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IoT-based Android Malware Detection Using Graph
Neural Network With Adversarial Defense

Rahul Yumlembam , Biju Issac , Senior Member, IEEE, Seibu Mary Jacob and Longzhi Yang

Abstract—Since the Internet of Things (IoT) is widely adopted
using Android applications, detecting malicious Android apps is
essential. In recent years, Android graph-based deep learning
research has proposed many approaches to extract relationships
from the application as a graph to generate graph embeddings.
First, we demonstrate the effectiveness of graph-based classifi-
cation using Graph Neural Networks (GNN) based classifier to
generate API graph embedding. The graph embedding is used
with ‘Permission’ and ‘Intent’ to train multiple machine learning
and deep learning algorithms to detect Android malware. The
classification achieved an accuracy of 98.33% in CICMaldroid
and 98.68% in Drebin dataset. However, the graph-based deep
learning is vulnerable as an attacker can add fake relationships to
avoid detection by the classifier. Second, we propose a Generative
Adversarial Network (GAN) based algorithm named VGAE-
MalGAN to attack the graph-based GNN Android malware
classifier. The VGAE-MalGAN generator generates adversarial
malware API graphs, and the VGAE-MalGAN substitute detector
(SD) tries to fit the detector. Experimental analysis shows that
VGAE-MalGAN can effectively reduce the detection rate of GNN
malware classifiers. Although the model fails to detect adversarial
malware, experimental analysis shows that retraining the model
with generated adversarial samples helps to combat adversarial
attacks.

Index Terms—Internet of Things, Graph Neural Network,
Generative Adverserial Network, Android, Machine Learning,
Deep Learning

I. INTRODUCTION

In the recent years there has been an increase in the
usage of IoT devices to improve the quality of our lives.
IoT device utility can range from smart homes to industrial
automation. These devices must interact with the user for
data exchange or communication. One of the most common
ways to control these IoT devices is through applications
installed on a smartphone. Through these applications, the
users can communicate with various IoT devices, say, through
monitoring the the room’s temperature, live video feed, heart
rate, the water level in agricultural settings, etc., as shown
in Fig. 1. The applications used to control this device holds
critical and valuable information, which is very lucrative for
attackers. For example, an attacker who has access to the
application can monitor the CCTV camera or access the
health information stored on a smartphone. Malware on IoT
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applications can significantly violate the privacy of any IoT
user. Malicious Android applications can therefore act as a
gateway to attack IoT devices. These malicious IoT based
Android apps can get installed accidentally through user lapses
in judgment or from the apps installed from unknown sources.
According to Nokia Threat Intelligence Report 2020, Android
[1] accounts for 26.64% of infections across all platforms and
IoT devices are now responsible for 32.72% of all infections
observed in mobile networks, up from 16.17% in the previous
year.

Android malware is a malicious application that steals
sensitive information, violates user privacy, or performs any
action the user did not authorize. According to AV-test [5],
in 2021, 3.39 million malware emerged in the market. It is
crucial to identify applications that can harm users. In 2021,
Kaspersky Android mobile products and technologies detected
3,464,756 malicious installation packages, 97,661 new mobile
banking trojans and 17,372 new mobile ransomware trojans
[34].

There are two kinds of malware detection analysis: static
analysis and dynamic analysis. In the static analysis, the
static features of the application, such as permission, intents,
signature etc., are analyzed. In dynamic analysis, the dynamic
features of the application, such as network flow information,
app actions sequence etc., are analyzed.

We have opted for static analysis, since every possible
branch of the code must execute for effective dynamic fea-
ture generation. With the rapid pace of malware generation,
the development of different techniques for identifying and
analyzing them is a critical requirement.

In recent years, Android graph-based deep learning research
has proposed many approaches to extract relationships from
the application as a graph to generate graph embedding. For
example, Hindroid [7] extracts API relationships based on
Code block and API-Invoke method, whereas MalScan [8]
extracts function call graph. Similarly, in DroidMiner [9],
a component dependency graph and a component behaviour
graph are constructed. The extracted graphs need to exist in
a format suitable for the downstream task. To this end, recent
papers have proposed to use GNN in [10] and [11]. In this
work, we first demonstrate the effectiveness of the graph-
based technique by using API graph embedding along with
Permission and Intent as features for classification. The API
graph is generated based on code block id [6] [7]. The edges
between the nodes (API) in the API graph represent relation-
ships between different APIs. Centrality measures can express
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this relationship by measuring a node’s importance relative to
all the other nodes in the graph. Different centrality measures
are extracted from the API graph to train a GNN [12], [13]
to generate graph embedding of each Android Application.
The generated graph embedding is combined with Permission,
Intent and used to train multiple machine learning and deep
learning algorithms. The trained GNN malware classifier acts
as a model where no gradient information is accessible.
We then propose an adversarial architecture named VGAE-
MalGAN to attack graph-based Android malware classifier.

Although recent works to extract graph embedding from
relationship graphs have proven resilient against malware
attacks, there has been little study on how dummy relationship
contamination can fool an Android malware classifier. The
recent work in [38] proposed an algorithm called Grabnel to
attack GNN model. Although this algorithm can successfully
attack the model, it has no mechanism to preserve the original
semantics of the malware API graph as in our attack. We aim
to address the mentioned research gap in the work done.

Fig. 1. The different IoT devices connected to Android platform

The main contributions of our research are as follows:
• We demonstrate the effectiveness of GNN in generating

graph embedding using centrality features of an API
graph used along with ‘Permission’ and ‘Intent’ to im-
prove malware classification.

• We propose a new approach named VGAE-MalGAN
that can effectively add nodes and edges to an exist-
ing API graph and dynamically generate an adversarial
Android malware API graph which can fool the GNN
based malware classifier trained using GNN. It will still
preserve the original semantics of the malware API graph.
VGAE-MalGAN comprises of a Generator and substitute
detector. The Generator is a modified version of Variation
Graph Auto Encoder, and the substitute detector is a
GraphSAGE model.

• We demonstrate that the model can be hardened against
attack by VGAE-MalGAN through retraining and can
restore high malware detection accuracy.

The paper is organised as follows. Section II is the overview
of the work done, section III is the preliminary study, section
IV is the proposed method, section V is evaluation, section VI
is related works, and section VII is conclusion.

II. OVERVIEW OF THE WORK

Chatzoglou et al. in their recent work [39] closely examined
more than forty top Android official apps belonging to six

Fig. 2. Sample Smali code of an Android application

diverse mainstream categories of IoT devices and found that
majority of IoT based Android apps remain susceptible to
a range of security and privacy issues. Java source code
written for the Android application compiles into .class files by
Java compiler and Android SDK (Software Development Kit)
converts the .class files into .dex files, also known as Dalvik
executables. The Android assets packaging tool packages
.dex files and all the resources (images, video files, audio
files, XML files, etc.) into an Android application package
(APK). APKs are then used for distribution and installation by
smartphones running the Android operating system. The .dex
files are not in a human-readable format. In order to extract
information from the .dex files, Apk tool converts them into
Smali files, a human-readable version of the .dex file. Smali
code is a representation of the app code using the Android
Dalvik opcodes. Fig. 2 shows a sample Smali code. Another
important file used in this work is called the Android manifest
files. The manifest file describes essential information about
an application such as code namespace, components of the
application, permission it needs to access part of the system
or other application, hardware, and software features that the
app requires.

To classify an Android application into Malware or Benign,
we follow the following steps: (1) Decompile: Using Apk-
tool [14] we extract smali files and manifest files of each
application in the dataset. (2) Feature Extraction: From the ex-
tracted smali files, the APIs from each application, along with
their code block ids, are extracted. Extracted APIs are then
assigned a unique global id. This unique id is similar across all
the applications. Using the Linear regression feature selection
APIs are selected based on feature importance weight. Local
graphs and a global graph are constructed based on selected
APIs. Local graphs are individual graphs extracted from each
application, whereas the local graphs combine to form a global
graph. Centrality features are extracted from the global graph
to train a GNN. The trained GNN generates graph embedding
of each application. We then extract Permission and Intent fea-
tures from the Manifest file. (3) Malware Detection: Generated
graph embedding is used along with Permission and Intents as
features to train machine learning algorithms that classify the
application into benign or malware. Fig. 6 shows the overall
architecture of Malware Detector.

VGAE-MalGAN shown in Fig. 7 is used to fool the
trained classifier by generating adversarial API graphs. VGAE-
MalGAN is a VGAE [15] based GAN [16] which generates
adversarial Malware API graphs that could fool Malware
detectors. The VGAE used in this work is modified from its
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initial proposal to accommodate sparsely connected graphs,
typical in API graphs. The generated adversarial examples are
augmented to the original dataset to retrain and increase their
detection capabilities.

III. PRELIMINARY STUDY

This section describes the background information, how
the experiment represents Android applications, and how the
Android applications are classified into benign and malware.

A. Datasets Used

The datasets used for this work are CICMalDroid 2020 [23]
and Drebin dataset [18]. CICMalDroid 2020 contains 17,341
samples, and as reported on the original dataset website,
only 13,077 samples ran successfully without any errors.The
malware type in CICMaldroid includes Adware, Banking Mal-
ware, SMS Malware, and Mobile Riskware. Our experiment
successfully extracted features from 15,848 applications (3696
benign and 12,152 malware). This dataset also includes other
static and dynamic features along with the APKs. Drebin
dataset contains 5,560 malware APKs. For the benign APKs,
only SHA-256 of the application are available on the website.
Using Androzoo [19] we are able to download 50,901 benign
applications listed in the Drebin benign SHA-256. The remain-
ing benign SHA-256 returned invalid from the Androzoo API.
The malware dataset in Drebin includes Backdoor, Adware,
worm and Trojan. We performed a 70/30 split on each dataset
for training and testing.

B. Feature Extraction and Malware classification

1) API extraction and API selection: From the training
set of the datasets, APIs used in an application are
extracted by parsing the smali files of an application.
As an example in Fig. 2 from the smali code segment,
“Landroid/telephony/SmsManager → sendTextMessage”
along with “Lcom/software/application/Checker →
scheduleChecking” will be extracted as an API. Due to
space constraints, we did not show the other APIs in the
code segment. The extracted APIs are then assigned a unique
global identifier. The unique global identifier is similar across
all the applications.

The number of unique APIs extracted is enormous. For ex-
ample, in the data set CICMaldroid2020, more than 1.7 million
unique APIs are extracted. Using Sklearn feature selection
method selectFromModel, we extract the top 7000 APIs based
on features importance weight to reduce computation time and
increase the efficiency. We select the API by training a Linear
Regression using API count as features.

We found out that increasing the number of selected APIs
does not increase classification accuracy through different
experiments. After the feature selection, each application Aj

will have 7000 API where Aj = {a1. . . a7000}.
2) API graph Construction: Two kinds of graphs, i.e.,

local graph and global graph, are constructed to leverage the
relationship among the APIs. To construct an API graph,
we first define what is a code block using definition from

[7]; a code block is the code segment between a .method
and .endmethod in smali files. To construct the local API
graph, we construct an adjacency matrix A for each appli-
cation where Ai,j = 1, if API i and j belong to the same
code block; else it is set to 0. As an example, in Fig. 2
“Landroid/telephony/SmsManager → sendTextMessage” and
“Lcom/software/application/Checker → scheduleChecking”
are nodes in the graph with an edge between them. After ex-
tracting the adjacency matrix of each application, we construct
the Global graph O where Oi,j = 1 if in any application in the
training set, API i and j co-occur in the same code block; else
it is set to 0. The overall API graph contains APIs only from
the training set to mimic real-world scenarios. It is worthy to
note that API that belongs to different code blocks also forms
a relationship through intermediate API. As an example, API
i and j belong to a code block, and API k and j belong to a
different code block. There exists a relationship between API
i and k through intermediate API j.

3) Centrality Feature Extraction: One popular way of char-
acterizing the role of a node in a network is by using one or
more centrality measures. These measures aim to quantify the
capacity of a node to influence or be influenced by other nodes.
From the global graph, we extract five different centrality
measures of each node, namely Degree centrality, Betweenness
centrality, Closeness centrality, EigenVector centrality and
Page rank. The five centrality features acts as features of each
node.

4) Importance of API graph and Centrality features:
APIs reveal exciting information about an application,
and the relationship between the APIs will be differ-
ent for benign and malware. The API graph effec-
tively represents information where the edge between
the nodes(API) represents the relationship between the
nodes(API). We analyse one SMS malware application
SHA256-000e7149ab7550ef605c2b22cb1beaffbee9219699661d89158d490a3ffa393a to
help demonstrate why API graph reveals useful infor-
mation about an application. From Fig. 2, it is seen
that “Landroid/telephony/SmsManager → sendTextMessage”
which is used to send text message is first called
and an application-specific API defined by the developer,
“Lcom/software/application/Checker → scheduleChecking”
is then called. This sequential call of APIs forms a rela-
tionship between the two APIs. When the Checker.class is
analyzed, an alarm event sends a text message to a number
every 30 seconds using a broadcast receiver created. It uses
“Landroid/app/PendingIntent → getBroadcast” to listen to
an alarm event. When it receives the broadcast, it sends
a text message which then sets a new alarm 30 seconds
from the current time using “/app/AlarmManager → set”.
“/app/AlarmManager → set” which is an alarm manager API
to make an application run at some point of time in future.
The connection among the APIs reveals useful information
captured in the API graph.

To determine the importance of each node in the application,
we calculate different centrality measures for each node in
the application. We took a sample of 100 SMS malware
applications and 100 benign applications. Let “S” be the set of
the top 5% nodes most central to a sample of SMS malware



IEEE INTERNET OF THINGS JOURNAL 4

applications, and let “B” be the top 5% nodes most central
to a sample of benign applications. We took the difference of
the two sets, i.e., all elements in S that are not in B. Fig. 3
shows the 20 most common APIs in the difference between
the two sets. From the figure, “Lcom/depositmobi/Main →
getApplicationContext” is among the top APIS used in SMS
malware. Lcom/depositmobi is a well-known SMS malware. A
lot of the applications repackage previously existing malware
applications. From all the above analysis, we can safely infer
that each application API graph and centrality measure are
powerful features that can describe an application.

Fig. 3. Most common central APIs in SMS malware

5) Importance of Permission and Intents:: According to
Android SDK (Software Development Kit), any functionality
the application uses declares itself inside the manifest file.
Thus, Permission and Intent can summarize application func-
tionality. Malware application needs access to more sensitive
Permission and Intent and, thus, they become an important
differentiator between a Malware application and a benign
application. We extract the permission and Intent from the
manifest file. If the application uses corresponding Permission
or Intent, the corresponding position of Permission or Intent
sets to 1; otherwise, 0 in the feature vector.

6) Graph Embedding Generation: Using Graph Neural
Networks (GNN), we generate Android application API graph
embedding such that similar graphs are embedded close to-
gether. The cosine similarity between the vector describing
the graphs is high if the graphs are similar.

GNN maps each node in a graph to a d-dimensional
embedding such that similar nodes in the graph are embedded
close together. More formally, GNN can be defined as given a
Graph G(V,E) where V is a finite set of nodes v and edges
E ⊆ {(u, v) ⊆ V }. Neighborhood of node v is denoted by
N(v). In each layer t > 0, we compute a new representation
for node v using :

f (t)(v) = σ(f (t−1)(v).W
(t)
1 +

∑
wϵN(v)

f (t−1)(w).W
(t)
2 ) (1)

where, W1 and W2 are trainable parameter matrices and σ
denotes the element-wise non-linearity (e.g. a tanh or ReLu).
We trained two GNN variants to generate the embedding, i.e.,
GCN (Graph Convolutional Network) and GraphSAGE. GCN
is a variation of GNN where the main idea is to transform
information from the neighbors and combine them. It generates
node embedding based on local network neighborhoods. In
GCN, f (t−1)(w) is given by equation 2, which performs the
average of previous layer embeddings. In each layer t > 0,
we compute a new representation for node w using:

f (t−1)(w) =
f
(t−1)
w

∥N(v)∥
, (2)

GraphSAGE (GS) is a variation of GCN where the sum
defined over the neighbourhood is replaced by generalised
aggregation function which is permutation invariant differen-
tiable function and the outer sum is replaced by concatenation.
In each layer t > 0, we compute a new representation for the
node v using:.

f (t)(v) = σ(fmerge(f
(t−1)(v).W1, f

aggr
W2

(f (t−1)(w)∥wϵN(v))))
(3)

where, faggr
W2

is the generalised aggregation function. The gen-
eralised aggregation function are parameterized by trainable
parameter matrices W2. The generalised aggregation function
generates neighbor embedding. Previous layer embedding of
node v given by f (t−1)(v) parametirized by W1 is then
concatenated with faggr

W2
using fmerge. In this work we use

mean aggregation function. Fig. 4 shows the computational
graph of an example node API 1. The computational graph
is a two-layer GNN where we calculated aggregation AGG
using equation 1 for GCN and equation 2 for GraphSAGE.

a) Graph Embedding: The embedding of a graph can be
computed using:

fGNN (G) =
∑

vϵV (G)

f (T )(v), (4)

where T > 0 denotes the last layer, V (G) denotes all the nodes
in the graph. The global centrality measures act as features
to train the GCN and GraphSAGE network. Both the GNN
networks have a similar architecture consisting of three layers
of size (5×32), (32×32), and (32×32), followed by a global
mean pool layer which converts the output into 1× 32 vector,
which is the graph embedding of the application. The network
trains in a supervised way. The embedding generated by the
global mean pool layer is used as input to a dropout layer with
a dropout rate of 0.5, followed by a fully connected layer
that outputs the probability of an application being benign
or malware. We use the Adam optimization algorithm for
optimizing the network parameters with the learning rate set
to 0.001, beta1 set to 0.9, beta2 set to 0.999, and epsilon set
to 1e-08. The network’s loss is calculated using the cross-
entropy function and mean aggregation as the aggregator for
GraphSAGE during training. From the result depicted in Table
I, it is clear that GraphSAGE provides better classification
accuracy; therefore, to generate the embedding, we pass the
API graph of each application to the GraphSAGE network
generating an embedding ⃗emb of size 1 × 32 for each
application. The generated embedding for each application
represents the corresponding API graphs where similar graphs
have high cosine similarity. The scatter plots of the generated
embedding for both the datasets, i.e., Debrin and CICMaldroid
using the t-SNE algorithm, are depicted in Fig. 4. Benign data
points and malware data points are color-coded as green and
red respectively. The figures demonstrated that the generated
embedding is non-linear, and the level of overlap between the
two classes is more in the case of Drebin than in the case of
CICMalDroid.
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TABLE I
PERFORMANCE RESULT (IN %)

Model Features CICMaldroid Drebin
Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

GCN CF 94.27 96.08 96.45 96.26 92.75 58.65 69.18 63.48
GS CF 95.50 96.91 97.231 97.07 97.58 94.31 79.91 86.52
NB PI 95.53 96.26 97.96 97.1 92.54 60.99 66.66 63.71
DT PI 96.47 98.03 97.34 97.68 97.52 88.52 85.96 87.22
RF PI 97.53 98.39 98.39 98.39 98.12 94.32 86.08 90.00

SVM PI 97.10 98.17 98.04 98.1 97.84 93.83 83.49 88.36
CNN PI 96.45 97.93 97.43 97.68 97.81 88.90 87.67 88.28

GS+NB PI+GE 94.28 99.13 93.33 96.1 93.21 60.36 90.00 72.25
GS+DT PI+GE 97.24 98.24 98.15 98.2 97.64 86.76 89.63 88.17
GS+RF PI+GE 96.97 98.21 97.82 98.02 98.57 95.45 89.75 92.51

GS+SVM PI+GE 97.93 98.73 98.55 98.64 98.65 95.54 90.48 92.94
GS+CNN PI+GE 98.33 99.18 98.60 98.89 98.68 95.27 91.08 93.13

PI: Permission and Intent, CF: Centrality Feature of API, GE: Graph Embedding; GCN: Graph Convolutional Neural Network, GS: Graph Sage, NB: Naive
Bayes, DT: Decision Tree, RF: Random Forrest, CNN: Convolutional NN, SVM: Support Vector Machine

api 1

api 2 api 3

api 4

AGG api 3

api 4

AGG

AGG

api 1

api 3

api 2

api 1

api 1

Centrality feature vector

api 2
AGG

Fig. 4. Sample GNN Computational Graph

Fig. 5. Scatter plots of the embedding generated by GraphSAGE from
CICMaldroid (left) and Drebin Dataset (right).

7) Malware Detector: To detect malicious applications,
we experimented with different types of machine learning
algorithms combined with the graph embedding generated by
the Graph Neural Network algorithm. The overall architecture
of the malware detector is shown in Fig. 6. Each Android
application is first converted into an Android API graph using
the graph construction technique described in Section III-B.
The five centrality features of each node extracted in section
III-B act as the feature of each node. The API graph is then
converted into a graph embedding using GCN or GraphSAGE.
The GNN variants, namely GCN and GraphSAGE, are trained
separately in a supervised manner using the label of each
application to generate the graph embedding. The generated

graph embedding concatenates with Permission and Intent
features. The combined features trained multiple machine
learning algorithms, namely, Naı̈ve Bayes, Decision Tree,
Random Forest, SVM, and 1D-CNN. We also experimented
with individual machine learning and deep learning algorithm
using either the centrality feature or Permission and Intent as
features to train the algorithm. The unique experiments are
done to compare the results.

1, 0, 1, 0, 0, 1, ...

GCN

ML / DL Algorithm

+

Graph Embedding

Benign / Malware

Permission and
Intent vector

Android API Graph

Fig. 6. Overall architecture of Malware classifier

a) Naive Bayes (NB): The features are divided into two
parts namely Permission and Intent, and graph embedding.
First, using Permission and Intent we estimate the probability
of benign and malware for each application using a Bernoulli
Naive Bayes classifier. Second, graph embedding is then used
as a feature to a Multinomial Naive Bayes classifier to estimate
each application’s probability of being benign and malware.
The probability from both the classifier is used to train a final
Multinomial Naive Bayes classifier to get the final output.

b) Decision Tree (DT): DT is a machine learning algo-
rithm that approximates a discrete-value target function. The
Decision tree uses permission, intents, and graph embedding
to construct the target function represented as a tree.

c) Random Forest (RF): It is a form of bagging technique
where multiple decision trees are used. The multiple decision
trees are trained on a random sampling of training observa-
tions, and uses random subsets of features for splitting nodes.
In this work, we use 50 decision trees. The final predictions
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are made by averaging the predictions of multiple decision
trees.

d) Support Vector Machine (SVM): It is a machine learn-
ing algorithm that uses a decision boundary for classification.

In this work, we use radial basis function kernel and the
value of parameters C and Gamma are set to 10 and 0.1
respectively. The algorithm uses permission, intent, and graph
embedding as features for training.

e) Convolutional Neural Network (CNN): In this work,
we use global max pooling for flattening the output. Global
max pooling is similar to max pooling, but the size of the
window “f” is equal to the length of the input. To train the
CNN one-hot encoded vector, Permissions and Intents of an
application is first to pass through an embedding layer to
create an embedding that converts high dimensional data of
Permissions and Intents into lower-dimensional vector space.
The output of the embedding layer is sent to a dropout
layer to prevent overfitting. The dropout layer’s output is
passed to the convolutional layers. There exists a total of six
convolutional layers with kernel size set to 128, filter size set
to 5, and padding set to SAME. Relu is used as an activation
function, and the dilation rate is set to 1. Each convolutional
layer is followed by a 1d max-pooling layer of pool size 2,
except for the last convolutional layer, which is followed by
global max pooling. The output of the global max-pooling
layer is concatenated with the graph embedding generated
using GraphSAGE Network. Finally, the concatenated input is
passed through a fully connected layer to obtain the output
of classification. In this experiment, we used Adam with
default values to optimize the parameters of the network and
categorical cross-entropy to calculate the loss of the network.

IV. PROPOSED METHOD

The GNN method developed in section III acts as a classifier
with no gradient access to the attacker. To attack this model,
we developed VGAE-MalGAN that can generate adversarial
Android API graphs.

A. Preliminaries

a) Variational Auto Encoder: Variational Auto Encoder
(VAE) is a latent variable model. The model assumes that
the observed data A is generated from an unobserved latent
variable Z. The aim is to capture intrinsic patterns in the
observed data. The model can be thought of as describing the
underlying process of generating A from the latent variable Z
using a probability distribution p(A|Z). An ideal model will
assign a high probability to observed A. Assuming p(A|Z) is
parameterized by θ it needs to solve the following optimization
problem

max
θ

pθ(A) (5)

where, pθ(A) =
∫
z
p(Z)pθ(A|Z), but this is an intractable

integral over Z. To solve this problem the problem is instead
formulated as inferring posterior p(Z|A).This too involve an
integral over Z, since p(Z|A) = p(A,Z)∫

z
p(A,Z)

. However, this can

be solved using variational inference, which converts the prob-
lem into an optimization problem of finding an approximate
probability q(Z|A) close to p(Z|A). VAE approximate the
posterior probability qϕ(Z|A) and pθ(A,Z) using a neural
network, where ϕ and θ are the parameters of the network. It
also assumes that the approximate posterior is a multivariate
Gaussian N with a diagonal covariance matrix known as the
re-parametrization trick. The parameters of this Multilayer
Perceptron are calculated using the neural network with two
nonlinear functions µϕ and σϕ. The following equation can
formalize this.

qϕ(Z|A) = N (Z;µ(ϕ)(A), σϕ(A)I) (6)

where, I is the Identity Matrix.
For the generator pθ(A,Z), it is assumed p(Z) is a fixed

unit multivariate Gaussian i.e p(Z) = N (0, I) and pθ(A|Z)
is given by the following equation.

pθ(A|Z) = N (A;µ(θ)(Z), σθ(Z)I) (7)

The summary of VAE network architecture is shown in
equation 8:

A
qϕ(Z|A)−−−−−→ Z

pθ(A|Z)−−−−−→ A (8)

b) Variational Graph Auto Encoder: Variational Graph
Auto Encoder (VGAE) [15] is a version of VAE that uses
GraphSage to estimate qϕ(Z|A) and pθ(A,Z) instead of a
neural network since the neural network cannot work with
Graph-based input. In this work, a modified version of VGAE
is used. In the original proposal, the decoder part of the
VGAE is susceptible to generating densely connected graphs.
On the other hand, we found that the Android API graph
generated in Section III is sparsely connected. Another reason
for modifying the original VGAE model is to preserve the
malware characteristic of the generated adversarial API graph
with only valid nodes and edges that we have encountered in
the dataset. Section IV gives more details on the implemented
version of VGAE.

c) Generative Adversarial Network: Generative Adver-
sarial Network (GAN) was initially proposed in [16] where
two networks play a min-max game. The first network, known
as the generator, attempts to create data from the original
distribution, whereas the second network, known as the dis-
criminator, attempts to determine whether the data comes from
the original distribution. The two networks train alternatively
where the generator constantly tries to fool the discriminator,
and the discriminator constantly detects fake data.

In this work, the generator attempts to generate adversarial
malware samples that can evade the detection, whereas the
discriminator updates itself to detect adversarial malware
samples from the generator and data from the dataset. The
whole training stops when the discriminator cannot identify
adversarial samples generated by the generator.

B. Threat Model
The important components of an Android malware classifier

that an attacker can have as background knowledge are as
follows:
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1) Features: This component indicates whether the attacker
knows about the type of features used for classification.
In the case of Android, there are several features such as
API, Permission, Strings of code, etc. The knowledge of
the features can help manipulate and force the classifier
to produce the wrong classification.

2) Model: This component indicates whether the attacker
knows about the type of classifier used. The classifier
can be any machine learning or deep learning algorithm
which helps the attacker exploit its weakness.

3) Weights/Parameter of the model: This component in-
dicates whether the attacker knows about the weights
(parameter θ). The weights decide the decision boundary
in classification, and having access to the weights can
help the attacker craft the features to make the classifier
produce the wrong classification.

4) Dataset: This component indicates whether the attacker
knows about the type of dataset used for training the
classifier. Suppose an attacker knows the details of the
dataset, the attacker can experiment and find out the
result of the classifier and accordingly change the input
to produce the wrong classification output.

C. Problem Definition

Let A = A1.....An denote all the API graph adjacency ma-
trices in the dataset. Amal

n denotes the nth malware application
whereas Aben

n denotes the nth benign application. The detector
is a mapping function b : A → {0, 1}, where b(Aben

n ) = 0 and
b(Amal

n ) = 1.
The substitute detector of VGAE-MalGAN aims to learn

the function s : A → {0, 1}, where s(Aben
n ) = b(Aben

n ) and
s(Amal

n ) = b(Amal
n ) whereas the generator learns to find a

latent variable Z that generates adversarial malware examples
Â where s(Â) = 0. Since the substitute detector aims to mimic
the fuction b, the aim of the generator is to learn a latent
variable Z that generates Â where s(Â) = 0 and b(Â) = 0
with the constraint of preserving the malware functionalities
of Â.

D. Proposed VGAE-MAlGAN

Recent years have shown the growth of adversarial malware
examples generation using GAN dynamically. One of the main
works is MalGAN proposed in [40]. MalGAN focuses on
binary features where if the App calls ith API, the ith feature
vector is set to 1; else it is set to 0. These binary features
are fixed-sized in length with a fixed feature ordering. Models
such as MalGAN are not usable for relational data such as
API graphs since the API graphs have no fixed size with
no ordering of nodes. The proposed method named VGAE-
MalGAN can effectively add nodes and edges to an existing
API graph to fool a detector based on GNN. Fig. 7 shows the
overall architecture of VGAE-MalGAN. The model considered
is a GNN model, and the malware author has no access to the
detector except for its prediction. The work assumes that the
malware author knows that the detector is a GNN based model
and knows the features used. The proposed model consists of a
generator and a substitute detector. The generator is a modified

Fig. 7. Overall architecture of VGAE-MalGAN

version of Variation Graph Auto Encoder, and the substitute
detector is a GraphSAGE model. The substitute detector tries
to fit the detector, and the goal of the Generator is to produce
API graphs that can fool the substitute detector. Since the
substitute detector tries to fit the detector, fooling the substitute
detector eventually leads to fooling the detector.

1) Generator: The Generator aims to produce API graphs
that can fool the detector by inserting nodes and edges to
an existing Android malware graph. The work assumes a
latent Variable Z exists underlying the process of benign
data generation. The generator is a two-layer GraphSAGE
parameterized by weights θg . The generator takes as input
the adjacency matrix of the original malware graph denoted
by A with randomly inserted nodes and edges generated from
a randomly chosen benign example from the dataset. The goal
of inserting randomly chosen nodes and edges from the benign
dataset is to make the generator aware of the crucial nodes that
influence the substitute detector in classifying an API Graph as
benign or malware. This work employs a modified version of
Variation Graph Auto Encoder (VGAE) as a generator. The
encoder part of VGAE encodes a given API graph into a
latent Variable Z parameterized by the mean µ and standard
deviation σ. The decoder then uses the latent variable Z to
reconstruct the graph adjacency matrix. The encoder consists
of two-layer GraphSAGE. The GraphSAGE layer generate a
low dimensional representation of the Graph denoted by Z
given the adjacency matrix A and feature matrix X using the
following equation.

q(Z∥X,A) =

N∏
i=1

q(zi∥X,A)

with q(zi∥X,A) = N (zi∥µi, diag(σ
2
i )) (9)

where, µ = GCNµ(X,A) = ÃX̄W1, logσ2 =
GCNσ(X,A) = ÃX̄W1, X̄ = GCN(X,A) =
RELU(ÃXW0) and Ã = D− 1

2AD− 1
2 is the symmetrically

normalized adjacency matrix.
The decoder takes the latent variable Z and generates the

adjacency matrix of the Graph Â. In this work, instead of
using the decoder in the VGAE [15] given by equation 10,
we used the decoder given in equation 11. Our experimental
analysis observed that the original decoder is very susceptible
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to densely connected Graph, which is not the case for the API
graph. Z is a M ∗M square matrix where M is the number of
nodes. Entry in the generated adjacency matrix Âi,j is set to
1 if e−distL2(zi,zj) is greater than “0.98”, otherwise it is set to
“0”, where distL2(Zi, Zj) is the euclidean distance between
“zi” and “zj”.

Â = σ(ZZT ) (10)

Âi,j =

{
1 if e−distL2(Zi,Zj) > 0.98

0 otherwise
(11)

After generating the adjacency matrix, we perform an AND
operation with the Global adjacency matrix to ensure the
decoder includes only valid edges. The AND operation keeps
edges between API valid since the Global adjacency matrix
“O” contains only valid edges from the entire dataset. After
the AND operation, the resultant adjacency matrix performs
OR operation between the resultant adjacency matrix and the
original malware adjacency matrix. The OR operation makes
sure the malware behavior is kept intact. The operation is
shown in equation 12 and equation 13.

Â = Â & O (12)

Â = Â ∥ A (13)

2) Substitute Detector: The substitute detector trains to fit
the detector so that the gradient can propagate to the Generator,
which then can use the gradient to adjust the generator
weights to generate API graphs that can fool the detector.
Benign examples from the dataset and malware examples
generated using the generator train the substitute detector. The
probability of a given graph G predicted as malware by the
substitute detector D is denoted as Dθd .

3) Training VGAE-MalGAN: The training of VGAE-
MalGAN is aimed to generate API graphs that can fool the
detector. In order to train VGAE-MalGAN, the generator
and the substitute detector trains simultaneously. Firstly, the
dataset’s malware samples are passed through the Generator
to generate adversarial malware API graphs. The generated
adversarial Android malware API graph from the dataset uses
the detector to get the corresponding label for each generated
adversarial Android malware API graph. The substitute de-
tector uses the label given by the detector as ground truth to
mimic the detector. For benign example, the substitute detector
uses ground truth data from the dataset for training. Equation
14 gives the loss function of the substitute detector.

LD = −EA∈Benignlog(1−Dθd(A))

− EÂ∈BBMalwarelog(Dθd(Â)) (14)

where, Dθd(.) is the predicted probability of the API graph
Â as malware by the substitute detector, EA∈benign is the
expected value over all benign API graph and EÂ∈BBMalware

is the expected value over all generated adversarial malware
API graph detected as malware by substitute detector. The
substitute detector minimized LD with respect to its weights

to mimic the detector. Equation 15-17 gives the Loss of the
generator denoted by LG.

LBB = EÂ∈BBMalware log(Dθd(Â)) (15)

Lrecon = Eq(Z∥X,A)[log pθg (Â∥Z)]

−KL[q(Z∥X, Â)∥p(Z)] (16)

LG = LBB + Lrecon (17)

where, Dθd(Â) is the predicted probability of the gen-
erated adversarial malware adjacency matrix Â as malware
by the substitute detector, log p(Â∥Z) is the reconstruction
loss of the generated adversarial malware adjacency matrix
from the latent variable Z, KL[q(.)∥p(.)] is the Kullback-
Leibler divergence between q(.) and p(.) with a Gaussian Prior
P (Z) =

∏
i p(zi) =

∏
i N (zi∥0, I). Minimizing LG requires

the LBB and Lrecon to be minimized. Since LBB represents
the loss of the generated adversarial malware API graph as
malware by the substitute detector and Lrecon is the encoder
loss of VGAE. When both the losses are low, the encoder
part of VGAE has effectively produced malware examples that
can fool the Substitute detector into thinking the adversarial
malware example as benign. Since the substitute detector trains
to fit the detector, the generated API graph with its malware
capabilities preserved eventually fools the detector. Algorithm
1, shows the training of VGAE-MalGAN. Once the training
ends, the VGAE can sample adversarial Android malware API
graphs using p(Â∥Z).

Algorithm 1 Training VGAE-MalGAN
1: while not converging do
2: for API graph A in malware train set do
3: B

′
=randomly select a benign API graph from benign train set

4: noise=extract half of the edges and vertexes from B
′

5: A
′
=concatenate B

′
and noise

6: Â= generate graph using VGAE and A
′

as input
7: Label Â using the detector
8: end for
9: Update the weights θd by descending along the gradient of ▽θd

LD using the
benign API graph from the train set and generated API graphs Â as input

10: for API graph A in malware train set do
11: B

′
=randomly select a benign API graph from benign train set

12: noise=extract half of the edges and vertexes from B
′

13: A
′
=concatenate B

′
and noise

14: Â= generate graph using VGAE and A
′

as input
15: Update the weights θg by descending along the gradient ▽θgLG using Â

as input
16: end for
17: end while

E. Defense against VGAE-MalGAN

To protect against manipulated API graph attack using
VGAE-MalGAN, administrator can use VGAE-MalGAN to
generate adversarial malware examples. The collected adver-
sarial malware examples can then be labeled as malware and
combined with existing dataset to retrain the model. Retraining
helps the classifier to learn exploited relationship and thus
harden the model against such attacks.
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Fig. 8. Scatter plots of the embedding generated from CICMaldroid
dataset (left) and Drebin dataset (right) using substitute detector

Fig. 9. Scatter plots of the embedding generated from CICMaldroid
dataset (left) and Drebin dataset (right) after retraining

V. EVALUATION

A. Experimental Setup of VGAE-MalGAN

1) Dataset: The dataset used to test the effectiveness of
VGAE-MalGAN is similar to the dataset we used in our
preliminary study in Section III where it describes the details
of the dataset.

2) Experimental Result of Malware Detection: In order
to evaluate the performance of the deep learning model we
choose Accuracy, Precision, and Recall. Accuracy (A) is the
ratio of the number of correct predictions to the total number
of predictions.

Precision (P) is the ratio of correctly predicted positive
observation to the total predicted positive observation or how
many are actual malware out of what we predicted as malware.

Recall (R) is the ratio of correctly predicted positive ob-
servation to all observations in ground truth positive or how
many did we predict correctly out of all the malware in the
dataset.

F1-Score (F1) is the harmonic mean of precision and recall.
To understand the effect of using graph embedding gener-

ated using GNN, we first trained all the algorithms using only
permission and intents. Table I summarises the overall result.
From the experimental result shown in Table I, it is evident that
when graph embedding was used along with Permission and
Intent, most of the classifiers performed better than classifiers
trained using only Permission and Intent.

The relationships captured by constructing the API graph
and extracting centrality features help generate graph em-
bedding that encapsulates graphs’ characteristics. The graph

embedding help improve the representation generated using
CNN for Android malware classification. CNN trained with
Permission, Intent, and graph embedding achieves the best
result among all the classifiers with an impressive F1-Score
of 98.89% and 93.13% on CICMaldroid2020 and Drebin,
respectively. The comparisons with other works is shown in
Table III and the proposed method is comparable to other state-
of-the-art methods.

3) Substitute Detector and its hyperparameters: The substi-
tute detector (SD) is a three-layer GraphSAGE network of size
(5 × 32), and (32 × 32) parameterized by weights θd. After
the GraphSage layer, a global mean pool layer converts the
output into a 1 × 32 vector, which is the graph embedding
of the application. The Adam optimization algorithm was
used for optimizing the network parameters with the learning
rate set to 0.001, beta1 set to 0.9, beta2 set to 0.999, and
epsilon set to 1e-08. The network’s loss is calculated using the
cross-entropy function and mean aggregation as the aggregator
for GraphSAGE during training. In order to demonstrate that
the substitute detector need not be similar to the attacked
model, we experimented with a GCN network as the substitute
detector to attack the GraphSAGE Model. The GCN network
has two layers of size (5 × 32) and (32 × 32) followed by
a global mean pool layer. The Adam optimization was used
for optimizing the network parameters as before with the
same parameter values. The default hyperparameters usually
implemented in common deep learning libraries are the ones
chosen.

B. Experimental Result and Analysis

Malware Adversarial attack is a severe threat to malware
detection systems that use machine learning to differentiate
malware and benign applications. Adversarial malware API
graphs generated using VGAE-MalGAN could fool the mal-
ware detector under different background knowledge scenarios
as in Table II.

1) Scenario 1: In this scenario, the attacker knows the
feature used in classification of the Android application’s
API graph and the APIs used to construct the API graph.
The centrality features using the dataset are calculated since
the attacker can access the dataset and the API graph. In
terms of the model, the attacker knows the version of the
GNN model used for classification. The trained GraphSAGE
network in Section III was used as the model to be attacked.
As shown in the malware detection performance in Table I, the
GraphSAGE network was chosen as it gives higher detection
than GCN. The substitute detector is a three-layer GraphSAGE
network described in section V (A). In another experiment, to
demonstrate that the substitute detector need not be similar to
the attacked model, we used a GCN network. The architecture
of the substitute detector is explained in section V (A). In this
scenario, our attack is effective and can significantly reduce
the malware detection rate of the attack model, as shown in
Table IV.

2) Scenario 2: In this scenario, the attacker knows the
feature used is the Android application’s API graph and the
APIs used to construct the API graph. In this scenario, we
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TABLE II
BACKGROUND KNOWLEDGE TO EVALUATE VGAE-MALGAN

Scenario Feature Model Model Parameter Dataset

1 Yes Yes No Yes
2 Yes Yes No Partial
3 Yes Partial No Yes

assume that the attacker only has access to 30% of the original
dataset. Using the partial dataset, we calculate the centrality
features of the nodes in the API graph. Similar to scenario
1, the model to be attacked is GraphSAGE model described
in section III. We experimented with GraphSAGE as the
substitute detector. The network architecture is similar to the
one described in scenario 1. In this scenario, our attack is
effective and can significantly reduce the malware detection
rate of the attack model, as shown in Table IV.

3) Scenario 3: In this scenario, the attacker knows that
GNN is part of the classification process combined with
another model. The attacker also knows that the features used
is the Android application’s API graph and the APIs used to
construct the API graph. Based on the results shown in Table I,
we choose the model with the highest performance in Android
malware classification. Therefore, the model to be attacked
combines GraphSAGE and CNN, and the model’s details can
be found in section III. Since the work focuses on attacking the
GNN part of the model, we experimented with GraphSAGE
as the substitute detector. The network architecture is similar
to the one described in scenario 1. In this scenario, our attack
is effective and can significantly reduce the malware detection
rate of the attack model, as shown in Table IV.

4) Evaluation Summary Under the Three Scenarios: When
the GraphSAGE network is used as a substitute detector
to attack the GraphSAGE model in Scenario 1, it performs
slightly better than using the GCN network as a substitute
detector. Since the embedding calculation of the graph is
slightly different between GraphSAGE and GCN, the result
is expected. However, the attack is still effective even when
we attack the GraphSAGE classifier model using GCN as
the substitute detector. From the experimental result shown
in Table IV, it is evident that when using only GraphSAGE as
a substitute detector in the Drebin dataset, the recall (actual
malware identification rate) is reduced by around 27% for
the Drebin dataset. For CICMaldroid, recall is reduced by
around 80%. When GCN replaces the substitute detector to
attack the GraphSAGE model, we see that the model’s recall
is reduced by 24% in the case of Drebin and 81.83% in the
case of CICMaldroid. From the results of the experiment in
Scenario 2, shown in Table IV, it is evident that when the
attacker has access to a partial dataset which is assumed to be
30% of the total dataset, the attack is still effective, although
not as effective as having access to the entire dataset. In this
experiment, the model’s recall is reduced by 19.61% in Drebin
and 67.13% in the case of CICMaldroid. The experiment
in Scenario 3 shows that VGAE-MalGAN can still attack a
combination of models when GNN is part of the classification.
In this experiment, Drebin’s recall is reduced by around 25%,
whereas around 51.38% is reduced from CICMaldroid recall.

From the experiments, we observed that it is easier to fool the
CICMaldroid dataset than Drebin. One potential reason could
be that Drebin has more apps in the dataset than CICMaldroid,
making the classifier learn more complex decision surfaces,
and making it harder to fool the classifier using VGAE-
MalGAN. From the results shown in Table IV, GraphSAGE
with CNN is more challenging to fool than only using GNN
algorithms. From the experimental results, we have seen that
it is easier to fool the classifier when the attacker has access
to the entire dataset. We retrain the classifier using the newly
generated Adversarial API graph generated using VGAE in
Scenario 1 and the original dataset. Table V shows the result
of the retrained classifier. The retrained classifier achieved a
similar F1 score with a difference of less than 1% to 2% as
in table I except for Drebin classified with GraphSAGE. The
retrained classifier thus is made more resilient to Adversarial
examples generated using API manipulation.

The embedding of the substitute detector is shown in Fig. 8.
During VGAE-MalGAN training, the generator is optimized
to deceive the substitute detector during training and the
substitute detector is optimized to detect malicious and benign
application. If the VGAE-GAN is trained successfully, the
Substitute detector should not be able to distinguish between
benign and malicious application which can be clearly seen
in the embedding generated. The generated embedding after
retraining is plotted in Fig. 9 using the t-SNE algorithm,
where green represents benign data points, and red represents
malware data points. The goal of training adversarial network
is to craft malicious application that are very similar to benign
applications with its malware characteristic preserved. The
embedding generated by GraphSAGE shown in Fig. 4 have
some separation between the benign and malware data points.
After retraining, the embedding generated by GraphSAGE
have no clear separation between the benign and malicious
application as shown in Fig. 9. Although there is high overlap
between the two embeddings, the retrained model almost
maintain its classification accuracy with slight reduction in
accuracy. Hence we can conclude that model must have
learned much more complex decision boundaries as compared
to before retraining.

C. Comparison with State-of-the-Art Attack

Recently, many algorithms have been proposed to attack col-
lective classification algorithms and Graph Neural networks.
Recent works in [35] and [36] have proposed algorithms to
attack target nodes in the context of collective classification
of nodes in a graph by creating nodes and connecting to
existing nodes or by adding or deleting edges. In the context
of GCN nettack [37], it has been proposed to attack the
target node by either modifying the graph structure or the
node attributes. It is also shown in [36] that GCN model-
specific algorithm such as nettack is better in reducing the
classification accuracy of the nodes than algorithms designed
to attack collective classification. These algorithms focus on
changing the target of a node in the graph. Algorithms that
focus on node classification cannot be applied in our work
since APIs represented as nodes do not have a target. All
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TABLE III
PERFORMANCE COMPARISON WITH OTHER WORKS (IN %)

Scheme Dataset Benign/Malware APKs Accuracy Precision Recall F1-score

John, T. et al.(2021) [20] Drebin 1410/720 92.30 91.50 93.30 92.30
Zhang et al.(2019) [21] Drebin 5,900/5,600 96.00 90.07 95.00 96.00
Bai et al.(2020) [22] Drebin 5,900/5,560 96.00 97.00 95.00 96.00
Our work Drebin 50,901/5,600 98.68 95.27 91.08 93.13
Mahdavifar et al. (2020) [23] CICMaldroid 1479/11,598 96.70 99.16 96.54 97.84
Alenezi et al. (2021) [25] CICMaldroid 1479/11,598 94.70 93.00 94.00 93.00
Zhang, W (2021) [26] CICMaldroid 5687/5826 95.44 95.45 95.45 95.44
Our work CICMaldroid 3,696/12,152 98.33 99.18 98.60 98.89

TABLE IV
ORIGINAL RECALL AND RECALL AFTER TRAINING

VGAE-MALGAN (IN %)

Scenario Dataset Classifier Original Attacked SD
Recall Recall

1 Drebin GS 79.91 52.5 GS
1 CICMaldroid GS 97.23 11.33 GS
1 Drebin GS 79.91 55.2 GCN
1 CICMaldroid GS 97.23 15.4 GCN
2 Drebin GS 79.91 60.3 GS
2 CICMaldroid GS 97.23 30.1 GS
3 Drebin GS+CNN 91.08 65.64 GS
3 CICMaldroid GS+CNN 98.6 47.72 GS

TABLE V
PERFORMANCE AFTER RETRAINING USING GRAPH GENERATED

BY VGAE-MALGAN (IN %)

Dataset Model Accuracy Precision Recall F1

Drebin GS 96.47 90.66 70.96 79.61
Drebin GS+CNN 98.43 92.92 91.01 91.96
CICMaldroid GS 94.24 96.05 96.44 96.25
CICMaldroid GS+CNN 97.86 98.76 98.46 98.61

the APIs used are benign. The only difference between APIs
used in benign and malicious applications is how the APIs
are used collectively. In the context of graph classification,
recent work in [38] proposed an algorithm called Grabnel.
Grabnel is a Bayesian optimization-based attack method for
graph classification models with three attack modes: creat-
ing/removing an edge, rewiring or swapping an edge, and node
injection. Although this algorithm can successfully attack the
model, it has no mechanism to preserve the original code as
in our attack. In our model, we preserve the original graph
by performing an AND operation with the global adjacency
matrix only to add valid edges between nodes and an OR
operation with the original Malware API, which makes sure
that the original semantics of the malware API graph is
preserved.

VI. RELATED WORKS

Incorporating deep learning techniques to identify Android
malware has recently become a popular research domain. In
this section, we review the different feature representations
and machine/deep learning techniques for identifying Android
malware. The three main analysis types for Android malware
identification are static analysis, dynamic analysis, and hybrid
analysis. The most common features used for static analysis

include Requested Permissions, Intent, API calls, and App
components. In dynamic analysis, app actions, execution paths,
and network features are the standard features used. Hybrid
analysis used both static and dynamic features. In static
analysis, the research works in [27], [28] use Permissions,
Sensitive API calls, Intent, and App components as features.
In dynamic analysis, the research works in [29], and [30]
use information like action sendnet, which sends data over
the network, as features. In recent years, the graph-based
approach has become popular to study relationships within
the App. Instead of just studying sequential features, studying
existing relationships within an application has proven to be
helpful in identifying malware. As an example, MalScan [8]
extracts extract function call graph, Hindroid [7] extracts API
relationships based on Code block and API-Invoke method.
Existing work in fixed-size features such as GAN attack on
black box detector in [40] generates adversarial samples based
on the sequence of the binary vector of API calls by preserving
the malware characteristics. A bi-objective GAN consisting
of two discriminators, one to distinguish malicious examples
and one to distinguish adversarial examples from normal, is
proposed in [31]. The work uses sequences of permissions,
actions, and APIs of the Android application as a feature vector
to train the GAN. Image-based classification and GAN-based
attack are proposed in [32] where system calls of API are
used as features to generate RGB images and uses pix2pix
adversarial network to generate adversarial examples. Opcode-
based image and a GAN is used to generate adversarial
example in [33].

VII. CONCLUSION

Chatzoglou et al. in their work [39] examined more than
forty IoT based Android official apps statically and dynami-
cally and found that majority of the apps have a range of secu-
rity and privacy issues. There were repeated incidents of mali-
cious code injection into popular Android apps through adver-
tising SDKs, as in the case of CamScanner in 2021 [2]. The
Android banking trojans are working with new capabilities.
Ransomware such as FLocker is capable of locking Android
TV sets [3]. Another notable one was Android app known
as Dresscode which steals data. When a device infected with
Dresscode comes in contact with a network with weak router
password, it can infect other devices including IoT devices
[4]. So IoT based Android malware detection is becoming all
the more important. In this work, graph embedding based on
centrality measures is generated using GNN and combined
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with Permission and Intent to train multiple machine learning
algorithms for Android malware classification. The API graph
construction and centrality feature extraction help to generate
effective graph embedding that encapsulates the difference
between malware and benign applications. From the results,
we concluded that graph embedding helps to improve the
feature representation, thus increasing the overall performance.
A new architecture named VGAE-MalGAN is introduced and
experimented upon to show that it can effectively reduce
the malware detection rate of GNN based classifiers. VGAE-
MalGAN can generate adversarial samples that can help to
combat such attacks through retraining the model. More anal-
ysis on effective graph embedding generation, incorporating
different kinds of features that are resistant to adversarial
attacks will be looked at in the future work.

REFERENCES

[1] Nokia. Online available: https://www.nokia.com/networks/portfolio/cyber-
security/threat-intelligence-report-2020/, Accessed 29 January 2022

[2] Securelist-Report, Tatyana, Anton (https://securelist.com/mobile-
malware-evolution-2021/105876/), Online: Accessed Accessed 20 June
2022

[3] Softpedia. Online available: https://news.softpedia.com/news/flocker-
android-ransomware-now-infects-smart-tvs-505181.shtml, Accessed 20
June 2022.

[4] Norton. Online available: https://ie.norton.com/internetsecurity-emerging-
threats-hundreds-of-android-apps-containing-dresscode-malware-hiding-
in-google-play-store.html, Accessed 20 June 2022.

[5] Av-Test, The Independent IT Security Institute, A. Malware
Statistics Trends Report. Online available: https://www.av-
test.org/en/statistics/malware/, Accessed 29 January 2022

[6] Hou, S., Saas, A., Ye, Y. & Chen, L. Droiddelver: An android malware
detection system using deep belief network based on api call blocks.
International Conference On Web-age Information Management. pp. 54-
66 2016, 2016.

[7] Hou, S., Ye, Y., Song, Y. & Abdulhayoglu, M. Hindroid: An intelligent
android malware detection system based on structured heterogeneous in-
formation network. Proceedings Of The 23rd ACM SIGKDD International
Conference On Knowledge Discovery And Data Mining. pp. 1507-1515,
2017.

[8] Wu, Y., Li, X., Zou, D., Yang, W., Zhang, X. & Jin, H. Malscan:
Fast market-wide mobile malware scanning by social-network centrality
analysis. 2019 34th IEEE/ACM International Conference On Automated
Software Engineering (ASE). pp. 139-150, 2019

[9] Yang, C., Xu, Z., Gu, G., Yegneswaran, V. & Porras, P. Droidminer: Au-
tomated mining and characterization of fine-grained malicious behaviors
in android applications. European Symposium On Research In Computer
Security. pp. 163-182, 2014.

[10] Feng, P., Ma, J., Li, T., Ma, X., Xi, N. & Lu, D. Android Malware
Detection Based on Call Graph via Graph Neural Network. 2020 Inter-
national Conference On Networking And Network Applications (NaNA).
pp. 368-374, 2020.

[11] Cai, M., Jiang, Y., Gao, C., Li, H. & Yuan, W. Learning features
from enhanced function call graphs for Android malware detection.
Neurocomputing. 423 pp. 301-307, 2021.

[12] Scarselli, F., Gori, M., Tsoi, A., Hagenbuchner, M. & Monfardini, G. The
graph neural network model. IEEE Transactions On Neural Networks. 20,
61-80, 2008.

[13] Hamilton, W., Ying, R. & Leskovec, J. Inductive representation learning
on large graphs, 2017, Online available: ArXiv Preprint ArXiv:1706.02216
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