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Abstract—Convolutional Neural Networks (CNNs) has been
applied in numerous Internet of Things (IoT) devices for multi-
farious downstream tasks. However, with the increasing amount
of data on edge devices, CNNs can hardly complete some tasks
in time with limited computing and storage resources. Recently,
filter pruning has been regarded as an effective technique to
compress and accelerate CNNs, but existing methods rarely prune
CNNs from the perspective of compressing high-dimensional
tensors. In this paper, we propose a novel theory to find
redundant information in three-dimensional tensors, namely
Quantified Similarity between Feature Maps (QSFM), and utilize
this theory to guide the filter pruning procedure. We perform
QSFM on datasets (CIFAR-10, CIFAR-100 and ILSVRC-12) and
edge devices, demonstrate that the proposed method can find the
redundant information in the neural networks effectively with
comparable compression and tolerable drop of accuracy. Without
any fine-tuning operation, QSFM can compress ResNet-56 on
CIFAR-10 significantly (48.7% FLOPs and 57.9% parameters
are reduced) with only a loss of 0.54% in the top-1 accuracy. For
the practical application of edge devices, QSFM can accelerate
MobileNet-V2 inference speed by 1.53 times with only a loss of
1.23% in the ILSVRC-12 top-1 accuracy.

Index Terms—Edge Computing, Filter Pruning, Internet of
Things, Model Compression, Neural Networks.

I. INTRODUCTION

W ITH the popularity of the Internet of things (IoT),
widely distributed mobile and IoT devices generate

more data, which may be more than that generated by large
cloud data centers. Some IoT applications may require a
short response time, some may involve private data, and some
may generate a large amount of data, which may cause a
heavy burden on the network [1]. Therefore, it need to be
more effective for processing data at the edge of topological
networks. Artificial Intelligence (AI) has demonstrated its
great ability in data processing and analysis [2], many edge
devices also load CNNs [3], such as VGGNet [4], ResNet [5],
GoogLeNet [6], MobileNet [7] and DenseNet [8] to meet the
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Fig. 1: Channels deleted after QSFM are marked in red. The upper part of
the figure shows that QSFM prune model by deleting similar feature maps,
for example, the feature map with orange box is kept, while the similar one
with green box is deleted. The lower part visualizes the feature maps from
the first layer of VGG-16.

needs of different tasks like image classification [5], [6], object
detection [9], [10], 3D reconstruction [11], [12] and so on.

However, with the improvement of large CNNs perfor-
mance, there are many problems, such as huge amouts of
parameters, terrible computing consumption and large mem-
ory requirements which become the challenges for edge and
mobile embedded devices.

Compressing and accelerating neural network models is
a hot topic recently. At present, the typical works include
network quantization [13], [14], low-rank approximation [15],
weight sharing [16]–[18] and weight pruning [19], [20]. These
methods need specific hardware or software libraries to run,
and some of them can not solve the problems described
above comprehensively. There is another lightweight technique
defined as filter pruning [21]–[26], also known as coarse-
grained pruning. By comparison, filter pruning is not restricted
to special hardware or software, and suitable as well as
universal for CNNs in various types of tasks. Tab. I lists the
attributes existing in relevant methods, and it can be seen that
filter pruning is more universal among them.

Filter pruning has been shown to be significant in network
slimming [27], [28]. Great progress has been made in filter
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TABLE I: Attributes in Existing Model Compression Methods.

3or 7 represents yes or no. * denotes that the corresponding method can
solve the problem in specific situations.

Attributes
Weight
Pruning

Network
Quantization

Weight
Sharing

Low-Rrank
Approximation

Filter
Pruning

Network Structure
Maintenance

7 3 3 7 3

Not Required Special
Compilation Library

7 7 3 3 3

Robustness in
Various Hardware

7 7 3 3 3

Acceleration
for Inference

* * 7 3 3

pruning, but there are also some problems, such as incur-
ring extra hyper-parameters, destroying model structure and
remaining redundant information. [24], [25], [29] put forward
specific optimization objectives and constraints, and utilize
heuristic optimization algorithms to train CNNs jointly. These
will bring a new set of hyper-parameter problems. That means,
aiming to deploy strategies, extra tricks to further adjust
hyperparameters of heuristic algorithms are needed, which
is not flexible for practical application. Moreover, jointed
training, combined with sparsity regularization penalty, will
destroy the structure of the model itself. In [21]–[23], [26],
[30]–[34], filters are pruned by concrete regulations, which are
explicit in generating filter importance. These methods need
to sort the importance from high to low and then delete the
low importance filters without manual adjustment. [34] com-
press CNNs with pruning and tucker tensor decomposition,
which destroys the original model structure and complicates
deployment. Although [23], [32] have achieved success in
compressing models, they rely too much on intuition and
lack basic theoretical guidance. Meanwhile, other rule-based
methods provide sufficient theoretical support to find out this
redundant information, but still remain defects. [21] applies the
L1 norm to filters as the evaluation criterion of importance.
However, all layers used the same trim scale, which brought
suboptimization. [30], [31] use scaling factor to measure the
importance of parameters, pay too much attention to the pa-
rameters themselves and ignore information redundancy in the
outputs generated by these parameters. [22] proposes a method
named Hrank to prune filters with low-rank feature maps.
Similar high-rank feature maps may also contain redundant
information, but they have not been removed.

We believe that the reason for the shortcomings of the
filter pruning methods mentioned above is that the relationship
between model pruning and tensor compression is not fully
utilized. In CNNs, 2D feature maps output by the middle
layer constitute 3D tensors. As shown in Fig. 1, it can be
found that the original model contains many similar feature
maps by visualizing the feature maps output by the first layer
of VGG-16. Inspired by the similarity between feature maps,
we introduce the similarity function to quantify the similarity
between feature maps and delete similar feature maps to prune
the CNNs. The whole process is analogous to constructing
the maximum linearly independent group of 3D tensors, as
shown in the upper part of Fig. 1. GhostNet [35] explains and
applies the similarity of feature maps, but it makes use of this

property from the perspective of constructing the structure of
convolutional neural networks, and does not perform an in-
depth investigation about how to use this property to model
pruning, which is different from the tensor compression and
CNNs pruning in this paper.

Our main contributions are as follows:
• We propose a theory to find out the redundant information

in 3D tensors by quantifying the similarity between any
two feature maps, namely QSFM. QSFM can compress
3D tensors in CNNs to prune models.

• Based on QSFM, we prune a variety of convolution
layers such as common convolution layers and depth-wise
separable convolution layers, which do not need special
software library and can accelerate the model inference
speed.

• Experiments demonstrate that our method is applica-
ble to almost all CNNs, such as VGGNet, MobileNet
and ResNet. On CIFAR-10 [36], CIFAR-100 [36] and
ILSVRC-12 [37], QSFM shows superior performance
over existing prior filter pruning methods. QSFM can
improve the inference speed of CNNs in practical ap-
plications of mobile and edge devices.

The remainder of this paper is organized as follows. Section
II discusses the recent achievements related to deep learning
model compression. Section III presents QSFM compress 3D
tensors by taking advantage of the similarity between feature
maps. Section IV conducts experiments and analyses to verify
the feasibility of QSFM on different model structures, multiple
datasets and different devices. Conclusions are given in the
Section V.

II. RELATED WORK

According to existing popular model compression methods,
three research domains are most relevant to our approach,
which can be categorized into network quantization, weight
pruning and filter pruning.

Network Quantization. [13] proposed the network sketch-
ing method, which used the convolution with binary weight
sharing: for convolution calculation with the same input, the
result of the previous convolution is retained, and the same
part of the convolution filters directly multiplex the result.
[14] projected data into Hamming space by hashing, and
transformed the problem of learning binary parameters into
a hashing problem under inner product similarity. Different
from the traditional 1-Valued or weighted mean, [38] pro-
posed trained ternal quantification (TTQ), which used two
trainable full precision scaling coefficients to quantify the
weight to {−wn, 0, wp}, and asymmetric weights made the
network more flexible. These network quantization methods
can accelerate the inference speed by specific library (denoted
as * in Tab. I) such as [39], while only utilizing the net-
work quantization algorithm without the assistance of other
libraries may not able to accelerate speed in reality. Unlike
our approach, these methods aim to quantify the weight of
filters into discrete values, while our approach is to reduce
channels for the 3D tensors of convolutional layer output.
Besides, these methods obtain a very high level of compression
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in saving storage space and significantly accelerate inference,
but extreme compression (continuous to discrete) may limit
the fitting ability of model and may bring a considerable
loss of accuracy, damage the model performance. Additionally,
the value of the possible weight network needs to be further
explored.

Weight Pruning. Weight pruning can remove any redundant
parameter or redundant connection of the expected proportion
of the network without restriction, but it will bring the problem
of irregular network structure, making it difficult to effectively
accelerate after pruning. Recently, [19] proposed SNIP method
that the importance of the connection was determined by
sampling the training set several times in the initialization
phase of the model, and the pruning template was generated
in the meantime. After training, there is no need to iterate
pruning and fine-tuning by the alternating cycle process. [20]
used weighted sparse projection and input masking to provide
quantifiable energy consumption, taking energy consumption
budget as the optimization constraint of network training,
and the sparse network can be obtained by utilizing dynamic
pruning method which can recover the important connections
removed by mistake. Due to requirement of special sparse
matrix operation library and hardware, it is also not convenient
and universal to use weight pruning to implement acceleration
for model.

Filter Pruning. Also named as coarse-grained pruning, it
considers filters as the minimum prunning units, which can
make the network ’narrow’ and can directly achieve effective
acceleration on existing software or hardware. Fig. 2 shows
how filter pruning reduces the output channels of the convolu-
tion layer. Compared with human-crafted pruning, [24] made
the model compression completely automatic and performed
better. It utilized DDPG (Deep Deterministic Policy Gradient)
as the controller to generate the specific compression ratio in
continuous space. Different from the previous hard pruning
and label dependent pruning methods, [25] proposed a label
free Generative Adversarial Learning (GAL) method, which
used sparse soft mask pruning network to scale the output
of specific structure to zero. It learnt pruning networks with
sparse soft masks in an end-to-end manner. Due to heuristic
optimization algorithm and jointed training, [24], [25] will
bring a new set of hyper parameter problems. [23] proposed an
iterative two-step algorithm to effectively prune each layer, by
a Least Absolute Shrinkage and Selection Operator (LASSO)
regression based channel selection and least square reconstruc-
tion. [26] proposed a variational Bayesian scheme for pruning
convolutional neural networks in channel level, introducing a
stochastic variational inference to estimate the distribution of
channel saliency induced by a sparse prior. Though successful
in compressing model, [23], [26] originated in experience or
intuition, lacking of basic theoretical guidance. [21] calculated
the L1 norm of the filter, cutting out the feature map corre-
sponding to the smaller L1 norm, and retrained after pruning.
However, all layers use the same trim scale, which brings
suboptimization. [22] proposed an effective and efficient filter
pruning approach that explored the High Rank (HRank) of
the feature maps in each layer. The principle behind HRank
is that low-rank feature maps contain less information, and

    

    

    

  

    

  

  

  

  

→

    

  

    

    

    

    

→

    

    

    

  

    

  

  

    

  - 
→

    

    

    

    

    

    

→

Pruning

Filters of Layer (  Filters of Layer (   )
Feature Maps

of Layer (    
Feature Maps

of Layer (  
Feature Maps

of Layer (    

Fig. 2: Overview of filter pruning process. The figure shows the change after
deleting the second channel of Layer(i) output. The red parts indicate that they
have been deleted, and the values enclosed by the red dotted line indicate that
the dimensions have been changed. ’*’ means convolution operation.

thus pruned results can be easily reproduced. Nevertheless,
similar high-rank feature maps may also contain redundant
information, but they have not been removed.

Different from the existing methods, our method builds
a bridge between tensor compression and model pruning,
and provides a new perspective for filter pruning by deleting
redundant information of tensor. With a new theoretical foun-
dation, QSFM can get rid of the limitation of special software
library or hardware, achieving the promotion of storage usage,
memory occupation and computing speed at the same time.
And it retains the model structure with different pruning rate. It
can also be combined with other typical categorise mentioned
above to further achieve higher compression ratio.

III. QUANTIFIED SIMILARITY BETWEEN FEATURE MAPS

In mathematics, a set of vectors is linearly independent if no
vector in the set can be expressed as a linear combination of
the other vectors. If A is a linearly independent set of vectors
and B is linearly dependent, where A and B are composed of
the same number and same dimensions of vectors, then there
are more vectors that can be represented by A than by B, and
in this sense, B contains redundant information.

We extend this linearly independent concept to the three
dimensional tensors composed of feature maps in CNNs. To
some extent, every vector in a linearly independent set is not
similar. For each convolution layer in CNNs, its filters are
convolved with the input to generate feature maps. These 2D
feature maps form 3D tensors and are then input to the next
convolution layer. Our pipeline (Quantified Similarity between
Feature Maps, QSFM) tries to identify similar feature maps to
find out the redundant information of 3D tensors, and prunes
them by deleting similar feature maps. The whole process is
like constructing the maximum linearly independent group of
3D tensors. The detailed process is described as follows:

A. Assumptions

The pre-trained CNN model before pruning is Model0.
Filter pruning does not change the convolution layers number,
so we assume that the convolution layers of the model are
L1, L2, ..., Ln. QSFM prune these n layers sequentially, and
the model obtained after the kth pruning operation is Modelk.

The parameters set Wi of the ith convolution layer Li is
composed of Ni filters, where filters are 3D tensors and Wi

is a 4D tensor. Denoted as Wi = {F(i,1), F(i,2), ..., F(i,Ni)} ∈
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Fig. 3: This figure describes the detailed pruning workflow. Step 1, obtain feature maps generated by convolution layer. Step 2, quantify similarity between
feature maps. Step 3, use auxiliary condition to decide which feature map should be deleted. Step 4, identify feature maps to keep. Step 5, delete filters.

RNi×Ni−1×Ki×Ki , where F(i,j) ∈ RNi−1×Ki×Ki represents
the jth filters, Ni−1 represents the channel number for a filter
in Li (also the input channel number), Ni represents the output
channel number for Li and Ki represents the height and width
of the convolution filter. Note that the output channel number
of the convolution layer is equal to the number of filters
contained in this layer, while the filter channel number in this
layer is equal to the number of output channels of the previous
layer, so the notation of Ni and Ni−1 above is rigorous.

Assume an image dataset Train has M images, denoted as
Train = {Image1, Image2, ..., Imagek} ∈ RM×N0×X0×Y0 ,
where N0 represents the channel number, X0, Y0 are the width
and height. If input only one image into the model, then the
input of Li is Ii ∈ RNi−1×Xi−1×Yi−1 and the output of Li is
Oi ∈ RNi×Xi×Yi . Actually Ii = Oi−1, but separating them
out makes readers focus more on the input and output of a
particular convolution layer (Li). For a specific convolution
operation in Li, the jth filter F(i,j) in Wi is convolved with Ii
to generate a 2D feature map, denoted as F M(i,j) ∈ RXi×Yi .
All these Ni filters in layer Li generate Ni feature maps,
denoted as Oi = {F M(i,1), F M(i,2), ..., F M(i,Ni)} ∈
RNi×Xi×Yi .

Above notations can refer to Fig. 2, the yellow background
represents the input or output of each layer and the blue
background is the parameters of the model. As shown in Fig. 1
and Fig. 2, the detailed pruning operation has been clear, so
the upper part of Fig. 3 becomes more abbreviated, while the
lower part focuses on the operations of QSFM on feature maps.

It can be concluded that specific feature maps correspond
to specific filters. QSFM inputs M images in Train into
the model to find redundant feature maps and delete filters
using the corresponding relationship. Specifically, if QSFM
is going to prune the kth convolution layer Lk of Modelk−1,
after identifying the redundant feature maps, QSFM delete the
corresponding filters and obtain Modelk.

B. Find Redundant Feature Maps

Filter pruning reduces the size and computation of CNN
model by reducing the number of channels output by the

convolutional layer. For the convolution layer Li, that means
the Ni need to be reduced and the 3D tensor Oi composed
of feature maps need to be compressed correspondingly.
Therefore, it is important to reduce the number of 3D tensor
channels while preserving as much information as possible.

Assume a compact 3D tensor Ocompact =
{F M c

1 , F M c
2 , ..., F M c

Nc
} ∈ RNc×X×Y , where

F M c
j ∈ RX×Y is not similar to each other. Nr elements

in Ocompact are allowed to be repeatedly selected to form a
redundant 3D tensor Oredundant ∈ RNr×X×Y . In general,
an ordinary 3D tensor O ∈ RN×X×Y is a combination of
compact tensor Ocompact and redundant tensor Oredundant,
where N = Nc +Nr.

If we extend the terms of the above Oredundant composition
process, allow Oredundant to contain elements similar to those
in Ocompact (not exactly equal), by visualizing the feature
maps output by CNN convolutional layer, we can find that
these 3D tensor output can be composed of a compact tensor
and a redundant tensor (as shown in Fig. 1 and Fig. 3, similar
results can be seen in GhostNet [35]). Since the elements
in Oredundant are approximately equal to the elements in
Ocompact (similar), Oredundant represents redundant informa-
tion in O.

QSFM uses the above properties to find similar feature
maps and delete redundant feature maps to build compact
tensor. This process is like constructing the maximum linearly
independent group. QSFM does not care about how to measure
the similarity between feature maps. Instead, it wants to
compress 3D tensors by taking advantage of the similarity
between feature maps. In order to show the operation process
concretely, we select two similarity functions to measure
similarity respectively. (The Step 2 in Fig. 3 shows only
one of these methods.) However, readers can also customize
the similarity function and even use neural network to judge
whether the feature maps are similar.

C. Quantify Similarity by Similarity Functions

The sequence of pruning is from L1 to Ln, and it is assumed
that the ith convolution layer Li is being pruned.
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First, assume the number of filters to be pruned in layer
Li is Ni2 according to the compression rate (set manually
according to requirements). These Ni2 filters which should be
pruned constitute the set Deletei.

In practice, QSFM makes quantified similarity more robust
by averaging the results of multiple inputs rather than a single
image.

The model to be pruned is Modeli−1, when the
Imagek is input into the Modeli−1, the output of Li is
Ok

i = {F Mk
(i,1), F Mk

(i,2), ..., F Mk
(i,Ni)

}. Calculate the
quantified similarity function S(F Mk

(i,m), F Mk
(i,n)) where

F Mk
(i,m) and F Mk

(i,m) (m 6= n) are any two elements in
the set Ok

i . Hereinafter, referred to as Si,k
m,n, function S takes

Structural Similarity (SSIM) [40] or Peak Signal to Noise
Ratio (PSNR).

SSIM and PSNR are usually used to measure the image
quality after compression. As far as we know, this is the first
time that these methods are used to measure the similarity
between two feature maps in CNNs.

Si,k
m,n(SSIM)

= SSIM(F Mk
(i,m), F Mk

(i,n))

=
(2µmµn + k21D

2)(2σmn + k22D
2)

(µ2
m + µ2

n + k21D
2)(σ2

m + σ2
n + k22D

2)
.

(1)

Here µm and µn are the average of all pixels in F Mk
(i,m)

and F Mk
(i,n). σ

2
m and σ2

n are the variance of all pixels in
F Mk

(i,m) and F Mk
(i,n). σmn is the covariance of F Mk

(i,m)

and F Mk
(i,n). Usually k1 is 0.01 and k2 is 0.03 according to

[40]. D is determined by the following equation:

D = max(Ok
i )−min(Ok

i ). (2)

Here max(Ok
i ) and min(Ok

i ) are the values of the largest
and smallest pixels in (Ok

i ).
Since the quantization of PSNR is theoretically equivalent to

the Euclidean distance if only care about the value of similarity
ordering, QSFM only need to sort the similarity according to
the Euclidean distance, needless to know the specific value of
PSNR. Therefore, the following content does not distinguish
the PSNR from the Euclidean distance. In order to make the
judgment standard of quantification function more uniform,
we hope that the larger the value of the similarity function is,
the more similar the two feature maps are. So we choose to
take the negative of the Euclidean distance.

Si,k
m,n(PSNR)

= −EuclideanDistance(F Mk
(i,m), F Mk

(i,n))

= −

√
Xi∑
x=1

Yi∑
y=1

(F Mk
(i,m)[x, y]− F Mk

(i,n)[x, y])
2
.

(3)

It is noted that Si,k
m,n is only the result generated by a

single Image (Imagek). For the whole Train, it contains M
images in total. We calculate the statistical average results on
M images, and define:

Convolution Filters

Depth-wise Convolution Filters

Output Feature Maps

Output Feature Maps

Input Feature Maps

Input Feature Maps

Input Image

Similar Feature Maps

Similar Feature Maps

Fig. 4: The specific operation of common convolution and depth-wise
separable convolution is slightly different, but QSFM can prune both of them.

Si
m,n =

M∑
k=1

Si,k
m,n

M
,

Si = {Si
m,n}, (m,n = 1, 2, 3, ..., Ni).

(4)

D. Prune Convolution Layers by Deleting Filters

After finding out the feature map groups with high similar-
ity, we need to stipulate an auxiliary condition to determine
which one of the two feature maps to delete. (Step 3 in
Fig. 3) We can randomly delete a feature map in each similar
group, or we can use the L1 norm of the feature map to
delete those with a smaller norm. We use the rank of the
two-dimensional matrix as auxiliary condition to assist the
quantified similarity function finding the redundant feature
maps. The use of this auxiliary condition is inspired by HRank
[22], but it does not mean that QSFM is similar to that of
HRank. In fact, as mentioned above, HRank does not take into
account the existence of redundant information (i.e. similarity)
in two high-rank feature maps. Meanwhile, our experiment
will prove that QSFM is superior to HRank. Calculate the rank
of each F Mk

(i,m), then the statistical average of the rank of
the F Mk

(i,m) in Oi is:

Rankim =

M∑
k=1

Ranki,km

M
,

Ranki = {Rankim}, (m = 1, 2, 3, ..., Ni)

(5)

Arrange the set Si from high to low, then match the set
Ranki to determine the filter to be pruned. Set the conditions
as follows:
• Condition 1: Filter(i,m) and Filter(i,n) are not members

of Deletei;
• Condition 2: Si

m,n is maximum under the premise that
m and n meet condition 1;

• Condition 3: Rankim>Rank
i
n;

• Condition 4: Rankim ≤ Rankin;
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Fig. 5: The pruning strategy of ResNet-56.

Fig. 6: The pruning strategy of MobileNet-V2.

If conditions 1, 2 and 3 meet simultaneously, Filter(i,n)
will be put into Deletei; if conditions 1, 2 and 4 meet
simultaneously, Filter(i,m) will be put into Deletei. And the
above operation will continue until the number of filters in the
set Deletei is Ni2. (Step 4 and Step 5 in Fig. 3)

The model could be fine-tuned after pruning every convo-
lution layer, that is:

Modeli = Fine Tuned(Modeli−1 −Deletei) (6)

After all convolutional layers are pruned following the
above methond, the compression of the neural network is
complete successfully.

The rank is not the only auxiliary condition can be used. In
fact, if Si

m,n is large, it indicates that there is similar redundant
information between the mth feature map and the nth feature
map, and the auxiliary condition is to determine whether to
delete the mth or the nth feature map. Section III.C. is to
quantify similar redundant information between feature maps,
while Section III.D. is to determine how to delete redundant
information (especially for neural network pruning). As long
as a method can play the same role, it can be used as the
auxiliary condition of QSFM.

E. Special Convolution

QSFM can also prune special convolution layers, like depth-
wise separable convolution in MobileNet. As shown in Fig. 4,
no matter how the convolution layer is convolved, the corre-
sponding relationship between filters and feature maps remains
unchanged and the output still have similar feature maps. So
QSFM can prune these special CNNs.

IV. EXPERIMENTS

In this section, we give some experimental settings firstly
and prove the feasibility of QSFM through ablation study.
Then we use use different model structures to test QSFM’s
performance on different datasets. Finally, we deploy the

pruned model of QSFM in edge devices, and verify that QSFM
is helpful to AI on Edge tasks by accelerate CNNs inference
speed.

In our experiments, we use Euclidean distance and Struc-
tural Similarity as the function of quantifying the similarity for
QSFM, which are called as QSFM-PSNR and QSFM-SSIM
respectively.

A. Experimental Settings

1) Datasets: CIFAR-10 [36] consists of 60000 color im-
ages with a resolution of 32 × 32. The images in CIFAR-10
are labeled as 10 categories, each containing 6000 images,
5000 for training and 1000 for testing. CIFAR-100 [36]
consists of 60000 color images with a resolution of 32 × 32.
The images in CIFAR-100 are labeled as 100 categories, each
containing 600 images, 500 for training and 100 for testing.

Due to the appropriate amount of data and small resolution,
CIFAR-10 and CIFAR-100 are widely used by many image
classification algorithms. However, because of its low resolu-
tion, it is used to test the performance of algorithms in most
cases, not in actual deployment scenarios.

ILSVRC-12 [37] contains more than 1.28 million images,
which vary in resolution but are usually adjusted to 224 × 224
resolution for use. The images are labeled as 1000 categories.

Different from CIFAR-10 and CIFAR-100, ILSVRC-12 has
a large enough amount of data, high resolution and multiple
categories to ensure that it can be used in actual deployment
scenarios.

2) Model Structures: The model structures we used are
VGG-16 [4], ResNet-56 [5], and MobileNet-V2 [7]. For
CIFAR-10, the initial model (baseline) used by QSFM are
VGG-16 (top-1 accuracy 93.39%), ResNet-56 (top-1 accu-
racy 93.21%) and MobileNet-V2 (top-1 accuracy 92.54%).
For CIFAR-100, the baseline is ResNet-56 (top-1 accuracy
70.62%). For ILSVRC-12, the baseline is MobileNet-V2 (top-
1 accuracy 72.21%).

3) Configurations: Images in CIFAR-10 and CIFAR-100
have resolutions of 32 × 32 × 3, while images in ILSVRC-
12 are resized to 224 × 224 × 3.

All the pruning operation are conducted within Tensor-
flow(1.14.0) and Keras(2.2.5). In practical application, we use
TensorFlow Lite to apply the model on mobile devices.

The convolution operation is usually followed by batch
normalization layer and activation layer, in our experiments,
we regard these three layers as a block and conduct QSFM
pruning on its final output 3D tensor(feature maps).

For every residual block in ResNet-56, we only prune the
first convolutional layers, which are simple and can keep the
output dimension of residual block unchanged, as shown in
Fig. 5. For every bottleneck in MobileNet-V2, we prune depth-
wise separable convolution layers, as shown in Fig. 6.

After the whole pruning operation, we calculate the FLOPs
and Parameters of the pruned models and compare them with
existing methods [22]–[26], [33]. On edge devices, we further
measure the inference speed to measure QSFM’s performance.
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Fig. 7: The histogram shows the FLOPs of the model after each pruning.
The curve shows the change of model accuracy after each pruning under four
different methods.

4) Devices: We use a server with a Nvidia V100 GPU
to compress CNNs by QSFM. For edge divice, we use a
Xiaomi-M2006J10C with an ARM MT6889Z/CZA processor
to deploy TensorFlow Lite model and a Nvidia-Jetson-TX2
with a 256-core Pascal GPU to deploy TensorFlow model.
Note that even if on the same device, the inference speed of
the same model may still be different in different software
environments or physical environments, so the measurement
of the inference speed of CNNs can be regarded as a qualitative
experiment, while FLOPS and Parameters are more universal
because they are not affected by equipment and environment.

B. Ablation Study

To verify that QSFM can find the redundant information
more efficiently in feature maps, we prune VGG-16 and
ResNet-56 without fine-tuning under the same compression
rate and other conditions, and compared with random pruning
and existing method (Hrank).

1) VGG-16: For VGG-16 on CIFAR-10, QSFM prune
the 3th and 4th blocks(the 5th to 10th convolution layers),
and the compression rates are [0.6, 0.4, 0.3, 0.3, 0.3, 0.3].
At this compression ratio, we prune the network layer by
layer with different methods, including QSFM-PSNR, QSFM-
SSIM, Hrank, Random(delete filters randomly). It should be
emphasized that we did not make any fine-tuning in this part,
and the experimental results are shown in the Fig. 7.

Our method is consistently better than Hrank and random
method in pruning different convolutional layers. In the ex-
periment, we find that sometimes the accuracy of our method
after pruning is even higher than that before pruning(In steps
3th and 4th of QSFM-SSIM). When the compression ratio is
large, HRank needs to delete the high-rank feature maps, but
it cannot effectively distinguish which are redundant in these
high-rank feature maps.

2) ResNet-56: In ResNet-56 on CIFAR-10, we find quite a
few convolution layers have many filters whose all parameter
values close to 10−32 (’unimportant filters’). We count the
proportion of filters whose all parameter values are close to
10−32 in the 27 layers of every residual block and prune
these layers. When we prune these filters, the accuracy of the
pruned model was roughly the same as that of the original
model (without fine-tuning). In order to prove the generality
of the results, we trained ResNet-56 on CIFAR-10 by three

Fig. 8: The x-axis represents the block index of ResNet-56. The coordinates
of histogram represent the proportion of ‘unimportant filters’ in each layer
of the three models. The curve represents the change of the accuracy of the
model after each pruning, and it can be found that the accuracy of the model
has not changed from beginning to end.

Fig. 9: The histogram shows the FLOPs of the ResNet-56 model after each
pruning. The curve shows the change of model accuracy after each pruning
under four different methods.

independent training with different accuracy (92.80%, 92.90%
and 93.21%), all of which have similar results, as shown
in Fig. 8. This shows that there is a lot of redundancy in
the model of ResNet-56 on CIFAR-10, so we think that it
may lead to the selection of filters that should be pruned
are all of magnitude 10−32 if the compression ratio of each
convolutional layer is too small, which cannot reflect the
advantages and disadvantages of our method.

To sum up, we can only judge the performance of the
method if the compression ratio is high enough (larger than
the proportion of filters whose all parameter values close to
10−32). If the compression ratio is too low, then any method
will always get a good result because the filters they delete
are distinctly useless.

We use this ’high compression ratio’ principle to compare
the pruning performance of various methods (the compression
ratio of each layer of ResNet-56 on CIFAR-10 will not be
lower than 0.5).

We prune the first 9 blocks of ResNet-56, and the com-
pression rates are [0.5, 0.5, 0.5, 0.5, 0.75, 0.75, 0.75, 0.75,
0.75]. We use the whole training set (50000 images) to
calculate the similarity between feature maps. The results
are shown in Fig. 9. Compared with Hrank and Random,
QSFM-PSNR provides better maintenance of precision for the
whole 9 steps, which demonstrates QSFM can better identify
important filters. But for QSFM-SSIM, it only performed
better in steps 1th to 3th , which indicates that there is still
space for improvement in the selected function to measure
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TABLE II: Pruning results of VGG-16 on CIFAR-10 (with Fine-tuning).
’Top-x’ represents the Top-x accuracy. ’PR’ represents the pruning rate. The
accuracy is represented in the format of Baseline → Pruned (Decreased
Accuracy). We use boldface to denote our method. The other tables and figures
follows the same convention.

Method Top-1(%) FLOPs(PR) Parameters(PR)

EasiEdge-82% [33] 93.73→93.42(-0.31) 70.42M(77.6%) 0.58M (96.1%)
HRank [22] 93.96→91.23(-2.73) 73.67M(76.5%) 1.75M (88.1%)

QSFM-SSIM 93.39→92.17(-1.22) 79.0M(74.8%) 3.68M(75.0%)
QSFM-PSNR 93.39→92.00(-1.39) 42.46M(86.5%) 0.49M(96.7%)

TABLE III: Pruning results of ResNet-56 on CIFAR-10(without Fine-tuning)

Method Top-1(%) FLOPs(PR) Parameters(PR)

AMC [24] 92.80→90.10(-2.70) 63.28M(50.0%) –
He [23] 92.80→90.80(-2.00) 62.52M(50.6%) –

GAL-0.6 [25] 93.26→92.98(-0.28) 78.30M(37.6%) 0.75M(11.80%)
GAL-0.8 [25] 93.26→90.36(-2.90) 49.99M(60.2%) 0.29M(65.90%)

Zhao [26] 93.04→92.26(-0.78) 100.86M(20.3%) 0.68M(20.49%)
QSFM-SSIM 93.21→92.67(-0.54) 64.92M(48.7%) 0.36M(57.9%)

similarity. Both QSFM-PSNR and QSFM-SSIM are far better
than Random, which proves the correctness of our method.

C. Results and Analysis on CIFAR-10

We prune some mainstream models on CIFAR-10, including
VGG-16, ResNet-56 and MobileNet-V2.

1) VGG-16: We apply QSFM to prune the VGG-16 model
with Fine-tuning. For QSFM-SSIM, all 13 convolution layers
have a compression ratio of 0.5. For QSFM-PSNR, the 13
convolution layers’ compression ratios are [0.5 0.5 0.5 0.5 0.5
0.6 0.6 0.6 0.9 0.9 0.9 0.9]. The results are displayed in Tab. II.
Compared with HRank, QSFM-SSIM nearly compress same
FLOPs while maintaining a better accuracy drop ( -1.22% vs.
-2.73% ). Compared with EasiEdge-82% , QSFM-PSNR has
larger FLOPs reduction(42.46M vs. 70.42M).

2) ResNet-56: First,we prune ResNet-56 without any fine-
tuning operations according to the proportion which is slightly
higher than that of the unimportant filters(filters whose all
parameter values close to 10−32), and finally get good results
as shown in Tab. III. Compared with AMC and He te al.,
QSFM-SSIM nearly compresses same FLOPs while maintain-
ing a less accuracy drop (-0.54% vs. -2.7% and -0.54% vs.
-2.0%). Compared with GAL-0.6, though QSFM-SSIM has a
little higher accuracy drop(-0.54% vs. -0.28%), but it gains a
larger FLOPs and parameters reduction(64.92M vs. 78.30M
and 0.36M vs. 0.75M). Compared with GAL-0.8, QSFM-
SSIM gains a less accuracy drop(-0.54% vs. -2.9%) while

TABLE IV: Pruning results of ResNet-56 on CIFAR-10(with Fine-tuning).

Method Top-1(%) FLOPs(PR) Parameters(PR)

GAL-0.8 [25] 93.26→91.58(-1.68) 50.37M(60.2%) 0.29M(65.9%)
GAL-0.6 [25] 93.26→93.38(0.12) 78.30M(37.6%) 0.75M(11.8%)

AMC [24] 92.80→91.90(-0.90) 63.28M(50.0%) –
Hrank [22] 93.26→90.72(-2.54) 32.77M(74.1%) 0.27M(68.1%)

EasiEdge-30% [33] 93.92→93.61(-0.31) 56.93M(55.0%) 0.45M (47.1%)
QSFM-SSIM-1 93.21→91.92(-1.29) 53.15M(58.0%) 0.26M(69.1%)
QSFM-SSIM-2 93.21→91.88(-1.33) 50.62M(60.0%) 0.25M(71.3%)
QSFM-PSNR 93.21→91.98(-1.23) 53.15M(58.0%) 0.26M(69.1%)

TABLE V: Pruning results of MobileNet-V2 on CIFAR-10(with Fine-tuning)

Method Top-1(%) FLOPs(PR) Parameters(PR)

MobileNet-V2 92.54% 78.38M(0.0%) 2.20M(0.0%)
QSFM-SSIM 92.09% 57.27M(26.93%) 1.67M(24.09%)
QSFM-PSNR 92.06% 57.27M(26.93%) 1.67M(24.09%)

TABLE VI: Pruning results of ResNet-56 on CIFAR-100(with Fine-tuning)

Method Top-1(%) Top-5(%) FLOPs(PR) Parameters(PR)

ResNet-56 70.62% 92.00% 126.55M(0.0%) 0.86M(0.0%)
QSFM-SSIM 68.36% 90.90% 58.38M(53.87%) 0.42M(51.16%)
QSFM-PSNR 68.33% 91.08% 58.38M(53.87%) 0.42M(51.16%)

has a little shortage at compression aspect. Compared with
Zhao et al., QSFM-SSIM has a less accuracy drop(-0.54% vs.
-0.78%), larger FLOPs reduction(64.92M vs. 100.86M) and
larger parameters reduction(64.92M vs. 78.30M and 0.36M
vs. 0.68M).

Then we further apply our method to prune the ResNet-
56 model with Fine-tuning for higher compression. The re-
sults are shown in Tab. IV. There is a slight difference
in compression between QSFM-SSIM-1 and QSFM-SSIM-
2. QSFM-PSNR again demonstrates its ability to obtain a
high accuracy of 91.98%, with 69.1% parameters reduction
and 58.0% FLOPs reduction. This is significantly better than
GAL-0.8. Compared with AMC, which obtains 91.90% of
top-1 accuracy and 50% FLOPs reduction, QSFM-PSNR gets
a larger FLOPs reduction(53.15M vs. 63.28M). Compared
with Hrank, QSFM-SSIM-2 gains a less top-1 accuracy drop
and parameters reduction( -1.33% vs. -2.54% and 0.25M vs.
0.27M). Compared with EasiEdge-30% , all the three QSFMs
have a larger FLOPs and parameters reduction with tolerable
drop of accuracy.

3) MobileNet-V2: For MobileNet-V2, we use QSFM to
prune the whole 17 depthwise separable convolution layers
on CIFAR-10. The compression ratio of each layer is 0.3.
The results of pruning experiment are shown in Tab. V. After
pruning, the accuracy of the model only dropped by 0.45%
(92.54% → 92.09%, QSFM-SSIM), with 26.93% FLOPs and
24.09% parameters reduction. The results also show that our
proposed method can also achieve good results for depthwise
separable convolution layers.

D. Results and Analysis on CIFAR-100

QSFM only prunes the first convolutional layers for ev-
ery residual block in ResNet-56 on CIFAR-100, and the
final results are shown in Tab. VI. The Top-1 accuracy
of QSFM-SSIM dropped by 2.26% (70.62%→68.36%) and
the Top-5 accuracy of QSFM-PSNR dropped by 0.92%
(92.00%→91.08%), with 53.87% FLOPs reduction and
51.16% parameters reduction.

E. Practical Application

For practical applications of IoT, we use ILSVRC-12 to
train MobileNet-V2 and deploy it to edge devices for image
classification task. MobileNet is a well-known lightweight
CNN model used for many real-time computer vision tasks
such as image classification, object detection and so on. We
use QSFM to compress MobileNet-V2 to accelerate CNNs
inference speed and verify that our method is helpful to AI on
Edge tasks.

Few works prune the MobileNet model. We only found
some data from AMC [24] that could be compared with
QSFM. AMC can compress MobileNet-V2 with 30% FLOPs
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TABLE VII: Pruning results of MobileNet-V2 on ILSVRC-12(with Fine-
tuning)

Method Top-1(%) Top-5(%) FLOPs(PR) Parameters(PR)

MobileNet-V2 72.21% 89.93% 3465.63M(0.0%) 1.79M(0.0%)
QSFM-PSNR 70.98% 88.39% 2088.70M(39.73%) 1.07M(39.89%)

TABLE VIII: Latency of MobileNet-V2 on edge devices

Method
Latency(ms)

Xiaomi-M2006J10C
Latency(ms)
TX2-GPU

Latency(ms)
TX2-CPU

MobileNet-V2 42.27 22.97 63.23
QSFM-PSNR 33.27(1.27×) 15.03(1.53×) 43.35(1.46×)

reduction and 1.0% Top-1 accuracy drop, while more detailed
performance of QSFM can refer to the Tab. VII. For mobile
device, we use the TensorFlow Lite Converter to convert a
traditional TensorFlow model into a TensorFlow Lite model
to deploy. For Nvidia-Jetson-TX2, we deploy it directly using
the Tensorflow model. In practical applications, the inference
speed of the model is also affected by software version and
physical environment, so this is only a qualitative experiment.
In order to ensure the accuracy of the measurement latency
as much as possible, we averaged the inference speed of
1000 images, as shown in the Tab. VIII. Even for an enough
lightweight CNN model like MobileNet-V2, QSFM can com-
press it and accelerate inference speed in practical tasks.

V. CONCLUSION AND OUTLOOK

In this paper, we propose a novel theory to find the
redundant information in three-dimensional tensors, named
QSFM. We apply QSFM to prune CNNs, which builds a bridge
between tensor compression and model pruning, and achieve
good results. Experiments show that QSFM can compress
CNNs such as VGGNet, ResNet and MobileNet significantly
with negligible accuracy drop. CNNs compressed by QSFM
have faster inference speed and occupy less memory, which
are more appropriate to AI on edge tasks.

QSFM can be further promoted by using more effective
functions or even some machine learning methods in the
process of quantifying similarity. In addition, how to divide
different kinds of similar feature maps, further refine the
method of deleting feature maps and determine the distribution
of feature maps suitable for CNNs are still worth exploration.
We will focus on selecting better ways to measure the simi-
larity of feature maps to improve the performance of QSFM,
trying to refine the compression rate for each model, and
combining various compression methods to further accelerate
the AI edge device inference speed.
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