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Abstract—LEACH-like clustering protocols focus mainly on the
low-power, low-rate, and low-wakeup network applications, and
work in a multiround clustering strategy that causes frequent
handovers of cluster heads (CHs), thus less support for real-time
services that require stable cluster topologies. Besides, these pro-
tocols are faced with respective drawbacks, such as suboptimality
of selected heads, costly node-base station (BS) energy overheads,
lack of runtime cluster maintenance, etc. This article proposes
RANCE, a randomly centralized and on-demand clustering pro-
tocol, aiming at prolonging nodes’ clustered time to support
internodes collaboration while being energy efficient in mobile
ad hoc networks. First, RANCE designs a randomly centralized
CH selection mechanism in which every node in the local wire-
less network is eligible to initiate the centralized CH selection,
so that the self-organizing characteristics of mobile ad hoc nodes
can be utilized for head selection optimization. Second, taking
into account the wireless volatility caused by changes of topology,
obstacles, signal strength, etc., the fine-grained cluster relation-
ships maintenance is provided by means of multilevel aliveness
and adaptive bidirectional heartbeat packets. Third, RANCE
works in an event-driven and on-demand manner instead of a
time-triggered manner in LEACH-like protocols, to reduce the
impact on continuous services caused by frequent CH handovers
among all nodes. Simulation results show that RANCE provides
longer clustered time (over 99% of nodes’ lifetime in networks
more than 100 nodes) and good clustering scalability with high
consistency at minimum energy cost, and exhibits good potentials
in mobile wireless environments that are infrastructureless/poor
for continuous missions.
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I. INTRODUCTION

MOBILE ad hoc network (MANET) and wireless sensor
network (WSN) are widely used in environment mon-

itoring, information gathering, mobile surveillance, disaster
rescue, battlefield communication, etc., [1], [2], and are usu-
ally deployed in harsh environments hardly within the reach
of humans. In such environments, because wireless nodes are
usually distant from the base station (BS), direct delivery of
messages from nodes to BS can be costly in terms of energy
consumption. Clustering is often an effective measure in
MANET/WSN to construct a hierarchical logical topology [3],
in which member nodes in a cluster only communicate with
the cluster head (CH) that conducts distant communication
with BS on behalf of the whole cluster. In this way, member
nodes do not have to conduct long-range energy-consuming
direct communication with BS frequently, so as to enhance
energy efficiency and prolong lifetime. LEACH [4] is a typi-
cal self-organized clustering protocol that adopts a distributed
algorithm to select CHs and construct clusters in a multi-
round manner where each round has a fixed duration, in which
way, energy consumption is expected to be evenly distributed
among nodes. LEACH has been actively studied and applied
since its emergence. Recent years have seen improvements to
LEACH in various aspects, such as how CHs can be opti-
mally selected [5]–[7], how multihop communication can be
introduced to further enhance energy efficiency [6], [8]–[12],
how node mobility can be supported [9], [13], how machine
learning and various swarm intelligence algorithms can be
integrated [14]–[19], how special purpose scenarios (such as
underwater, IoT, etc.) can be accommodated [11], [20]–[26],
etc., thus a series of LEACH-like protocols. Nevertheless,
there still exist some shortcomings that prevent their broader
applications in volatile MANETs.

1) Orientation of LEACH-Like Protocols Is Mainly to
Low-Continuous Nonrealtime Network Applications:
LEACH-like protocols adopt the time-triggered multi-
round strategy for CH selection [27], with the purpose
to distribute the heavy-duty role of CH among all partic-
ipating nodes so that energy consumption is expected to
be evenly distributed. This results in frequent (and some-
times unnecessary) handovers of CHs among all nodes.
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Therefore, these protocols are usually applicable in low-
power, low-rate, and low-wakeup network applications,
such as environmental data collection in WSNs. The fre-
quent CH handovers in LEACH-like protocols are not
conducive to the routing and forwarding of real-time
or continuous streaming services (such as video surveil-
lance), nor to the long-term or time-critical collaboration
between nodes.

2) Suboptimality of CH Selection: The original LEACH
adopts a distributed algorithm that allows for every
node to self-elect for the role of CH. In this pure dis-
tributed framework, nodes are unaware of important
metrics (e.g., residual energy) of one another, which
are critical for optimal CH selection. Therefore, elected
CHs might not always be the best-suited ones. On the
other hand, the BS-based centralized CH selection [e.g.,
LEACH centralized (LEACH-C) [4]] that periodically
collects node metrics is expected to handle the subopti-
mality problem. However, the delivery of node metrics
to the distant BS requires higher power long-range com-
munication that introduces extra bandwidth and energy
overheads, shortening nodes’ lifetime [28].

3) Lack of Cluster Relationship Maintenance: Topological
dynamics and time variability after cluster formation are
not well taken into consideration by LEACH-like proto-
cols. Wireless mobile networks are highly volatile in that
there exist instabilities in signal strength and radio cover-
age caused by distance, terrain, obstacles, mobility, etc.,
thus, the possible temporary or long-term changes of
head-member relationships in a cluster during runtime.
These changes must be discovered in a timely fashion
so that cluster relationships can be kept as consistent
as possible with underlying link-layer or physical-layer
topologies. This requires a fine-grained cluster relation-
ship maintenance that is missing in current LEACH-like
protocols.

In order to overcome these shortcomings, this article pro-
poses RANCE, a randomly centralized and on-demand clus-
tering protocol for MANETs. We envision that in MANETs,
while energy is still a critical metric for a wireless network to
operate properly, flexible and long-term internodes collabora-
tion is also a key factor for sophisticated collaborative tasks.
To this extent, RANCE pays a special focus on mobile applica-
tions that require long-term internodes collaboration organized
by clusters in MANETs. RANCE aims at prolonging nodes’
clustered time and enhancing consistency between cluster rela-
tionships and underlying topologies, while still being energy
efficient. This work is summarized as follows.

1) First, RANCE designs a randomly centralized CH selec-
tion mechanism in which every node in the local wireless
network is eligible to initiate the centralized CH selec-
tion, so that the self-organizing characteristics of ad hoc
networks can be utilized for CH selection optimization.
It is a centralized CH selection without the evolvement
of the remote BS, so as to sustain energy efficiency.

2) Second, taking into account the wireless volatility
caused by changes of topology, signal strength, mobil-
ity, etc., cluster relationships are timely and dynamically

maintained by multilevel aliveness and bidirectional
heartbeat packets, to provide high accuracy and consis-
tency for cluster relationships.

3) Third, RANCE works in an event-driven and on-demand
manner instead of a time-triggered manner commonly
used in LEACH-like protocols, to reduce the impact on
continuous services caused by unstable forwarding or
routing due to frequent CH handovers among all nodes.

The remainder of this article is organized as follows. Related
works are summarized in Section II. Section III mathemati-
cally analyzes problems when applying LEACH-like protocols
in MANETs. Section IV specifies the details of RANCE,
including initial clustering, maintenance, hitchhiking, rebuild-
ing, etc., together with the protocol analysis. Section V envi-
sions possible applications of RANCE in mobile surveillance,
IoT, etc. Section VI conducts various OMNeT++ simulations
to test the functionalities and performance of RANCE, with
comparison with LEACH-like protocols. Finally, this article is
concluded and future works are envisioned in Section VII.

II. RELATED WORKS

LEACH is applied in the distributed clustering in WSNs,
where each node generates a threshold T(n) periodically. A
stochastic approach is adopted to generate T(n), as follows:

T(n) =
{ p

1−p×
(

r mod 1
p

) , if n ∈ G

0, otherwise
(1)

where n refers to the nth node, p refers to the percentage of
CHs required in the network, r refers to the ongoing round,
and G refers to the set of nodes that have not become CHs
in the last 1/p rounds. Every node also generates a random
value and compares it with T(n). If it is smaller than T(n), this
node elects itself as a CH and propagates the advertisement to
other nodes, which can choose to join the cluster. For every
1/p rounds, T(n) is gradually getting larger round by round.
Therefore, stochastically all nodes have a very probability to
become CHs every 1/p rounds. LEACH works in a multiround
manner, so that the energy-consuming role of CH is expected
to be distributed among all nodes for load balancing. LEACH
might suffer from suboptimality during CH selection due to
its distributed stochastic approach. In addition, CHs are not
uniformly distributed, which leads to nonuniform cluster for-
mation [29]. Therefore, many improvements are made based
on LEACH.

A. Centralized Improvements

Introducing centralization during CH selection is an effec-
tive measure to solve the suboptimality issue seen in LEACH.
LEACH-C [4] is a centralized version of LEACH, where the
remote BS collects metrics of nodes and decide the best-suited
ones to be CHs in a centralized manner. LEACH-C conducts
CH selection by using simulated annealing algorithm to mini-
mize the sum of squared distances between all nodes to reduce
energy consumption. The major issue of LEACH-C is the
remarkably more energy used for metrics reporting from nodes
to BS. Centralized energy-efficient clustering routing proto-
col (CEECR) [30], which is also a centralized protocol based



CHEN et al.: RANCE: A RANDOMLY CENTRALIZED AND ON-DEMAND CLUSTERING PROTOCOL 23641

TABLE I
CLUSTERING PROTOCOL COMPARISON

on LEACH-C, considers node mobility during clustering. The
major criteria for CH selection in CEECR are reliability
(i.e., nodes with energy above average) and stability (i.e.,
nodes with speed below average). Another problem faced with
CEECR and other centralized protocols is its comparatively
poor scalability in larger wireless mobile networks [27].

B. Distributed Improvements

Dynamic multihop LEACH (DMH-LEACH) [9] intro-
duces multihop communication to LEACH, so that the need
for energy-consuming long-range single-hop communication
between CHs and BS can be reduced. However, simply intro-
ducing the multihop communication causes another problem
that CHs nearer to BS have to relay traffic sent from fur-
ther CHs, in addition to the local cluster traffic. This results
in severe energy drainage that compromises network lifetime.
DMH-LEACH takes advantage of node mobility, and nodes
with stronger mobility are more likely to be selected as CHs.
This is based on the intuition that nodes with stronger mobility
move toward to or away from BS more frequent, so that they
do not always stay nearer to BS to relay traffic as CHs. This
keeps energy consumption low in multihop communications.

Verma et al. [6] proposed the fuzzy logic LEACH. Fuzzy
logic is used to select a super CH (i.e., SCH) among all
ordinary CHs based on residual energy, mobility, centrality,
etc. SCH communicates with BS on behalf of CHs, so that
CHs do not have to conduct frequent long range BS-CH
communications.

LEACH Relay (LEACH-R) [8] divides every round into
two phases, namely, clustering phase and relay phase. The
clustering phase is further divided into two subphases: 1) CH
selection, which selects CH by means of random value T(n)

and local energy rank D(n) and 2) cluster formation, which
works almost identical to LEACH except for the exchange
of energy information between CH and members to calculate
D(n). The relay phase is further divided into two subphases
as well: 1) relay selection, which determines the shortest
route that consists of several relay nodes (cluster members

might also become relays in addition to CHs) and 2) rout-
ing, which sends half of the traffic cached locally in the
first step, and sends the rest if the ACK of the first half
returns. This caching strategy enhances the packet delivery
ratio yet increases latency due to multiple transmissions, thus
unfriendly to real-time services.

C. Energy Improvements

Neamatollahi et al. [27] proposed the dynamic hyper round
policy (DHRP), which schedules clustering task to extend the
network lifetime and reduce energy consumption, as opposed
to the round-based policy adopted in both distributed and
centralized LEACH-like protocols. Clustering is only per-
formed at the beginning of each dynamic hyper round (i.e.,
coarser grained and dynamically reorganized atomic rounds).
This reduces energy overheads of round-based CH handovers
among nodes by eliminating the unnecessary reclusterings.
Baroudi [31] proposed a wirelessly energy-charged scheme
(WINCH) to enable robot-assisted wireless energy transfer in
WSNs. In WINCH, CHs are selected using LEACH-C, then
robots visit the sites frequently as needed, and place them-
selves in the optimal positions to conduct wireless charging to
extend the network lifetime.

Table I summarizes a brief comparison between different
LEACH-like clustering protocols. Compared with these pro-
tocols, RANCE has remarkable differences in several aspects
(see the last line of Table I). It selects CHs in a randomly
centralized manner, and considers various application-oriented
criteria (e.g., energy and bandwidth) during CH selection that
reflect application characteristics. RANCE also selects CHs in
an event-driven (e.g., events that indicate lower energy of cur-
rent CHs) and on-demand (e.g., when cluster members become
detached) manner, other than the time-triggered round-based
method. Therefore, RANCE reduces unnecessary pauses of
continuous services caused by frequent CH handovers, and
improves energy efficiency. Last but not least, RANCE pro-
vides cluster relationship maintenance seldom seen in previous
LEACH-like protocols to eliminate at large the inconsistency
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Fig. 1. Round duration of LEACH-like protocols.

between logical clusters and physical topologies. Technical
details of RANCE can be found in successive parts.

III. MATHEMATICAL ANALYSIS AND

PROBLEM MODELING

Previous works of LEACH-like protocols focus mainly on
extending the lifetime of the network. For a MANET, nodes
are required to collaborate to accomplish complex tasks. To
achieve this, it is also desirable that nodes stay attached in
some cluster long enough to offer data relay and various func-
tions. We mathematically analyze key metrics of LEACH-like
protocols in a mobile wireless and collaborative environments,
and demonstrate step by step the inapplicability of simply
applying LEACH-like protocols in such environments given
their static round-based (i.e., fixed duration for each round)
clustering workflows, using a simplified example as shown in
Fig. 1. The duration of every clustering round is a fixed value
�u. Notations and definitions used in mathematical analysis
hereinafter are given in Table II.

A. Clustered Time

Clustered time represents the duration one node stays
attached to some cluster. We first deduct the mathematical
representation of clustered time of a node k. Suppose node
k is clustered with CH h. Let t denote time, and p denote
the pth round. Let xk(p) and yk(p) denote the x-y coordi-
nates at the beginning of round p, and sk(t) and θk(t) denote
the time-varying speed and angle of node k, respectively. The
coordinates for round p+1 can be acquired using the following
equations:

xk(p + 1) = xk(tp + �u)

=
∫ tp+�u

tp
sk(t) cos θk(t)dt + xk(p) (2)

yk(p + 1) = yk(tp + �u)

=
∫ tp+�u

tp
sk(t) sin θk(t)dt + yk(p). (3)

Therefore, the distance dk,h between node k and CH h for
the beginning of round p can be calculated through the fol-
lowing equation. Taking (2)–(3) into 4, dk,h can be obtained
in a recursive manner given deterministic xk(0), yk(0), sk(t),
and θk(t)

dk,h(p) =
√

(xk(p) − xh(p))2 + (yk(p) − yh(p))2. (4)

TABLE II
NOTATIONS AND DEFINITIONS FOR ADAPTIVE INTERVALS

Let ck(p) denote a 0-1 variable indicating whether node k
is inside the radio coverage Dh of CH h, as the following:

ck,h(p) =
{

1, dk,h(p) < Dh

0, dk,h(p) ≥ Dh.
(5)

The clustered time of node k can be calculated using (6),
because once a node k is inside the radio coverage of some CH
h at the beginning of some round p (that is when clustering
occurs), node k receives CH advertisements, and is able to par-
ticipate in the clustering process thus getting attached. During
the whole duration �u, node k is considered to be clustered
with CH h due to the fixed round-based strategy adopted by
LEACH-like protocols

�ctk =
P∑

p=0

ck,h(p)�u. (6)

The average clustered time ctav and its percentage ctpav in
a MANET are shown as follows, where K denotes the total
number of nodes, and lifeav denotes the average lifetime of
nodes

ctav =
K∑

k=1

�ctk
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ctpav = ctav

lifeav
. (7)

Assume CHs are perfectly evenly distributed for each round,
if all nodes are static or moving to the same direction with the
same speed, i.e., sk(t) = sl(t) and θk(t) = θl(t) for any nodes
k, l ∈ {1, . . . , K}, k �= l, it holds true that dk,l(p) = dk,l(p + 1)

according to (2)–(7), thus very long clustered time once they
are initially clustered. Therefore, the primary factor that affects
the clustered time is the initial distribution (i.e., positions)
of nodes, and LEACH-like protocols will work just fine in
such “static” scenarios. However, for an ad hoc and randomly
mobile wireless network, sk(t) and θk(t) where k ∈ {1, . . . , K}
are very different from node to node, and from time to time,
thus higher probability for ck(p) to be assigned 0, leading
to shorter clustered time when simply applying LEACH-like
protocols.

B. Consistency

Another thing worth noticing in a mobile wireless environ-
ment is that a node k might move out of the radio coverage
of CH h and back inside later during �u, i.e., physically
detached for a short period of time �t while seemingly clus-
tered throughout the duration �u of a round, where �t < �u
as shown in Fig. 1. CH h might not be aware of this short-
term physical detach since LEACH-like protocols work on the
basis of fixed round duration �u. Therefore, there is proba-
bility that the clustered status discovered by CH h might be
different with the real underlying physical topology during
�t, thus the inconsistency. If data are forwarded by CH to
inconsistent cluster members during �t, packet delivery fails,
harmful to continuous streaming-styled services that require
stable wireless links.

Consistency represents the consistent states between the
clustered relationships discovered by the CH and physical
topologies. We deduct the mathematical representation of
consistency. Suppose consistency can be checked every �t
seconds (which, however, is usually missing in LEACH-like
protocols), and each �u contains Q �ts, i.e., the following:

Q = �u

�t
. (8)

Let p denote the pth round and q denote the qth tick (i.e.,
the beginning of every �t) inside the round. We have the
following relationships:

tp,q = tp,q−1 + �t. (9)

The coordinates of node k at time tp,q (i.e., the qth tick of
the pth round) can be acquired using the following equations:

xk(tp,q) = xk(tp,q−1 + �t)

=
∫ tp,q−1+�t

tp,q−1

sk(t) cos θk(t)dt + xk(tp,q−1) (10)

yk(tp,q) = yk(tp,q−1 + �t)

=
∫ tp,q−1+�t

tp,q−1

sk(t) sin θk(t)dt + yk(tp,q−1). (11)

Inconsistency occurs when the following condition holds
true during �t, i.e., a cluster member moves out of the CH’s

radio coverage before the next round starts

dk,h(tp,q) =
√(

xk(tp,q) − xh(tp,q)
)2 + (

yk(tp,q) − yh(tp,q)
)2

≥ Dh, where 0 ≤ q ≤ Q. (12)

Let Vun
h (tp,q) denote the set for any cluster member k of

CH h whose dk,h(tp,q) ≥ Dh, and Vh(tp,q) denote the set
of all cluster members of CH h at time tp,q. The instanta-
neous consistency of CH h at time tp,q can be acquired by the
following:

conh(tp,q) = 1 −
∥∥Vun

h (tp,q)
∥∥∥∥Vh(tp,q)
∥∥ . (13)

The overall consistency throughout the lifetime of CH h can
be obtained by the following:

conh =
P∑

p=0

Q∑
q=0

conh(tp,q). (14)

The average consistency in a MANET is as follows, where
H denotes the total number of nodes that have been CHs:

conav =
H∑

h=1

conh. (15)

Despite of its importance, consistency checking is usually
missing in LEACH-like protocols. That is why the clus-
ter relationships in a mobile ad hoc environment can be
inaccurate.

C. Extra Energy Consumption

To improve consistency between cluster relationships and
physical topologies for LEACH-like protocols, intuitively,
introducing periodic consistency check with smaller �t seems
promising, because inconsistent cluster relationships can be
removed in time once discovered. Nevertheless, it hardly cap-
tures the wireless dynamics in MANETs, and incurs higher
energy consumption caused by more packet exchanges. Now,
we analyze energy consumption. We assume a simplified con-
sistency check model that works in round-trip manner: the CH
multicasts a request packet for the consistency check, and clus-
ter members unicast a reply upon reception. Any failed reply
within �t implies that (12) holds, thus the inconsistency. The
radio model we adopted for energy consumption is similar to
that of [32]

Etx(l, d) =
{

lEelec + lεfsd2, d < d0

lEelec + lεmpd4, d ≥ d0

Erx(l) = lEelec. (16)

In (16), d is the distance between sender and receiver
nodes, Eelec = 50 nJ/bit is the energy dissipated per bit to
run the transceiver circuitry, l is the length of packet by bit,
whereas εfs = 10 pJ/bit/m2 and εmp = 0.0013 pJ/bit/m4 are
amplifier energy parameters corresponding to the free space
channel model and the multipath channel model, respectively.
During round p with duration �u, if consistency check is to
be executed every �t, the energy consumed by CH h can be
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calculated by (18) where Etx(l, Dh) represents the energy con-
sumption of the multicast by the CH, and ‖Vcon

h (tp,q)‖Erx(l)
represents the CH’s energy consumption of receiving of pack-
ets returned by cluster members. The energy consumed by all
cluster members of the cluster can be obtained by (19), where
Etx(l, dk,h) represents the energy consumption of the unicast
responded to the CH by every member, and ‖Vcon

h (tp,q)‖Erx(l)
represents cluster members’ energy consumption of receiving
of multicast issued by the CH. Together, the extra energy con-
sumption by simple consistency check during a round can be
obtained through (20) as follows:

Vcon
h (tp,q) = Vh(tp,q) − Vun

h (tp,q) (17)

Eh(p) ≥
Q∑

q=0

[
Etx(l, Dh) + ∥∥Vcon

h (tp,q)
∥∥Erx(l)

]
(18)

Emem(p) ≥
Q∑

q=0

⎡
⎣‖Vcon

h (tp,q)‖∑
k=1

Etx(l, dk,h) + ∥∥Vcon
h (tp,q)

∥∥Erx(l)

⎤
⎦

(19)

Eextra(p) = Eh(p) + Emem(p). (20)

As seen from (20), simply introducing static periodic con-
sistency check to LEACH-like protocols incurs extra energy
consumption to enhance consistency of plain LEACH-like
protocols for a cluster during a round. In a mobile ad hoc
environment, distances between nodes can be large, espe-
cially for centralized clustering such as LEACH-C, thus energy
consuming if the consistency checking is not deliberately
designed. The average extra energy consumption for every
node throughout its lifetime can be obtained by the following:

Eextra_av =
∑P

p=0 Eextra(p)

K
. (21)

D. Problem Modeling

Based on the previous mathematical analysis, simply intro-
ducing frequent checking every �t where �t < �u can
hardly improve clustered time and consistency while still being
energy efficient. Therefore, a dedicated protocol should be
designed considering the requirements of clustering and the
dynamics of MANETs.

The key problem is twofold, prolonging the clustered time at
minimum energy cost to sustain continuous services, and offer-
ing a fine-grained maintenance mechanism to provide high
consistent cluster relationships, which can be modeled as a
mathematical programming problem as follows:

max ctav and conav (22)

min Eextra_av (23)

s.t. ck,h(p) ∈ {0, 1}, h �= k, h, k ∈ {1, . . . , K} (24)
H∑

h=1

ck,h(p) ≤ 1, h �= k, h, k ∈ {1, . . . , K} (25)

∃t, sk(t) > 0, k ∈ {1, . . . , K} (26)

∃t, ∃ε, θk(t) �= θk(t + ε), |ε > 0|, k ∈ {1, . . . , K} (27)

0 < xk(t) < X, k ∈ {1, . . . , K} (28)

TABLE III
TYPES OF PDUS AND ROLES

0 < yk(t) < Y, k ∈ {1, . . . , K} (29)

0 < Dk � min(X, Y), k ∈ {1, . . . , K}. (30)

Conditions (24) and (25) indicate that a node can be clus-
tered with at most one CH for every round. Conditions (26)
and (27) emphasize the network mobility with changing speed
and angle, and conditions (28) and (29) indicate the deployed
dimensions of the MANET. Condition (30) indicates a low-
energy network that nodes can only communicate with nearby
peers locally. In order to solve this problem, RANCE, a
randomly centralized and on-demand clustering protocol, is
proposed.

IV. RANCE CLUSTERING PROTOCOL

RANCE can be divided into four phases (see
Sections IV-B–IV-E), namely, clustering, maintaining,
hitchhiking, and rebuilding, among which the latter two
can be categorized as subphases of the maintaining phase.
We first introduce RANCE’s protocol data unit (PDU) and
configurations.

A. PDU and Configurations

RANCE is designed as an application protocol on top
of UDP. Without losing generality, RANCE can also be
implemented as a link-layer protocol in real-world implemen-
tations. It consists of several differently typed PDUs, including
cluster_build, cluster_join, cluster_role, cluster_confirm, clus-
ter_ack, etc. There are several different roles during the
clustering process, namely, peer, head, member, initiator, etc.
Explanations of PDUs and roles are shown in Table III.

The structure of PDUs is shown in Fig. 2. The type field
indicates the PDU type among cluster_build, cluster_join,
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TABLE IV
EXAMPLE OF FITNESS EVALUATION

Fig. 2. RANCE clustering protocol PDU structure.

cluster_role, cluster_confirm, cluster_ack, etc. The role1 indi-
cates the self role of the PDU sender whereas role2 indicates
the role to be assigned to the PDU receiver in some cases. If
no role is assigned, role2 is set as unspecified (i.e., unspec).
The fitness in the PDU indicates how suitable a node is to
be selected as CH. Therefore, the initiator must collect fitness
values of nodes in advance before the CH selection. The acqui-
sition of fitness values works in two ways: 1) the sender of the
PDU can leave the fitness field blank, and encapsulate JSON-
formatted metrics (if implemented as an application protocol)
in the payload so that the initiator can calculate the fitness
value in a centralized manner or 2) the sender can directly
calculate the fitness value locally, fill it in the fitness field,
and send to the initiator. Either way, the fitness value can be
determined by aggregating important metrics (such as resid-
ual energy, CPU, RAM, bandwidth, etc.), together with their
tendencies, i.e., positive (the larger values the better) or neg-
ative (the smaller values the better), as shown in 31, where
i represents the ith metric of a node, signi represents its ten-
dency, wgti represents its weight, vi represents its real value,
and benchi represents the preconfigured benchmark value for
the ith metric

sign =
{

1, if positive
−1, if negative

f =
n∑

i=1

signi × wgti × vi

benchi
, where

n∑
i=1

wgti = 1. (31)

Table IV explains how fitness values can be evaluated con-
sidering metrics v1–v6, i.e., residual RAM, occupied CPU,
residual battery, residual bandwidth, delay, and packet loss of
several nodes (N1–N4). Obviously, occupied CPU and delay

are metrics with negative tendencies while the others are pos-
itive ones. In the example shown in Table IV, residual battery
(v3) has the highest weight (wgt3 = 0.6), which means it
imposes the greatest impact for fitness evaluation. By apply-
ing (31), fitness values for nodes N1–N4 are 0.227, 0.157,
0.479, and 0.389, respectively, given metric values, weights,
and bench values in Table IV. Therefore, when selecting CH,
the initiator that collects fitness values is most likely to pick
N3 as CH. It is reasonable to value residual battery the most
in battery-critical missions (e.g., long-time periodical environ-
mental monitoring), by assigning weight as high as 0.6 in
Table IV. Other metrics and weights can also be considered
for various applications, depending on their natures. For exam-
ple, time-critical missions (e.g., battlefields monitoring) would
favor delay by assigning higher weight to it, and bandwidth-
critical missions (e.g., live video surveillance) would favor
residual bandwidth instead. Indeed, weights assignments are
quite application dependent.

B. Clustering

1) Initiation of Clustering: Every mobile node works in a
peer-to-peer manner if no clustering process takes place, thus
called peers, i.e., the initial role for every mobile node. Peers
are configured to automatically join a multicast group (e.g.,
224.0.0.1) and are all able to initiate the clustering process
by multicasting the cluster_build PDU. In order to reduce the
chance of conflicts with other cluster_build initiations, peers
enter the WAIT_FOR_BUILD state to passively allow for clus-
tering led by others. When the WAIT_FOR_BUILD state times
out after B seconds (which means no other peer initiates clus-
tering), a peer is free to send cluster_build, actively leading
the clustering process, and enters the WAIT_FOR_JOIN state
with a J-second timer. The reason why WAIT_FOR_JOIN
state lasts for J seconds is to allow for enough PDU round-
trip time. Meanwhile the role of this peer has now been
changed to initiator. Note that an initiator is not a CH by
default. A selection for CH will take place later. Other peers
receiving cluster_build send back cluster_joins, and enter the
WAIT_FOR_ROLE state whose timer lasts for R seconds.
If no role is assigned within R seconds, a peer goes back
to WAIT_FOR_BUILD state. The initiator adds the sender
peer of cluster_join in the cand_list (candidate list), a key-
value store whose keys are the IP addresses and values are
corresponding node details.

2) CH Selection and Role Assignment: When the
WAIT_FOR_JOIN state times out, the initiator starts the CH
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selection among peers stored in the cand_list, based on the
fitness either contained in cluster_join or calculated based on
metrics encapsulated in the cluster_join payload. When the to-
be CH is selected, the initiator notifies it with the cluster_role
PDU wherein the role2 field is set as head, and then the peer
sets its role as head accordingly upon PDU reception and
becomes the CH. CH then multicasts the cluster_role PDU to
all other peers with the role1 field as head (indicating itself as
role the head) and role2 field as member (notifying participant
peers of the role as members for themselves).

3) Cluster Formation: The CH enters the
WAIT_FOR_CONFIRM state with a C-second timer.
Peers reply cluster_confirm PDUs if they accept the role
as members and enter the WAIT_FOR_ACK state with a
A-second timer. If the A-second timer timeouts, it indicates
that the CH does not reply the cluster_ack PDU in time,
possibly because the participant peer and the CH mutually
move out of radio range due to mobility, or node failures, etc.,
in which case, peers reenter the WAIT_FOR_BUILD state
to start over the clustering process from scratch. If the CH
replies cluster_ack in time before WAIT_FOR_ACK times
out, the participant peer can safely assume the cluster is now
constructed, enters the BUILT state, and becomes a controlled
member of the cluster. When the WAIT_FOR_CONFIRM
state times out, the CH stores those nodes who replied
cluster_confirms (indicating willingness to become members)
in the cluster_rel (cluster relationships), also a key-value store
as cand_list, except for that cluster_rel stores real members
after cluster formation while cand_list stores temporary
candidate members during clustering, and finally enters the
BUILT state where cluster-based collaboration can happen.

The clustering procedure is depicted in Algorithm 1. Fig. 3
depicts the finite-state machines (FSMs) of the whole work-
flow of RANCE (including the clustering phase described
in this section, and maintenance, hitchhiking, and rebuilding
phases to be described later), wherein black arrows are the
state transitions of the clustering procedure. Fig. 4(a) gives
an example on how a cluster is constructed: 1) N1 initi-
ates cluster_build; 2) N2–N4 reply with cluster_joins; 3) N1
selects N3 as the CH by comparing fitness values and noti-
fies N3 the result; 4) N3 notifies all other nodes its role as
the CH, and their roles as the cluster members; 5) all other
nodes confirm to join the cluster; and 6) N3 acknowledges the
cluster formation. To summarize, during the clustering pro-
cess, initiation of clustering is competed randomly, and CHs
are selected in a centralized manner only in the local wire-
less network, which reduces energy consumption caused by
long-range BS-involved communication.

C. Maintenance

1) Bidirectional Heartbeat Interactions: The CH and all
cluster members are mobile nodes. There might be changes
of link-layer connectivities due to mobility, wireless commu-
nication range, signal strength, obstacles, terrains, etc., thus
the possibility of inconsistency between logical cluster rela-
tionships and physical connectivities, if no maintenance is
provided after cluster formation. Therefore, a fine-grained

Algorithm 1 Clustering Procedure
1: state WAIT_FOR_BUILD(timeout=B):
2: role = peer; head = null
3: cluster_rel = cand_list = {self}
4: if receive cluster_build then
5: reply cluster_join
6: enter WAIT_FOR_ROLE(timeout=R)
7: if timeout then
8: role = initiator
9: multicast cluster_build

10: enter WAIT_FOR_JOIN(timeout=J)
11:
12: state WAIT_FOR_JOIN(timeout=J):
13: if receive cluster_join then
14: add to cand_list
15: if timeout then
16: if cand_list.size == 1 then
17: enter WAIT_FOR_BUILD(timeout=B)
18: else if cand_list.size > 1 then
19: send cluster_role(role2=head) to cand_list.best
20: enter WAIT_FOR_ROLE(timeout=R)
21:
22: state WAIT_FOR_ROLE(timeout=R):
23: if receives cluster_role then
24: role = role2 in cluster_role
25: if role == head then
26: multicast cluster_role(role1=head,role2=member)
27: enter WAIT_FOR_CONFIRM(timeout=C)
28: else if role2 == member then
29: head = sender of cluster_role
30: reply cluster_confirm
31: enter WAIT_FOR_ACK(timeout=A)
32: if timeout then
33: enter WAIT_FOR_BUILD(timeout=B)
34:
35: state WAIT_FOR_CONFIRM(timeout=C):
36: if receive cluster_confirm then
37: reply cluster_ack
38: add to cluster_rel and set its aliveness al=3
39: enter WAIT_FOR_CONFIRM(timeout=C)
40: if timeout then
41: if cluster_rel.size == 1 then
42: enter WAIT_FOR_BUILD(timeout=B)
43: else if cluster_rel.size > 1 then
44: enter BUILT()
45:
46: state WAIT_FOR_ACK(timeout=A):
47: if receive cluster_ack then
48: enter BUILT()
49: else if timeout then
50: enter WAIT_FOR_BUILD(timeout=B)

maintenance mechanism should be designed to distinguish
short-term and long-term connectivity changes, to properly
restore or dissolve cluster relationships stored in cluster_rel,
respectively, so as to keep cluster relationships and physical
connectivities as consistent as possible.

Cluster relationships are evaluated by the multilevel alive-
ness and maintained through bidirectional heartbeat packets
interactions in RANCE. The CH has details of every partici-
pant member stored in the cluster_rel key-value store while
members do not have to know about other members, thus
having only the CH’s details inside the cluster_rel of their
own. The cluster_rel has the following key-value structure,
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Fig. 3. FSMs of RANCE.

IP: {aliveness, fitness, x-coordinate, y-coordinate, . . .}. Every
node has an initial aliveness value of alini = 3. The CH initi-
ates heartbeat interactions by multicasting a cluster_alive_req
PDU every �t seconds, i.e., the heart_beat_timer. Members
in the same cluster reply a cluster_alive_resp PDU to the CH
upon reception of cluster_alive_req. The successful reception
of cluster_alive_req/resp resets the aliveness of the corre-
sponding node k back to its initial value in the cluster_rel,
i.e., alk = alini, indicating the mutual communication is still
alive. Every node also checks whether cluster_alive_req/resp is
received within �t seconds, i.e., the check_alive_timer. Node
k’s aliveness decreases by 1 for every failed reception of clus-
ter_alive_req/resp within every �t seconds, i.e., alk = alk −1.
If the aliveness reaches 0, i.e., alk = 0, the corresponding node

k is considered to be detached (i.e., out of radio range, node
failure, etc.), and will be deleted from the cluster_rel.

The maintenance procedure is described in detail in
Algorithm 2. Red arrows in Fig. 3 depict the state transitions
of the maintenance procedure. Fig. 4(b) exhibits a possible
maintenance situation, and Table V shows the aliveness val-
ues of cluster members known by CH N3 over time. The
dashed circle indicates the radio range of CH N3. N3 repeat-
edly multicasts cluster_alive_req ( 1©, 4©, and 7© in the figure)
every �t seconds. Member N4 temporarily moves out of the
radio range (step 3©), which leads to the unsuccessful recep-
tion of cluster_alive_req from and cluster_alive_resp back to
N3 within �t seconds. At this point of time, N4’s aliveness
value stored in N3’s cluster_rel is reduced by 1 and vice versa
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(a) (b)

(c) (d)

Fig. 4. Examples of the RANCE protocol. (a) Clustering. (b) Maintenance. (c) Hitchhiking. (d) Rebuilding.

Algorithm 2 Maintenance Procedure
1: state BUILT():
2: set heart_beat_timer(timeout=I) by Equation 32
3: set check_alive_timer(timeout=I) by Equation 32
4: if check_alive_timer times out then
5: reduce all nodes’ aliveness in cluster_rel by 1
6: remove all nodes if aliveness al < 1 from cluster_rel
7: if cluster_rel.size == 1 then
8: multicast cluster_detach
9: enter WAIT_FOR_BUILD(timeout=B)

10: else if cluster_rel.size > 1 then
11: set check_alive_timer(timeout=I) by Equation 32
12: if heart_beat_timer times out && role == head then
13: multicast cluster_alive_req
14: set heart_beat_timer(timeout=I) by Equation 32
15: if receives cluster_alive_req && role == member then
16: reply cluster_alive_resp
17: set al=3 in cluster_rel whose IP is the sender IP
18: if receives cluster_alive_resp && role == head then
19: set al=3 in cluster_rel whose IP is the sender IP
20: if receives cluster_detach && role == member then
21: enter WAIT_FOR_BUILD(timeout=B)

(see the “after 5©” column in the table). However, it does not
incur the immediate deletion of N4 from N3’s cluster_rel (and
vice versa) because mobile nodes do have some probability of
moving back to the CH’s radio range within �t seconds, if
the aliveness values does not reach to 0. The aliveness prob-
ing will attempt for at most alini times before the deletion.
We can see that N4 moves back to the radio range (step 6©)
and sends back cluster_alive_resp upon N3’s cluster_alive_req

TABLE V
ALIVENESS VALUES OF CLUSTER MEMBERS KNOWN BY CH N3

multicast (step 8©), leading N3 and N4’s aliveness values are
both reset to alini (see the “after 8©” column in the table).
Nevertheless, N1 will be permanently removed from N3’s clus-
ter_rel since it never returns back to the N3’s radio range
before alini unsuccessful heartbeat interactions.

Indeed, the aliveness mechanism, instead of immediate
removal of the out-of-range member from the cluster, intro-
duces some tolerance to topology dynamics caused by mobil-
ity, etc., and prolongs the time of being clustered if the
topology changes are just temporary, thus a more stable cluster
structure and longer clustered time, which is critical for intern-
odes cooperations in MANETs. It also keeps the cluster_rel
consistent with physical topologies through repeated bidirec-
tional interactions. However, these packet interactions incur
extra energy consumption. We will try to balance the cluster
relationship consistency and energy consumption by means of
adaptive aliveness probing (Section IV-C2).

2) Adaptive Aliveness Probing: Note that the aliveness
probing interval �t can be set as a fixed value, meaning that
the aliveness probing and checking occurs in a periodic man-
ner. To better capture the mobility of nodes and the dynamics
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of the cluster topology, we also designed a mechanism that can
automatically calculate an adaptive aliveness probing interval
based on the spacial distance between nodes. Intuitively, the
larger the spacial distance, the more possible that a node moves
out of the radio coverage of the CH, thus higher possibility
of detaching. If the aliveness probing interval can be adap-
tively shortened based on this intuition, nodes more likely to
get detached can be discovered as early as possible, so that
topology alteration is known timely. On the contrary, if nodes
stay close to each other, aliveness probing does not need to be
executed as frequently. The adaptive aliveness probing interval
is obtained by applying (32), a Euclidean distance-based decay
function, at the CH. First, every spacial distance between
member k in cluster_rel and the CH h itself is calculated, using
x and y coordinates encapsulated in cluster_alive_resp sent by
members. The maximum distance is selected and denoted as
d. D is the bench spacial distance from the CH, usually the
radio coverage. Since D is the furthest reach between the CH
and members, any member beyond distance D will not be
able to send cluster_alive_resp, thus 0 ≤ d ≤ D, i.e., −1 ≤
(d − D/2/D/2) ≤ 1 → (1/e) ≤ e−(d−D/2/D/2) ≤ e. Actually,
D/2 is the dividing line according to (32) in that if there is
any member beyond this line, �tadapt (the adaptive interval)
falls into a smaller range of [(�trng/e)+�tmin,�trng +�tmin)

for more frequent aliveness probing, otherwise, into a larger
range of (�trng + �tmin, e · �trng + �tmin) for less frequent
aliveness probing

d = N
max
k=1

(√
(xk − xh)

2 + (yk − yh)
2
)

�tadapt = �trng · e− d−D/2
D/2 + �tmin. (32)

The reason why the interval is finally determined by decay
function instead of just the Euclidean distance is that the
nonlinear decay function varies much faster than the linear
Euclidean distance, making the CH get ready for the worst
scenario (i.e., possible detaching) in advance (i.e., short-term
prediction). In this method, the aliveness probing interval auto-
matically adapts to the topology. For more scattered topology,
the interval becomes smaller to discovery possible mem-
ber detaching, whereas the interval becomes bigger to lower
energy consumption in a more dense topology where members
are less likely to get detached from clusters.

Table VI gives an example of adaptive intervals, given the
CH-member relationships in Fig. 4(b). The settings are as
follows: �trng = 7.5 s, �tmin = 7.5 s, and D = 1500 m.
We assume that �t = �trng + �tmin = 15 s for nonadaptive
intervals. For round 1 of aliveness probing [i.e., before 2© in
Fig. 4(b)], the CH N3 finds the furthest member N4 (554.6 m)
and determines the aliveness probing interval should be set as
�tadapt = 17.2 s, bigger than �t = 15 s, thus less energy con-
sumption. For round 2 (that is when the previous interval times
out), N3 recalculates the interval as 14.7 s determined by the
new furthest member N4 due to mobility. For round 4 [“after
5©” in Fig. 4(b)], since N1 and N4 move out of the radio

range of N3, their coordinates are not received through heart-
beat interactions within an interval. However, because their
aliveness values have not been reduced to 0 at this time, the

TABLE VI
EXAMPLE OF ADAPTIVE INTERVALS

CH N3 treats the distance to N1 or N3 as the furthest radio
reach, i.e., d = D = 1500 m and �tadapt = 10.3 s, which
results in more frequent aliveness probing to discover possi-
ble topology change. The same procedure applies for round 4
(“after 5©”).

3) On-Demand Clustering: The fine-grained maintenance
based on bidirectional heartbeat interactions brings another
desired feature, the on-demand formation of clusters. Taking
Fig. 4(b) as an example again, if N1 and N4 move out of CH
N3’s radio range and never return (i.e., detached), and hap-
pen to move inside each other’s radio range afterward, they
can start forming a cluster themselves automatically as per the
clustering procedure described in Section IV-B, possibly with
some other detached nodes within reach. Therefore, the for-
mation of clusters works in an as-needed manner. The number
of CHs is self-adaptive to the network topology, as many as
needed, instead of a fixed percentage of CHs in LEACH-like
protocols, i.e., p in (1), whose assignment is rather subjec-
tive and difficult. On-demand clustering further prolongs nodes
clustered time to sustain continuous services or time-critical
collaborations.

D. Hitchhiking

Note that the detached node N1 as depicted in Section IV-C
will start its own clustering process from scratch by first
entering the WAIT_FOR_BUILD state, as described in
Algorithm 1. The start over of the clustering has some
limitations in that it has to experience a whole clustering pro-
cess requiring more time including some mandatory timeouts
(J-timer, C-timer, etc.), and more energy due to several round-
trip packet interactions. To further improve energy efficiency,
we designed the hitchhiking mechanism. Any detached node
that overhears the cluster_alive_req indicating an alive cluster
can apply to join it. It is called hitchhiking since the node does
not have to undergo the whole clustering process as described
in Section IV-B. The hitchhiking has two constraints: 1) the
node and the overheard head must both enable hitchhiking
configuration and 2) the detached node must have the peer role
(i.e., in the WAIT_FOR_BUILD state) other than the initia-
tor role (i.e., in the WAIT_FOR_JOIN state) because initiator
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Algorithm 3 Hitchhiking Procedure
1: state WAIT_FOR_BUILD(timeout=B):
2: if receives cluster_alive_req & role == peer & hitch == true

then
3: HITCH()
4:
5: state BUILT():
6: if receives cluster_hitch & role == head & hitch == true then
7: ACCEPT_HITCH()
8:
9: function HITCH():

10: send cluster_hitch to sender of cluster_alive_req
11: if received cluster_role then
12: role = role2 in cluster_role, i.e., “member”
13: add to cluster_rel and set its aliveness al=3
14: head = sender of cluster_role
15: enter BUILT()
16:
17: function ACCEPT_HITCH():
18: send cluster_role(role2=member) to sender of cluster_hitch
19: add to cluster_rel and set its aliveness al=3

might already have some correlation with other nodes, and
must not “abandon” these nodes in the halfway, to avoid state
chaos and unexpected exceptions.

The hitchhiking procedure is described in detail in
Algorithm 3. Blue arrows in Fig. 3 depict the state transitions
of the hitchhiking procedure. As we can see from Fig. 4(c),
the detached node N1 moves inside N3’s radio range and over-
hears the cluster_alive_req sent by N3, if N1 just happens to
switch to WAIT_FOR_BUILD state. It sends the cluster_hitch
PDU to N3 that later replies with a cluster_role with role1
being set as head and role2 as member. N1 accepts the role
and becomes part of the cluster if hitchhiking is turned on.
Then, N1 and N3 start normal cluster_alive_req/resp heartbeat
interactions as described in Section IV-B for maintenance.

E. Rebuilding

Unlike LEACH-like protocols that hand off the role of CH
by rounds, our protocol tends to keep the cluster as steady
as possible, to prolong the clustered time and established col-
laboration; that is to keep the CH handovers as minimum as
possible since it requires extra time and energy to rebuild the
cluster that could compromise the continuity of CH-member
collaboration or real-time services (e.g., video surveillance
streaming). Therefore, unless it is necessary, CH of the clus-
ter is not to be reselected (i.e., rebuilding of the cluster). The
necessity of rebuilding is when the current CH is not capable
of or no longer suitable to coordinate the cluster, for example,
low fitness value caused by low battery, etc. To this regard,
the CH examines the fitness values of all members stored in
the cluster_rel once every z seconds. If its fitness value is
lower than p% (e.g., 70%) of the current highest one, the CH
multicasts a cluster_detach PDU to notify all controlled mem-
bers that a rebuilding of the cluster is ready to be initiated.
Members go to WAIT_FOR_BUILD upon reception so that
a new clustering can be undergoing. Note that since the cur-
rent CH does not have the highest fitness value, it will not be
selected as the new CH to avoid the suboptimal CH selection.

F. Protocol Analysis

We now analyze how RANCE behaves under various
effects.

1) Effect of Node Additions and Removals on CH Selection:
The R-second timer for WAIT_FOR_ROLE state provides
remarkable robustness for CH selection process in a topology
with frequent node additions or removals. Due to the mobil-
ity of nodes, there might be some inconsistency between the
peers stored in the initiator’s cand_list and those in the phys-
ical topology. We first analyze the node removal scenario. If
the initiator Nini selects peer Nx in its cand_list as CH, it noti-
fies Nx with cluster_role PDU and enters WAIT_FOR_ROLE
with an R-second timer (see Section IV-B1). Nevertheless,
during the role assignment, Nx might be out of Nini’s radio
range due to mobility, failure, etc., which Nini is unaware
of at that time. This might lead to some inconsistency.
Fortunately, Nx is also in WAIT_FOR_ROLE as is Nini. If
Nx does not receive cluster_role within R seconds, it goes
back to WAIT_FOR_BUILD, and competes for initiation of
clustering from scratch after the B-second timer times out,
as described in Section IV-B1, and so does Nini. Therefore,
random node removals do not cause critical impact on CH
selection regardless of inconsistency. We then analyze a node
addition scenario. A peer node Ny that randomly joins the
physical topology is unknown by the initiator Nini during CH
selection, because Ny does not participate in the initiation of
clustering led by Nini in the first place (see Section IV-B1).
Ny will not be selected as CH even if it has the highest fit-
ness value. However, Ny is now in its WAIT_FOR_BUILD
state, which means it can lead its own or follow another
node’s initiation of clustering, starting over the clustering pro-
cess, or Ny can possibly hitchhike an overheard cluster during
its WAIT_FOR_BUILD period (see Section IV-D). Therefore,
random node additions do not compromise current CH selec-
tions and role assignments. Which cluster the newly added
node will belong to is quite random. In a word, the proposed
CH selection and role assignment procedure, together with the
timeout mechanism, have basic tolerance to node removals and
additions (see details in simulations in Section VI).

2) Effect on Routing After Clustering: In MANETs, nodes
are peers, i.e., end systems as well as routing devices. It is
required that every peer should maintain routing information
in advance if table-driven routing protocols (e.g., DSDV, desti-
nation sequenced distance vector) are adopted, or find routes in
an ad hoc manner if on-demand routing protocols (e.g., AODV,
ad hoc on-demand distance vector routing) are adopted. Either
way, peers have to conduct routing and data forwarding them-
selves. Once nodes are clustered with some CH, CH acts as
the “gateway” of the cluster. All controlled members in a
cluster rely on CH for both inner and intercluster data forward-
ing. Therefore, theoretically speaking, members store only
one default route that takes CH as the gateway, and forward
all traffic to it. That is to say, it is single-hop data routing
inside a cluster with CH as the “hub,” obviously. On the other
hand, CHs across the physical topology must conduct multihop
data forwarding, either to communicate with each other, or
to aggregate data to BS for remote process. Therefore, CHs
adopts multihop routing to address each other, much like ad
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hoc routing schemes [e.g., DSDV, AODV, dynamic source
routing (DSR)]. To summary, RANCE provides a hybrid
routing scheme after clustering—single-hop routing inside a
cluster and multihop routing across CHs. Routing scheme turns
from a flattened structure before clustering to a hierarchical
structure after clustering.

3) Scalability of RANCE: Suppose the radius of the radio
coverage of a node k is Dk, and the theoretical radio coverage
of a CH h can be acquired by

covh = πD2
h. (33)

The total area of the field for the network to be deployed
is determined by (34), where X and Y denote the width and
length, respectively

area = X · Y. (34)

Suppose, initially (i.e., at time t0), nodes are evenly dis-
tributed across the network. Therefore, the number of CHs
that are able to cluster all nodes is determined by

H = area

covh
= X · Y

πD2
h

. (35)

The average size of a cluster can be acquired by (36), given
that the total number of nodes is K

‖Vh(t0)‖ = K

H
= πD2

h

X · Y
· K. (36)

The nodes in a cluster are moving all the time from t0 to
t1. We calculate the average distance between members and
CH at time t1. Note that dk,h(t1) can be acquired by (4)

dav(t1) =
‖Vh‖∑
k=1

dk,h(t1). (37)

If dk,h(t1) < Dh holds true, it stochastically indicates mem-
bers tend to stay in the current cluster, and the size of the
cluster remains unchanged, if there do not exist node addi-
tions or removals at this time. If dk,h(t1) ≥ Dh holds true, the
size of the cluster is proportional to Dh

dav
, as revealed by

‖Vh(t1)‖ =
⎧⎨
⎩

πD2
h

X·Y · K = ‖Vh(t0)‖, if dk,h(t1) < Dh
πD3

h
X·Y·dav

· K = Dh
dav

· ‖Vh(t0)‖, if dk,h(t1) ≥ Dh.

(38)

For situation that dk,h(t1) < Dh, all nodes still belong to
some cluster at time t1, i.e., the following equation:

‖Vh(t1)‖ × H = πD2
h

X · Y
· K × X · Y

πD2
h

= K. (39)

Otherwise, some nodes are dynamically detached from CHs
at time t1, i.e., the following equation:

‖Vh(t1)‖ × H = πD3
h

X · Y · dav
· K × X · Y

πD2
h

= K · Dh

dav
< K. (40)

However, detaching can be swiftly detected by RANCE’s
fine-grained maintenance mechanism, and the on-demand
clustering or hitchhiking can be initiated as described in
Section IV-B. Therefore, it is believed that RANCE clusters a

Fig. 5. Preliminary hardware prototype of RANCE in previous works.

(a) (b)

(c)

Fig. 6. Mobile surveillance of a meteorological radar. (a) Cluster and the
radar. (b) Bird recognition. (c) Mobile surveillance around the radar.

very high percentage of all nodes, and provides good cluster-
ing scalability to the network size (see later in Section VI-D
for simulation details).

V. POSSIBLE APPLICATIONS

A. Mobile Surveillance of Unattended Assets

Some of RANCE’s basic functions (such as clustering)
have been preliminarily implemented on the Raspberry-based
platform to prototype the clustering protocol in hardware
environment in our previous works [33], [34], as shown in
Fig. 5.

We believe these prototypes can be deployed for collabora-
tive mobile surveillance over unattended facilities or assets.
For example, in our previous work [33], several wheeled
mobile nodes running early version of RANCE were deployed
in a meteorological site to monitor harmful animals that would
damage meteorological facilities. These nodes were clustered
to provide a full-angle, mobile, and collaborative surveil-
lance over meteorological facilities (e.g., radars) to reduce
the chance of blind spots [see Fig. 6(c)]. Some nodes were
equipped with image recognition functionalities, and others
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Fig. 7. Possible application of RANCE in IoT-based smart agriculture.

were responsible for data forwarding of image and recognized
results [see Fig. 6(b)].

B. Possible Applications in IoT

RANCE does not impose restrictions on link-layer spec-
ifications. Therefore, LPWAN [35] (low-power wide area
networks, e.g., LoRa and NB-IoT) technologies that are widely
adopted in IoT can also be used as the communication sub-
strate for RANCE, in addition to IEEE 802.15.4 usually
used in WSN/WPAN, 802.11-like technologies usually used
in MANET, etc. This paves the way for RANCE’s application
on top of IoT, as long as RANCE PDUs are encapsulated in
IoT packets, and RANCE agents are deployed on IoT devices.
On the one hand, IoT settles the networking between smart
objects. On the other hand, RANCE on top of IoT deals
with task-oriented clustering and collaboration, enriching IoT’s
functionalities. One of IoT’s remarkable applications is the
smart agriculture that requires long-term mobile surveillance
over unattended agricultural assets. We envision RANCE’s
application in IoT-based smart agriculture as shown in Fig. 7.
In this example, mobile devices (e.g., UAVs and vehicles)
and fixed IoT devices (e.g., various sensors and cameras)
form a hybrid cluster using RANCE. Agricultural crops can
be full-angle monitored with both fixed and mobile devices.
Harmful animals can be identified by devices with recogni-
tion functions, and recognized results are sent to CH (i.e., the
UAV on the upper left corner) for further process. CH can
then command some node (e.g., the vehicle on the lower left
corner) with alarm device to attempt to drive these animals
away. Mobile nodes can even have fixed IoT devices under
surveillance to check if they work properly. These collabo-
rative functions can be derived from clustering by RANCE,
and orchestrated as a service function chain. In addition, IoT
devices can be clustered in an on-demand manner with other
mobile devices using RANCE, if current mobile devices move
away. In a word, RANCE is able to help build a mobile ad
hoc IoT with heterogeneous devices.

Fig. 8. OMNeT++ simulation.

VI. EVALUATION

To evaluate the functionalities and performances, we imple-
mented RANCE using OMNeT++ and INET framework, we
conducted in this article a series of simulations with compari-
son against four LEACH-like protocols, namely, LEACH [4],
DMH-LEACH [9], LEACH-C [4], and CEECR [30] (see
Section II). These five protocols are representative in that
RANCE is a randomly centralized protocol, and LEACH
and DMH-LEACH are distributed ones, and LEACH-C and
CEECR are centralized ones. Simulations were conducted
in a wireless mobile environment where IEEE 802.15.4 was
adopted for the data-link and physical layers. Nodes were ran-
domly distributed in a constrained space initially, and moving
continuously in a speed uniformly distributed between 10 and
20 m per second, with a direction change uniformly distributed
between 0◦ and 30◦. Several simulation sets were conducted,
each of which lasts 5 h. For LEACH-like simulations, the
duration of each round is 200 s, and CH percentage p is 0.2.

A. Simulation Set 1: Fixed Dimensions and Fixed Size

The purpose of simulation set 1 was to explain how RANCE
works, and compare the working procedure of RANCE and
LEACH-like protocols, through the runtime status of a specific
node[0] in a small-scale 802.15.4 wireless network. The space
dimensions of the environment are fixed (1600×1600 m2) and
the wireless network has a fixed number of nodes (ten mobile
nodes), as shown in Fig. 8. Black nodes represent selected CHs
while gray ones represent cluster members. The simulation
results are shown in Fig. 9. Performances of these protocols
were compared with regard to the following metrics.

1) Clustered Time: Results are shown in Fig. 9(a). RANCE
works in a randomly centralized fashion in which every node
has an even chance to initiate cluster formation. In addition,
cluster relationships are maintained constantly through bidi-
rectional heartbeats. Once any member gets detached, CH and
the member itself quickly notices it and starts the clustering
process on-demand. Therefore, we can see from the figure



CHEN et al.: RANCE: A RANDOMLY CENTRALIZED AND ON-DEMAND CLUSTERING PROTOCOL 23653

(a) (b)

(c) (d)

Fig. 9. Runtime status of node[0] using different protocols, fixed space dimension, and fixed network size. (a) Clustered time. (b) Role distribution. (c) Energy
consumption. (d) Cluster relationship consistency.

that RANCE has a clustered percentage as high as 99.2%
[where numeric value 1 stands for “clustered” in Fig. 9(a)].
Meanwhile, RANCE works in an event-driven manner in
which the (re-)clustering occurs only when there happens
something that indicates the necessity for clustering, such as
moving out of the CH’s radio coverage, weak signal strength,
low battery, etc. So we can see from the figure that the
RANCE’s clustered time distribution was irregular and event
triggered. Therefore, unnecessary CH handovers are reduced
at large in RANCE.

On the contrary, LEACH-like protocols work in a time-
triggered manner where (re-)clustering occurs repeatedly when
the round duration times out, necessary or not. So we can
see from Fig. 9(a) that the clustered time distributions were

very regular. However, the clustered time percentages of
LEACH-like protocols were lower than RANCE due to their
lack of cluster relationships maintenance, causing unaware-
ness of detached nodes. Among LEACH-like ones, centralized
protocols (LEACH-C and CEECR) had better percentages,
88.0% and 78.1%, respectively, since nodes can always contact
remote BS for clustering, though at the cost of higher energy
consumption due to remote communication with BS. Among
others, CEECR tends to select more stable (i.e., less mobile)
nodes as CHs, which lowers the clustered time percentage
in a mobile environment because dynamic radio coverage is
smaller due to weaker mobility. Distributed protocols (LEACH
and DMH-LEACH) have even lower clustered time percent-
ages, 77.8% 77.1%, indicating that the stochastic approach for
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Fig. 10. Runtime network status using different protocols, fixed space dimension, and variable network size.

CH selection is not very applicable in a mobile environment.
In a word, the key of RANCE’s clustered time advantage over
other counterparts in a mobile wireless environment is the clus-
ter relationship maintenance (Section IV-C), which is absent
in LEACH-like protocols.

2) Role Distribution: Role distribution represents how and
when the lifetime of a node is divided into different roles,
as shown in Fig. 9(b). Numeric values 1–5 represent roles
of unspec, peer, initiator, member, and head, respectively, as
specified in Table III. We can see from the figure that role
distribution of LEACH-like protocols is more even, yet role
switching is more frequent, causing cluster relationships to be
re-established more often. This is beneficial to energy con-
sumption balancing, but, otherwise, to continuous services,
which are likely to require stable CH-member relationships.
RANCE focuses on prolonging stable CH-member relation-
ships, to better support continuous services. It conducts CH
handovers in an on-demand manner when current CHs are no
longer suitable.

3) Energy Consumption: Energy consumption is evaluated
by the residual energy of a node, as shown in Fig. 9(c).
Among LEACH-like ones, centralized protocols (LEACH-C
and CEECR) have to report node status, such as energy,
speed, etc., to the remote BS that selects CHs accord-
ingly. Long-range communication is very costly, thus high
energy consumption for LEACH-C (144.4 J) and CEECR
(148.6 J). Distributed protocols adopt the stochastic self elec-
tion approach without counseling the remote BS and advertise
the result in the local radio coverage, thus lower energy con-
sumption (LEACH 258.7.2 J and DMH-LEACH 256.7 J).
RANCE (231.7 J) conducts cluster relationship maintenance
constantly, thus higher consumption compared with distributed
protocols, but still lower than centralized protocols because
RANCE does not require long-range communication with BS.

4) Cluster Relationship Consistency: The results are shown
in Fig. 9(d). The existence of inconsistency might be caused
by delayed or unsuccessful arrivals of heartbeat packet inter-
actions in RANCE, and the absence of maintenance dur-
ing cluster lifetime in LEACH-like protocols, respectively.
The cluster relationship maintenance procedure designed by
RANCE enables it to distinguish unclustered members (i.e.,
false members) through heartbeat packets and eliminate them

in a timely manner, providing consistency as high as 94.3%.
For LEACH-like protocols, CHs have to wait for the the
beginning of the next round to implicitly eliminate false
members. During this period, CHs are not aware of false
CH-member relationships, thus the inconsistency. Distributed
protocols LEACH and DMH-LEACH provide consistency as
much as 92.2% and 92.3%, respectively, whereas centralized
protocols LEACH-C and CEECR provide consistency as much
as 89.9% and 90.8%, respectively, lower than RANCE.

B. Simulation Set 2: Fixed Dimensions and Variable Size

The purpose of simulation set 2 was to compare perfor-
mances of these protocols, in larger networks, where the space
dimensions were fixed as 1600 m × 1600 m and the network
size increased by 20 for every simulation run, starting from 20.
The results are shown in Fig. 10, which exhibits the average
of all nodes’ corresponding metrics at the end of simulations.

With regard to clustered status (the left subfigure), we can
see that along with the increment of nodes, the clustered
percentages (i.e., how long a node stays attached to a clus-
ter as opposed to its total lifetime) of LEACH-like protocols
increased, and converged when the number of nodes reaches
about 100. This indicated that LEACH-like protocols work
better in denser networks. Distributed protocols (LEACH and
DMH-LEACH) exhibited remarkable increment of clustered
percentage (96.4% and 97.2% for 100 nodes), and surpassed
centralized protocols (LEACH-C 88.8% and CEECR 90.0%).
It also indicated that centralized protocols do not scale well
to larger networks. RANCE exhibited excellent performance
for clustered percentage (above 99% for all scenarios), almost
irrelevant to the number of nodes due to the on-demand
clustering feature enabled by fine-grained maintenance.

With regard to energy consumption (the middle subfigure),
LEACH (273.2 J, when the number of nodes reached 100) and
DMH-LEACH (273.0 J) outperformed other protocols since
they do not have to undertake heartbeat interactions as does
RANCE (198.3 J), nor the long-range communication with
BS in centralized protocols (LEACH-C 174.8 J and CEECR
177.3 J). Meanwhile, RANCE offered very stable energy con-
sumption that outperformed LEACH-C and CEECR. Notice
that in Fig. 10, there was less energy consumption with the
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Fig. 11. Runtime network status using different protocols, variable space dimension, and fixed network size.

increment of node number for LEACH-like protocols. The rea-
son for this phenomenon might be that for a denser network,
CH advertisements are more likely to be received by other
nodes (i.e., CHs competing for members). It results in higher
percentage of CHs that hold a smaller cluster with fewer mem-
bers. Smaller clusters require less energy for inner cluster
communications. However, energy consumption for LEACH-
like protocols eventually converged when the number of nodes
reaches about 100.

With regard to cluster relationship consistency (the right
subfigure), RANCE outperformed other protocols with the
help of fine-grained maintenance that eliminates inconsistent
CH-members relationships stored in CHs’ cluster_rel in time.
RANCE provides stable consistency even though the number
of nodes reached 100 (about 90%) whereas other protocols had
demonstrated drops of consistency, especially for distributed
protocols (LEACH 72.8% and DMH-LEACH 71.7%).

C. Simulation Set 3: Variable Dimensions and Fixed Size

The purpose of simulation set 3 was to compare perfor-
mances of these protocols, in larger networks, where the
network size was fixed as 20, and the space dimensions
increased by 200 m for each side in every simulation run, start-
ing from 1200 m × 1200 m. The results are shown in Fig. 11,
which exhibits the average of all nodes’ corresponding metrics
at the end of simulations.

With regard to clustered time (the left subfigure), we can
see that along with the increment of the space dimensions,
the clustered percentages of LEACH-like protocols had very
obvious drops, especially for centralized protocols (LEACH-C
and CEECR). This was consistent with the analysis as revealed
in simulation set 2 that LEACH-like protocols work better in
denser networks, but otherwise in more scattered ones. The
reason for this phenomenon is that for distributed protocols
(LEACH and DMH-LEACH), the distribution of CHs relies
on stochastic approaches, in which CHs are not guaranteed
to be evenly placed among nodes for every round. For exam-
ple, CHs might gather tightly in a certain area in extreme
cases. Nodes far away from these gathered CHs are likely
to get detached. It also indicated that centralized protocols
(LEACH-C and CEECR) are not very scalable to wider space
dimensions where nodes are mobile. Meanwhile, the BS had

its radio coverage limit, beyond which packets necessary for
clustering cannot reach nodes, thus higher rate of detached
nodes. RANCE exhibited good performance in clustered per-
centage due to that detached nodes initiate cluster formation
autonomously in a timely fashion.

With regard to energy consumption (the middle subfigure),
there was a noticeable phenomenon, which appeared contra-
dictory to intuition in that it cost less energy for centralized
protocols (LEACH-C and CEECR) in wider space, against
the radio model as described in 16. Actually, there was a rea-
sonable explanation for this. Since there were more detached
nodes for LEACH-C and CEECR, CHs had fewer attached
members in their own clusters, thus lower energy consump-
tion. That is to say, the seemingly drop of energy consumption
for centralized protocols, on the contrary, indicated again their
inapplicability in clustering for wider space dimensions.

Meanwhile, for larger dimensions, nodes are more scattered.
Due to limited radio coverages, nodes beyond these limits are
hidden terminals to each other, thus no chance to be mutually
clustered. That is to say, along with the increment of space,
there might be a relatively “fixed” number of nodes in a clus-
ter, reaching the balance between the cluster size and space
dimensions. It further reaches the balance between the increase
of energy consumption due to long transmission range, and
the decrease of energy consumption due to fewer number
members in a cluster. This analysis applies for RANCE and
distributed protocols (LEACH and DMH-LEACH), neither of
which require fixed BS.

With regard to cluster relationship consistency (the right
subfigure), we can see from the results that all protocols had
gradual drops in wider space, because nodes were more likely
to be placed at the edge of each other’s radio coverage, result-
ing in higher possibility to get detached from CHs. RANCE
provided better consistency performance due to its heartbeats-
based maintenance that timely discovered and removed falsely
attached members from CHs’ cluster_rel.

D. Simulation Set 4: Scalability Comparison in Even Larger
Networks

The purpose of simulation set 4 was to compare cluster-
ing scalability of different protocols in even larger networks
with 100–300 nodes. The space dimensions were 1600 m
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Fig. 12. Runtime network scalability using different protocols, fixed space dimension, and variable network size.

×1600 m. The results are shown in Fig. 12, which exhibits
the number of clustered nodes among all nodes to demon-
strate how protocols scale to the network size. On average,
RANCE clustered about 97 nodes in a 100-node network, 178
nodes in a 200-node network, and 270 nodes in a 300-node
network. It can be seen that the clustering performance of
RANCE scales well with the network size. The reason for
its good scalability is that RANCE provides a fine-grained
maintenance mechanism, and conducts on-demand clustering
in a timely fashion once detached nodes are discovered. Also,
existing clusters can be hitchhiked by detached nodes through
the hitchhiking mechanism. LEACH clustered about 54 nodes
in a 100-node network, 81 nodes in a 200-node network, and
106 nodes in a 300-node network, on average. The reason for
this phenomenon is that LEACH (and possibly other similar
distributed clustering protocols) selects CHs in a stochastic
approach. CHs might not be chosen where they are most
needed to cover as many unclustered nodes. DMH-LEACH
provided similar clustering scalability. Meanwhile, centralized
clustering protocols provided even lower clustering scalability.
LEACH-C clustered about 35 nodes in a 100-node network,
40 nodes in a 200-node network, and 42 nodes in a 300-node
network. It can be seen that LEACH-C did not scale well with
network size. CEECR provided similar clustering scalability.
One way to improve the scalability of LEACH-like protocols
is to select more CHs [i.e., assigning larger p in (1)]. However,
to define an optimal value for p a prior is not a trivial task in
a dynamic and mobile wireless network.

To summary, RANCE outperforms LEACH-like protocols
with regard to clustering scalability in larger networks. The
major reason is that the number of CHs in RANCE is adaptive
to the topology changes due to on-demand clustering, while
that in LEACH-like protocols is determined a prior and usually
stays unchanged during the network lifetime.

VII. CONCLUSION

In this article, we proposed RANCE, a randomly cen-
tralized and on-demand clustering protocol for MANETs.
Compared with conventional LEACH-like protocols, RANCE
provides several promising features, which we believe fit
well in applications in MANETs, compared with LEACH-like
protocols.

1) RANCE’s random centralization guarantees the optimal-
ity when selecting CHs. In addition, the role to centrally
and optimally select CHs is only competed in the local
mobile wireless network without evolving remote BS to
avoid high energy consumption.

2) RANCE’s fine-grained maintenance guarantees on-
demand clustering instead of round-based CH handovers
seen in LEACH-like protocols. It offers longer clus-
tered time thus better support for continuous services
and collaborative tasks. It also provides good scalability
in larger network. In addition, it also improve the consis-
tency between logical cluster relationships and physical
topologies.

The simulation results show that RANCE achieves these
features at minimum energy cost. It has good potentials
in mobile wireless environments that are infrastructureless,
for continuous missions and internodes collaborations that
involve intensive mobility, such as unmanned collaborative
surveillance.

In our future works, we are going to study the following
related issue. For multifunctional and time-sequenced tasks
(such as collaboration between drones with different equip-
ments in battlefields), a number of functionally heterogeneous
nodes might be required to be orchestrated to execute a series
of subtasks in a given order. This exhibits functionally con-
strained composition logics during clustering. In this article,
functional heterogeneity and constraints are not studied for
these complex tasks. Functionally heterogeneous orchestration
of nodes and its optimization can be modeled as service func-
tion chaining problems [36], and will be studied in our future
work.

ACKNOWLEDGMENT

The authors would like to thank the time and efforts by the
editors and reviewers.

REFERENCES

[1] D. S. Lakew, U. Sa’ad, N.-N. Dao, W. Na, and S. Cho, “Routing in flying
ad hoc networks: A comprehensive survey,” IEEE Commun. Surveys
Tuts., vol. 22, no. 2, pp. 1071–1120, 2nd Quart., 2020.

[2] K. Streit, N. Rodday, F. Steuber, C. Schmitt, and G. D. Rodosek,
“Wireless SDN for highly utilized MANETs,” in Proc. Int. Conf.
Wireless Mobile Comput. Netw. Commun. (WiMob), 2019, pp. 226–234.



CHEN et al.: RANCE: A RANDOMLY CENTRALIZED AND ON-DEMAND CLUSTERING PROTOCOL 23657

[3] P. Rawat and S. Chauhan, “Clustering protocols in wireless sensor
network: A survey, classification, issues, and future directions,” Comput.
Sci. Rev., vol. 40, May 2021, Art. no. 100396.

[4] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An
application-specific protocol architecture for wireless microsensor
networks,” IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 660–670,
Oct. 2002.

[5] S. Umbreen, D. Shehzad, N. Shafi, B. Khan, and U. Habib, “An energy-
efficient mobility-based cluster head selection for lifetime enhancement
of wireless sensor networks,” IEEE Access, vol. 8, pp. 207779–207793,
2020.

[6] A. Verma, S. Kumar, P. R. Gautam, T. Rashid, and A. Kumar,
“Fuzzy logic based effective clustering of homogeneous wireless sen-
sor networks for mobile sink,” IEEE Sensors J., vol. 20, no. 10,
pp. 5615–5623, May 2020.

[7] Y. Chang, H. Tang, B. Li, and X. Yuan, “Distributed joint optimization
routing algorithm based on the analytic hierarchy process for wireless
sensor networks,” IEEE Commun. Lett., vol. 21, no. 12, pp. 2718–2721,
Dec. 2017.

[8] Y. Zhang, T. T. Liu, H. G. Zhang, and Y. A. Liu, “LEACH-R: LEACH
relay with cache strategy for mobile robot swarms,” IEEE Wireless
Commun. Lett., vol. 10, no. 2, pp. 406–410, Feb. 2021.

[9] M. Elmonser, H. Ben Chikha, and R. Attia, “Mobile routing algo-
rithm with dynamic clustering for energy large-scale wireless sensor
networks,” IET Wireless Sens. Syst., vol. 10, no. 5, pp. 208–213, 2020.

[10] G. Tanganelli, A. Virdis, and E. Mingozzi, “Enabling multi-hop forward-
ing in 6LoWPANs through software-defined networking,” in Proc. IEEE
20th Int. Symp. World Wireless Mobile Multimedia Netw. (WoWMoM),
2019, pp. 1–9.

[11] J. Wang and X. Zhang, “Cooperative MIMO-OFDM-based exposure-
path prevention over 3D clustered wireless camera sensor networks,”
IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 4–18, Jan. 2020.

[12] C. Wang, Y. Zhang, X. Wang, and Z. Zhang, “Hybrid multihop partition-
based clustering routing protocol for WSNs,” IEEE Sens. Lett., vol. 2,
no. 1, Mar. 2018, Art. no. 7500504.

[13] I. Sohn, J.-H. Lee, and S. H. Lee, “Low-energy adaptive clustering hier-
archy using affinity propagation for wireless sensor networks,” IEEE
Commun. Lett., vol. 20, no. 3, pp. 558–561, Mar. 2016.

[14] V. Rajpoot et al., “Analysis of machine learning based LEACH robust
routing in the edge computing systems,” Comput. Elect. Eng., vol. 96,
Dec. 2021, Art. no. 107574.

[15] X. Cai, S. Geng, D. Wu, L. Wang, and Q. Wu, “A unified heuristic
bat algorithm to optimize the LEACH protocol,” Concurrency Comput.
Pract. Exp., vol. 32, no. 9, p. e5619, 2020.

[16] A. Mehmood, Z. Lv, J. Lloret, and M. M. Umar, “ELDC: An artificial
neural network based energy-efficient and robust routing scheme for
pollution monitoring in WSNs,” IEEE Trans. Emerg. Topics Comput.,
vol. 8, no. 1, pp. 106–114, Jan.–Mar. 2020.

[17] Y. Jaradat, M. Masoud, and I. Jannoud, “A mathematical framework of
optimal number of clusters in 3D noise-prone WSN environment,” IEEE
Sensors J., vol. 19, no. 6, pp. 2378–2388, Mar. 2019.

[18] S. Tanwar, S. Tyagi, N. Kumar, and M. S. Obaidat, “LA-MHR:
Learning automata based multilevel heterogeneous routing for oppor-
tunistic shared spectrum access to enhance lifetime of WSN,” IEEE
Syst. J., vol. 13, no. 1, pp. 313–323, Mar. 2019.

[19] T. Kaur and D. Kumar, “Particle swarm optimization-based unequal and
fault tolerant clustering protocol for wireless sensor networks,” IEEE
Sensors J., vol. 18, no. 11, pp. 4614–4622, Jun. 2018.

[20] K. G. Omeke et al., “DEKCS: A dynamic clustering protocol to pro-
long underwater sensor networks,” IEEE Sensors J., vol. 21, no. 7,
pp. 9457–9464, Apr. 2021.

[21] C. Hao and C. Jiang, “Robust wireless sensor network against strong
electromagnetic pulse,” IEEE Sensors J., vol. 21, no. 4, pp. 5572–5579,
Feb. 2021.

[22] X. Lin, W. Mei, and R. Zhang, “A new store-then-amplify-and-forward
protocol for UAV mobile relaying,” IEEE Wireless Commun. Lett., vol. 9,
no. 5, pp. 591–595, May 2020.

[23] M. S. Bahbahani and E. Alsusa, “A cooperative clustering protocol with
duty cycling for energy harvesting enabled wireless sensor networks,”
IEEE Trans. Wireless Commun., vol. 17, no. 1, pp. 101–111, Jan. 2018.

[24] Y. Fathy and P. Barnaghi, “Quality-based and energy-efficient data com-
munication for the Internet of Things networks,” IEEE Internet Things
J., vol. 6, no. 6, pp. 10318–10331, Dec. 2019.

[25] J. Luo, Y. Chen, M. Wu, and Y. Yang, “A survey of routing protocols
for underwater wireless sensor networks,” IEEE Commun. Surveys Tuts.,
vol. 23, no. 1, pp. 137–160, 1st Quart., 2021.

[26] R. Prajapat, R. N. Yadav, and R. Misra, “Energy-efficient k-hop clus-
tering in cognitive radio sensor network for Internet of Things,” IEEE
Internet Things J., vol. 8, no. 17, pp. 13593–13607, Sep. 2021.

[27] P. Neamatollahi, M. Naghibzadeh, S. Abrishami, and M.-H. Yaghmaee,
“Distributed clustering-task scheduling for wireless sensor networks
using dynamic hyper round policy,” IEEE Trans. Mobile Comput.,
vol. 17, no. 2, pp. 334–347, Feb. 2018.

[28] M. Ahmad, A. Hameed, A. A. Ikram, and I. Wahid, “State-of-the-art
clustering schemes in mobile ad hoc networks: Objectives, challenges,
and future directions,” IEEE Access, vol. 7, pp. 17067–17081, 2019.

[29] S. Varshney and R. Kuma, “Variants of LEACH routing protocol in
WSN: A comparative analysis,” in Proc. 8th Int. Conf. Cloud Comput.
Data Sci. Eng. (Confluence), 2018, pp. 199–204.

[30] J. Zhang and R. Yan, “Centralized energy-efficient clustering routing
protocol for mobile nodes in wireless sensor networks,” IEEE Commun.
Lett., vol. 23, no. 7, pp. 1215–1218, Jul. 2019.

[31] U. Baroudi, “Robot-assisted maintenance of wireless sensor networks
using wireless energy transfer,” IEEE Sensors J., vol. 17, no. 14,
pp. 4661–4671, Jul. 2017.

[32] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,”
in Proc. 33rd Annu. Hawaii Int. Conf. Syst. Sci., vol. 2, 2000, p. 10.

[33] X. Chen, T. Wu, and Y. Tan, “The SDN-governed ad hoc swarm for
mobile surveillance of meteorological facilities,” in Quality, Reliability,
Security and Robustness in Heterogeneous Systems. Cham, Switzerland:
Springer Int., 2021, pp. 57–75.

[34] X. Chen, T. Wu, G. Sun, and H. Yu, “Software-defined MANET swarm
for mobile monitoring in hydropower plants,” IEEE Access, vol. 7,
pp. 152243–152257, 2019.

[35] A. Ikpehai et al., “Low-power wide area network technologies for
Internet-of-Things: A comparative review,” IEEE Internet Things J.,
vol. 6, no. 2, pp. 2225–2240, Apr. 2019.

[36] G. Sun, Z. Xu, H. Yu, X. Chen, V. Chang, and A. V. Vasilakos, “Low-
latency and resource-efficient service function chaining orchestration in
network function virtualization,” IEEE Internet Things J., vol. 7, no. 7,
pp. 5760–5772, Jul. 2020.

Xi Chen received the B.S. and Ph.D. degrees
in computer science from Southwest Jiaotong
University, Chengdu, China, in 2007 and 2013,
respectively.

He is an Associate Professor with the School
of Computer Science and Engineering, Southwest
Minzu University, Chengdu, China. From 2011 to
2012, he was a visiting and joint Ph.D. student with
the School of Computer Science and Engineering,
The University of New South Wales, Kensington,
NSW, Australia. He is also a Postdoctoral Fellow

with the School of Information and Communication Engineering, University of
Electronic Science and Technology of China, Chengdu. His research interests
include software-defined networking, network function virtualization, service
function chaining, cloud computing, IoT, wireless networks, and machine
learning.

Gang Sun (Member, IEEE) received the Ph.D.
degree in communication and information engineer-
ing from the University of Electronic Science and
Technology of China, Chengdu, China, in 2012.

He is a Professor with the University of
Electronic Science and Technology of China. He
has coauthored more than 90 technical publications
including paper in refereed journals and confer-
ences, invited papers and presentations, and book
chapters. His research interests include network
virtualization, cloud computing, high performance

computing, parallel and distributed systems, ubiquitous/pervasive computing,
and intelligence and cyber security.

Prof. Sun has also edited special issues at top journals, such as Future
Generation Computer Systems and Multimedia Tool and Applications. He
has served as a Reviewer for IEEE TRANSACTIONS ON INDUSTRIAL

INFORMATICS, ACM/IEEE TRANSACTIONS ON NETWORKING, IEEE
INTERNET OF THINGS JOURNAL, IEEE TRANSACTIONS ON NETWORK

SERVICES MANAGEMENT, IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS, IEEE Wireless Communications Magazine, IEEE
COMMUNICATIONS LETTERS, Information Fusion, Future Generation
Computer Systems, Journal of Network and Computer Applications, Journal
of Supercomputing, Journal of Parallel and Distributed Computing, and
Chinese Journal of Electronics.



23658 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 23, 1 DECEMBER 2022

Tao Wu received the B.S. and Ph.D. degrees
in computer science from Southwest Jiaotong
University, Chengdu, China, in 2007 and 2014,
respectively.

She is an Associate Professor with the School
of Computer Science, Chengdu University of
Information Technology, Chengdu. Her research
interests include machine learning, wireless
networks, and IoT.

Ling Liu received the Ph.D. degree in communi-
cation and information system from the University
of Electronic Science and Technology of China,
Chengdu, China, in 2021.

She is currently a Lecturer with the College
of Electronic and Information, Southwest Minzu
University, Chengdu. Her research interests include
distributed machine learning, network topology, and
network scheduling and optimization.

Hongfang Yu (Member, IEEE) received the
B.S. degree in electrical engineering from Xidian
University, Xi’an, China, in 1996, and the M.S. and
Ph.D. degrees in communication and information
engineering from the University of Electronic
Science and Technology of China, Chengdu, China,
in 1999 and 2006, respectively.

She is a Professor and a Doctoral Supervisor
with the School of Information and Communication
Engineering, University of Electronic Science and
Technology of China. From 2009 to 2010, she was

a Visiting Scholar with the Department of Computer Science and Engineering,
University at Buffalo, Buffalo, NY, USA. Her research interests include
software-defined networking, network function virtualization, service function
chaining, and cloud computing.

Mohsen Guizani (Fellow, IEEE) received the M.S.
and Ph.D. degrees in electrical and computer engi-
neering from Syracuse University, Syracuse, NY,
USA.

He is currently a Professor and an Associate
Provost with the Mohamed Bin Zayed University
of Artificial Intelligence, Abu Dhabi, UAE. His
research interests include applied machine learning,
smart city, wireless communications/networking,
cloud computing, security, and its application to
healthcare systems.

Prof. Guizani is currently serving on the editorial boards of many IEEE
transactions and magazines.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


