
the previous layer, respectively. The u(i, j) is the data element.
The width can be regarded as W = 1 for the one-dimensional
convolution.

For temporal sequence data, the channel-wise statistics is
generated by shrinking U through the temporal dimension T ,
where the c-th element of z is calculated by:

zc =
1

T

T∑
t=1

uc(t). (4)

The aggregated information obtained from the squeeze op-
eration is followed by the excitation operation, which aims to
capture the channel-wise dependencies. To meet these criteria,
a simple gating mechanism is employed with a sigmoid
activation:

sc = u(i, j)σ(g(zc,W) = u(i, j)σ(W1δ(W2zc)), (5)

where σ refers to the Sigmoid activation function, δ refers to
the ReLU activation function. W1 and W2 are weights to
limit model complexity and aid generalisation.

The SE blocks are integrated into the one-dimensional
CNN model to enhance recognition accuracy, for convenience,

Fig. 5: The proposed SE-Conv1D model.

namely the SE-Conv1D model, as illustrated in Fig. 5. One-
dimensional CNN takes one-dimensional data as input. It is
a variant of traditional two-dimensional CNN, which includes
an input layer, an output layer, and multiple hidden layers.
Compared with two-dimensional CNN, one-dimensional CNN
uses one-dimensional arrays instead of two-dimensional ma-
trixes to represent the kernels and feature maps [33]. In the
SE-Conv1D model, the segmented trajectories are taken as
inputs. The fully convolutional block contains three temporal
convolutional blocks, which are used as feature extractors. The
SE-Conv1D model is comprised of 2 blocks of (128, 256,
128) filters for all models, with kernel sizes of 16, 3, and
5, respectively. Each convolutional layer is succeeded by the
batch normalization layer and the ReLU activation function.
A global average pooling layer follows the final temporal
convolutional block.

V. EVALUATION SETUP

This section presents a comprehensive experiment on the
collected gesture dataset. The research questions of this ex-
periment are raised through three aspects: robustness, effec-
tiveness, and usefulness. The data acquisition and processing
procedure, baselines, and evaluation metrics are introduced.
Finally, the hypotheses are set up to answer research questions.

A. Research Questions

Given the fact that the deep learning model fundamentally
determines the effectiveness of the proposed system, different
parameter settings are analyzed to present readers an extensive
understanding of this paper. RQ1 is designed as follows:

[RQ1. Robustness] How do the experimental parameters
influence the performance of the proposed model?

Secondly, RQ2 is designed to investigate whether the
proposed system is effective for recognizing different human
gestures. RQ2 is formulated as follows:
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TABLE II: The description of pre-defined gestures.

ID Number Gesture Activity Descripition Case study
0 Swipe right The gesture of swiping the right hand to the right Turn on the LED light
1 Up and down The gesture of lifting the right hand from bottom to top and then put it down Change the color of an LED light
2 Circle clockwise The gesture of rotating the right hand for a circle clockwise Turn on all LED lights
3 Push The gesture of pushing the right hand outwards perpendicular to the ground Turn off all LED lights
4 Others Daily behaviors, e.g., walking and sitting /

Fig. 6: The experimental scenario is 6.5m × 6m, which mainly
contains one sofa, two tables, and three bookcases. The UWB
devices were configured on the table.

[RQ2. Effectiveness] To what extent can the proposed
system accurately recognize different human gestures?

Finally, it is essential to note that even though we inves-
tigate the effectiveness of the proposed system in RQ2, the
usefulness of that in practice needs to be further validated.
The proposed system was prototyped to interact with appli-
ances in smart homes and compared with the state-of-the-art
approaches. RQ3 is designed as follows:

[RQ3. Usefulness] To what extent can the proposed
system accurately recognize different human gestures in
uncontrolled environments?

B. Data Measurement and Processing

In this section, the experimental setup is presented, in-
cluding device configuration, the experimental environments,
gesture sets, participants, and data processing.

1) Data Measurement: As shown in Fig. 6, the data collec-
tion was conducted in an office, where we simulated the smart
home scenarios. In this experiment, three DWM1000 modules
were configured as anchors while another was configured as
a tag. The tag was connected to the human body while the
data was being collected in real-time. As shown in Fig. 7,
three anchors were deployed, namely anchors A, B, and C.
Anchors B and C were located 89cm above the ground, and
anchor A was located 33cm above the ground. This position
was chosen because most of the electric outlets are at this
height. The idea is to have a plug-and-play solution. Anchor
B and anchor C were kept fixed at a separation distance of
4.91m from each other.

Fig. 7: The location of device configuration.

A set of gestures were predefined to represent different
user commands in a smart home, including four continuous
gestures, ‘swipe right’, ‘up and down’, ‘circle clockwise’
and ‘push’, which are shown in Fig. 8 (a). To explore how
the proposed system would be incorrectly triggered by daily
behaviors, e.g., ‘walking’ and ‘sitting’, volunteers were asked
to perform the daily behaviors for 10 minutes. These activities
were defined as ‘Others’. The standard for each class is shown
in TABLE II. The data were collected from three volunteers:
two males and one female. They were unpaid volunteers
recruited from different departments of Shenzhen university. It
is worth noting that all activities were performed in naturally
different orientations, as would be the case in a real-world
scenario. When the instruction ‘start’ was given, a volunteer,
facing different directions at different positions, performed a
pre-defined gesture around 100 times.

2) Data Processing: Finally, trajectories from different
directions and distances were produced by the proposed UWB
communication system (shown in Fig. 8 (b)). A trajectory is
the result of the displacement of a human gesture obtained
by the UWB communication system, which can be expressed
as a sequence of coordinates containing spatial and temporal
information. This paper uses points-based segmentation of
sliding window to process trajectories obtained from the UWB
communication system, which split trajectories into several
segments with the same number of points [19]. A sliding
window is a well-established method of feature extraction for
data pre-processing. The information could be extracted over
a ‘sliding window’ that contains a fixed number of samples.

As shown in Fig. 9, a sliding window with a length of
d was utilized to perform segmentation at the interval of v.
The choice of window size is essential for gesture recognition.
If the size is too small, the signals of a human gesture
cannot be entirely captured by the window. On the contrary,
if the window size is too large, signals of two or more
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Fig. 8: (a) The design of four potential human gesture activities in homes. From left to right: ‘swipe right’, ‘up and down’,
‘circle clockwise’, and ‘push’. (b) Trajectories are randomly chosen from different directions and distances produced by UWB.
‘A’, ‘B’, and ‘C’ refer to Anchor A, B, and C.

Fig. 9: An example of trajectory segmentation.

human gestures can be included. Considering different users’
different shapes and speeds, we can observe that each sliding
window contains 8-30 location points extracted from gesture
trajectories. A sliding window was finally chosen according
to the average completion time of gestures. Although there is
no guarantee that a sliding window only contains one motion
cycle for different speeds of gestures, it at least contains
the whole gesture, which is enough for gesture classification.
After testing, gesture trajectories were then segmented using a
sliding window with an average length of 20 (location points).
The final dataset comprises 19121 samples, including 3145
samples of ‘swipe right’, 3291 samples of ‘up and down’,
4737 samples of ‘circle clockwise’, 3948 samples of ‘push
forward’, 4000 samples of ‘others’, respectively.

C. Evaluation Metrics

The metrics used to evaluate recognition performance from
different perspectives are: 1) Overall Accuracy (OA); 2) Re-
call; 3) F1 score and 4) Normalized confusion matrix. The
metrics used to evaluate performance of the system are defined
as follows:

OA =
TP+ TN

TP+ TN+ FP + FN
, (6)

Recall =
TP

TP + FN
, (7)

F1 = 2 · 2 · TP
2 · TP + FP + FN

, (8)

where TP, FP, TN, and FN denote true positive, false positive,
true negative, and false negative, respectively. During the
training process, the trajectory samples were divided into three
segments: 80% for the training, 10% for the validation, and
10% for testing.

D. Baselines

The machine learning techniques have been proven to be
effective for gesture recognition, including support vector
machines (SVM), K-nearest neighbor (KNN), and random
forest (RF). In addition, a recent deep learning method based
on a binarized neural network is presented. Details of the
comparative approaches are listed in the following:

• SVM: SVM supports to select the hyperplanes that max-
imize the distance between the nearest training samples
and the hyperplanes [34]. In the case of SVM, the radial
basis function (RBF) kernel function [35] is used. Here,
two hyperparameters (C, γ) in SVM-RBF are specified
manually. Given the hyperparameter space C: [0, 20],
γ: [0, 1.0E - 5], a different pair of parameters will be
selected from the hyperparameter space by using the
cross-validation in each training and validation epoch. In
this paper, the gesture recognition performance is best
when C is set to 10, and γ is set to 1.0E - 4.3.

• KNN: KNN follows an assumption that similar things
are closed to each other [36]. Adjusting the k value is
critical in assuring that the model is robust to noise, and
is able to discriminate the gesture classes. In the case of
KNN, different values for k are examined, and the gesture
recognition performance is best when k is set to 2.

• RF: RF is a holistic learning method of classification
and regression by constructing a collection of decision
trees [37]. In the case of RF, an RF built with 110 decision
trees is utilized.

• BinaryDilatedDenseNet [38]: BinaryDilatedDenseNet is
a recent model that designed for sensor-based human
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Fig. 10: The accuracy under the different reduction ratios r
and batch size of the SE-Conv1D model.

activity recognition. The same structure used in [38]
is adopted. In training, categorical cross-entropy loss is
used to optimize the network. Adam is chosen as the
optimization function, with the initialized learning rate
of 0.0001, and the batch size is set to 32.

E. Hypotheses Setup

To answer RQ1, the following null hypothesis H10 and the
alternative hypothesis H1A are set up:

• H10: The reduction ratio r cannot significantly influence
the performance.

• H1A: The reduction ratio r can significantly influence
the performance.

To answer questions in RQ2, the null hypothesis H20 and
the alternative hypothesis H2A are set up:

• H20: The overall gesture accuracy of the proposed
SE-Conv1D model is not significantly higher than the
baselines (SVM, RF, KNN, and BinaryDilatedDenseNet).

• H2A: The overall gesture accuracy of proposed SE-
Conv1D model is significantly higher than the baselines
(SVM, RF, KNN, and BinaryDilatedDenseNet).

To comprehensively answer RQ3, the null hypotheses H30
and the alternative hypothesis H3A are set up:

• H30: The environmental changes cannot significantly
influence the performance of gesture recognition.

• H3A: The environmental changes can significantly influ-
ence the performance of gesture recognition.

VI. RESULT AND ANALYSIS
This section presents the experimental results to answer

three research questions through three aspects: robustness, ef-
fectiveness, and usefulness. Firstly, different parameter settings
are shown. Then, the proposed SE-Conv1D model results and
different baseline approaches are given. Also, the case study is
presented. Finally, a detailed discussion of cost-effectiveness,
computational complexity, time consumption, and applications
of the proposed system is provided.
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Fig. 11: Validation accuracy and loss of the proposed SE-
Conv1D model.

A. Answering Research Question 1: Robustness

[RQ1. Robustness]: How do the experimental parameters
influence the performance of the the proposed model?

This paper combines debugging and grid search methods
to select the appropriate hyperparameters. During the training
phase, the ADAM optimizer [39] is utilized with a learning
rate of 0.001 for 70 epochs. In addition, all the networks are
trained using sparse categorical cross-entropy [40].

The reduction ratio r is an important hyperparameter that
allows us to vary the capacity and computational cost of the
SE blocks in the proposed model. To find the optimal value of
reduction ratio r in the proposed method, we thus analyze the
performance of the SE-Conv1D model under different r values
(from 2 to 16), along with batch size. Meanwhile, to answer
the hypothesis of RQ1, Friedman’s rank tests over the accuracy
of different r on each gesture type (batch size is set to 60) are
conducted. The null hypothesis H10 is that the reduction ratio
r cannot significantly influence the performance. The accuracy
under different r is presented in Fig 10. The following remarks
are made:

• Fig. 10 shows that the SE block always improves per-
formance at different reduction ratios. with the increase
of r, the accuracy goes down. The proposed SE-Conv1D
model reaches the best classification accuracy with the
reduction ratio 16.

• The test results (p<0.01) show that H10 is rejected,
which means the parameter r influences the recognition
accuracy in the proposed system.

B. Answering Research Question 2: Effectiveness

[RQ2. Effectiveness]: To what extent can the proposed
system accurately recognize different human gestures?

1) Results of the Proposed SE-Conv1D Model: The training
loss and validation accuracy of the SE-Conv1D model are
shown in Fig. 11. By using the proposed SE-Conv1D model,
the achieved overall accuracy is 99.48%, and the loss is less
than 0.02. The validation accuracy curves level off after 15
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Fig. 12: Normalized confusion matrix. (a) Normalized confusion matrix using SVM-RBF. (b) Normalized confusion matrix
using RF. (c) Normalized confusion matrix using KNN. (d) Normalized confusion matrix using BinaryDilatedDenseNet. (e)
Normalized confusion matrix using SE-Conv1D model.

epochs and remain roughly constant thereafter, confirming
that there is no overfitting in any of the deep architectures
implemented.

A confusion matrix is commonly utilized for analyzing
recognition performance. As shown in the normalized con-
fusion matrix of Fig. 12, all gestures are correctly classified
with nearly 100%, except the gesture ‘up and down’. 1% of
‘up and down’ samples were misclassified into ‘push’, while
the rest of those were misclassified into ‘circle clockwise’.
Although these motions have similar kinematic structures, the
proposed system still achieves excellent performance. This is a
significant result as it shows the clear benefits of SE-Conv1D
model, especially in cases when the classes being considered
are highly similar.

2) Gesture Recognition Results Comparison: The proposed
SE-Conv1D model is also compared with four baselines. As
shown in TABLE III, the achieved overall accuracies by SVM,
RF, KNN, and BinaryDilatedDenseNet are 98.12%, 96.51%,
95.47%, and 98.57%, respectively. BinaryDilatedDenseNet
performs best among four baselines. As shown in Fig. 12,
SVM achieves the highest performance in ‘swipe right’ (97%),

‘push’ (97%), and ‘no activity (100%). SVM achieves poor
performance for the activity ‘up and down’, while 1% of
samples have been misclassified into ‘swipe right’, ‘circle
clockwise’ and ‘no activity, respectively, and 2% of samples
have been misclassified into ‘push’. Some trajectory samples
from these classes have similar patterns compared with other
activities. RF shows better performance on activities ‘up and
down’ and ‘circle clockwise’. Especially for activity ‘circle
clockwise’, the OA is nearly 100%. However, for activity
‘push’, the OA is only 93%. BinaryDilatedDenseNet achieves
the highest performance in ‘circle clockwise’, ‘push’ and
‘no activity’. All collected gesture activities are correctly

TABLE III: Comparison of the classification models.

Model OA (%) Recall (%) F1 (%)
SVM-RBF 98.12 98.05 98.04

RF 96.51 96.22 96.42
KNN 95.47 95.54 95.48

BinaryDilatedDenseNet [38] 98.82 98.23 98.21
SE-Conv1D 99.48 99.45 99.49
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Fig. 13: The tested experiment with dynamic trajectory.

recognized with an overall accuracy of over 95%, which
demonstrates that the proposed system yields stable perfor-
mance among all baselines.

To assess the statistical significance of the results, Wilcoxon
signed-rank tests [41] are conducted between the proposed SE-
Conv1D model and four baselines. In this assessment, the level
of significance used is α. Note that if the test reports a large
p-value than the significant level on each of the models, then
this means that there is no significant difference. Otherwise,
one model is performing significantly better than the other.
A hypothesis is carried out to prove beyond a shadow of a
doubt that the proposed SE-Conv1D model performs better
than the four baseline approaches and it does not work due to
chance. In this case study, the null hypothesis H20 is that the
overall gesture accuracy of the proposed SE-Conv1D model is
not significantly higher than the baselines (SVM, RF, KNN,
and BinaryDilatedDenseNet). The obtained p-value from the
Wilcoxon test is smaller than the significance level (0.01),
which suggests rejecting the null hypothesis H20. Thus, saying
that the observed differences are statistically significant. In
conclusion, the proposed SE-Conv1D model performs better
than the four baseline approaches.

C. Answering Research Question 3: Usefulness

[RQ3. Usefulness:] To what extent can the proposed system
accurately recognize different human gestures in uncontrolled
environments?

In the previous experiments, it was assumed that the pro-
posed SE-Conv1D model was trained in a controlled environ-
ment. Hence, an interesting question is how the trained SE-
Conv1D model would effectively recognize hand gestures in
uncontrolled environments. Twelve unseen users are invited
to interact with LED lights, whose heights are from 157cm
to 182 cm. It should be noted that uncontrolled environments
mean i) Unseen people; ii) A new testing place; iii) Randomly
combinations of distance and direction.

1) Case Study Setup: The proposed system was prototyped
to interact with appliances in practical smart homes. In detail,
this paper realized its functions responding to the following
pre-defined gestures, which is also shown in TABLE II:

• Swipe right: Turn on the LED light.
• Up and down: Change the color of an LED light.

• Circle clockwise: Turn on all LED lights.
• Push: Turn off all LED lights.
The detailed operation is formulated in Alg.1, and the

dynamic trajectory collection process for each person is shown
in Fig. 13. The selection of LED lights is controlled by the
user’s distance to the closest light instead of adding more pre-
defined gestures, which may bring convenience to real-world
applications. The demonstration for this experiment can be
found in the link3. It is worth noting that only two LED lights
were used in the test experiment. In the future, more electric
devices could be added.

Algorithm 1: The proposed gesture control algorithm
Input: Location results; Learning parameter
Output: Turning on/off light1 and/or light2; changing

light1 and/or light2 to different colors
Initialize the locations of all anchors and lights
foreach A volunteer has been detected do

while Gesture detection: Gesture0 do
Turn on the nearest light;

end
while Gesture detection: Gesture1 do

Change the color of the nearest light;
end
while Gesture detection: Gesture2 do

Turn on both light1 and light2;
end
while Gesture detection: Gesture3 do

Turn off both light1 and light2;
end

end

2) Impact of User Distance and Direction: Most previ-
ous gesture recognition systems required that the user ori-
entations be always the same since this could achieve the
best recognition performance. In addition, distance is also
an essential factor that could influence accuracy in most
previous gesture recognition systems. This paper considers
the impact of different user positions and orientations on
the proposed system’s performance. Eight compass directions
(i.e., 0=South, 1=South-East, 2=East, 3=North-East, 4=North,
5=North-West, 6=West, 7=South-West) are applied here, with
different distances between the volunteer and the LED light 1.
The overall accuracy of performing gestures in an uncontrolled
environment was analyzed with an independent two-sample t-
test.

TABLE IV presents some results with different combina-
tions of distances and directions. The following remarks are
made:

• The average accuracy of 99.69% (p=0.34) in this exper-
iment is very close to the average accuracy of 99.84%
that we obtained in Section VI-B. The result reveals that
the proposed system is robust to the changes of users’
position and orientation.

• The result (p=0.34) shows there is not enough evidence to
reject H30 in Section V-E. This again demonstrates that

3The Demo available at https://www.youtube.com/watch?v=cAG665SbTpk.
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TABLE IV: The selected results of the random combinations
in terms of distances and directions.

Distance (m) Direction Accuracy (%)
1 0 100.00
2 1 99.55
1 7 99.82
3 1 98.53
2 2 99.48
4 3 99.86
5 5 98.83
3 4 99.26
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Fig. 14: Accuracy on unseen users.

this paper does not find enough evidence to support that
the environmental changes can significantly influence the
overall accuracy of performing gestures.

3) Impact of Unseen User: To study the impact of unseen
users on the accuracy of the proposed system, we present
the performance of the proposed system on 12 unseen users.
Fig. 14 shows that the accuracies of unseen volunteers are
always above 95% and have only small deviations across
volunteers. Further, there is no trend in recognition accura-
cies with changing heights, demonstrating that the proposed
method is unaffected by users’ physiology. Most importantly,
it proves that the proposed system is robust to the changes of
unseen users.

4) Surveys for User Satisfaction: To quantify the user ex-
perience for the future improvement of the proposed system, a
user evaluation was conducted. For this, the designed question-
naires were based on the following aspects: convenience, flex-
ibility, accuracy, robustness, and interactivity. For each item,
users were asked to grade their perception into the following
levels, i.e., ‘A’ refers to excellent, ‘B’ refers to very good, ‘C’
refers to good, ‘D’ fair, or ‘E’ does poorly. All users found that
the proposed UWB-based system is more convenient than the
traditional method, e.g., using smartphones, because it does
not ask the users to open the app to choose which device
they want to open. More than 80% of users believed that the
proposed system is more difficult to be triggered by mistake
in daily usage than the voice-control solution. Compared with
the current popular solutions for smart homes, the proposed

TABLE V: Comparison with related works.

Study Device Algorithm Accuracy
[43] IR-UWB Radar K-means 97%
[42] IR-UWB Radar CNN 97%
[13] UWB Radar Stacked-LSTM 97%
[5] UWB equipped smart-watch HMM 97%

Proposed UWB communication SE-Conv1D 99.48%

system has a more convenient user experience.
5) Comparison with Related Works: TABLE V presents the

performance comparison of the proposed approach with the
existing state-of-the-art methods based on UWB technology.
Ahmed et al. [42] performed gesture recognition within cars
using impulse UWB radar with CNN, which achieved an over-
all accuracy of approximately 97%. Khan et al. [43] proposed
a novel gesture recognition algorithm, which achieved the best
performance of 97%. Maitre et al. [13] recognized activities
of daily living from UWB radars by using a stacked long
short-term memory (LSTM). Alanwar et al. [5] used a UWB
equipped smart-watch to interact with different devices in
smart homes, which achieved 97% overall accuracy for gesture
recognition based on the Hidden Markov model (HMM). It
should be noted that it is impossible to directly compare pre-
vious works and ours because none of them use a trajectory-
based UWB communication system. However, we still can
argue that the proposed solution is robust against changes
in distance or direction and gives a better accuracy rate in
trajectory-based human gesture recognition than other standard
gesture-based learning algorithms. It proves that trajectory-
based activity recognition is a potentially promising method
for real-world applications.

D. Discussion

A detailed discussion of the cost-effectiveness, computa-
tional complexity, time consumption, and applications of the
proposed system is provided as follows:

1) Cost Effectiveness: The cost of a UWB module is
approximately around 10 US dollars, which is lightweight,
portable, inexpensive to be worn as accessories such as belts
and wristbands. The proposed UWB communication system
contains four UWB modules, approximately 40 US dollars.

2) Computational Complexity: For the proposed SE block
to be viable in practice, it must provide an effective trade-
off between model complexity and performance, which is
essential for scalability. In this paper, the proposed SE-Conv1D
model has 538,245 total parameters, with 537,221 trainable
parameters. The SE block automatically recalibrates the in-
coming feature maps with the reduction ratio r of 16. The
number of parameters required to learn these maps is reduced
such that the overall model size increases by just 3-10%. More
precisely, the number of additional parameters introduced is
given by:

P =
2

r

S∑
s=1

Ns · C2
s , (9)
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where P is the total number of additional parameters, r
denotes the reduction ratio, S refers to the number of stages
(where each stage refers to the collection of blocks operating
on feature maps of a common spatial dimension), Cs denotes
the number of output feature maps for stage s and Ns

denotes the repeated block number for stage s. Thus, given
r = 16, the number of parameters incurred by SE blocks is
2
16 · (1282 + 2562) = 10240. This provides evidence of the
effectiveness of the SE blocks in improving the classification
performance in gesture recognition tasks with the proposed
SE-Conv1D model exhibiting fewer parameters that make it
efficient and effective.

3) Analysis about Time Consumption: The hardware plat-
form is a laptop with an Intel(R) Core(TM) i7-10510U CPU.
The CPU clock frequency and the memory size are 2.3
GHz and 16.0 GB, respectively. The software platform is
python with TensorFlow, and the operating system is Windows
10. The SE-Conv1D model consumes around 7min30s for
training and testing all gestures. In real-world applications,
gesture recognition will require real-time processing. Since the
running time for classifying one hand gesture by the proposed
SE-Conv1D model is only 0.023s, which means the gesture
recognition system can respond efficiently.

4) Applications and Impacts: The overall idea of the pro-
posed system is to showcase the potential of UWB-sensing in
realizing a vital application. Such a cost-effective UWB-based
system is lightweight and portable to be worn as accessories
such as belts and wristbands, which could be easily adopted
by the public. More functions of the proposed system will
be researched in the coming future, such as opening air
conditioners, playing music, etc.

VII. LIMITATIONS AND FUTURE WORK

Our experimental results show that the proposed system
outperforms competitive baselines by a significant gesture
recognition accuracy. However, there are several additional
issues that we must consider in the following works.

Limitation of fine-grained gestures: The current version of
the proposed method is limited to monitoring relatively fine-
grained gestures, e.g., finger movements. The reason is that
the core of the proposed solution depends on the changes in
gesture trajectory. However, fine-grained gestures are usually
detected at close range, where the millimeter level is required.

Limitation of multi-hand gestures: The current approach
is designed for tracking the gesture of a single arm. In future
work, multi-object tracking technology should be considered
to solve the multi-hand gestures recognition problem.

VIII. CONCLUSION

In this paper, a novel solution was proposed to perform
gesture recognition by using a low-cost UWB communication
system. With the aid of SE-Conv1D model, trajectories of
different human gestures could be used directly to recognize
different human gestures. This paper presented the exper-
imental results on the collected datasets of four different
human gesture activities, and evaluated the results from the
standpoints of robustness, effectiveness, and usefulness. The

proposed SE-Conv1D model achieved an excellent result of
99.48% OA (p<0.01), which is superior to the results achieved
by the baseline models. In addition, the proposed system was
prototyped to interact with appliances in smart homes. The
experiment results showed that the proposed system system
generally outperforms the state-of-the-art approach based on
UWB technology. It proves that the proposed system is a
complete end-to-end sensing system specifically designed to
track and recognize human gestures. Note that the archived
UWB gesture datasets and code have been published. The
future work will focus on monitoring relatively fine-grained
gestures and multi-hand gestures recognition problems.
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