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Abstract—Nowadays wireless communication is rapidly re-
shaping entire industry sectors. In particular, mobile edge com-
puting (MEC) as an enabling technology for industrial Internet of
things (IIoT) brings powerful computing/storage infrastructure
closer to the mobile terminals and, thereby, significantly lowers
the response latency. To reap the benefit of proactive caching at
the network edge, precise knowledge on the popularity pattern
among the end devices is essential. However, (i) the spatiotem-
poral variability of content popularity, (ii) the data deficiency in
privacy-preserving system, (iii) the costly manual labels in super-
vised learning as well as (iv) the not independent and identically
distributed (non-i.i.d.) user behaviors pose tough challenges to the
acquisition and prediction of content popularities. In this article,
we propose an unsupervised and privacy-preserving popularity
prediction framework for MEC-enabled IIoT to achieve a high
popularity prediction accuracy while addressing the challenges.
Specifically, the concepts of local and global popularities are
introduced and the time-varying popularity of each user is
modelled as a model-free Markov chain. On this basis, we derive
and validate the essential relationship between the local and
global popularities and then propose an unsupervised recurrent
federated learning (URFL) algorithm to predict the distributed
popularity while achieving privacy preservation and unsuper-
vised training. Moreover, a federated loss-weighted averaging
(FedLWA) scheme for the parameter aggregation is further
designed to alleviate the problem of non-i.i.d. user behaviors.
Simulations indicate that the proposed framework can enhance
the prediction accuracy in terms of a reduced root-mean-squared
error by up to 60.5%–68.7% compared to other baseline methods,
i.e., recommendation algorithms, centralized learning algorithms,
and other distributed learning algorithms. Additionally, manual
labeling and violation of users’ data privacy are both avoided.

Manuscript received XXX XX, XXXX; revised XXX XX, XXXX; ac-
cepted XXX XX, XXXX. This work was supported in part by the National
Natural Science Foundation of China under Grant Nos. 62001103 and
61720106003, and the National Key R&D Program of China under Grant No.
2018YFB1800801. This work was also supported in part by the Australian
Research Council’s Project funding scheme under LP160101244. Part of this
work has been accepted for presentation at the IEEE Global Communications
Conference (GLOBECOM): Machine Learning for Communications Sympo-
sium, Madrid, Spain, December 2021 [1]. (Corresponding authors: Y. Huang;
S. Liu.)

C. Zheng, S. Liu, Y. Huang, and L. Yang are with the National Mobile
Communications Research Laboratory, School of Information Science and
Engineering, Southeast University, Nanjing 210096, China, and also with the
Purple Mountain Laboratories, Nanjing 211111, China (e-mail: {czheng; s.liu;
huangym; lxyang}@seu.edu.cn).

W. Zhang is with School of Electrical Engineering and Telecommunica-
tions, The University of New South Wales, Sydney, NSW 2052, Australia,
and also with the Purple Mountain Laboratories, Nanjing 211111, China (e-
mail: w.zhang@unsw.edu.au).

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Index Terms—Industrial Internet of things (IIoT), content
popularity, mobile edge computing (MEC), privacy preservation,
federated learning.

I. INTRODUCTION

THE emerging industrial Internet of things (IIoT), also

colloquially known as Industry 4.0, interconnects isolated

industrial assets by leveraging the growing ubiquity of wireless

communication technologies. By harvesting the rich supply

of data from various networked embedded sensors, this new

paradigm promises the opportunity to revolutionize production

and manufacturing [2], [3]. However, to process such an

enormous amount of data and to handle the massive requests

generated by ubiquitous wireless devices especially under

the stringent requirements of reliability, latency, security and

privacy, are incredibly challenging. Mobile edge computing

(MEC), which co-locates storage and processing resources

at the network edge, represents an effective framework to

provision IIoT services [4] and to mitigate the surging traffic

burden of the data centers [5], [6]. Dense deployment of edge

nodes (ENs), i.e., radio access points or micro base stations,

allows proximal and immediate access to the IIoT services.

In an information-centric networking, proactive edge caching

(EC) is considered a cost-effective approach to address the

backhaul bottleneck problem [7] and to reduce the content

retrieval/handover latency [8].

The explorations of optimal EC policies in MEC-enabled

IIoT networks have been investigated in many previous studies

[9]–[14]. However, many of relevant works, i.e., [9]–[11],

assume that the content popularity can be a priori given and

remains constant during the services, which is actually incon-

sistent with the reality. To be more realistic, some works [12]–

[14] have considered the unknown popularity and explored the

end-to-end learning approach to learn the EC policy directly

from the request data so as to avoid the popularity prediction.

Although circumventing popularity prediction by introducing

the end-to end machine learning is indeed a research direction

of the EC policy optimization, the popularity reflects the

inherent pattern of user interests and directly determines the

generation of content requests and thus, plays the most direct

and decisive role in the EC policy. Significant improvements

of EC performance provided by the popularity prediction have

been demonstrated in literatures [15]–[17]. Therefore, in this

paper, we focus on the investigation of popularity prediction.

Generally, content popularity depends on the user interest,

http://arxiv.org/abs/2207.00755v2
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which is complicated and spatiotemporal varying and, thus,

is unavailable in advance no matter which caching policy is

applied [18]. When considering the spatiotemporal varying

characteristic of content popularities in the real world, the per-

formance of EC policies is largely determined by the selection

mechanism of popular data that is worthwhile caching from

a massive deluge of data traffic, which in turn relies on the

accuracy of popularity prediction [15], [16], [19].

The potential of the popularity prediction has attracted

the attentions of researchers and many progresses have been

achieved in relevant works, e.g., [20]– [33]. However, there

are still open challenges for the popularity prediction. 1) Spa-

tiotemporal variability: Due to the complex and changeable

subjective attributes of end users/devices such as the subjective

interests of human and the intrinsic task characteristics of

devices, the content popularity is spatiotemporal varying and

pose tough challenges to its prediction accuracy. 2) Privacy

preservation: In many scenarios such as the healthcare and

automotive-related industries, the terminal data is private and

needs to be protected from external access. Thus, privacy re-

quirements prevent the data sharing among devices and center

servers, which leads to the data deficiency for the data-driven

centralized popularity prediction methods. 3) Costly manual

labeling: Caused by the unobservability of popularity in the

realistic environment, labelling popularities in manual for the

popularity prediction is costly and challenging, which brings

a technical bottleneck to many prediction approaches based

on supervised learning. 4) Not independent and identically

distributed (non-i.i.d.) behaviors: Due to the subjectivity of

user interests, user behaviors are non-i.i.d., which can violate

the assumption in machine learning that datas are indepen-

dent and identically distributed and sequentially causes many

issues, i.e., feature distribution skew, concept drift, quantity

skew, etc., for learning-based prediction methods.

In the light of the above observations, the objective of this

study is to design a distributed deep learning algorithm to

predict the dynamic content popularities in a MEC-enabled

IIoT system while preserving the data privacy of end devices

and circumventing the costly manual labeling. To explore the

insightful relations between the local and global popularities

is another important consideration in this paper. To this end,

the mathematical derivation and simulation validation of the

relations among the popularities in system are provided, and

a novel unsupervised recurrent federated learning (URFL)

algorithm with a novel federated loss-weighted averaging

(FedLWA) parameter aggregation scheme are also proposed.

The main technical contributions of this work are summarized

as follows.

• We respectively introduce the time-varying local and

global popularities in the local user and MEC server sides

to make the MEC system more closely aligned with real-

ity. Furthermore, we derive and validate the mathematical

relationship between the local and global popularities, and

reveal the fundamental difficulty in inferring the global

popularity under the privacy-preserving constraint.

• We design the learning node architecture in the FL

framework by embedding the AE module, which realizes

unsupervised learning without costly manual labeling. To

effectively extract the underlying temporal information in

the historical requests, long short-term memory (LSTM)

cells are adopted in the AE module.

• We propose a novel URFL algorithm on the basis of the

FL architecture to perform offline training and online

realtime prediction of the distributed popularities. The

proposed URFL algorithm breaks the consistency require-

ment on model inputs between local and global sides

in the typical FL framework and realizes the distributed

training and prediction without any external access to the

historical requests of local users except themselves, so as

to better preserve user privacy.

• On the basis of the proposed URFL algorithm, we further

design a FedLWA scheme for the parameter aggregation

to alleviate the problem of non-i.i.d. user behaviors con-

sidered in the investigated scenario and, thereby, further

reduce the prediction error of popularities.

The rest of this paper is organized as follow. Section II

reviews the related works. The system model is established

in Section III. Then, Section IV introduces the problem

formulation and the proposed scheme. In Section V, simulation

results and discussions are provided. This article is concluded

in Section VI.

II. RELATED WORKS

A. Popularity Prediction

The complex and varied user interest/need poses enormous

challenges for accurately predicting the dynamic popularity.

To this end, many different algorithms have been proposed in

the literature to predict the dynamic popularity over the recent

years. Some inspiring examples include the time-series pre-

diction method [16], [20], the social-driven prediction method

[21], [22], and the statistics-based prediction method [23],

[24]. Jiang et al. [20] proposed an online content popularity

prediction algorithm by exploiting the content features and

user preferences, where the user preferences were learned

offline from the historically requested information. In [16],

an auto-encoder (AE) neural network was combined with the

long short-term memory module to predict the popularity by

extracting time-series features from the historical requests of

users. Nevertheless, the time-sequence prediction approaches

in [16], [20] rely heavily on the privacy of users such as

historical requests to improve the prediction accuracy, which

is intolerable for those privacy-sensitive users and not ap-

propriate for the privacy-preserving systems. Xu et al. [21]

explored the dynamically changing and evolving propagation

patterns of videos in social media and the content popularity

could be forecasted in a timely fashion. In [22], the social

relationships among a small number of users were explored

to bridge the gap between prediction accuracy and small

population. A social-driven propagation dynamics model was

proposed therein to improve the popularity prediction accu-

racy. However, as the hidden features can only be extracted

from massive amounts of social information accumulated over

a long-term time, the timeliness and privacy concerns of the

social-driven prediction methods are questioned. Statistical

prediction methods based on regression analysis have also
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been examined. For instance, Trzcinśki et al. [23] used support

vector regression based on Gaussian radial basis functions

to predict the online video popularity. Similarly, a Bayesian

hierarchical probabilistic model was designed [24] to regress

the content popularity in an EC network. While the existing

statistical approaches show potentials in achieving accurate

and stable prediction, they are still far from practical use. For

instance, the selection of probabilistic models in statistics-

based methods [23], [24] has critical impacts on the pre-

diction performance, but the selection criteria are unclear

and impossible to be a priori given in the real world. Most

importantly, they inevitably raise privacy issues due to the fact

that statistics-based methods require access to the historical

request log data of users for popularity prediction.

B. Federated Learning

As a matter of fact, private data leakage vulnerabilities in

IIoT systems, especially in the healthcare and automotive-

related industries, can lead to catastrophic consequences such

as endangering user safety and causing severe property loss

for data providers [25]. The resultant privacy preservation

constraint makes the dynamic popularity prediction in EC

even trickier. Recently, the disruptive blockchain technique

[26] shows superiority in enhancing data security and privacy

preservation due to its anonymity, inherent decentralization,

and trust properties. Nevertheless, the blockchain technique

is essentially a distributed database of records and it has no

interface for user behavior analysis [27]. We argue that the

knotty problem of privacy-preserving popularity prediction can

be tacked by leveraging the recent advances of distributed

deep learning, particularly the federated learning (FL) [28].

FL has emerged as a distributed artificially intelligence (AI)

approach, by coordinating multiple devices to perform AI

training without sharing raw data for privacy enhancement

[29].

FL incorporating deep neural networks (DNNs), which

combines the capabilities of DNNs in extracting features from

input data and the advantages of FL in distributed training

and privacy preservation, and has become one of the main

paradigms of FL [30]. Therein, convolutional neural networks

(CNNs) and recurrent neural networks (RNNs) are two im-

portant types used for the incorporation with FL Literature

[31] investigates the image classification problem and proposes

a communication-efficient and privacy-preserving distributed

machine learning framework based on the FL cooperating

with CNNs. The superior classification accuracy shown in [31]

demonstrates the strong ability of the FL cooperating with

CNNs in image feature extraction while preserving privacy.

However, the architecture of CNNs is not appropriate for the

feature extraction of sequence data which is rather important

to wireless communication systems. RNNs, as an efficient ar-

chitecture of sequence data processing, cooperating with FL is

viewed as a promising framework for privacy-preserving data

processing in wireless communication systems. For instance,

Liu et al. [32] provide a FL-based gated recurrent unit neural

network for traffic flow prediction while providing reliable

data privacy preservation. Although FL integrating with DNNs

has been widely investigated, many existing works, [31], [32],

adopt the supervised learning with costly manual labels which

poses significant challenges to their practical applications, es-

pecially to practical popularity prediction. The spatiotemporal

variability and unobservability of the content popularity lead

to the difficulty in manually obtaining the popularity labels.

Therefore, we extending FL to an unsupervised paradigm in

this paper to address the challenges on the manual labelling of

popularities. In this paper, we proposed an unsupervised FL

incorporating RNNs to effectively predict popularities from

sequences of historical requests without labels while preserv-

ing user privacy. Moreover, we further design a parameter

aggregation to alleviate the non-i.i.d. problem which is an open

challenge in the research field of FL [33].

C. FL-based Popularity Prediction

The MEC framework enables FL in the wireless commu-

nication networks with the supply of abundant and closer

computing/caching resources. A comprehensive survey of FL

from the perspective of fundamentals, challenges, solutions,

and applications in MEC networks can be found in [34].

Therein, FL-based privacy-preserving popularity prediction

in MEC networks has been explored in many works, i.e.,

[35]–[39]. Nevertheless, many challenges still remain to be

addressed. In a recent work [35], the center server is prohibited

from snooping on users’ private data, while only the local

MEC server is permitted to collect and learn from the historical

requests of users. This scheme relies on authorization man-

agement and is susceptible to unauthorized access provided

by the unreliable network operator or gained by malicious

cracking. In addition, the deep learning method in [35] requires

manual labeling in advance, which unfortunately is costly and

infeasible in real implementation. The authors in [36] proposed

an FL-based method to realize the privacy-preserving EC. On

the basis of literature [36], Cui et al. [37] utilized blockchain to

further improve the security of FL implementation. However,

the EC policies considered in [36], [37] are both built on the

similarities between users and contents, which is calculated by

potential features extracted from historical requests of users.

The similarity calculated in these two literatures is just a

rough estimation of popular contents rather than the actual

popularity. Thus, the content popularity which represents the

accurate requested probability of each content has not been

predicted in [36], [37]. Moreover, the relationship between the

client-side popularity and server-side popularity has not been

explored in [36], [37]. In [38], the content popularity has been

predicted while the popularity relationship between the client

side and server side is preliminarily explored. Nonetheless,

the explorations of the relationship between client-side and

server-side popularities were sketchy and empirical in [38],

which was reflected in the thoughtlessness of user request

arrival rate as well as the absence of any verification for the

given relationship. In this paper, we introduce the concept of

local popularity at user side and global popularity at MEC

server side respectively, and further derive and validate the

mathematical relationship between these two popularity types.

Yu et al. [39] considered the mobility of users and proposed

a mobility-aware FL method to predict the popularity while
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preserving user privacy. Nevertheless, the temporal variability

of the popularity caused by the time-varying user interests

has not been explored in [39]. Furthermore, in [39], sampling

from the real popularity distribution at the MEC server side

is required to generate the input of the prediction model

during the local training phase. However, the real popularity

distribution at the MEC server side depends on the subjective

interests of users within the entire service area and thus is

extremly hard to obtain a priori. In our study, we consider

the local and global popularities both time-varying and un-

available so as to be more closely aligned with reality. In

addition, we can further observe from [36]–[39] that local

users are supposed to share or upload their request history

when making online predictions, so as to generate the input

of the prediction model. Indeed, this kind of sharing or upload

violates the privacy-preserving requirement. The fundamental

reason why these works need to collect users’ request history

for the global prediction can be attributed to the consistency

requirement in the typical FL framework, which demands that

the model structures and model inputs should be exactly the

same between the local and global sides [33]. To mitigate the

risk of privacy leakage caused by the collection of user request

history, we design the input structure of the local and global

models to break the consistency requirement on model inputs,

and then realize the distributed training and prediction without

any external access to user’s historical requests except itself.

III. SYSTEM MODEL

This section provides brief descriptions of the system model

and the underlying concepts used in this work. A hierarchical

wireless network of shared caches is considered for smart

industry applications, and the network is supposed to be able to

provide a secure and trustworthy content service. As illustrated

in Fig. 1, a cloud server is deployed by the service providers

to store contents for the consumers, i.e., the mobile end-users

and/or IIoTs devices. One MEC server, which can be the

general-purpose computer or server, is placed on the edge

node between the cloud and the end sides. The edge node can

directly provide the content services supported by the caching

Cloud Server

Prediction Model

Wireless Link Memory

MEC Server

Privacy-sensitive 

User

Privacy-Preserving 

Edge Node

EN

User 1

User 2

User i

User I

Predicted

local Popularity 

Predicted

Global Popularity 

Predicted

local Popularity 

Predicted

local Popularity 

Predicted

local Popularity 

Legend

Fig. 1. Hierarchical architecture of the privacy-preserving and MEC-enabled
network under investigation.

capability of the MEC server. Moreover, the prediction models

for popularity prediction can be placed on the user equipments

(UEs) and the edge node benefited from the rapidly evolving

computing capabilities of the UEs and the MEC server. In

the considered scenario, we assume that a total of I privacy-

sensitive users are directly connected to an edge node within

a certain small cell, where the edge node must obey some

privacy-preserving mechanism to preserve user privacy. 1

At the beginning of a time slot, a user will send a content

request to the edge node if a certain content file cannot be

found in its local cache. Though much closer to the users, the

edge nodes have limited caching and computing capabilities

compared to the cloud server. As such, the edge nodes can

only store some selective — usually most popular contents.

Whenever the requested contents are not located in the edge

nodes, the request will be further forwarded to the cloud via

the backhaul link. Additionally, definitions of key notations

used in this paper are given in Table I for ease of reading.

A. Service Process

We assume that the content library contains N files, which

is denoted as a set F = {F1, F2, . . . , FN}, and the cloud

have a complete copy of all the files. Limited by the cache

capacity, the MEC server can only cache M0 files and an

arbitrary UE-i can cache Mi files. Generally, M0 ≫ Mi, ∀i ∈
I = {1, 2, . . . , I}. We assume that a content file F i(t) ∈ ∅∪F
is requested by UE-i at time slot t, where we have F i(t) ∈ ∅
when UE-i does not request any contents. Then, the request

will be uploaded to the MEC server if F i(t) cannot be found

in UE-i, which is represented as F i (t) /∈ Ci(t), where Ci(t)
is the files set cached in UE-i at time slot t. Conversely, if

F i(t) ∈ ∅ or F i (t) ∈ Ci(t) is true, UE-i will not upload

this request information to the MEC server. MEC server will

retrieve content for the received requests in its current cache

C0(t). If F i (t) /∈ C0(t) is satisfied, the MEC server will further

request the absent files from the cloud. Finally, the requested

files of each user will be sent back from the MEC server. In

addition, it is worth to note that the users will not upload any

request information in time slot t unless F i (t) /∈ Ci(t).

B. Local and Global Popularity

As mentioned above, the content popularities on the local

user side and the MEC server side are respectively termed

local popularity and global popularity. Regarding the local

popularity, we assume that the content popularity of each user

in each time slot t follows a Zipf distribution which has been

wildly adopted in related works [44]–[46]. Moreover, the time-

varying nature of the popularity is taken into account in this

paper. For an arbitrary UE-i, the probability of demanding the

n-th file at time slot t is

P i
n(α

i(t), t) =

(

nαi(t)
N
∑

l=1

l−αi(t)

)−1

, (1)

1Note that the security/privacy analysis by defining threat models or hacker
attacks against the privacy-preserving mechanism is a meaningful but chal-
lenging research direction. (c.f., e.g., [40]–[43]). However, this paper focuses
on popularity prediction in a privacy-preserving wireless MEC network. To
avoid further complicating the problem under investigation, the backdoor
problems are left for our future work.
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TABLE I
DESCRIPTIONS OF KEY NOTATIONS

Notation Description

t Index of time slot.
I = {1, 2, · · · , I} Set of UE indexs.

F = {F1, F2, · · · , FN} Set of all contents.

F i(t) Content request generated by UE-i at time t.

Pi
(

αi (t) , t
)

Local popularity on UE-i at time t.

P i
n

(

αi (t) , t
)

Probability that content FN is requested by UE-i at time t.

P
G(t) Global popularity on the MEC server at time t.

PG
n (t) Probability that content Fn is requested within the service area at time t.

P̂i
(

αi (t) , t
)

Prediction of the local popularity on UE-i at time t.

P̂
G(t) Prediction of the global popularity on MEC server at time t.

αi (t) Probability distribution parameter of P
i
(

αi (t) , t
)

at time t.
λi (t) Content request arrival rate of UE-i at time t.

Gi = {αi
g|g = 1, 2, · · · , Gi} Parameters set that αi (t) evolves over time.

Pi =
{

P i
glgk

}Gi

gl,gk=0
Transition probability matrix of αi (t).

R
i(t) = [F i(t−H), · · · , F i(t)] Extractor of UE-i to extract its historical request information.

RG(t) =
{

F i(t)
}I

i=1
Request information received by the MEC server at time t.

H Observation window length of the extractor.

fΘi
(·) Local popularity prediction model inside UE-i.

fΘG

(·) Global popularity prediction model at the MEC server side.

ΘG, Θi Parameters set of global and local popularity prediction model respectively.

zle (t) Output of the encoding function in the le-th layer at time t

ẑ
ld (t) Output of the decoding function in the ld-th layer at time t

Le, Ld Hidden layer number of the encoder and decoder, respectively.

Di = {F i(t)|t ∈ Z0+} Historical request data of UE-i.
T Number of local training at every communication round.

L(Θi) Training loss function of the local popularity prediction model in UE-i.

ΘL Stack of parameter sets uploaded by all users

ΘAE Updated parameters set aggregated from ΘL.

Θi
E, Θi

D Parameters set of encoder and decoder on UE-i, respectively.

LAvg

(

Θi
)

Average training loss of UE-i at each communication round.
γi Aggregation weight for the model parameters of UE-i in the FedLWA scheme.
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where the N files have been assigned with a descending order-

ing of popularity in each time slot t. The distribution parameter

αi(t) evolves over time. As such, the content popularity of UE-

i at t can be denoted as P
i
(

αi (t) , t
)

=
{

P i
n

(

αi (t) , t
)}N

n=1
.

It should be noticed that the Zipf distribution is assumed for

the convenience of discussion, and generalization to any other

probability distribution model is straightforward.

As depicted in Fig. 2, for user ∀i ∈ I, we model the

dynamics of αi(t) using a model-free Markov chain with the

states |Gi| recorded in the set Gi = {αi
g|g = 1, 2, . . . , Gi}.

Consequently, the dynamics of αi(t) can be defined as

P
{

αi (t+ 1) = αi
g

}

= P
αi(t)
αi(t)→αi

g
, ∀αi

g ∈ Gi, (2)

where P
αi(t)
αi(t)→αi

g
denotes the transition probability of αi (t)

transits to ∀αi
g ∈ Gi. It is worth mentioning that, neither the

parameter sets nor the transition probabilities are unknown

to the model-free Markov chain due to the diversity and

complexity of users’ subjective interests [16]. The difference

among the users are captured by the set Gi as well as the

potential state transition probabilities. Besides, user behaviors

are assumed to be non-i.i.d. in the system model.

At the MEC server side, the global popularity at time

slot t can be represented as P
G(t) =

{

PG
n (t)

}N

n=1
, where

PG
n (t) is the probability that content n is requested within

the service area. Apparently, the global popularity depends

on all the local popularities within the service area, and the

MEC server as a service provider can significantly improve its

caching efficiency under the guidance of accurate knowledge

of the global popularity. However, as will be elaborated in

Section IV, the prediction of the global popularity is much

more complicated than that of the local popularity due to the

different behavior patterns of different users as well as the

privacy-preserving constraint.
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C. Content Request Model

At time slot t, a certain UE-i requests a file F i(t) ∈ ∅∪F ,

where the probability of F i(t) ∈ ∅ follows its corresponding

current request arrival rate, denoted as λi (t). If F i(t) ∈ F ,

UE-i make a request, which satisfies the present probability

distribution denoted as F i (t) ∼ Zipf
(

αi (t)
)

. According to

the above description, the content request model of an arbitrary

UE-i ∈ I at time slot t can be expressed as

F i (t) ∈

{

∅, P
{

F i (t) ∈ ∅
}

= 1− λi (t)

F , P
{

F i (t) = Fn

}

= λi (t) · P i
n

(

αi (t) , t
)

,
(3)

where Fn ∈ F and αi (t) ∈ Gi. Similar to αi (t), parameter

λi (t) also reflects the individual characteristics of user i and

should be protected from being accessed by others.

D. Privacy-preserving Mechanism

In the real world, privacy-sensitive users usually concern

about the leakage of their private data such as location infor-

mation, historical contents/services request, personal bank or

social account information. In this paper, we readily observed

from the service process that the private information of users

involved in the problem under investigation is mainly the

historical contents request data, and the historical request

database of each user Di =
{

F i (t)
∣

∣ t = 1, 2, · · ·
}

is stored

only in their own UEs and is inaccessible to outsiders. More-

over, as stated in some data privacy legislations such as the

European Commission’s General Data Protection Regulation

(GDPR) [47], users have the right to require the responsible

party to delete the individual data records about them. Thus, to

respond with the implementation of GDPR, the burn-after-read

principle as the privacy-preserving mechanism is implemented

in the MEC servers, i.e., the request information from users

must be immediately deleted from the memory of the MEC

server once the contents have been scheduled. The MEC

servers are not allowed to hold any historical information of

any users.

IV. URFL FOR EDGE POPULARITY PREDICTION

A. Problem Formulation

In the MEC-based IIoT system under investigation, both

the user and the server sides participate in the popularity

prediction process. Given a popularity P
i(αi(t), t) at time slot

t, UE-i generate a content request denoted as F i(t)|Pi(αi(t),t),

which is simplified as F i(t) in the sequel for the convenience

of discussion. Based on the request history saved in its local

memory, the local popularity of user i can be predicted by

P̂
i(αi(t+ 1), t+ 1) = fΘi

(Ri(t)), (4)

where fΘi

(·) is a predictive model inside UE-i and Θi

denotes the collection of trainable parameters therein. Ri(t) =
[

F i(t−H), F i(t−H + 1), · · · , F i(t)
]

is a extractor of UE-

i to extract its historical request information of continuous H
times before time t. H is the observation window length of the

extractor. On account of the structural features of AE, we can

divide Θi into encoder and decoder parameters sets, denoted

as Θi =
{

Θi
E,Θ

i
D

}

. The implementation of fΘi

(·) will be

detailed in Section IV-B.

At time t, to minimize the distributed popularity prediction

errors of all the users at future time t + 1, the mean-square

error (MSE) metric is adopted and the underlying optimization

problem of arbitrary UE-i can be formulated as

Pi : min
Θi

1

N

∥

∥

∥
P

i(t+ 1)− P̂
i(t+ 1)

∥

∥

∥

2

2
, (5a)

s.t.
∥

∥R
i (t)

∥

∥

0
≤ H, (5b)

αi(t− h) ∈ Gi, ∀h ∈ {0, · · · , H − 1} , (5c)

0 ≤ λi (t− h) ≤ 1, ∀h ∈ {0, · · · , H − 1} , (5d)

F i(t− h) ∈ Di, ∀h ∈ {0, · · · , H − 1} , (5e)

where P
i(αi(t + 1), t + 1) and P̂

i(αi(t + 1), t + 1) are

abbreviated as P
i(t+ 1) and P̂

i(t+ 1), respectively. ‖·‖ and

‖·‖2 respectively represent the l0 and l2 norm. Constraint (5b)

ensures the observation window length of the extractor Ri (t)
at time t not exceed H . αi(t − h) and λi (t− h) depend on

the subject interests of user i at time t − h. F i(t − h) is the

component of Ri and extracted from the request database Di.

Note that Pi(αi(t + 1), t + 1), Gi, α
i(t − h) and λi (t− h)

are all time-varying and unknown, which poses significant

challenges to solve the problem (5).

The MEC server makes the global prediction in a com-

pletely different way since there is no historical information

of any users under the privacy-preserving constraint. The only

data that the MEC server can provisionally acquire is RG(t) =
{

F i(t)
}I

i=1
at time slot t, which will be erased from the server

before the next time slot. To further evaluate the difficulty in

predicting the global popularity in such cases, we first give the

following theorem which reveals the mathematical relationship

between the local and global popularities.

Theorem 1: Given the local popularity
{

P
i(αi(t), t)

}I

i=1

and the request-arrival rate of each user {λi(t)}
I
i=1 at time

slot t. The global popularity P
G(t) at the MEC server side is:

P
G(t) =

I
∑

i=1

λi(t) ·P
i
(

αi(t), t
)

I
∑

i=1

λi(t)

, (6)

Proof: The proof is presented in Appendix A

The simulation validation of Theorem 1 can be found

in Appendix B. According to Theorem 1, we find that

P
G(t+1) cannot be obtained without any a priori knowledge

of
{

P
i(αi(t), t)

}N

i=1
and {λi(t)}

I
i=1. Nonetheless, the local

popularity and the request-arrival rate of each user both

dynamically varies over time and also cannot be acquired in

the privacy-preserving system. To address this challenge, a

URFL algorithm is proposed in this work to predict the global

popularity without violating UEs’ data privacy. By employing

the URFL algorithm, the global popularity in the next time

slot t+1 is predicted by exploiting the newly arrived request

at time slot t, i.e.,

P̂
G(t+ 1) = fΘG

(RG(t)), (7)

where fΘG

(·) represents the predictive function at the MEC

server side in the proposed global model, and ΘG is the



ZHENG et al.: UNSUPERVISED RECURRENT FEDERATED LEARNING FOR EDGE POPULARITY PREDICTION IN PRIVACY-PRESERVING MEC NETWORKS 7

GQ

...1 (
)

F

t

LSTM-AE

...

time

User I

2 (

)

F

t

H
-

2 (
1)

F

t
-......

Requests

2

DQ

2

EQ

2Q

Loss

2 (
)

F

t

( )( )2 2ˆ 1 , 1t ta + +P

LSTM-AE

...

time

User 2

2 (

)

F

t

H
-

2 (
1)

F

t
-......

Requests

2

DQ

2

EQ

2Q

Loss

2 (
)

F

t

( )( )2 2ˆ 1 , 1t ta + +P

LSTM-AE

...

time

User 1

1 (

)

F

t

H
-

1 (

1)

F

t
-......

Requests

1

D
Q

1

EQ

1Q

Loss

1 (
)

F

t

( )( )1 1ˆ 1 , 1t ta + +P

...

( )2

F

t ( )I

F

t

MEC Server

Deleted

FL

( )Gˆ 1t +P

( )G
tR

Fig. 3. Network architecture of the URFL algorithm.

parameters set. The implementation of fΘG

(·) and ΘG under

the privacy-preserving mechanism will be detailed in Sec-

tion IV-B.

At the MEC server side, the underlying optimization prob-

lem at time t can be formulated as

PG : min
ΘG

1

N

∥

∥

∥
P

G(t+ 1)− P̂
G(t+ 1)

∥

∥

∥

2

2
, (8a)

s.t.
∥

∥R
G (t)

∥

∥

0
≤ I, (8b)

αi(t) ∈ Gi, ∀i ∈ I, (8c)

0 ≤ λi (t) ≤ 1, ∀i ∈ I, (8d)

F i(t) ∈ Di, ∀i ∈ I, (8e)

Similar with the problem (5), the problem (8) also evolves

over time and the optimal solution ΘG∗ should be valid

at any time t. However, P
G(t + 1) is unknown while

αi(t), λi (t) ,Gi,Di, ∀i ∈ I are unavailable to the MEC server

due to the subjectively of user interests as well as the privacy-

preserving requirements. Thus, it is also quite challenging to

solve problem (8).

B. Methodology

This subsection presents the design of the URFL framework

and its application to the privacy-preserving edge popularity

prediction. The proposed architecture of URFL is illustrated

in Fig. 3. Concretely, in individual UE, a moderate-scale

recurrent neural network (RNN) is prepared and trained on

the local request history alone. The RNN in each UE is

designed as an AE, with each neuron being an LSTM cell

to capture the contextual information hidden in the input data

[48], [49]. Since the MSE loss of an AE is directly obtained by

comparing the input and output, the troublesome training data

labeling is circumvented. Then, the collaborative prediction is

performed under an FL framework, where the distributed UEs

periodically exchange their diverse model parameters, rather

than the raw private data, with the MEC server to collectively

train a global model. Note that the MEC server only needs

to deploy an encoder module. We next elaborate on each key

element in the designed framework.

1) LSTM-AE Hierarchy: RNNs perform hierarchical pro-

cessing on complicated temporal tasks and, as such, it is

capable of naturally capturing the underlying temporal depen-

dencies in time series. In this work, we use a special type of

RNN building block, i.e., LSTM cells to explore the evolving

short-term dependencies within the long historical request

sequences Ri(t) and R
G(t) [50] and, in turn, predict the edge

popularity more effectively. LSTM-based RNNs address the

issue of vanishing gradients by integrating gating functions

into their state dynamics [51]. As mentioned above, each

UE has a built-in pair of LSTM encoder-decoder, whose

hierarchical structure is given in Fig. 4. Each neuron in the

hierarchy is an LSTM cell, and each subsequent layer receives

the hidden state of the previous layer as input time series.

The auto-encoder architecture is created by symmetrically

stacking the LSTM layers at the input and output sides, which

respectively constitute the encoder and decoder. The iterative

formula of message passing in one LSTM cell is as follows:

f t = σ
(

Wf ·
[

yt−1, xt
]

+ bf
)

, (9a)

it = σ
(

Wi ·
[

yt−1, xt
]

+ bi
)

, (9b)

C
t
= tanh

(

WC ·
[

yt−1, xt
]

+ bC
)

, (9c)

ot = σ
(

Wo ·
[

yt−1, xt
]

+ bo
)

, (9d)

Ct = f t ∗ Ct−1 + it ∗ C
t
, (9e)

yt = ot ∗ tanh
(

Ct
)

, (9f)

where xt, yt, and Ct respectively denote the input, output,

and the memory state of the LSTM cell at time slot t. σ
is the control gate, which is typically a Sigmoid function. f
represents the output of the forgetting gate. i and o denote the

output of the input and output gates, respectively. W evaluates

the dependencies of the weight parameters and b denotes the

offset parameter. By feeding the historical requests to the

RNN network composed of these LSTM layers, we capture

the features hidden in the input sequences.

Then, the output of the encoding function in the le-th (∀le ∈
{1, 2, . . . , Le}) layer at time t can be expressed as

z
le (t) = ϕ

(

w
le ·
[

z
le−1 (t) , zle (t− 1) ,Cle (t− 1)

]

+ b
le
)

(10)

where wle and b
le respectively denotes the weight and implicit

bias parameters of layer le of the encoder. z
le−1 (t) is the
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output of the (le −1)-th encoder layer at time t and z
le (t− 1)

is the output of the encoder layer le at time t−1. Cle (t− 1) is

the memory state of the le-th encoder layer at time t−1. Specif-

ically, if le = 1, the corresponding z
0 represents the input

sequence. In the decoding process, the output of the encoder

z
Le is fed as the input sequence ẑ

0 to the decoder network.

The output of the decoding function for ld ∈ {1, 2, . . . , Ld} at

time t is

ẑ
ld (t) = ϕ

(

w
ld ·
[

ẑ
ld−1 (t) , ẑld (t− 1) ,Cld (t− 1)

]

+ b
ld
)

(11)

where ẑ
ld (t) and ẑ

ld (t− 1) is the output of the decoder of

layer ld at time t and t − 1, respectively. ẑld−1 (t) represents

the output of the decoder layer ld − 1 at time t. Likewise, wld

and b
ld represents the weight parameters and bias parameters

of the ld-th layer in decoder, respectively. Cld (t− 1) is the

memory state of the ld-th decoder layer at time t−1. Moreover,

z
lE (t) the output of the encoder at time t also represents the

predicted vectors of the local/global popularities at time t+1,

and will gradually approximate the true popularities along as

the training.

2) Distributed Training via FL: The historical request data

is denoted as D = {D1,D2, . . . ,DI} where Di = {F i(t)|t ∈
Z0+} is the historical request data of UE-i without labels. To

address the privacy concern, the historical request data of each

user is not exposed to others. During the offline training phase

of URFL, UE-i randomly extract S samples from Di using

the extractor, denoted as T i={(xi
s,xi

s)|xi
s = R

i(ts), s =
1, 2, . . . , S}, where ts is the random sample points at time slot

t. Then, the training data is fed to the local AE in a mini-batch

to train the network. The mini-batch average of the MSE loss

function is adopted to yield a more stable convergence. That is,

for any mini-batch set {(xi
sw ,xi

sw )|xi
sw = R

i(tsw ), tsw ∈
{t1, t2, . . . , tS}, w = 1, 2, . . . ,W}, we have

L(Θi) =
1

W

∑W

w=1

∣

∣

∣
R

i(tsw )− R̂
i(tsw)

∣

∣

∣

2

, (12)

where R̂
i(tsw ) is the output of the AE in UE-i. Note that, the

above offline local training process is implemented in parallel

in each UE.
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Algorithm 1 URFL training for edge popularity prediction

1: Initialization: The extractor Ri(t) for each UE-i and the

global model parameters ΘG are initialized randomly.

2: For epoch t = 1, 2, . . . ,Υ do:

3: The MEC server do:

4: If receive Θi uploaded from users then

5: Aggregate all the uploaded parameters ΘL to

a global parameters set ΘAE by (13).

6: Update the global model parameters by (14).

7: Broadcast ΘAE to all users in its coverage.

8: End If

9: Each user i ∈ I in parallel do:

10: If receive ΘAE broadcasted from the server then

11: Update its local model parameters by

Θi = ΘAE.

12: End If

13: Extract a mini-batch from Di by extractor Ri(t).
14: Compute the MSE loss by (12), and update the

local model parameters Θi using Adam.

15: If t is an integer multiple of T then

16: Upload Θi to the MEC server.

17: End If

18: End For

Unlike the training process in the local UEs, the MEC server

has no data to train its global prediction model under the con-

straint of the privacy-preserving mechanism stated in Section

III-D. As such, we adopt the FL framework here to achieve

the acquisition of local and global prediction models while

preserving user privacy by aggregating parameters
{

Θi
}I

i=1
instead of historical requests information. Concretely, by the

end of every T local self-training of the model fΘi

(·), UE-

i uploads its latest model parameters to the MEC server.

Let ΘL =
{

Θi
}I

i=1
=
{

Θi
E,Θ

i
D

}I

i=1
denote the stack of

parameter sets uploaded by all the users. In the MEC server,

the updated parameters set is aggregated from ΘL as

ΘAE=
1

I

∑I

i=1
ωiΘ

i =
1

I

{

∑I

i=1
ωiΘ

i
E,
∑I

i=1
ωiΘ

i
D

}

,

(13)

where ωi reflects the impact of each user’s parameters in the

aggregation. In this work, we assume that there is no priority

among users. Hence, we reasonably set ωi = 1, ∀i ∈ I and,

based on (13), we update the parameters of fΘG

FL (·) by

ΘG=
1

I

∑I

i=1
ωiΘ

i
E. (14)
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Algorithm 2 FedLWA for parameter aggregation

1: Initialization: Initialize ωi = 1, ∀i ∈ I.

2: Recieve parameters
{

Θi
}I

i=1
and losses

{

LAvg

(

Θi
)}I

i=1
.

3: Evaluate the normalized losses {γi}
I
i=1 by

γi = LAvg

(

Θi
)

·

(

∑I

i=1
LAvg

(

Θi
)

)−1

4: Aggregate model parameters to ΘAE by (16).

5: Obtain the updated parameters ΘG by (17).

6: Return parameters ΘAE and ΘG.

Once the weight aggregation is complete, the new parame-

ters ΘAE will be broadcasted to all network users. For ∀i ∈ I,

UE-i will immediately update its parameters by Θi=ΘAE.

Then, UE-i will train its local network again for another T
iterations. Upon completion, UE-i will continue to upload

the latest parameters to the MEC server. Then, a new loop

is launched, and so forth ad infinitum. The loop described

above can also be named as a communication round in FL. The

overall training process of the URFL algorithm is summarized

in Algorithm 1. Υ is the total communication rounds between

the local side and global side during the whole training. We

also draw a schematic diagram of the parameters passing

mechanism of URFL in Fig. 5. It should be noted that Fig. 5

is given here to more clearly illustrate the parameter passing

flow in the distributed FL framework during the training of

the URFL algorithm, and the inputs and outputs of the neural

networks are shown in Fig. 3.

3) FedLWA for parameter aggregation: Because of the non-

i.i.d. user behaviors considered in this paper, the convergence

of the LSTM-AE model on each local UE is inconsistent at

the end of each communication round. Due to the fact that

the convergence of one model can be reflected by its training

loss, we therefore design a FedLWA parameter aggregation

scheme on the basis of the proposed URFL algorithm to reduce

the impacts of non-i.i.d. user behaviors. The URFL algorithm

that applies the FedLWA-based parameter aggregation scheme

is named FedLWA-based URFL algorithm. Concretely, the

parameters passing during the training of the FedLWA-based

URFL algorithm is basically identical to that of the URFL

algorithm, except that each local user needs to additionally

upload its average training loss LAvg

(

Θi
)

by the end of each

T local training. LAvg

(

Θi
)

can be expressed as:

LAvg

(

Θi
)

=
1

T

T
∑

l=1

Ll

(

Θi
)

, (15)

where Ll

(

Θi
)

calculated by (12) is the loss value of user i at

the l-th training epoch in this communication round. We can

observer from (12) (15) that LAvg

(

Θi
)

contains no privacy

information of user i. Thus, the upload of LAvg

(

Θi
)

will not

cause the leakage of user privacy.

At the MEC server side, weight for parameter aggregation

in the FedLWA scheme is dependent on the convergence

of each LSTM-AE model at current communication round,

which is the normalized loss denoted as γi = LAvg

(

Θi
)

·

Algorithm 3 URFL online prediction

1: Initialization: The extractor Ri(t) for each UE-i and the

R
G(t) are initialized with zero array.

2: For time slot t = 1, 2, . . . do:

3: The MEC server do:

4: Acquire RG(t) by receiving requests from users.

5: Acquire prediction P̂
G(t+1) by feeding R

G(t)
to the trained global prediction model.

6: Erase the private information R
G(t).

7: Each UE-i ∈ I in parallel do:

8: Make a content request F i(t) ∈ ∅ ∪ F .

9: If F i (t) /∈ Ci(t) then

10: Upload request F i (t) to the MEC server.

11: End If

12: Extract
{

F i(t−H + h)
}H

h=0
from Di by ex-

tractor Ri(t).
13: Acquire prediction P̂

i(αi(t+1), t+1) by feed-

ing R
i(t) to its trained local prediction model.

14: End For

(

∑I
i=1 LAvg

(

Θi
)

)−1

. Then, the FedLWA-based parameter

aggregation can be written as:

ΘAE =

I
∑

i=1

ωiγiΘ
i. (16)

The parameters update of fΘG

FL (·) can be rewritten as :

ΘG=
∑I

i=1
ωiγiΘ

i
E. (17)

The parameter aggregation process of the FedLWA scheme is

summarized in Algorithm 2

4) Distributed Online Prediction: During the online ser-

vice phase, the edge popularity in the system at each

time slot t can be instantly predicted by evaluating (4)

and (7). Concretely, as shown in Fig. 3, the extractor

R
i(t) of UE-i firstly extracts the historical request informa-

tion
[

F i(t−H), F i(t−H + 1), · · · , F i(t)
]

at time t. Then,
[

F i(t−H), F i(t−H + 1), · · · , F i(t)
]

will be fed into the

LSTM-AE network of UE-i, and the output of the encoder

P̂
i(αi(t+1), t+1) is the popularity prediction of user i at time

t+1. At the MEC server side, the received request information

from local users R
G(t) will be fed into the trained global

prediction model whose output P̂G(t+1) is the prediction of

global popularity at time t + 1. Moreover, to preserve users’

privacy, the request information R
G(t) will be erased as soon

as it is fed to the global prediction model. The overall online

prediction process of the URFL algorithm is summarized in

Algorithm 3.

5) Time Complexity Analysis: Finally, we investigate the

time complexity of the proposed URFL algorithm from the

perspective of local side and global side. Note that each UE

holds local model with the same structure and executes the

algorithm in parallel, thus the time complexity of the algorithm

at the local side can be analysed from the local model on a

single UE. Moreover, we can observe from Algorithm 1 and

Algorithm 3 that the whole structure of the LSTM-AE model
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participates in the training while only the encoder component

of the LSTM-AE model participates in the online prediction.

As such, the time complexity of the URFL algorithm at

the local side during the training and prediction can be

respectively expressed as O
(

∑Le

le=1 HD2
le
+
∑Ld

ld=1 HD2
ld

)

and O
(

∑Le

le=1 HD2
le

)

, where Dle and Dld respectively de-

note the representation dimension of le-th encoder layer and

ld-th decoder layer in the LSTM-AE architecture. The time

complexity of the URFL algorithm at the global side during

the training comes from the parameter aggregation by (14), and

thus can be denoted by O (I). During the online prediction,

the time complexity of the URFL algorithm at the global

side mainly arises from the process of global popularity

prediction and can be denoted by O
(

∑Le

le=1 ID
2
le

)

. Moreover,

we can find from Algorithm 2 that the time complexity arises

from the FedLWA parameter aggregation scheme is negligible

compared with that of the URFL algorithm.

V. NUMERICAL SIMULATIONS

In this section, we showcase the superior performance of the

proposed URFL algorithm in predicting the edge popularity.

We run our numerical simulations on a workstation equipped

with an Intel Xeon Gold 5118 CPU with 12 cores running at

2.30 GHz and 125 GB of RAM memory. The models and

networks are trained and tested in the TensorFlow environ-

ment. In the simulation, the window length of the extractor

is H = 10. We assume that all the UEs have equal cache

capacity denoted as Mi = Mj, ∀i, j ∈ I.

In the trials, the parameter set Gi and the transition proba-

bility matrix Pi =
{

P i
glgk

}Gi

gl,gk=0
of each UE-i are generated

randomly, where P i
glgk

represents the transition probability

from αi
gl

to αi
gk

. In particularly, the entries of Pi can be arbi-

trary values, as it has no impact on the algorithm performance.

As such, the statistical properties of the user behaviors are non-

i.i.d. Under these parameters, users record their requests F i(t)
over a period of time. Then, each UE-i randomly extracts

S samples (xi
s,xi

s) from its own request record as the

training dataset T i. In addition, we evaluate the performance

of the proposed URFL algorithm on small groups of users,

i.e., I ∈ {3, 6, 10}, which is also adopted in [53], [54].

Adam optimizer [55] is used to train the parameters
{

Θi
}I

i=1
with an identical adaptive learning rate starting from 10−4. It

should be emphasized that Gi and Pi are merely assigned to

establish a similar-to-real simulation environment, neither of

them are known to the MEC server and the UE-i itself. For

the architecture of the deep encoder Θi
E in the URFL, we use

three hidden layers with 128, 64, 24 LSTM neurons as well as

a dropout rate of 0.35 in each hidden layer to avoid overfitting.

A mirror-symmetrical structure of the encoder is implemented

in the decoder Θi
D. Detailed simulation parameters are listed

in Table II.

A. Baselines

In the numerical simulations, we compare the prediction

performance of the proposed URFL method with the baseline

TABLE II
SIMULATION PARAMETERS

Parameter Value

Total content number N 12, 18, 24, 32, 38, 44, 50
Parameters Aggregation
coefficient of UE-i ωi

1

Encoder hidden layer number Le 3
Decoder hidden layer number Ld 3

Number of local-training
epochs pre round T

8, 16, 32, 64, 128, 256

Samples S 100, 1000, 10000, 100000
Learning rate for training 10−4

Optimizer for training Adam [55]

Dropout rate 0.35
Content request arrival

rate of UE-i λi (t)
Randomly generated

Local popularity distribution
parameter set of UE-i Gi

Randomly generated

Transition probability
matrix of UE-i Pi

Randomly generated

methods. All the reference methods are simulated in a 10-

user case. In addition, 2752 epochs are run for all the learning

methods.

1) Singular Value Decomposition (SVD): A traditional and

widely-adopted method in recommendation systems, i.e., SVD

[56] is included in the comparison. The SVD method is

centrally deployed on the MEC server without any privacy-

preserving constraints. On the other hand, the privacy infor-

mation of all the users can be accessed by the MEC server for

training this baseline.

2) Deep Recurrent AE Learning (DRAEL): We also con-

sider an unsupervised learning method [57], DRAEL, to

evaluate the impacts of the FL modules in the proposed

framework. For fairness, the AE architecture of the DRAEL

is identical to that of the proposed URFL. Nevertheless, due

to the removal of the FL framework in DRAEL, centralized

training by feeding the private historical requests information

of users is needed to train this method on the MEC server.

3) Single Dense AE Federated Learning (SDAEFL) and

Deep Dense AE Federated Learning (DDAEFL): We also

consider other two distributed learning methods, SDAEFL and

DDAEFL, to demonstrate the gains of the LSTM cells in the

proposed URFL. More specifically, the FL framework is still

used in these two methods to protect data privacy. However,

the neural networks of the AEs in these two baseline methods

are single dense neural networks and deep dense neural

networks, respectively. Moreover, the encoder and decoder of

the SDAEFL method are both single dense neural networks,

and the number of hidden layers of AE in DDAEFL is equal

to that of the proposed URFL.

4) Self-train: To evaluate the performance of the proposed

URFL method at the local user side, we set a self-train method

as another baseline method for comparison. This baseline

method is deployed on the local UEs and has the same AE

architecture as the proposed URFL method. Then, each UE

trains its own local prediction model in parallel without any

communications with other UEs or the MEC server.
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TABLE III
COMMUNICATION COST STATISTICS

Type Methods
Total Data Traffic

(offline training)
Data Traffic per Time Slot 1

(online prediction)

Prediction Error

(Global, RMSE)

Privacy

Preservation

Centralized
SVD 267.03 MB 40 B 0.574 No

DRAEL 267.03 MB 40 B 0.476 No

Distributed

SDAEFL 85.63 MB 40 B 0.588 Yes
DDAEFL 211.73 MB 40 B 0.571 Yes

URFL (Proposed) 853.74 MB 40 B 0.185 Yes

1 The data traffic pre time slot of each method is a theoretical value under the assumption that ∀i ∈ I,Ci (t) = ∅, λi (t) = 1.

(a) (b)

Fig. 6. Performance evaluations of the proposed URFL algorithm in the prediction of local popularity. (a) AE loss of each user. (b) Prediction error of each
user.

Fig. 7. Performance comparison of the proposed URFL method and self-train
method on local popularity prediction, i.e., UserID 7.

B. Results and Discussions

The prediction error measured by RMSE [35] of the pro-

posed algorithm in predicting the local popularity is shown

in Fig. 6, where the prediction loss of each local model is

sampled after every T = 32 self-training iterations. It can

be observed from Fig. 6(a) and (b) that, for each user, the

prediction accuracy of the local popularity and the AE loss can

both stably converge to a satisfactory level with the proposed

approach. In particular, we identify many regular jitters on the

RMSE curves as the learning epoch increases in Fig. 6(a). The

reason is that all the local AEs are forced to aggregate their

parameters based on FL after every T rounds of self-training.

As such, the RMSE loss of each local model instantaneously

increases after the parametric aggregation of multiple UEs, and

it then gradually decays to a lower level within the next T self-

training iterations. We also readily observe from Figs. 6(a) and

(b) that, there are slight differences in the convergence losses

of local popularity prediction for different users, which is

reasonable since all the users are non-i.i.d. and both the set Gi

and the probability Pi of each UE-i are randomly generated.

For the complicated Gi and Pi, the challenge of prediction

is tougher. In fact, this difference in prediction accuracy also

indicates a non-i.i.d. open problem in FL [33], which will be

an important research focus in our future works.

We further take UserID 7 as an instance and examine the

performance comparison of the proposed algorithm with the

self-training method, which is commonly adopted in deep

learning related works. In such a method, the agents train

their own local models individually without any interactions

with others. As shown in Fig. 7, the proposed algorithm

outperforms the self-training method from an individual user

perspective in terms of AE loss and prediction loss. This

result suggests that proper interactions with other participants

can improve the prediction accuracy, which is congenial with

common sense.

We take a step forward and study the prediction performance

from the perspective of global popularity. Fig. 8 implies that

the proposed method is superior to all the other baseline

methods in terms of the prediction accuracy. In the 10-UE
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Fig. 8. Performance comparison of the baselines and proposed URFL method
in the prediction of global popularity.

case, the proposed method yields an RMSE of around 68.7%
lower than those of SVD, SDAEFL, and DDAEFL, and 60.5%
lower than that of DRAEL. The remarkable gain suggests that

the proposed method can significantly improve the prediction

accuracy while grantee the data privacy of users since it only

aggregates the model parameters of each user rather than the

private raw data. We argue that the aggregation process of

the global prediction model pushes the MEC server to deeply

and accurately learn the underlying features from all the UEs

towards its coverage. In contrast, the baseline methods not

only need to be supplied by large amounts of private data

but also are incompetent to exact features from a mass of

historical requests kneaded together in time and space. In

addition, we observe from Fig. 8 that the performance of

SDAEFL is inferior to SVD and DDAEFL, which implies

that the single dense neural network cannot effectively predict

popularity. Furthermore, the 19.5% gain of the DRAEL to the

DDAEFL and the 60.5% gain of the proposal to the DRAEL

confirm that the recurrent mode realized by LSTM and the

parameters aggregation realized by FL can both contribute

to the reduction of prediction error considerably. We also

infer from the comparison between the proposed algorithm

and DRAEL in Fig. 8 that, the prediction variance can be

significantly reduced using the proposal. It is interesting to

note, increasing the number of UEs does not continuously

improve the prediction accuracy of the proposed algorithm.

As can be seen from Fig. 8, the best RMSE performance is

achieved when the number of UEs I = 6 rather than I = 10
or I = 3. This is because aggregation of insufficient local

models can be unrepresentative of the global characteristics,

while an overly large sample size will result in information

redundancy.

The performance comparisons between the proposed

method and all the baseline algorithms versus the number of

total content files N are presented in Fig. 9. It can be seen

from Fig. 9 that the proposed URFL algorithm significantly

outperforms all the baselines regardless of the value of N .

Fig. 9. Performance comparison of different number of contents files on the
global prediction error.

The statistics of communication cost represented by the data

traffic in the MEC network are listed in Table III, where

I = 10, N = 24, T = 32. Though we can observe from Table

III that the proposed URFL algorithm generates more data

traffic for its offline training than the other baseline methods,

the offline training phase is often implemented when the UE

is idle, i.e., dormant status, charging status, etc. Therefore,

it is acceptable for the proposed method to reduce the error

of popularity prediction and preserve the privacy of users by

sacrificing the tolerable increase of data traffic in the idle status

of the MEC network. Moreover, under the assumption that

∀i ∈ I, Ci (t) = ∅, λi (t) = 1, the theoretical data traffic

of all the considered methods per time slot are equal, but

the proposed method can achieve the lowest prediction error.

When the assumption is invalid in the real environment, the

data traffic of the centralized methods still remains 40 B. By

contrast, the data traffic of the distributed methods will be less

than 40 B, which actually depends on the λi (t), prediction

errors of local/global popularities, and the cache hit rates of

each cache entities.

In Fig. 10, we provide the performance evaluations of the

proposed URFL algorithm on different number of samples. We

can observe from Fig. 10(a) and (b) that the proposed method

can achieve superior performance in both local and global

popularity predictions when the sample size is more sufficient.

The reason is that the prediction model generally extracts more

complete features from a dataset with sufficient samples, thus

achieves the lower prediction error. With the sample size in-

creasing to a certain extent, the further performance gains will

not be produced due to the feature saturation. Moreover, we

also evaluate the performance of the proposed URFL algorithm

on different T , as shown in Fig. 11. Fig. 11(a) and (b) imply

that the prediction error of the local popularity decreases with

increasing T . This is because the local prediction errors are

valued under the same communication rounds. As such, the

local prediction model will be trained with more epochs as T
increases, and thus converges to a better performance level.
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(a) (b)

Fig. 10. Performance evaluations of the proposed URFL algorithm on different number of samples. (I = 3, N = 24, H = 10) (a) AE loss of each local
user. (b) Prediction error of the global popularity.

(a) (b) (c)

Fig. 11. Performance evaluations of the proposed URFL algorithm on different T. (N = 24, H = 10) (a) Prediction error of each local user. (I = 3) (b)
Prediction error of each local user. (I = 10) (c) Prediction error of the global popularity.

Fig. 12. Performance comparison on large gropus of users. ( N = 24, H =
10, T = 16 )

Straightforward, if we want to achieve the the same local

prediction performance under different T , we should continue

increasing the number of communication rounds in the case of

small T , but which also means higher communication costs.

Fig. 11 (c) illustrates that the prediction error of the global

popularity will first decrease and then increase as T increases.

This performance trend is due to the fact that large local-

training epochs pre round will bring a large bias between each

local model, while few T will lead to an under-optimization

of each local model on their local dataset pre round.

In Fig. 13, we provide the performance evaluation of the

proposed FedLWA parameter aggregation scheme. It can be

observered from Fig.13(a) that, for each user, the training

loss of the LSTM-AE model can converge to a lower level

with the proposed FedLWA-based URFL algorithm, which

demonstrates that the FedLWA parameter aggregation scheme

can bring additional performance gains to the training. The

reason is that the proposed FedLWA scheme can adaptively

weigh the contribution of each local parameter to the global

parameter on the basis of the convergence of local models

at the end of each communication round, so as to obtain

better aggregated parameters. Consequently, as shown in Fig.

13(b), the FedLWA-based URFL approach is superior to the

URFL approach in terms of the prediction errors at both local

user and MEC server sides. Hence, the non-i.i.d. problems in



14 IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXX XXXX

(a) (b)

Fig. 13. Performance comparison of the proposed URFL algorithm and the proposed FedLWA-based URFL algorithm. (N = 24, H = 10, I = 3) (a) AE
loss of each user. (b) Prediction errors of local and global popularities.

(a) (b) (c)

(d) (e) (f)

Fig. 14. Performance test of the proposed URFL algorithm in the real-time prediction of local popularities and global popularity. (a) The real-time prediction
error on UserID 1 and 2. (b) The real-time prediction error on UserID 3 and 4. (c) The real-time prediction error on UserID 5 and 6. (d) The real-time
prediction error on UserID 7 and 8. (e) The real-time prediction error on UserID 9 and 10. (b) The real-time prediction error of the global popularity.
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the investigated scenario could be alleviated by applying the

proposed FedLWA parameter aggregation scheme.

The performance comparisons between the proposed meth-

ods and the baseline methods on large groups of users, i.e.

I = {100, 200, · · · , 700}, are presented in Fig. 12. Note that

random sampling aggregation is a common approach to FL for

large-scale client scenarios [54]. Herein, we randomly select

6 local clients for each parameter aggregation in the training

phase. It can be observed from Fig. 12 that, in large-scale user

scenarios, the proposed URFL algorithm still outperform the

baselines regardless of the value of I . Moreover, Fig. 12 show-

cases the superiority of the proposed FedLWA-based URFL

algorithm, which demonstrates that the proposed FedLWA

parameter aggregation scheme is also applicable to large-scale

user scenarios and can bring additional performance gains

regardless of the number of users.

In closing, we test the online prediction performance of

the proposed URFL algorithm in the local UEs and the MEC

server in 20 consecutive time slots. In the simulations, each UE

and the MEC server are deployed with their own prediction

models which have entered the convergent state using the

proposed URFL algorithm. During the service delivery, the

trained prediction models predict the future local and global

popularities in real-time to assist the equipments to effectively

update caches. In each time slot for arbitrary i, we compute

the respective absolute errors between the predicted local

popularity and the true local popularity of the request prob-

ability associated with each content file, denoted as ei (t) =
{
∣

∣

∣
P̂ i
n

(

αi (t) , t
)

− P i
n

(

αi (t) , t
)

∣

∣

∣

}N

n=1
. The real-time predic-

tion errors of each UE are visualized in Figs. 14(a) to (e). Like-

wise, we evaluate the real-time prediction errors of the global

popularity by eG (t) =
{
∣

∣

∣
P̂ i
n

(

αi (t) , t
)

− P i
n

(

αi (t) , t
)

∣

∣

∣

}N

n=1
and show the result in Fig. 14(f). We readily observe from Fig.

14 that, for both local and global popularities, the real-time

prediction error for each content file is largely lower than 0.1
and, in most of the cases, it is under 0.05. This result shows

that the convergent URFL algorithm can significantly reduce

the prediction error of the local/global popularities during the

online service, and this reconfirms the effectiveness of the

proposed algorithm.

VI. CONCLUSION AND FUTURE WORK

In this article, we investigated the problem of edge popular-

ity prediction in a MEC-enabled privacy-sensitive IIoT system.

The concepts of local popularity and global popularities are

introduced and we reformulate the underlying distributed

history-inaccessible time series forecasting problem as a label-

absent distributed learning problem. The dynamic temporal

dependencies within the long sequence are explored using

LSTM cells and the training data labeling is circumvented

by incorporating the AE structure. To realize collaborative

prediction, the FL framework is adopted to effectively ex-

change the diverse model parameters of each network partic-

ipant with a data-security guarantee. The above modules and

designs collectively constitute a novel URFL algorithm, which

achieves superior performance in terms of RMSE prediction

error and AE loss while avoids privacy disclosure. Our future

work will concentrate on the popularity prediction-assisted

proactive caching, as well as more complicated scenarios such

as the heterogeneous multiple MEC nodes and non-i.i.d. user

behaviors.

APPENDIX A

PROOF OF THEOREM 1

Suppose that the occurrence of events F i(t) = Fn and

F i(t) /∈ ∅ are respectively denoted by Bi and Ci. According

to the service process described in Section III-A, we readily

have Cj ∩ Bj = ∅, Bi ⊆ Ci, and the statuses of different

users are mutually independent. From the perspective of the

MEC server, all the local users can be treated as a whole. As

such, if we let FG(t) denote the possible request received at

time slot t, we obtain the following derivation:

PG
n (t) = P

{

FG (t) = Fn

}

=
P{FG(t)=Fn|FG(t)/∈∅}

P{FG(t)/∈∅}

=
P{{FG(t)=Fn}∩{FG(t)/∈∅}}

[P{FG(t)/∈∅}]2

=
P
{{

⋂

I
j=1

Bj

}

∩
{

⋂

I
i=1

Ci

}}

[

P
{

⋂

I
i=1

Ci

}]2 =
P{{

⋃

I
j=1

Bj}∩{
⋃

I
i=1

Ci}}
[P{

⋃

I
i=1

Ci}]2

=
P{

⋃I
j=1

⋃I
i=1 (B

j∩Ci)}
[P{

⋃

I
i=1

Ci}]2
=

∑I
j=1

∑I
i=1

P{Bj∩Ci}
[
∑

I
i=1

P{Ci}]2

=
I
∑

j=1

I
∑

i=1

[

λi (t) · λj (t)P
j
n

(

αj (t) , t
)]

/

[

I
∑

i=1

λi (t)

]2

=
∑I

j=1

[

λj (t)P
j
n

(

αj (t) , t
)]

/

∑I
i=1 λi (t).

(18)

In the light of the above result, the global popularity can be

computed as

P
G(t) =

{

∑I
i=1 λi (t) · P

i
n(α

i(t), t)
}N

n=1

/

I
∑

i=1

λi (t)

=
∑I

i=1 λi (t) ·
{

P i
n(α

i(t), t)
}N

n=1

/

∑I
i=1 λi (t)

=
∑I

i=1 λi (t) ·Pi
(

αi(t), t
)

/

∑I
i=1 λi (t).

(19)

�

APPENDIX B

SIMULATION VALIDATION OF THEOREM 1

Herein, we provide a statistical experiment to compare the

gap between the sampling estimate and the theoretical value

so as to further validate the Theorem 1, where the sampling

estimate of P
G(t) is counted from the actual samples in the

system and the theoretical value of PG(t) is computed using

Theorem 1.

As for the sampling estimate, we set up 6 users and re-

spectively record their requests Fi(t) over continuous 100000

time slots, where the parameter set
{

αi(t), λi (t)
}

of each

user are randomly generated and remain constant during this

period. Besides, the number of total contents N is set to

32. Then, we count the number of times that each content

Fn ∈ {F1, F2, · · · , FN} has been requested according to the

recorded requests data. Finally, according to Borel’s law of

large numbers [44], we observe the requested frequency of
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TABLE IV
USER PARAMETERS FOR SIMULATION VALIDATION OF THEOREM 1

Distributions
User Parameters

UserID 1 UserID 2 UserID 3 UserID 4 UserID 5 UserID 6

Zipf
(

αi
) λ1 α1 λ2 α2 λ3 α3 λ4 α4 λ5 α5 λ6 α6

0.74 0.08 0.91 2.14 0.58 1.56 0.76 1.02 0.74 0.11 0.63 0.15

Poisson
(

li
)

λ1 l1 λ2 l2 λ3 l3 λ4 l4 λ5 l5 λ6 l6

0.51 8 0.60 27 0.68 24 0.96 29 0.98 13 0.79 11

nBernoulli
(

pi

) λ1 p1 λ2 p2 λ3 p3 λ4 p4 λ5 p5 λ6 p6

0.94 0.44 0.91 0.11 0.91 0.50 0.68 0.70 0.76 0.52 0.70 0.51

Gaussian
(

µi, σi

)

λ1 µ1 σ1 λ2 µ2 σ2 λ3 µ3 σ3 λ4 µ4 σ4 λ5 µ5 σ5 λ6 µ6 σ6

0.88 6 2.30 0.82 31 3.63 0.97 17 2.45 0.87 28 2.96 0.68 15 3.27 0.94 9 5.37

(a) (b) (c) (d)

Fig. 15. Simulation validation of Theorem 1 on different probability distributions. (I = 6, N = 32) (a) The local popularity of user i follows Zipf
(

αi
)

.

(b) The local popularity of user i follows Poisson
(

li
)

. (c) The local popularity of user i follows nBernoulli
(

pi
)

. (d) The local popularity of user i follows

Gaussian
(

µi, σi
)

.

each content and acquire the sampling estimate of P
G(t) by

approximating P
G(t) from these frequencies. On the other

hand, the theoretical value of PG(t) can be directly calculated

by Theorem 1 under this given scenario. Moreover, in the

experiment, we consider the case that the local popularity fol-

lows four different probability distributions respectively, i.e.,

Zipf
(

αi
)

, Poisson
(

li
)

, nBernoulli
(

pi
)

, Gaussian
(

µi, σi
)

.

αi, li, pi, {µi, σi} respectively represent the distribution

parameter of user i under these four probability distributions.

Specifically, the parameter settings in this statistical exper-

iment are listed in Table IV. From Fig. 15, we can observe

that the gap between the sampling estimate and the theoretical

value always stays negligible under different distributions,

which validates the Theorem 1 intuitively. Besides, as shown

in Fig. 15, the gap is also quantified by the RMSE metric to

further validates the Theorem 1.

REFERENCES

[1] C. Zheng, S. Liu, Y. Huang, and T. Q. S. Quek, “Privacy-preserving
federated reinforcement learning for popularity-assisted edge caching,”
in Proc. 40th IEEE Global Commun. Conf. (GLOBECOM’21): Mach.

Learn. Commun. Symp., Madrid, Spain, Dec. 2021, pp. 1–6.
[2] H. Wu, X. Lyu, and H. Tian, “Online optimization of wireless powered

mobile-edge computing for heterogeneous industrial internet of things,”
IEEE Internet Things J., vol. 6, no. 6, pp. 9880–9892, Dec. 2019.

[3] B. Yang, X. Cao, X. Li, et al., “Mobile-edge-computing-based hierarchi-
cal machine learning tasks distribution for IIoT,” IEEE Internet Things

J., vol. 7, no. 3, pp. 2169–2180, Mar. 2020.
[4] E. Sisinni, A. Saifullah, S. Han, et al., “Industrial internet of things:

Challenges, opportunities, and directions,” IEEE Trans. Ind. Inf., vol.
14, no. 11, pp. 4724–4734, Nov. 2018.

[5] M. Du, K. Wang, Y. Chen, et al., “Big data privacy preserving in multi-
access eEdge computing for heterogeneous internet of things,” IEEE

Commun. Mag., vol. 56, no. 8, pp. 62–67, Aug. 2018.
[6] Z. Zhao, R. Zhao, J. Xia, et al., “A novel framework of three-hierarchical

offloading optimization for MEC in industrial IoT networks,” IEEE

Trans. Ind. Inf., vol. 16, no. 8, pp. 5424–5434, Aug. 2020.
[7] C. Zhong, M. C. Gursoy, and S. Velipasalar, “Deep reinforcement

learning-based edge caching in wireless networks,” IEEE Trans. Cognit.

Commun. Networking, vol. 6, no. 1, pp. 48–61, Mar. 2020.
[8] L. Chen, L. Song, J. Chakareski, and J. Xu, “Collaborative content place-

ment among wireless edge caching stations with time-to-live cache,”
IEEE Trans. Multimedia, vol. 22, no. 2, pp. 432–444, Feb. 2020.

[9] M. I. A. Zahed, I. Ahmad, D. Habibi, and Q V. Phung, “Content caching
in industrial IoT: Security and energy considerations,” IEEE Internet
Things J., vol. 7, no. 1, pp. 491–504, Jan. 2020.

[10] S. Gu, Y. Tan, N. Zhang, and Q. Zhang, “Energy-efficient content place-
ment with coded transmission in cache-enabled hierarchical industrial
IoT networks,” IEEE Trans. Ind. Inf., vol. 17, no. 8, pp. 5699–5708,
Aug. 2021.

[11] Q. Li, Y. Zhang, Y. Li, and et al., “Capacity-aware edge caching in fog
computing networks,” IEEE Trans. Veh. Technol., vol. 69, no. 8, pp.
9244–9248, Aug. 2020.

[12] R. Zhang, F. R. Yu, J. Liu, and et al., “Deep reinforcement learning
(DRL)-based device-to-device (D2D) caching with blockchain and mo-
bile edge computing,” IEEE Trans. Wireless Commun., vol. 19, no. 10,
pp. 6469–6485, Oct. 2020.”

[13] Y. Dai, D. Xu, K. Zhang, and et al., “Deep reinforcement learning
and permissioned blockchain for content caching in vehicular edge
computing and networks,” IEEE Trans. Veh. Technol., vol. 69, no. 4,
pp. 4312–4324, Apr. 2020.

[14] H. Zhu, Y. Cao, X. Wei, and et al., “Caching transient data for internet of
things: A deep reinforcement learning approach,” IEEE Internet Things
J., vol. 6, no. 2, pp. 2074–2083, Apr. 2019.

[15] M. Zeng, T.-H. Lin, M. Chen, et al., “Temporal-spatial mobile applica-
tion usage understanding and popularity prediction for edge caching,”
IEEE Wireless Commun., vol. 25, no. 3, pp. 36–42, Jun. 2018.



ZHENG et al.: UNSUPERVISED RECURRENT FEDERATED LEARNING FOR EDGE POPULARITY PREDICTION IN PRIVACY-PRESERVING MEC NETWORKS 17

[16] C. Zheng, S. Liu, Y. Huang, and L. Yang, “MEC-enabled wireless
VR video service: A learning-based mixed strategy for energy-latency
tradeoff,” in Proc. 18th IEEE Wireless Commun. Networking Conf.

(WCNC’20), Seoul, South Korea, May 2020, pp. 1–6.
[17] C. Zheng, S. Liu, Y. Huang, and L. Yang, “Hybrid policy learning for

energy-latency tradeoff in MEC-assisted VR video service,” IEEE Trans.
Veh. Technol., vol. 70, no. 9, pp. 9006–9021, Sept. 2021.

[18] Y. Qian, L. Hu, J. Chen, and et al., “Privacy-aware service placement for
mobile edge computing via federated learning,” Information Sciences,
vo. 505, pp. 562–570, Dec. 2019.

[19] S. Liu, C. Zheng, Y. Huang, and T. Q. S. Quek, “Distributed reinforce-
ment learning for privacy-preserving dynamic edge caching,” IEEE J.

Sel. Areas Commun., vol. 40, no. 3, pp. 749–760, Mar. 2022.
[20] Y. Jiang, M. Ma, M. Bennis, et al., “User preference learning-based edge

caching for fog radio access network,” IEEE Trans. Commun., vol. 67,
no. 2, pp. 1268–1283, Feb. 2019.

[21] J. Xu, M. V. D. Schaar, J. Liu, and H. Li, “Forecasting popularity of
videos using social media,” IEEE J. Sel. Top. Signal Process., vol. 9,
no. 2, pp. 330–343, Mar. 2015.

[22] S. He, H. Tian, and X. Lyu, “Edge popularity prediction based on social-
driven propagation dynamics,” IEEE Commun. Lett., vol. 21, no. 5, pp.
1027–1030, May 2017.
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