
ar
X

iv
:2

10
3.

11
22

0v
2

 [
cs

.I
T

]
 6

 A
ug

 2
02

2
1

Joint Resource Allocation and Cache Placement for

Location-Aware Multi-User Mobile Edge

Computing
Jiechen Chen, Hong Xing, Member, IEEE, Xiaohui Lin,

Arumugam Nallanathan, Fellow, IEEE, and Suzhi Bi, Senior Member, IEEE

Abstract—With the growing demand for latency-critical and
computation-intensive Internet of Things (IoT) services, the IoT-
oriented network architecture, mobile edge computing (MEC), has
emerged as a promising technique to reinforce the computation
capability of the resource-constrained IoT devices. To exploit the
cloud-like functions at the network edge, service caching has
been implemented to reuse the computation task input/output
data, thus effectively reducing the delay incurred by data
retransmissions and repeated execution of the same task. In
a multiuser cache-assisted MEC system, users’ preferences for
different types of services, possibly dependent on their locations,
play an important role in joint design of communication, com-
putation and service caching. In this paper, we consider multiple
representative locations, where users at the same location share
the same preference profile for a given set of services. Specifically,
by exploiting the location-aware users’ preference profiles, we
propose joint optimization of the binary cache placement, the
edge computation resource and the bandwidth allocation to
minimize the expected sum-energy consumption, subject to the
bandwidth and the computation limitations as well as the service
latency constraints. To effectively solve the mixed-integer non-
convex problem, we propose a deep learning (DL)-based offline
cache placement scheme using a novel stochastic quantization
based discrete-action generation method. The proposed hybrid
learning framework advocates both benefits from the model-free
DL approach and the model-based optimization. The simulations
verify that the proposed DL-based scheme saves roughly 33%
and 6.69% of energy consumption compared with the greedy
caching and the popular caching, respectively, while achieving
up to 99.01% of the optimal performance.

Index Terms—Mobile-edge computing, service caching, re-
source allocation, deep learning.

I. INTRODUCTION

The advent of the Internet of things (IoT) technologies has

aroused the proliferation of new applications featuring inten-

sive and real-time computation, such as virtual reality (VR),

augmented reality (AR), online gaming, and autonomous

Part of this paper has been presented at the IEEE International Conference
on Communications (ICC), June, 2020 [1].

J. Chen, X. Lin and S. Bi are with the College of Electronics and
Information Engineering, Shenzhen University, Shenzhen 518060, China (e-
mails: chenjiechen2018@email.szu.edu.cn, {xhlin, bsz}@szu.edu.cn). S. Bi
is also with Peng Cheng Laboratory, Shenzhen 518066, China.

H. Xing is with Internet of Things Thrust, The Hong Kong University
of Science and Technology (Guangzhou), Guangzhou 511400, China (e-
mail: hongxing@ust.hk). H. Xing is also with the Department of Electronic
and Computer Engineering, The Hong Kong University of Science and
Technology, Hong Kong SAR, China.

A. Nallanathan is with the School of Electronic Engineering and Computer
Science, Queen Mary University of London, London E1 4NS, U.K. (e-mail:
nallanathan@ieee.org).

driving, etc. [2]. However, fusion of data and service for

these emerging types of applications tends to be prohibitive

on front-end IoT devices such as various types of sensors,

wearable devices and smart phones/tablets equipped with

limited processing, storage and battery hardware. Meanwhile,

to meet the demand for computation-intensive and latency-

critical IoT services, these front-end IoT devices need to

offload computation workload to cloud-like processing facili-

ties for high-performance computing. However, the (ultra-)low

latency requirement of these applications will not tolerate the

long end-to-end latency due to transmission over fronthaul

like in conventional cloud radio network (CRAN) [3]. To

address this issue, fog radio access network (FRAN) has

been proposed to provide cloud functionality down to the

proximity of the IoT devices at the network edge, thus enabling

fog computing or mobile edge computing (MEC) [4]. Thanks

to this IoT-oriented network architecture, the IoT devices are

able to get fast response to their service requests and save

large amount of energy [5].

One of the mainstreams on MEC in the literature has

centered on joint optimization of communication and com-

putation resource allocation [4]–[12], such as transmit power

and bandwidth to achieve energy-efficient and low-latency

computation. However, the above line of work has not in-

corporated another dimension of design, service caching (or

task caching). Service caching refers to fetching a priori

task input data, program files or task results of frequently

demanded computation services at edge servers or mobile

devices, thus alleviating transmission and execution burden

for (partially) repeated request in the future. As a result,

service caching further unleashes potential of MEC in terms

of energy efficiency and low latency [13]–[18]. Note that

content-oriented caching has been a well-investigated topic

aimed for improving user-perceived quality of experience by

reducing network congestion, especially for video content

delivery. For example, [19] studied a freshness-aware content

refreshing scheme to balance the service delay and content

freshness. However, there are several different aspects lying

between content-oriented and computation-oriented caching. i)

Compared with content-oriented caching that mainly fetches

data over backhaul, service caching takes place in the shared

wireless medium, and is thus more vulnerable to channel hos-

tilities such as channel noise, fading and mutual interference

[15], [16]. ii) Computation-oriented tasks are usually context-

aware and customized to real-time data generated locally at

http://arxiv.org/abs/2103.11220v2

2

mobile devices, and therefore the validity of task input/output

data and/or program files may last relatively shorter than the

content, incurring significant overhead due to service-caching

redeployment [13]–[15].

A. Related Work

There exists rich literature on joint design of communication

and computation resource [6]–[10]. The authors in [6] and

[7] considered device-to-device (D2D)-enabled multi-helper

MEC systems with multiple tasks, and jointly optimized task

offloading and resource allocation to minimize total energy

consumption and latency, respectively. In a wireless energy

harvesting setup, [8] jointly optimized task offloading deci-

sions and resource allocation assuming binary offloading to

maximize the weighted sum computation rate of all users.

The total energy consumption was minimized in [9] by joint

optimization of resource allocation, partial task offloading

policies and energy transmit beamforming at the access point.

[10] exploited spatial correlation among tasks of VR users

located closely in proximity to reduce both the uplink and

downlink traffic load in a multi-BS multi-user cloud computing

setup.

On another front, there are also prior work that investigated

performance gain brought by service caching. For example,

[13] studied a single-user cache-assisted MEC system with de-

pendent tasks, and minimized the average computation latency

and energy consumption considering the coupling effect of

service cache placement and computation offloading decisions.

[14] exploited temporal correlation among sequential task

arrivals at a single user to enable proactive caching of partial

task results, therefore reducing the total computation energy

over a finite time horizon. In addition, [16] assumed that

the edge server has the input and the output data of all the

computation tasks in a multi-user MEC system. Accordingly,

it jointly optimized the local caching decisions of task input

and/or output data and computing mode of mobile devices to

minimize the transmission bandwidth.

Despite of these previous arts on the integrated design

of communication, computation, and caching (3C), some as-

sumed fixed service demand [13], which may not be valid in

practice, as users normally have random request over different

types of services. Although some of the work considered how

the MEC users’ preference profiles affect cache placement

designs, they did not jointly optimize communication and com-

putation resources along with cache placement. For example,

[19] exploited content caching by designing an algorithm to

learn users’ preference profile, but it cannot apply to service

caching with computation-oriented service requirements. For

example, in a VR-assisted museum tour guide system, tourists

at different display stands often make requests for context-

aware introduction of different displays and are then served

by videos played on their individual tour-guide handsets [21].

In this example, the task-input data can be the users’ individual

field of vision and the environment parameters at the display

stands etc., and the (cached) task results is the video clips.

For one realization of service delivery as illustrated by Fig. 1,

both users at location 3 and one user at location 2 request a

popular service s3, but only the user at location 2 who has

the best channel condition among these three users needs to

offload the task-input data of s3 to the BS. Meanwhile, one

user at location 1, the edge of the service range, demands a

computation-expensive service s1. In this situation, it becomes

a natural question to ask whether we place cache for service

s3 or s1 subject to limited cache capacity at the BS, in order to

minimize the expected sum energy consumption of the users

with respect to their dynamic service requests.

Furthermore, cache placement design usually involves

mixed-integer non-linear programming (MINLP) due to binary

caching decision variables, which lacks efficient algorithm

to solve in general. There are some existing works that

adopted reinforcement learning (RL)-based methods to solve

the MINLP in MEC settings. For example, [22] employed

double DQN to optimize the offloading policy in an MEC

system. [23] and [24] adopted actor-critic DRL and deep de-

terministic policy gradient (DDPG), respectively, to optimize

caching strategies. [25] proposed a DDPG-based actor module

to obtain resource allocation and a DQN-based critic module to

select the best offloading decision. However, in these scenarios,

value-based methods are computationally expensive due to the

large and hybrid integer-continuous action space. In addition,

policy-based methods often suffer from slow convergence,

especially when the critic module fails to produce an accurate

and stable approximation of the value function early enough

[26]. [27] proposed a hybrid learning-optimization framework

and demonstrated its high efficiency in tackling the binary

offloading problems in MEC networks. However, the effec-

tiveness for this method to jointly optimize the binary cache

placement as well as the (continuous) bandwidth (BW) and

computation resource allocation is unknown.

Location 1LocaLocation 1Location

Location 3

Location 2

1
s

2
s

3
s

Service Library

1
s

LocationLoca

4
s

LocationLocationLocation

3
s

Task request

Task offloading

Results downloading

3
s2

s

1
s

1
s

3
s

4
S

4
s

Fig. 1. An illustration of a location-aware multi-user MEC system.

B. Contributions

To tackle the above challenges, in this paper, we consider a

multi-user MEC system equipped with narrow-band wireless

communication facilities, where users request delay-sensitive

computation services based on their location-dependent pref-

erences. The users are then clustered by a fixed number of

locations, and each location is representative of the users who

share the same service demand profile. Then, among the users

that request the same type of service, any user at a location

of the best channel condition will be selected to offload the

3

task; and the BS will meet the demand by multicasting the

computation results of the service at a rate that ensures suc-

cessful delivery at all these locations. We aim for minimizing

the expected weighted-sum energy consumption with respect

to the users’ preference profiles by joint optimization of cache

placement, edge computation resources, and BW allocations.

This problem is subject to instantaneous service deadline

constraints, the maximum caching and computation capacities

at the BS, as well as the BW constraints for data transmission.

To effectively obtain the binary caching decisions, we propose

a deep learning (DL) based offline cache placement scheme

to solve the one-shot MINLP. The main contributions are

summarized as follows.

• We consider multiple representative locations to simplify

the problem of multi-user resource allocation and cache

placement. This formulation necessitates only the channel

state information (CSI) between several locations and

the BS, thus facilitates the communications design, and

also make the complexity of the problem scale with the

number of types of services.

• To obtain an optimal solution to the resource allocation

problem given cache placement, we leverage Lagrangian

dual decomposition method to solve the problem. The

optimization framework used in this stage forms an essen-

tial module for the proposed DL-based cache placement

policies.

• To solve the MINLP that are adaptive to dynamics of

channels and service requests, we propose a DL-based

hybrid (offline) learning framework to attain suboptimal

caching decisions which advocates both benefits from the

model-free DL approach and the model-based optimiza-

tion. Specifically, the model-free DL module maps the

input of channel and task state information to multiple

binary caching decisions via a deep neural network

(DNN), and the model-based optimization module selects

the set of caching decisions that yields the best energy

performance by solving multiple resource-allocation prob-

lems given the caching decisions. Thanks to the model-

based module that provides accurate evaluation of the

candidate caching decisions, the proposed hybrid learning

framework simplifies the joint optimization problem to a

classification problem, and also admits faster convergence

than a fully model-free DL approach.

• We adopt a novel stochastic quantization based discrete-

action generation scheme that samples candidate caching

decisions from Bernoulli distribution based on the cur-

rent model outputs, improving diversity in exploring the

optimal caching decisions.

• In special cases when users in one location only request

one specified type of service, by exploiting the struc-

ture of the optimal solution, we can recast the original

problem into a integer linear programming (ILP), which

admits low-complexity solution using off-the-shelf soft-

ware toolboxes, and attain effective suboptimal caching

decisions.

• Numerical results show the distinguishing performance

gain brought by service caching in general and the effi-

cacy of the proposed stochastic quantization based offline

cache placement, by comparison with other benchmarks.

The remainder of this paper is organized as follows. The

multi-user MEC system model is presented in Section II.

Section III formulates the expected weighted-sum energy min-

imization problem. The jointly optimal solution for commu-

nication and computation resource allocation to the problem

is investigated in Section IV, with DL-based offline cache

placement proposed in Section V. The special case is studied

in Section VI. Numerical results are provided in Section VII.

Finally, Section VIII concludes the paper.

Notation—The superscript ([·])T represents the transpose

of vectors. R
M×N stands for the sets of real matrices of

dimension M × N . The cardinality of a set is represented

by | · |. Exp(λ) denotes the exponential distribution with rate

parameter λ. ‖ · ‖ denotes the Euclidean norm of a vector. In

addition, Pr(·) means the probability of a random event.

II. SYSTEM MODEL

As shown in Fig. 1, consider a MEC system which consists

of a base station (BS) equipped with an edge server of caching

facilities and multiple user-ends (UEs) grouped into K differ-

ent locations, denoted by K = {1, . . . ,K}. Assume that there

is a finite library of computation-intensive services denoted by

S = {s1, . . . , sL}. Each computation service is characterized

by a three-item tuple (Cl, Ql, Rl), l = 1, ..., L. Here, Cl

denotes an application-specific computation requirement of

the l-th service (in CPU cycles per bit); Ql and Rl denote

the input and output data sizes of the computation service (in

bits), respectively. The BS and the UEs are all equipped with

a single antenna. We assume that all services can only be

executed by the applications installed on the edge server due

to the UEs’ low-end IoT devices (such as sensors) with limited

computation capacity and power supply [29] [30]. Since the

task-input data corresponding to a specific service is assumed

to remain unchanged for a period of time as a result of

the slow-changing environment dynamics, the associated task-

output data keeps the same and can thus be generated and

cached a priori at the BS for reuse during the considered

period of time.

Under this setup, UEs at different locations k ∈ K make

requests for computation services, and then the BS aggregates

the requests and matches them with its cache placement. If the

task results for a required service is proactively cached at the

BS, the BS will broadcast the cached task results to the target

UEs. Otherwise, the UEs must first offload the task-input data

to the BS, and then the BS performs necessary computation

before broadcasting the task results to all UEs demanding

this service. In one round of end-to-end computation service

delivery, the MEC workflow consists of three phases: 1) task

offloading, 2) task computation and 3) results downloading.

In the first phase, the representative UEs (who have the best

channel conditions among all those who request the same

(uncached) service) offload their respective task-input data to

the BS. In the second phase, the BS executes the (uncached)

service. In the third phase, the BS multicasts the task results

of different services to the UEs. We will elaborate on these

phases in the following subsections.

4

A. Location-Aware Task Computation Model

We consider one-shot task requests raised from users at

different locations. Specifically, we assume that UEs in one

location follow the same task request distributions. We define

by a matrix A ∈ R
L×K the tasks’ request state, whose (l, k)-

th entry, Al,k ∈ {0, 1} , sl ∈ S, k ∈ K, is given by

Al,k =

1, if there is a UE at location k requesting

computation service sl,

0, otherwise.

(1)

Also, we denote the fixed probability mass function (PMF) for

a UE at location k ∈ K to demand service over S by Pl,k =
Pr(Al,k = 1), such that

∑

sl∈S Pl,k = 1, ∀k ∈ K. Note that

in general Pl,k 6= Pl,k′ for any k, k′ ∈ K, k 6= k′.

The BS can proactively cache the computation results of

some services to eliminate their real-time execution delay. We

define cache placement decisions against service sl ∈ S, by

an indicator function as follows.

Il =

{

1, if the results of sl are cached at the BS,

0, otherwise.
(2)

The maximum caching capacity equipped on the BS is

assumed to be S (in bits), i.e.,1

L
∑

l=1

IlRl ≤ S. (3)

Note that we assume
∑L

l=1 Rl > S by default, since the results

of all types of services can all be cached otherwise, which

reduced to a trivial solution of Il = 1, ∀sl ∈ S.

We define by Kl = {k ∈ K|Al,k = 1} the set of locations

where UEs demand service sl ∈ S. The BS needs to provide

the computation result of the l-th service if and only if |Kl| ≥
1, ∀sl ∈ S. We adopt a commonly used computation model

[14], in which the total number of CPU cycles required for

performing one computation task is linearly proportioned to

its task input bit length. As a result, the total number of CPU

cycles required for the l-th task is given by ClQl. We assume

a multi-core CPU architecture at the edge server, so that each

offloaded task is processed by a different core [8]. Thanks to

dynamic voltage and frequency scaling techniques (DVFS) [7],

we denote the variable computation frequency (in cycles per

second) and the incurred delay for processing the l-th task as

fl and tcl , which are related by

tcl =

{

ClQl

fl
(1− Il), if |Kl| ≥ 1,

0, otherwise.
(4)

Notice that we simply set tcl = fl = 0 for service sl with

|Kl| = 0. Equation (4) implies that the BS does not need

to recompute the cached computation result with Il = 1.

1We assume a type of on-chip caching facilities that incurs negligible
accessing delay.

A common maximum computation frequency constraints are

applied to all the computation cores, i.e.,2

fl ≤ fmax
0 , ∀sl ∈ S. (5)

Accordingly, the energy consumed by the BS for executing

service sl is expressed as [14]

Ec
l =

{

κ0
(ClQl)

3

(tc
l
)2 (1 − Il), if |Kl| ≥ 1,

0, otherwise,
(6)

where κ0 is a constant denoting the effective capacitance coeffi-

cient of the server chip architecture. The expected computation

energy consumed by the BS for executing task sl ∈ S w.r.t

the users’ request for task sl ∈ S is thus given by

E[Ec
l] = 0× Pr(|Kl| = 0) +

κ0(ClQl)
3

(tcl)
2

(1− Il)

× (1− Pr(|Kl| = 0)). (7)

As |Kl| = 0 means that no UE in any location requests service

sl, Pr(|Kl| = 0) is expressed as

Pr(|Kl| = 0) = Pr(
K
⋂

k=1

Al,k = 0) =
∏

k∈K

(1− Pl,k). (8)

Hence, the expected total computation energy for executing

all the request tasks is

Ec =

L
∑

l=1

E[Ec
l]

=

L
∑

l=1

κ0(ClQl)
3

(tcl)
2

(1− Il)(1 −
∏

k∈K

(1− Pl,k)). (9)

B. Location-Aware Communication Model

In this subsection, we introduce the communication models

for task offloading and results downloading. We assume that

task offloading and result downloading phases are assigned

with separate narrow bands with a total BW of B (in

Hz), respectively. The transmissions for different services are

performed over orthogonal bandwidth via frequency-division

multiple access (FDMA). We define the BW allocated to

service sl ∈ S for task offloading (results downloading) by

Boff
l = αoff

l B (Bdl
l = αdl

l B), where αoff
l (αdl

l) ∈ [0, 1]
is the proportion of the BW allocated to service sl, such

that
∑

sl∈S Boff
l = B (

∑

sl∈S Bdl
l = B). In addition, we

assume slow fading scenarios, where the wireless channels

remain constant during a specified period (shorter than the

channel coherence time), which is defined to be as long

as several computation deadline. We also assume that UEs

in one location are identical in their path-loss factors and

small-scale fading3. We denote h′
k and g′k as channel co-

efficients between location k ∈ K and the BS for task

2If a MEC setup also imposes the sum computation capacity constraint, i.e.,∑
sl∈S

fmax
0 (1−Il) ≤ fmax, which is equivalent to add a linear constraint

on the cache placement decisions, the proposed solution of this paper is still
applicable subject to minor changes.

3This simplified location-representation multi-user channel models can
apply to practical scenarios, e.g., where the users at the same location request
computation services by connecting to a common gate way and they are
connected with the common gateway via dedicated fiber with negligible
transmission cost [28].

5

offloading and results downloading, respectively. We assume

that h′
k =

√
A0(d0/dk)

γ/2hk

(

g′k =
√
A0(d0/dk)

γ/2gk
)

,

k ∈ K, consists of Rayleigh fading with hk (gk) ∼ CN (0, 1)
and multiplicative path loss

√
A0(d0/dk)

γ/2, where A0 is the

average channel power gain at reference distance d0; dk is the

distance between location k and the BS, and γ denotes the

path loss exponent factor. Without loss of generality, we also

assume descending orders for the normalized channel gains as

u1 ≥ · · · ≥ uK , where uk = ‖h′
k‖2/(N0B) is the normalized

channel gains with N0 being the power spectral density of the

additive white Gaussian noise (AWGN). Besides, we assume

vπ(1) ≥ · · · ≥ vπ(K), where vπ(k) = ‖g′π(k)‖2/(N0B) and

π(·) denotes a permutation over K.

1) Task Offloading. The achievable rate for offloading task

sl ∈ S from any user at location k ∈ K is given by

roffl,k = αoff
l B log2

(

1 +
poffk uk

αoff
l

)

, (10)

where poffk is the transmitting power at location k. The trans-

mission latency due to offloading service sl ∈ S from location

k ∈ K is thus expressed as

toffl,k =
Ql

roffl,k
(1− Il). (11)

When |Kl| ≥ 1 locations demand the same computation

service sl ∈ S, we choose the location among Kl with the best

(normalized) channel gain to perform task offloading so as to

reduce the transmission latency and energy consumption. The

energy consumed in offloading service sl ∈ S from location

k ∈ Kl is:

Eoff
l,k =

poffk toffl,k, if a UE from location k performs

task offloading of service sl,

0, otherwise.

(12)

If a UE from location k ∈ Kl is selected to offload service

sl, no user demands service sl from any locations with larger

channel gains to the BS than location k. As a result, the

probability that an UE from location k is selected to offload

service sl ∈ S is expressed as follows:

P off
l,k =

Pr
(

(
k−1
⋂

j=1

Al,j = 0)
⋂

Al,k = 1
)

, if k > 1,

Pr(Al,1 = 1), if k = 1,

(13)

which can be simplified as

P off
l,k =

{

∏k−1
j=1 (1− Pl,j)Pl,k, if k > 1,

Pl,1, if k = 1.
(14)

The corresponding expected energy for offloading service sl
w.r.t task request distribution at location k expressed as

E[Eoff
l,k] = poffk toffl,kP

off
l,k . (15)

The total expected task offloading energy w.r.t demand at

location k ∈ K is thus given by

Eoff
k =

L
∑

l=1

E[Eoff
k,l] = poffk

L
∑

l=1

toffl,kP
off
l,k . (16)

Offloading Computation Downloading

dl

1,1
t

off

2,1
t

c

2
t

dl

2,1
t

c

3
t

l
T T=

1
s

2
s

3
s

4
s

1
u

1
v

1
v

2
u

3
v

2
v

off

3,2
t

dl

3,3
t

dl

4,2
t

2
v

Fig. 2. An illustration of the workflow for the MEC system shown in Fig.
1. Under the assumption of u1 > u2 > u3 and v1 > v2 > v3, for services
s1 and s4, the first two phases can be skipped thanks to the cache placed a

priori. The task-input data of service s3 is offloaded by the user at location 2,
while the task-output data of service s3 must be broadcast to accommodate
the users at both location 2 and location 3. For service s2, its task-related
data transmission only occurs between a user at location 1 and the BS.

2) Results Downloading. After remote execution of service

sl ∈ S, the BS transmits back the results to Kl by broadcasting,

such that UEs from all these locations can download their

desired results. Assuming that location π(k) ∈ Kl is of the

worst normalized channel gain among the locations where

service sl ∈ S is requested, the transmission rate that the BS

can successfully broadcast the results to UEs in Kl is expressed

as

rdll,π(k) = αdl
l B log2

(

1 +
pdll vπ(k)

αdl
l

)

, (17)

where pdll is the transmitting power at the BS for service sl ∈
S. The transmission latency caused by downloading the results

of the lth service using rate rdll,π(k) is tdll,π(k) = Rl/r
dl
l,π(k).

The energy consumed by the BS for broadcasting service sl
is accordingly given by

Edl
l,π(k) =

{

pdll t
dl
l,π(k), if vπ(k) = argmink∈Kl

vk,

0, otherwise.
(18)

Equation (18) implies that the UEs from all locations with

smaller channel gains than location π(k) (c.f. channel gains

sorted in descending order: as vπ(k+1) ≥ ... ≥ vπ(K)) do

not demand for service sl. Accordingly, the probability of

broadcasting service sl’s results at the rate subject to location

π(k)’s channel gain is given by

P dl
l,π(k) =

Pr
(

(
π(K)
⋂

j=π(k+1)

Al,j = 0)
⋂

Al,π(k) = 1
)

, if π(k) < π(K),

Pr(Al,π(K) = 1), otherwise,

6

which can be simplified as

P dl
l,π(k) =
{

∏π(K)
j=π(k+1)(1− Pl,j)Pl,π(k), if π(k) < π(K),

Pl,π(K), otherwise.

The expected energy for broadcasting service sl’s results

w.r.t demand profile is

Edl
l =

K
∑

k=1

E[Edl
l,π(k)] =

K
∑

k=1

pdll tdll,π(k)P
dl
l,π(k). (19)

The total expected transmission energy consumption at the BS

is thus given by

Edl =

L
∑

l=1

K
∑

k=1

E[Edl
l,π(k)] =

L
∑

l=1

K
∑

k=1

pdll t
dl
l,π(k)P

dl
l,π(k). (20)

To sum up, we illustrate in Fig. 2 the end-to-end workflow

of the considered multi-user MEC system.

III. PROBLEM FORMULATION

In this section, we formulate the energy minimization

problem. The expected weighted-sum energy consumed by

the BS (Ec and Edl) and all UEs (Eoff
k ’s) are given by

β0(E
c + Edl) +

∑K
k=1 βkE

off
k , where β0 ≥ 0, βk ≥ 0, and

β0 +
∑

k∈K βk = 1, are normalized weighted factors. For

example, when β0 = 0, the objective function reduces to the

energy consumption of the users only, and thus our formulated

minimization problem is of flexible design to accommodate

any level of energy-consumption trade-offs between the BS

and the users in practice by tuning these weighted factors. The

total latency for delivering service sl ∈ S, i.e., toffl,k + tcl + tdll,j ,

for all sl ∈ S and (k, j) ∈ Kl × Kl, is subject to an

instantaneous deadline constraint Tl.

Remark 3.1: The formulation can be modified to accommo-

date expected latency constraints by E[toffl,k + tcl + tdll,j] ≤ Tl,

but we consider herein the latency-critical scenarios where the

latency constraint for service sl must hold for every possible

combination of (k, j) ∈ Kl×Kl, thus incurring higher energy

consumption than the average latency constraints in general.

By denoting I = [I1, . . . , IL]
T ,αoff = [αoff

1 , . . . ,αoff
L]T ,

αdl =[αdl
1 , . . . , α

dl
L]T , tc = [tc1, . . . , t

c
L]

T , toffl =
[toffl,1 , . . . , t

off
l,K]T and tdll = [tdll,π(1), . . . , t

dl
l,π(K)]

T , sl ∈ S,

the expected weighted-sum energy minimization problem is

formulated as:

(P0) : Minimize
I ,αoff ,αdl,tc,

{

toffl

}

sl∈S
,

{

tdll
}

sl∈S

β0

(

Ec + Edl
)

+

K
∑

k=1

βkE
off
k

Subject to (3),

toffl,k + tcl + tdll,j ≤ Tl, ∀sl ∈ S, ∀(k, j) ∈ Kl ×Kl, (21a)

tcl ≥
ClQl(1− Il)

fmax
0

, ∀sl ∈ S, (21b)

∑

sl∈S

αoff
l ≤ 1, (21c)

∑

sl∈S

αdl
l ≤ 1, (21d)

αoff
l B log2

(

1 +
poffk uk

αoff
l

)

≥ Ql(1− Il)

toffl,k
,

∀k ∈ K, ∀sl ∈ S, (21e)

αdl
l B log2

(

1 +
pdll vπ(k)

αdl
l

)

≥ Rl

tdll,π(k)
,

∀k ∈ K, ∀sl ∈ S, (21f)

Il = {0, 1} , αoff
l ∈ [0, 1], αdl

l ∈ [0, 1], ∀sl ∈ S. (21g)

The constraints in (21b) are obtained by plugging (4) into

the maximum frequency constraints (c.f. (5)). Constraints

(21c) and (21d) are communication BW constraints for task

offloading and results downloading, respectively. It is also

worth-noting that constraints (21e) and (21f) are the minimum

transmission rate requirements (c.f. (10) and (17)), which can

be easily shown to be active when (P0) is optimally solved.

In addition, problem (P0) can be further simplified by

merging some of its constraints as follows.

Lemma 3.1: Problem (P0) can be equivalently transformed

to the following problem:

(P0′) : Minimize
I ,αoff ,αdl,tc,

{toffl }sl∈S ,{tdll }sl∈S

β0

(

Ec + Edl
)

+

K
∑

k=1

βkE
off
k

Subject to (3), (21b)− (21g)

toffl,K + tcl + tdll,π(K) ≤ Tl, ∀sl ∈ S. (22a)

Proof: Constraints (21a) include all cases where the trans-

mission and execution delay for any task should be within

deadline T . Hence, if the worst case with the longest service la-

tency satisfies the deadline constraint, i.e., toffl,K+tcl +tdll,π(K) ≤
Tl, ∀sl ∈ S, so do all other cases.

IV. OPTIMAL COMMUNICATION AND COMPUTATION

RESOURCE ALLOCATION

In this section, we study the optimal solution to problem

(P0′). Since problem (P0′) is a MINLP that is in general

NP-hard, we solve (P0′) by decomposing it into two-stage

optimization problems: 1) BW and edge computing resource

allocation problem with the caching decisions fixed as I = Ī ,

denoted as (P0′-1); and 2) cache placement problem (P0′-2)
to find the optimal caching decisions. In this section, we focus

on solving (P0′-1).

7

L(P ,D) = β0

L
∑

l=1

κ0
(ClQl)

3

(tcl)
2

(1− Īl)(1−
K
∏

k=1

(1− Pl,k)) + β0

L
∑

l=1

K
∑

k=1

p
dl
l t

dl
l,π(k)P

dl
l,π(k) +

K
∑

k=1

βkp
off
k

L
∑

l=1

t
off
l,kP

off
l,k

+
L
∑

l=1

µl(t
off
l,K + t

c
l + t

dl
l,π(K) − Tl) +

L
∑

l=1

ηl

(

ClQl(1− Il)

fmax
0

− t
c
l

)

+ σ(
L
∑

l=1

α
off
l − 1) + ǫ(

L
∑

l=1

α
dl
l − 1)

+
K
∑

k=1

L
∑

l=1

ωl,k

(

Ql

toffl,k
− α

dl
l B log2

(

1 +
poffk uk

αoff
l

)

)

+
K
∑

k=1

L
∑

l=1

γl,k

(

Rl

tdl
l,π(k)

− α
dl
l B log2

(

1 +
pdll vπ(k)

αdl
l

)

)

. (23)

L′(P ,D) =

(

β0

L
∑

l=1

κ0(1− Īl)
(ClQl)

3

(tcl)
2

(

1−
K
∏

k=1

(1− Pl,k)
)

+
L
∑

l=1

µlt
c
l −

L
∑

l=1

ηlt
c
l

)

+

(

β0

L
∑

l=1

K
∑

k=1

p
dl
l t

dl
l,π(k)P

dl
l,π(k)

+
L
∑

l=1

µlt
dl
l,π(K) +

K
∑

k=1

L
∑

l=1

γl,k
Rl

tdl
l,π(k)

)

+

(K
∑

k=1

βkp
off
k

L
∑

l=1

t
off
l,kP

off
l,k +

L
∑

l=1

µlt
off
l,K +

K
∑

k=1

L
∑

l=1

ωl,k

Ql

toffl,k

)

+

(

σ

L
∑

l=1

α
off
l −

K
∑

k=1

L
∑

l=1

ωl,kα
off
l B log2

(

1 +
poffk uk

αoff
l

)

)

+

(

ǫ

L
∑

l=1

α
dl
l −

K
∑

k=1

L
∑

l=1

γl,kα
dl
l B log2

(

1 +
pdll vπ(k)

αdl
l

)

)

. (24)

It is easily verified that (P0′-1) is a convex problem,

(The left-hand side (LHS) of constraints (21e) and (21f) are

perspective of concave functions, and therefore prove to be

concave w.r.t. αoff
l and αdl

l , respectively.) and also satisfies

Slater’s condition. Hence, we leverage Lagrangian dual decom-

position method to solve problem (P0′-1) with strong duality

guaranteed [31].

By denoting the primal-variable tuple and dual-variable

tuple as P = (αoff ,αdl, {tdll }, {toffl }, tc) and D =
(µ,η,ω,γ, σ, ǫ), respectively, the (partial) Lagrangian of

(P0′-1) is given by (23), shown at the top of next page,

where µ = [µ1, . . . , µL]
T , η = [η1, . . . , ηL]

T , ω =
[ω1,1, . . . , ωL,K]T and γ = [γ1,1, . . . , γL,K]T denote the

Lagrangian dual variables associated with the constraints (22a),

(21b), (21e) and (21f), respectively. Dual variables σ and ǫ are,

respectively, associated with the two constraints specified in

(21c) and (21d). To facilitate primary problem decomposition

over sl, (23) can be equivalently expressed as (24).

The dual function is thus defined as g(D) as follows

g(D) = min
P
L′(P ,D) (25)

Subject to αoff
l ∈ [0, 1], αdl

l ∈ [0, 1], ∀sl ∈ S.

The corresponding dual problem of (P0′-1) is given by

(D1) : Maximize g(D)

Subject to µ ≥ 0,η ≥ 0,ω ≥ 0, (26a)

γ ≥ 0, σ ≥ 0, ǫ ≥ 0. (26b)

In the following, we solve problem (P0′-1) by first evaluat-

ing (25) given fixed D, and then iteratively solving problem

(D1) to obtain the optimal solution Dopt.

It follows from L′(P ,D) (c.f. (24)) that problem (25) can

be decomposed into the following subproblems over sl ∈ S:

min
tc
l
≥0

β0κ0(1− Īl)
(ClQl)

3

(tcl)
2

(1−
K
∏

k=1

(1− Pl,k))

+ µlt
c
l − ηlt

c
l , ∀sl ∈ S; (27a)

min
tdl
l,π(k)

≥0
β0p

dl
l t

dl
l,π(k)P

dl
l,π(k) + γl,k

Rl

tdl
l,π(k)

,

∀sl ∈ S, k ∈ K\{K},
min

tdl
l,π(k)

≥0
β0p

dl
l t

dl
l,π(k)P

dl
l,π(k) + µlt

dl
l,π(k)

+ γl,k
Rl

tdl
l,π(k)

, ∀sl ∈ S, k = K;

(27b)

min
toff
l,k

≥0
βkp

off
k toffl,kP

off
l,k + ωl,k

Ql

toff
l,k

,

∀sl ∈ S, k ∈ K\{K},
min
toff
l,k

≥0
βkp

off
k toffl,kP

off
l,k + µlt

off
l,k + ωl,k

Ql

toff
l,k

,

∀sl ∈ S, k = K;

(27c)

min
αoff

l
∈[0,1]

σαoff
l −

K
∑

k=1

ωl,kα
off
l B log2(1 +

poffk uk

αoff
l

),

∀sl ∈ S; (27d)

min
αdl

l
∈[0,1]

ǫαdl
l −

K
∑

k=1

γl,kα
dl
l B log2(1 +

pdll vπ(k)

αdl
l

),

∀sl ∈ S. (27e)

The optimal solution to subproblem (27a)-(27c), denoted by

(tc)∗, (tdl)∗ and (toff)∗ is obtained in the following lemma.

Lemma 4.1: Given fixed D, the optimal solution to

8

(27a)-(27c), are respectively given by

(tcl)
∗ =

2β0κ0(1−Īl)(ClQl)
3(1−

K
∏

k=1

(1−Pl,k))

µl−ηl

1
3

,

if µl − ηl > 0,

inf, otherwise.

(28a)

(tdll,π(k))
∗ =

√

γl,kRl

β0pdl
l
Pdl

l,π(k)

, ∀sl ∈ S, k ∈ K\{K},
√

γl,kRl

β0pdl
l
Pdl

l,π(k)
+µl

, ∀sl ∈ S, k = K.

(28b)

(toffl,k)
∗ =

√

ωl,kQl

βkpoff
k

P off
l,k

, ∀sl ∈ S, k ∈ K\{K},
√

ωl,kQl

βkpoff
k

P off
l,k

+µl
, ∀sl ∈ S, k = K.

(28c)

Proof: Please refer to Appendix I.

To solve (27d), we first take the derivative of its objective

function w.r.t. αoff
l , denoted by F (αoff

l), sl ∈ S, which is

defined as follows:

F (αoff
l) =

K
∑

k=1

ωl,kB

ln 2

(

ln
(

1 +
poffk uk

αoff
l

)

− poffk uk

αoff
l + poffk uk

)

− σ. (29)

It is verified that F (αoff
l) is non-increasing w.r.t αoff

l ∈
(0, 1] with lim

αoff
l

→0+
F (αoff

l) = +∞ > 0 and F (1) =

∑K
k=1

ωl,kB
ln 2

(

ln
(

1 + poffk uk

)

− poff
k uk

1+poff
k

uk

)

− σ. Therefore, if

F (1) > 0, it suggests that F (αoff
l) > 0 over αoff

l ∈ (0, 1], and

that the optimal αoff
l to (27d) is (αoff

l)∗ = 1; otherwise, there

must be some α̃off
l ∈ (0, 1] such that F (α̃off

l) = 0, which turns

out to be the optimal αoff
l and can be found numerically via

bisection method. To sum up

(αoff
l)∗ =

{

1, if F (1) > 0,

α̃off
l , otherwise.

(30)

Applying similar procedure to subproblem (27e), we can also

obtain the optimal (αdl
l)∗, ∀sl ∈ S.

Next, we begin solving problem (D1). Since (28a) implies

that the optimal dual variables satisfy µl − ηl > 0, ∀sl ∈ S,

problem (D1) is recast as below:

(D1′) : Maximize g(D)

Subject to (26a), (26b),

µl − ηl > 0, ∀sl ∈ S.
As g(D) is convex but non-differentiable, we iteratively

solve (D1′) by subgradient based methods, e.g., (constrained)

ellipsoid method, the algorithm of which is summarized in

Algorithm 1 [31].

It then remains to find the primal-optimal solution

to (P0′-1). Since (tcl)
∗, (tdll,π(k))

∗, (toffl,k)
∗, (αoff

l)∗ and

(αdl
l)∗, ∀k ∈ K, sl ∈ S are unique optimal solution to

problem (27a) - (27e), the optimal solution (tcl)
opt, (tdll,π(k))

opt,

Algorithm 1: Ellipsoid Method for Problem (D1′)

Input : Dual variables D(0) which is centered at

ellipsoid E(0) ⊂ R
(2KL+2L+2)×1 containing

the optimal dual solution, n = 0
1 repeat

2 Obtain P ∗ based on (28a)-(28c) and (30);

3 Update the ellipsoid E(n+1) based on E(n) and the

subgradient of g(D(n)) w.r.t. the dual variables

[31]; and set D(n+1) as the center of ellipsoid

E(n+1);

4 Set n = n+ 1.

5 until the stopping criterion for the ellipsoid method is

met;

Output :Dopt ← D(n)

(toffl,k)
opt to (P0′-1) can be directly obtained by plugging Dopt

into (28a) - (28c), while the optimal solutions (αoff
l)opt and

(αdl
l)opt are numerically attained (c.f. (30)). To sum up, with

any (feasible) caching decisions given, problem (P0′-1) can

be solved by the dual decomposition method as above.

The optimal solution to (P0′) can be found by exhaustive

search with high computational complexity of O(2|S|). To

accommodate large number of services |S| with UEs at

different locations having independent request over the service

library S, we propose in general a DL-based algorithm to find

cache placement for (P0′) in the next section.

V. DL-BASED OFFLINE CACHE PLACEMENT

The optimal cache placement shall balance various coupled

factors of the tasks such as popularity, uplink and/or downlink

data transmission quality, data size and computation intensity.

As a result, to avoid numerically solving complex MINLP for

optimal caching decisions every time the channel or the task

information changes, in this section, we propose a DL-based

hybrid learning framework to solve (P0′-2).
We consider fixed distance between the service locations

and the BS with the channel coefficients distributed as h′
k

(g′k) ∼ CN (0, A0(d0/dk)
γ) and thus the normalized channel

gains uk’s (vk’s) following exponential distribution with pa-

rameters N0B
A0(d0/dk)γ

(

N0B
A0(d0/dk)γ

)

. We also assume that the

input/output bit-length for computation tasks in S are drawn

from uniform distributions denoted as U(a, b), where a and

b are the minimum and maximum bounds of the distribu-

tions, respectively. As a result, a sufficient number of data

samples composed of quadruples as (h(t), g(t),Q(t),R(t)),
where h(t) = (u1, . . . , uK)T , g(t) = (v1, . . . , vK)T , Q(t) =
(Q1, . . . , QL)

T , and R(t) = (R1, . . . , RL)
T can be syn-

thesized offline in the tth iteration, while the correspond-

ing caching decisions I(t)∗ = (I
(t)∗
1 , . . . , I

(t)∗
L)T serving as

“labels” are generated during the training as going to be

introduced shortly. When the training finishes, whenever a

change arises in the input quadruple, the trained model can

be evaluated to yield the joint solution of resource allocation

and cache placement.

Mathematically, our goal is to generalize a nonlinear map-

ping between sample inputs and outputs using an approxima-

9

tion function f
θ(t) parameterized by θ(t) via a DNN, which

is defined as:

İ
(t)

= f
θ(t)(h(t), g(t),Q(t),R(t)). (32)

In order to identify the parameter vector θ(t) for the mapping

f
θ(t)(h(t), g(t),Q(t),R(t)), we formulate a learning problem

with the empirical risk function that measures the mean-square

error (MSE) between the model output f
θ(t) and the (labelled)

caching decisions I(ω)∗ as the objective (referred as “training

loss”, evaluated at “C” in Fig. 3):

(P1) :

Minimize
θ

Eω‖I(w)∗ − f
θ(t)(h(ω), g(ω),Q(ω),R(ω))‖2,

where ω denotes the index of the training sample. The offline

learning framework for solving problem (P0′-2) is summa-

rized in Fig. V. It consists of two alternating stages: service

caching decisions (“labels”) generation and DNN based offline

training, which are detailed in the following subsections.

A. Service Caching Decisions Generation

To find the optimal cache placement for problem (P0′-2)
by solving (P0′-1) requires exhaustive search over 2L binary

candidates, thus causing complexity of O
(

2L×2(2KL+2L+
2)2 log(

√
φW/ζ)

)

, where 2(2KL + 2L + 2)2 accounts for

the complexity for solving (P0′-1) using Algorithm 1 [32],

W , max
ω∈∂g(D),D∈E(0)

‖ω‖ is a Lipschitz constant for (25)

over the initial ellipsoid E0 = {D|‖D‖ ≤ √γ}, ω is a

sub-gradient of g(D) over E(0), and ζ is a parameter control-

ling the accuracy of the ellipsoid algorithm. To address this

challenge, we propose in this subsection a suboptimal “label”

generation scheme that aims for “exploitation” of the current

DNN outputs İ
(t)

while providing sufficient diversity for

“exploration”. To generate feasible service cache placement,

we quantize İ
(t)

into a number J of candidates. Specifically,

we propose a stochastic quantization mapping defined as

gJ : İ
(t) 7→ {I(t)

j |I
(t)
j ∈ {0, 1}L, j = 1, . . . , J}, (34)

which is illustrated in Fig. V.

To elaborate, first, we add Gaussian noise to the DNN logits

Î
(t)

to generate more diversity in the caching decision space

{0, 1}L. The activation operating element-wise on the noisy

logits can be expressed as İ
(t)

= fsg(Î
(t)

+ n), where n ∼
CN (0, I), where fsg(·) is the sigmoid function defined by

fsg(x) = 1/(1+e−x), such that İ
(t)
l , the lth entry of İ

(t)
, falls

with in [0, 1]. Next, we sample from Bernoulli distribution a

binary caching decision for each of the L services M times:

I
(t)
l,m =

{

1, with probability İ
(t)
l ,

0, otherwise,
(35)

where I
(t)
l,m denotes the lth entry of the mth candidate I(t)

m =

(I
(t)
1,m, . . . , I

(t)
L,m)T , ∀m ∈ {1, . . . ,M}. Finally, we randomly

select J (J < M) out of M caching decisions that satisfy

constraint (3).4 To take into account candidate solutions with

different noise-weighting, we include in every selected J sets

of candidate caching decisions one candidate where each entry

I
(t)
l is sampled from İl

(t)
= fsg(Îl

(t)
) based on noise-free log-

its, l = 1, . . . , L. Then we evaluate the performance of the J
candidate decisions by optimally solving (P0′-1) (see Section

IV for detail) using off-the-shelf convex problem solvers such

as CVX [33], and the one with the minimum expected energy

consumption E(h(t), g(t),Q(t),R(t), I
(t)
j) will be selected as

the caching decision I(t)∗ serving as “labels” for problem

(P1).
Remark 5.1: For the determined order-preserving based

caching decisions generation employed in [27], the orders for

any two entries are preserved across all M candidates. That

is, if Î
(t)
l1
≤ Î

(t)
l2

, then I
(t)
l1,m
≤ I

(t)
l2,m

for any m ∈ {1, . . .M}.
By comparison, the sampled caching decisions based on (35)

provide more uncertainties, and therefore, by properly choos-

ing M and J , it is more likely to find promising candidates

satisfying the constraints (3).

Remark 5.2: Note that the choice of J plays an important

role in balancing the quality of the output caching decision

and computational complexity. Since the selected (feasible)

caching decisions are evaluated to approximate the ground-

truth label (C in Fig. 3), given a sufficiently large M fixed,

larger J implies more reliable approximation and thus faster

training convergence at the cost of higher per-iteration compu-

tation complexity, and vice versa.

Note that any candidate caching decisions violating con-

straint (3) are discarded. By examining problem (P0′), the

caching decisions achieve optimality when constraint (3) is

satisfied to its maximum extent.5 Inspired by this, we sort the

entries of all eligible candidate solutions in descending orders

according to their corresponding value in İ
(t)

, and flip 0’s to

1’s until (3) is satisfied to its maximum extent.

B. DL-Based Offline Training

The newly obtained “label” I(t)∗, combined with the

sample-inputs (h(t), g(t),Q(t),R(t)), forms a new input-

“label” pair (h(t), g(t),Q(t),R(t), I(t)∗). Specifically, we start

with training after sufficient number of input-“label” samples

are collected in the data buffer, and update the parameter

vector θ(t)
every τ iteration by a stochastic gradient descent

(SGD) step as follows

θ(t+1) = θ(t) − η(t)∇̂L(θ(t)), (36)

where η(t) is the learning rate, and ∇̂L(θ(t)) =
1

|D(t)|

∑

ω∈D(t) ∇L(θ(t);h(ω), g(ω),Q(ω),R(ω))
is the stochastic gradient approximating

Eω[∇L(θ(t);h(ω), g(ω),Q(ω),R(ω))] via a mini-batch

D(t) of samples from the data buffer in the tth iteration.

4If there are not enough feasible caching decisions, we randomly select
a missing number of candidates from the rest of M caching decisions or
resample M sets of caching decisions until J candidate caching decisions are
generated.

5The constraint (3) being satisfied to its maximum extent refers to caching
decisions that are feasible to problem (P0′), but incurs violation of (3) if any
more type of service is cached.

10

Input for the t-th

iteration

Output

Compute

by solving

problem (P0'-1)

for each

Output for the t-th

iteration

Data

Buffer

Randomly sample a mini-batchTraining

Samples

Train

Label Generation

DNN-based Offline Training

See Fig. 4 for detail

Select the caching decision
()* () () () () ()arg min (, , , ,)t t t t t t

j
j

E=I h g Q R I

() () () () ()(, , , ,)t t t t t

j
E h g Q R I

()t

1
I

()t

J
I

() () () ()(, , ,)t t t t
h g Q R

() () () ()(, , ,)t t t t
h g Q R ()*t

I

j

Fig. 3. The offline learning framework for joint resource allocation and cache placement.

Gaussian Noise

Sigmoid
Random

quantization

Randomly select J

caching decisions that

are feasible to (P0'-1)

A B

()t

1
I

()t

J
I

()t

1
I

()t

M
I

()ˆ tI
()t
I

()()

Fig. 4. Stochastic quantization method.

Furthermore, we also maintain the data buffer with limited

capacity, where only the latest |R| input-“label” pairs are kept

for model updates. The overall DL-based cache placement

algorithm is summarized in Algorithm 2.

Algorithm 2: DL-Based Offline Cache Placement

1 Initialize the parameter vector θ(0)
;

2 repeat

Input : Wireless channel gains h(t) and g(t),

service input-bit size Q(t) and output-bit

size R(t) at each iteration t
3 Obtain the model output

İ
(t)

= f
θ(t)(h(t), g(t),Q(t),R(t));

4 Generate a set of J feasible caching decisions

I
(t)
j = gJ(İ

(t)
), ∀j ∈ {1, . . . , J};

5 Compute E(h(t), g(t),Q(t),R(t), I
(t)
j) for all I

(t)
j

by solving (P0′-1);
6 Select the best caching decision

I(t)∗ = argmin
j

E(h(t), g(t),Q(t),R(t), I
(t)
j);

7 Feed the data buffer using the newly collected

input-“label” pair (h(t), g(t),Q(t),R(t), I(t)∗);
8 if t mod τ = 0 then

9 Randomly sample a mini-batch D(t) of samples

{(h(ω), g(ω),Q(ω),R(ω), I(ω)∗)|ω ∈ D(t)}
from the data buffer;

10 Update θ(t) using SGD step (c.f. (36)) with

momentum optimizer [34];

11 until the algorithm converges;

After the training converges, given any input

(h(t), g(t),Q(t),R(t)), the caching decisions

can be obtained by implementing steps 3-6 in

Algorithm 2, whose model-inference complexity is

O
(

J × 2(2KL+ 2L+ 2)2 log(
√
φW/ζ)

)

.

Remark 5.3: Compared to a fully model-free DL approach

which incorporates all binary caching decision and continuous

resource allocations as actions, the proposed hybrid learning

framework significantly reduces the action space by simpli-

fying the learning task to a classification problem. More-

over, the model-based optimization module facilitates faster

convergence than a fully model-free DL approach, whose

training is often compromised by inaccurate evaluation of the

actions due to insufficient training. In addition, after model

deployment, the proposed hybrid approach obtains effective

cache placement and the corresponding resource allocation by

model inference with little computation overhead.

Remark 5.4: While the proposed learning framework can

be used offline by synthesizing sufficient amount of input

samples based on full knowledge of the distribution of channel

gains and task-input/output data size, it can also serve as

an online training framework to accommodate application

scenarios when input samples can only be revealed real-time

with partial or no knowledge of their (stable) distributions.

VI. SPECIAL CASE

Consider special scenarios in which UEs at each location

demand a unique type of service in S ′ = {s1, . . . , sK} ⊆ S.

This is equivalent to Pl,k = 1 for sl = sk and Pl,k = 0 for sl ∈
S ′ \ {sk}, ∀k ∈ K. Indices l and k thus become interchange-

able. Hence, Ec is recast as
∑

k∈K κ0 (CkQk)
3
(1−Ik)/ (tck)

2

11

(c.f. (9)); Eoff
k reduces to poffk toffk (1−Ik) (c.f. (16)); and Edl is

simplified as
∑

k∈K tdlk pdlk (c.f. (20)). In addition, constraints

(21a) also reduce to toffk + tck + tdlk ≤ Tk, k ∈ K. By

denoting I = [I1, . . . , IK]T , αoff = [αoff
1 , . . . , αoff

K]T , αdl =
[αdl

1 , . . . , αdl
K]T , tc = [tc1, . . . , t

c
K]T , toff = [toff1 , . . . , toffK]T and

tdl = [tdl1 , . . . , tdlK]T , the weighted-sum energy minimization

problem under this special circumstance is formulated as [1]

(P2) : Minimize
I ,αoff ,αdl

tc,tdl,toff

β0

∑

k∈K

(

κ0
(CkQk)

3
(1− Ik)

(tck)
2 + tdlk pdlk

)

+
∑

k∈K

βkp
off
k toffk (1 − Ik)

Subject to

K
∑

k=1

IkRk ≤ S, (37a)

toffk + tck + tdlk ≤ Tk, ∀k ∈ K, (37b)

tck ≥
CkQk(1 − Ik)

fmax
0

, ∀k ∈ K, (37c)

∑

k∈K

αoff
k ≤ 1, (37d)

∑

k∈K

αdl
k ≤ 1, (37e)

αoff
k B log2

(

1 +
poffk uk

αoff
k

)

≥ Qk(1− Ik)

toffk
, ∀k ∈ K,

(37f)

αdl
k B log2

(

1 +
pdlk vk

αdl
k

)

≥ Rk

tdlk
, ∀k ∈ K, (37g)

Ik = {0, 1} , αoff
k ∈ [0, 1], αdl

k ∈ [0, 1], ∀k ∈ K. (37h)

Remark 6.1: We provide the model-based solution to prob-

lem (P2) for the following reasons. First, given the dual

variables, the optimal resource allocation in special case ad-

mits (semi-) closed-form solution (c.f. (38d)-(38e)) compared

to the general case when BW solution can only be numer-

ically attained. This helps obtain insights for optimal BW

allocation. Second, the special case allows fast acquisition

of (suboptimal) resource allocation without iterative primal-

dual updates thanks to the structure of the semi-closed form

solution. In addition, the special case warrants low-complexity

solution to the MINLP leveraging ILP without going through

the DRL training process. The effect of this solution will be

corroborated by numerical results in Section VII. B.

We then provide analytical solution in semi-closed form

for the special-case problem (P2) and draw some insights

therein. With the caching decisions fixed as I = Ī, problem

(P2) reduces to (P2-1), whose Karush-Kunh-Tucker (KKT)

solution is obtained leveraging the following lemma.

Lemma 6.1: By denoting the Lagrangian multiplier asso-

ciated with constraints (37b), (37c), (37f), (37g), (37d) and

(37e), by µ = [µ1, · · · , µK]T , η = [η1, · · · , ηK]T , ω =
[ω1, · · · , ωK]T , γ = [γ1, · · · , γK]T , σ and ǫ, respectively, the

KKT solution to problem (P2-1) for given (µ,η,ω,γ, σ, ǫ) is

as follows:

(

tdlk
)∗

=

√

γkRk

β0pdlk + µk
, (38a)

(

toffk
)∗

=

√

ωkQk

βkpoffk + µk
(1− Īk), (38b)

(tck)
∗ =

(

2κ0β0(1−Īk)(CkQk)
3

µk−ηk

)
1
3

, if µk − ηk > 0,

inf, otherwise,

(38c)

(αoff
k)∗ = min

{

poffk uk

e[W0(−eφk ln 2)−φk ln 2] − 1
, 1

}

, (38d)

(αdl
k)∗ = min

{

pdlk vk

e[W0(−eϕk ln 2)−ϕk ln 2] − 1
, 1

}

, (38e)

where W0 (·) is the principal branch of Lambert W function

defined as the inverse function of xex = y [35], φk = − σ
ωkB
−

1
ln 2 , and ϕk = − ǫ

γkB
− 1

ln 2 .

Proof: Please refer to [1, Appendix 1].

Remark 6.2: Compared with KKT solution to problem

(P0′-1) (cf. (28a) - (28c) and (30)), the optimal offload-

ing/downloading BW for given dual variables can be obtained

in semi-closed forms, from which we have the following

observations. 1) With the transmitting power poffk of UEs at

location k fixed, the (αoff
k)∗ of BW allocated for these UEs

for offloading is proportional to their channel gain hk to the

BS, and when hk increases to be larger than a threshold

(e[W0(−eφk ln 2)−φk ln 2] − 1)/poffk , UEs at location k will gain

access to full BW to save transmission latency and thus energy.

2) Likewise, (αoff
k)∗ is also increasing with poffk such that the

UEs with larger transmitting power are able to finish task

offloading faster to save energy. Similar insights can also be

drawn from (38e).

Note that for the special-case problem (P2) only, we

propose an ILP-based suboptimal cache placement scheme

leveraging the KKT solution for BW allocation given by (38d)

and (38e). First, under the assumption that the computation

frequency of the edge server is fully used for each computation

task, e.g., fk = fmax
0 , ∀k ∈ K, the execution delay of any task

is highly probably shorter than the deadline for the purpose of

energy saving, i.e., toffk + tck + tdlk < T , ∀k ∈ K. The optimal

dual variables associated with constraints (37b) thus become

zero due to the complementary slackness. Then assuming that

there is no cache placed for any tasks, i.e., Ik = 0, ∀k ∈ K,

we substitute (38b) and (38d) for toffk and αoff
k , respectively,

in (37d) and (37f). Since it is easy to verify that (37d) and

(37f) are achieved active for optimal solution to (P2-1), this

implies a set of equations as follows.

{

f(ωk, σ) = 0, ∀k ∈ K,
g(ω1, · · · , ωK , σ) = 0,

(39)

12

where ∀k ∈ K,

f(ωk, σ) =
Bpoffk uk

ln 2
√

Okβkp
off
k

−
exp

(

W0

(

− exp(φk(ωk, σ) ln 2)
)

− φk(ωk, σ) ln 2
)

− 1
(

W0

(

− exp(φk(ωk, σ) ln 2)
)

− φk(ωk, σ) ln 2
)√

ωk

,

g(ω1, · · · , ωK , σ) =
∑

k∈K

poffk uk

exp
(

W0

(

− exp(φk(ωk, σ) ln 2)
)

− φk(ωk, σ) ln 2
)

− 1

− 1.

Lemma 6.2: There must exist numerical solutions of σ and

ωk, ∀k ∈ K to the set of equations in (39).

Proof: f(ωk, σ) and g(ω1, · · · , ωK , σ) are both non-

decreasing w.r.t ωk and non-increasing w.r.t σ, ∀k ∈ K
(Please refer to [1, Appendix 2]). Moreover, it is easily

verified that lim
ωk→0+

f(ωk, σ) = −∞ < 0, k ∈ K, and

lim
σ→0+

g(ω1, · · · , ωK , σ) = +∞ > 0. Based on the mono-

tonicity of the two functions, we use bi-section method to

solve f(ωk, σ) = 0 by fixing σ, and then plug the solution ωk,

∀k ∈ K, into g(ω1, · · · , ωK , σ) to further find σ via bi-section

until g(ω1, · · · , ωK , σ) = 0 is met.

We can solve another similar set of equations as (39) to

obtain optimal ǫ and γk, ∀k ∈ K. Then with (αoff
k)∗’s and

(αdl
k)∗’s numerically obtained (c.f. (38d) and (38e)), tck =

CkQk/f
max
0 , toffk (c.f. (37f)) and tdlk (c.f. (37g)), k ∈ K, are

obtained as constants, denoted by t̄ck, t̄offk and t̄dlk , respectively.

As a result, problem (P2) reduces to an ILP, with only the

caching decision I as optimization variables as follows:

(P2-2) : Minimize
I

β0

∑

k∈K

κ0
(CkQk)

3
(1− Ik)

(t̄ck)
2

+
∑

k∈K

βkp
off
k t̄offk (1− Ik)

Subject to

K
∑

k=1

IkRk ≤ S, Ik = {0, 1} , ∀k ∈ K.

Remark 6.3: The ILP problem (P2-2), despite of being

exponentially complex in the worst case, admits complexity

of O(L2 logL) on average thanks to the recently developed

fast branch and bound method, e.g., Lenstra-Lenstra-Lovasz

(LLL) algorithm [36], which can be effectively solved using

off-the-shelf software packages, e.g., [37]. In addition, the

objective function of problem (P2-2) suggests to cache the

results of those tasks requiring high energy consumption in

task offloading and computation.

When the ILP-based cache placement is obtained by solving

(P2-2), we solve (P2-1) once again to get the corresponding

suboptimal resource allocation.

VII. NUMERICAL RESULTS

In this section, we verify the effectiveness of our proposed

DL-based service cache placement algorithms for problem

(P0) as well as the suboptimal cache placement designed for

the special-case problem (P1). We consider a wireless setup

where there are K = 5 locations deployed on a circle with

radius dk = d = 0.03 km centered on the BS, ∀k ∈ K, and a

service library with L = 10 types of services. A task request

from location k ∈ K is assumed to follow Zipf distribution

given by [38] - [39]

Pl,k =
1

lσk

k

(

∑

sl∈S

1

lσk

)−1

, (40)

where σk = 0.9 determines the skewness of the preference

profile at location k, and lk = πk(l) is the rank of service

sl ∈ S in terms of popularity at location k, represented by

a permutation πk(·) over S. The average channel gain A0 is

set as −128.1 dB at reference distance d0 = 1 km with the

pathloss exponent factor γ = 2.6 [13]. The Rayleigh fading

is generated by i.i.d. complex Gaussian RVs with zero mean

and unit variance. The task-input and task-output bit-lengths

follow uniform distributions, denoted by Ql ∼ U [7, 7.5] Mbits

and Rl ∼ U [21, 22] Mbits, sl ∈ S. Other parameters are

set as follows unless otherwise specified: transmission BW

Boff = Bdl = 10 MHz, noise spectrum density N0 = −169
dBm/Hz, weight factors for problem (P0) β0 = 0.5, βk =
0.5/K , the maximum edge server’s computation frequency

fmax
0 = 10 GHz, transmission power poffk = 0.25 W, pdll = 1

W, capacitance coefficient κ = 10−27, and the number of

CPU cycles required for computation service sl Cl = 1000
cycles/bit, ∀k ∈ K, sl ∈ S [14]. Furthermore, the deadline for

each task is set to be the same, e.g., Tl = T = 2.8 s, ∀sl ∈ S,

and the caching capacity S = 128 Mbits [40].

As benchmarks, we consider the optimal cache placement

using exhaustive search as well as other benchmarks for all

the problems as follows.

• Greedy caching: We cache the results of the most energy

consuming tasks one by one until the caching capacity is

fully exploited. Specifically, we initially set all the tasks

as Il = 0, ∀sl ∈ S. Then, we solve (P0′-1) to obtain the

weighted-sum expected energy consumption. Next, we set

the cache placement of the l̄th service with the largest

energy consumption as Il̄ = 1. Then we repeat the above

procedure until constraint (3) becomes infeasible. This

heuristic algorithm is summarized in Algorithm 3.

• Popular caching: We cache the results of the tasks most

likely to be demanded one by one until the caching

capacity is achieved. First, we calculate the probability for

each service sl ∈ S to be requested, i.e., 1−Pr(|Kl| = 0),
and order these probability in descending order. Next, we

cache in descending order the results of those services

until the constraint (3) is violated.

• No caching: All task results are not cached, and each

task on demand has to be offloaded to and executed at

the edge server.

• All caching: This scheme assumes no constraint (3), so

all task results are cached at the edge server. It serves as

the performance upper-bounds for all other schemes.

A. DL-Based Offline Cache Placement for (P0)

In the DL-based offline learning framework (c.f. Fig. 3),

the DNN consists of one input layer with 30 neurons, three

13

Algorithm 3: Greedy Cache Placement Scheme

Initialize : I(0) = [0, · · · , 0]T , S(0) = S and n = 0
1 repeat

2 Solve (P0′-1) to obtain service sl’s expected

energy consumption El =
β0(E[E

c
l] + Edl

l) +
∑K

k=1 βkE[E
off
k,l], ∀sl ∈ S(n);

3 Set I
(n)

l̄
= 1 for service l̄ = argmaxsl∈S(n) El;

4 Update S(n+1) = S(n)\sl̄;
5 Update n = n+ 1.

6 until Constraint (3) becomes infeasible;

Output : I(n)

hidden layers, and one output layer with 10 neurons, where

the first, the second and the third hidden layers have 160, 120,

and 80 hidden neurons, respectively. Here, we use ReLU as the

activation function in the hidden layers and sigmoid activation

function in the output layer. We implement the algorithm in

Matlab R2020a 9.8 using Deep Learning Toolbox 14.0 and

set the learning rate η(t) = 0.01, mini-batch size for training

|D(t)| = 128, ∀t, the data buffer size |R| as 1024, the training

interval τ = 10, M = 100 and J = 10. We use channel

gains and task input/output bits described before to simulate

the input data coming of DNN. In addition to the benchmarks

described before, we also evaluate the performance of the “DL-

based caching with order-preserving quantization”, in which

the order-preserving quantization preserves the ordering of all

the entries in a vector during quantization [27].

Fig. 5 illustrates the convergence performance of the DL-

based cache placement algorithms with different quantization

methods using offline implementation. It is observed that

both training loss of the DNN with different quantization

methods decrease and become stable as time progresses, whose

fluctuation is mainly owing to the random sampling of training

data. It is worth noting that the algorithm with stochastic

quantization method not only wins in training loss, but it is

also more robust as the deviation is much smaller. Furthermore,

we verify the effectiveness of the trained DNN, whose test loss

is also demonstrated in Fig. 5. It is seen that the test loss using

stochastic quantization method outperforms the other due to

the random exploration of the service caching decisions space.

Note that the model inference delay of the proposed framework

is mainly dominated by solving problem (P0′-1) J times. In

the test phase, with J = 5, the model inference costs around

0.16 s in wall-clock time on average, which is less than 6%

overhead compared with the deadline of 2.8 s.

In Fig. VII-A, we plot the expected weighted-sum energy

versus the caching capacity constraint for all caching schemes.

It is seen that the expected weighted-sum energy of all

schemes drops with the caching capacity. This is intuitively

true, as larger caching capacity can accommodate more service

results at the edge server. Thanks to the larger diversity

brought by the proposed stochastic quantization, the cache

placement employing the stochastic quantization outperforms

all the other benchmarks, approaching the “Optimal caching”

when the caching capacity increases. In particular, when the

caching capacity exceeds 220 Mbits, all schemes overlap with

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

Fig. 5. The training and test loss versus the iteration number.

the “All caching” scheme, since sufficiently large capacity

always satisfy
∑

sl∈S Rl < S, enabling the trivial case of

I∗l = 1, ∀sl ∈ S. In addition, all the shown caching schemes

significantly surpass the “No caching” one, which yields the

expected weighted-sum energy as high as 0.8529 KJoule.

80 100 120 140 160 180 200 220
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 6. The expected weighted-sum energy versus the caching capacity
constraints.

The expected weighted-sum energy versus the computation

deadline T for different cache placement schemes is shown

in Fig. VII-A. The weighted-sum energy for all the schemes

gradually goes down when the deadline is extended, since

more tolerant deadline allows longer execution time for ser-

vices, thus saving the computation energy Ec (c.f. (9)). In

addition, the proposed offline caching with stochastic quanti-

zation performs the best among all the suboptimal schemes

thanks to the random exploration of the caching capacity,

while the one with order-preserving quantization is just slightly

better than “Popular caching” method. Similar to Fig. VII-A,

“No caching” yields the largest expected weighted-sum energy

consumption among all the schemes, which is shown in the

table in Fig. VII-A.

14

Deadline T (s) 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5

No caching 0.8529 0.6976 0.5812 0.4918 0.4217 0.3656 0.3201 0.2825

2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

0.06

0.08

0.1

0.12

0.14

Fig. 7. The expected weighted-sum energy versus the deadline constraints.

8 9 10
0

0.05

0.1

0.15
Greedy caching
Popular caching
DL-based caching with order-preserving quantization
DL-based caching with stochastic quantization
Optimal caching

Fig. 8. The expected weighted-sum energy versus the total number of services.

Fig. VII-A shows the expected weighted-sum energy con-

sumption for different number L of services with K = 5
locations. The expected weighted-sum energy consumed by all

the schemes increases with the total number of services. The

performance gap between the proposed offline caching with

stochastic quantization and all the other suboptimal caching

schemes enlarges with the number L of services. Specifically,

the proposed caching schemes saves 6.12% of energy when

there are L = 10 services versus 1.82% when L = 8, showing

the promising performance of the proposed caching scheme for

large L. Furthermore, the proposed caching scheme is seen to

approach the “Optimal caching” with little gap for all values

of L.

Fig. 9 demonstrates the expected weighted-sum energy

consumption for different weight factors β0. It can be seen

that the expected energy consumption for all schemes increases

with β0. This is because the computation energy Ec consumed

by the BS dominates the energy consumption for delivering a

computation service. For example, Ec is around 0.171 KJ, Edl

is around 0.512×10−3 KJ, and Eoff
k ’s is around 0.475×10−4

KJ. As a result, the increase in β0 will place more weight on

(Ec + Edl), although the weighted-sum energy is minimized.

It also shows that our proposed scheme is near-optimal.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

Fig. 9. The expected weighted-sum energy versus the weight factor β0.

B. ILP-based Suboptimal Cache Placement for (P2)

In this subsection, we evaluate the performance of the ILP-

based caching scheme proposed in section VI as compared

against “No caching”, ”All caching” as well as “Optimal

caching”. The parameters considered in this subsection is the

same as those in Section VII-A.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 10. The expected weighted-sum energy versus the caching capacity
constraint with T = 3.5s.

Fig. 10 shows the expected weighted-sum energy versus

the caching capacity constraint achieved by different caching

schemes. As seen in the general case in Section VII-A, except

15

Deadline T (s) 3.0 3.1 3.2 3.3 3.4 3.5

No caching 1.2674 1.0825 0.9355 0.8166 0.7192 0.6384

3 3.1 3.2 3.3 3.4 3.5
0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

Fig. 11. The expected weighted-sum energy versus the deadline constraints.

for the “No caching”, the weighted-sum energy of all schemes

declines with the caching capacity constraint, approaching

the all caching scheme with I∗l = 1, ∀sl ∈ S, when S
is larger than around 220 Mbits. Additionally, “No caching”

is outperformed by all the other caching based schemes as

expected.

Next, we demonstrate the expected weighted-sum energy

versus the deadline constraints T in Fig. 11. It shows that

the ILP-based caching scheme achieves near-optimal perfor-

mance especially when the deadline constraint T is suffi-

ciently long. This is because longer deadline T allows less

computation time, thus leading to lower energy consumption

Ec. In addition, the expected weighted sum energy consump-

tion of the “All caching” scheme remains nearly unchanged

(0.0064KJoule), since all services have already been cached

at the edge server and therefore extending deadline T won’t

help saving computation energy Ec as the other schemes in

Fig. 11.

VIII. CONCLUSION

In this paper, we considered a multi-user service-caching

enabled MEC system, which serves multiple representative

locations with the users at each of them being of a typical

preference profile over the given set of computation services.

In a FDMA setup, we formulated a joint resource allocation

and cache placement optimization problem to minimize the

expected weighted-sum energy of the edge server and the users

with respect to the location-dependent preference profiles, sub-

jected to the computation, bandwidth and caching capacities as

well as the service latency constraints. Under the assumption

of known distributions of the channel gains and the task

input/output bit-length, we proposed a DL-based service cache

placement framework to tackle the mixed-integer challenges,

where a DNN is trained offline and then used to predict

caching decisions. To achieve better training performance, we

also improved the exploration during training by employing

a novel stochastic quantization based caching decision gener-

ation scheme. Finally, numerical results showed the striking

performance achieved by service caching, in particular, the

proposed DL-based service cache placement using stochastic

quantization.

Due to space limitation, there are several challenging issues

not yet investigated within the scope of this paper, which

we summarize here for our future work. First, in this paper,

we set the number J of caching decisions as a constant. To

avoid severe deviation from optimal solution, J needs to be

set relatively large at early phase of the training. When the

model is trained for a while, a mild value of J can be set to

reduce per-iteration computation complexity. That said, J can

be set as a diminishing sequence {J (t)} over iterations to gain

potentially better training performance [27]. Moreover, in this

paper, we considered a special case of spatial “correlation”

among tasks, that is, the users at one or multiple locations

requesting the same service share the same task-input and

task-output data as well as computation requirement. More

general cases, where only partial task-input or task-output

data corresponding to the same service are overlapped across

different locations [12], or the cached task output can only

be partially reused over time horizons [14], are worthy of

further study. At last, we assumed that a cluster of users in

one location all have the same channel coefficient in this paper,

which is valid in scenarios, e.g., where the users at one location

make requests by connecting to a common gateway though,

may cause service delay due to the gateway’s backlog of

requests. Therefore, under the location-representative channel

models, detailed formulation accounting for the turn-around

time of each local users’ request or performance degradation

due to inaccurate user-specific channel estimation, will be left

for investigations in the future.

APPENDIX I

PROOF OF LEMMA OF 4.1

Given a set of (feasible) dual variables, we solve problem

(27a)-(27c) for their corresponding variables using some of

the Karush-Kuhn-Tucker (KKT) conditions [31] as follows.

− 2β0κ0(1− Īl)
(ClQl)

3

(tcl)
3

(1−
K
∏

k=1

(1− Pl,k)) + µl − ηl = 0,

∀sl ∈ S; (41a)

β0p
dl
l P

dl
l,π(k) − γl,k

Rl

(tdl
l,π(k)

)2
= 0,

∀sl ∈ S, k ∈ K\{K},
β0p

dl
l P

dl
l,π(k) + µl − γl,k

Rl

(tdl
l,π(k)

)2
= 0,

∀sl ∈ S, k = K;

(42a)

βkp
off
k P off

l,k − ωl,k
Ql

(toff
l,k

)2
= 0,

∀sl ∈ S, k ∈ K\{K},
βkp

off
k P off

l,k + µl − ωl,k
Ql

(toff
l,k

)2
= 0,

∀sl ∈ S, k = K.

(42b)

16

After some manipulations, we obtain the optimal solution

to (27a)-(27c). Similarly, (38a)-(38e) can also be obtained as

above.

REFERENCES

[1] J. Chen, H. Xing, X. Lin and S. Bi, “Joint cache placement and
bandwidth allocation for FDMA-based mobile edge computing
system,” IEEE ICC 2020, Jun. 2020.

[2] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854-864,
Dec. 2016.

[3] L. Liu, S. Bi and R. Zhang, “Joint power control and fronthaul
rate allocation for throughput maximization in OFDMA-based
cloud radio access network,” IEEE Trans. Commun., vol. 63,
no. 11, pp. 4097-4110, Nov. 2015.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,”
IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322-2358, 4th
Quart. 2017.

[5] B. Chen, J. Wan, A. Celesti, D. Li, H. Abbas and Q. Zhang,
“Edge computing in IoT-based manufacturing,” IEEE Commun.
Mag., vol. 56, no. 9, pp. 103–109, Sept. 2018.

[6] L. Pu, X. Chen, J. Xu and X. Fu, “D2D fogging: An energy-
efficient and incentive-aware task offloading framework via
network-assisted D2D collaboration,” IEEE J. Sel. Areas Com-
mun., vol. 34, no. 12, pp. 3887-3901, Dec. 2016.

[7] H. Xing, L. Liu, J. Xu and A. Nallanthan, “Joint task assignment
and resource allocation for D2D-enabled mobile-edge comput-
ing,” IEEE Trans. Commun., vol. 67, no. 6, pp. 4193-4207, Jun.
2019.

[8] S. Bi and Y.-J. Zhang, “Computation rate maximization for
wireless powered mobile-edge computing with binary computa-
tion offloading,” IEEE Trans. Wireless Commun., vol. 17, no. 6,
pp. 4177-4190, Jun. 2018.

[9] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and com-
puting optimization in wireless powered mobile-edge computing
system,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1784-
1797, Mar. 2018.

[10] M. Chen, W. Sadd, C. Yin and M. Debbah, “Data correlation-
aware resource management in wireless virtual reality (VR): An
echo state transfer learning approach,” IEEE Trans. Commun., vol.
67, no. 6, pp. 4267-4280, Jun. 2019.

[11] F. Wang, H. Xing and J. Xu, “Real-Time resource allocation
for wireless powered multiuser mobile edge computing with
energy and task causality,” IEEE Trans. Commun., vol. 68, no.
11, pp. 7140-7155, Nov. 2020.

[12] X. He, H. Xing, Y. Chen, and A. Nallanathan, ”Energy-
efficient mobile-edge computation offloading for applications
with shared data,” in Proc. IEEE Global Communications Con-

ference (GLOBECOM), Abu Dhabi, UAE, Dec. 2018.
[13] S. Bi, L. Huang and Y. J. Zhang, “Joint optimization of service

caching placement and computation offloading in mobile edge
computing system,” IEEE Trans. Wireless Commun., vol. 19, no.
7, pp. 4947-4963, Jul. 2020.

[14] H. Xing, J. Cui, Y. Deng, and A. Nallanathan, “Energy efficient
proactive caching for fog computing with correlated task arrivals,”
in Proc. IEEE 20th Int. Workshop Signal Process. Adv. Wireless
Commun., Cannes, France, July 2019.

[15] Y. Cui, W. He, C. Ni, C. Guo and Z. Liu, “Energy-efficient
resource allocation for cache-assisted mobile edge computing,” in
Proc. IEEE Local Comput. Netw., Singapore, Oct. 2017, pp. 640-
648.

[16] Y. Sun, Z. Chen, M. Tao and H. Liu, “Bandwidth gain from mo-
bile edge computing and caching in wireless multicast systems,”
IEEE Trans. Wireless Commun., vol. 19, no. 6, pp. 3992-4007,
Jun. 2020.

[17] W. Wen, Y. Cui, T. Q. S. Quek, F-C Zheng and S. Jin, “Joint
optimal software caching, computation offloading and commu-
nications resource allocation for mobile edge computing,” IEEE
Trans. Veh. Technol., vol. 69, no. 7, pp. 7879-7894, Jul. 2020.

[18] A. Ndikumana et al., “Joint communication, computation,
caching, and control in big data multi-access edge computing,”
IEEE Trans. Mobile Comput., vol. 19, no. 6, pp. 1359-1374, Jun.
2020.

[19] S. Zhang, L. Wang, H. Luo, X. Ma and S. Zhou, “AoI-Delay
Tradeoff in Mobile Edge Caching With Freshness-Aware Content
Refreshing,” IEEE Trans. Wireless Commun., vol. 20, no. 8, pp.
5329-5342, Aug. 2021.

[20] M. Ma and V. W. S.Wong, “Age of Information Driven Cache
Content Update Scheduling for Dynamic Contents in Heteroge-
neous Networks,” IEEE Trans. Wireless Commun., vol. 19, no.
12, pp. 8427-8441, Dec. 2020.

[21] A. Murphy, “Digital museum guides: enhancing modern-day vis-
its with audio guides, apps and AR,” Nov. 2018. [Online]. Avail-
able: https://advisor.museumsandheritage.com/features/digital-
museum-guides-audio-apps-augmented-reality/

[22] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji and M. Bennis,
“Optimized computation offloading performance in virtual edge
computing systems via deep reinforcement learning,”IEEE Inter-
net Things J., vol. 6, pp. 4005-4018, Jun. 2019.

[23] Y. Wei, F. R. Yu, M. Song and Z. Han, “Joint optimization
of caching, computing, and radio resources for fog-enabled
IoT using natural actor-critic deep reinforcement learning,”IEEE
Internet Things J., vol. 6, pp. 2061-2073, Apr. 2019.

[24] Y. Dai, D. Xu, K. Zhang, S. Maharjan and Y. Zhang, “Deep
reinforcement learning and permissioned blockchain for content
caching in vehicular edge computing and networks,”IEEE Trans.
Veh. Technol., vol. 69, pp. 4312-4324, Apr. 2020.

[25] J. Zhang, J. Du, Y. Shen and J. Wang, “Dynamic computation of-
floading with energy harvesting devices: A hybrid-decision-based
deep reinforcement learning approach,”IEEE Internet Things J.,
vol. 7, pp. 9303-9317, Oct. 2020.

[26] S. Bi, L. Huang, H. Wang, and Y. J. Zhang, ”Lyapunov-
guided deep reinforcement learning for stable online computation
offloading in mobile-edge computing networks,” IEEE Trans. on
Wireless Commun., DOI: 10.1109/TWC.2021.3085319

[27] L. Huang, S. Bi, and Y. J. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-
edge computing networks,”IEEE Trans. Mobile Comput., vol. 19,
no. 11, pp. 2581-2593, Nov. 2020.

[28] Z. Jia, D. Li, W. Zhang and L. Pang, “5G MEC Gateway System
Design and Application in Industrial Communication,” 2nd World
Symposium on Artificial Intelligence (WSAI), Jun. 2020.

[29] K. Guo, M. Sheng, T. Q. S. Quek and Z. Qiu, “Task offloading
and scheduling in fog RAN: A parallel communication and
computation perspective,” IEEE Wireless Commun. Letters, vol.
9, no. 2, pp. 215-218, Feb. 2020.

[30] G. Lee, W. Saad and M. Bennis, “An online optimization
framework for distributed fog network formation with minimal
latency,” IEEE Trans. Wireless Commun., vol. 18, no. 4, pp. 2244-
2258, Apr. 2019.

[31] S. Boyd and L. Vandenberghe, “Convex Optimization.” Cam-
bridge, U.K.: Cambridge Univ. Press, 2004.

[32] S. Boyd, “Lecture Notes for EE364b: Con-
vex Optimization II.” [online]. Available:
https://stanford.edu/class/ee364b/lectures.html

[33] M. Grant and S. Boyd. (2014). CVX: MATLAB Software for Dis-
ciplined Convex Programming. Version 2.1. [online]. Available:
http://cvxr.com/cvx

[34] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the
importance of initialization and momentum in deep learning. In
International conference on machine learning, pages 1139–1147,
2013.

[35] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knuth,
“On the Lambert W function,” Adv. Comput. Math., vol. 5, no. 1,
pp. 329-359, Dec. 1996.

http://cvxr.com/cvx

17

[36] M. Jünger, et al., Eds.,“50 Years of interger programming 1958-
2008: From the early years to the state-of-the-art.” New York, NY,
USA: Spring, 2010.

[37] Gurobi Optimization [online]. Available:
http://www.gurobi.com/

[38] S. Tamoor-ul-Hassan, M. Bennis, P. H. J. Nardelli and M. Latva-
aho, “Caching in wireless small cell networks: A storage-
bandwidth tradeoff,” IEEE Commun. Lett., vol. 20, no. 6, pp.

1175-1178, Mar. 2016.
[39] M. Yan, C. A. Chan, W. Li, L. Lei, A. F. Gygax and C. -L.

I, “Assessing the Energy Consumption of Proactive Mobile Edge
Caching in Wireless Networks,”IEEE Access, vol. 7, pp. 104394-
104404, 2019.

[40] E. Jonas, J. Schleier-Smith, V. Sreekanti, and et al., ”Cloud pro-
gramming simplified: a Berkeley view on serverless computing,”
2019. [Online]. Available: https://arxiv.org/abs/1902.03383

http://www.gurobi.com/

	I Introduction
	I-A Related Work
	I-B Contributions

	II System Model
	II-A Location-Aware Task Computation Model
	II-B Location-Aware Communication Model

	III Problem Formulation
	IV Optimal Communication And Computation Resource Allocation
	V DL-based Offline Cache Placement
	V-A Service Caching Decisions Generation
	V-B DL-Based Offline Training

	VI Special Case
	VII Numerical Results
	VII-A DL-Based Offline Cache Placement for (P0)
	VII-B ILP-based Suboptimal Cache Placement for (P2)

	VIII Conclusion
	References

