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Edge Computing for Internet of Everything:
A Survey

Xiangjie Kong, Senior Member, IEEE, Yuhan Wu, Hui Wang, Feng Xia, Senior Member, IEEE

Abstract—In this era of the Internet of Everything (IoE),
edge computing has emerged as the critical enabling technology
to solve a series of issues caused by an increasing amount of
interconnected devices and large-scale data transmission. How-
ever, the deficiencies of edge computing paradigm are gradually
being magnified in the context of IoE, especially in terms of
service migration, security and privacy preservation, deployment
issues of edge node. These issues can not be well addressed
by conventional approaches. Thanks to the rapid development
of upcoming technologies, such as artificial intelligence (AI),
blockchain, and microservices, novel and more effective solutions
have emerged and been applied to solve existing challenges.
In addition, edge computing can be deeply integrated with
technologies in other domains (e.g., AI, blockchain, 6G and
digital twin) through interdisciplinary intersection and practice,
releasing the potential for mutual benefit. These promising
integrations need to be further explored and researched. In
addition, edge computing provides strong support in applications
scenarios such as remote working, new physical retail industries,
and digital advertising, which has greatly changed the way we
live, work and study. In this paper, we present an up-to-date
survey of edge computing research. In addition to introducing
the definition, model and characteristics of edge computing, we
discuss a set of key issues in edge computing and novel solutions
supported by emerging technologies in IoE era. Furthermore, we
explore the potential and promising trends from the perspective
of technology integration. Finally, new application scenarios and
the final form of edge computing are discussed.

Index Terms—Edge computing, 6G, artificial intelligence,
blockchain, microservices, digital twin.

I. INTRODUCTION

BENEFITTING from the rapid development of underlying
technologies, the Internet of Things (IoT) has increas-

ingly permeated our lives and become an essential part of
our daily activities. Millions of devices/sensors are contin-
uously generating data and exchanging important messages
through complex network infrastructures that enable machine-
to-machine communication [1], [2]. Statista [3] estimated that
installed bases of IoT devices worldwide will reach 30.9
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billion units by 2025, a significant increase from the 13.8
billion units expected in 2021. This indicates that sensors,
actuators, and other intelligent devices will generate massive
data at a fast speed, and these massive data need to be further
processed. However, the core network bandwidth is becoming
the bottleneck when moving all computing tasks to the cloud
servers in cloud computing. Moreover, cloud computing is
hard to meet the demands of low cost, high performance,
and ultra-low latency of some time-sensitive applications (e.g.,
interactive cloud applications and cooperative autonomous
driving) due to its property of centralization. In this context,
edge computing is proposed as a promising means to solve
the shortcomings in cloud computing. Edge computing adopts
an open platform with core network capabilities, computing
resources, and data storage to provide users with nearest-end
services, which is regarded as the critical enabling technology
towards the 5G era. Edge computing is not a substitute for
cloud computing but a supplement and expansion, which is
ideal for real-time data analysis and intelligent processing.

In recent years, this world has witnessed the dawning of
the Internet of Everything (IoE) era. People, process, data,
and things are intelligently connected to the Internet and
continuously create the value. However, IoE are magnifying
the inherent limitations of the existing computing models,
especially edge computing. Some issues of edge computing
architecture, including service migration, security and privacy
preservation, deployment issues of edge node, are difficult
to be efficiently addressed by using conventional methods.
Thanks to the rapid development of upcoming technologies,
novel solutions have emerged and have the potential to allevi-
ate these challenges. As for service migration, reinforcement
learning (RL) sovles the service migration issue by using
Q-learning algorithm to maximize the return of migration
and reduce the communication cost and migration cost of
user equipment [4], [5]. In terms of security and privacy
preservation, federated learning enables users to collabora-
tively train an algorithm and keep local data samples on
the device, effectively avoiding privacy by uploading only
parameters such as weights [6], [7]. Blockchain technology
[8]–[10] maintains users’ changeable keys and ensures security
and privacy of edge network without metadata disclosure by
nodes during edge coordination. Regarding node deployment
issues, microservices can integrate the various aspects of IoT
system architecture layers to facilitate distributed software
development, which addresses the challenge concerning the
deployment issue of application package [11].

Edge computing research lies at the intersection of the
computing model and other disciplines, where the existence
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of many research opportunities has resulted in a highly active 
area. In addition to solving the challenges mentioned above, 
the convergence of edge computing and some technologies 
(some of them mentioned above), including artificial intelli-
gence (AI), blockchain, 6G, and digital twin driven by other 
technologies, can fully unleash their potential and benefit 
from each other. The mutual benefit o f i ntegration between 
different disciplines deserves further exploration and research. 
Moreover, new application scenarios have also emerged, es-
pecially in the COVID-19 pandemic era, gradually changing 
our daily lives, including remote-working, the new physical 
retail industry, and digital advertising. Although a number 
of efforts have been conducted, the discussion about novel 
solutions to existing challenges of edge computing and future 
directions supported by emerging technologies are missing in 
other surveys.

In this work, we summarize existing efforts and previous 
work and present our view on future directions of this research 
field. W e t ry t o p rovide a  s tate-of-the-art s urvey o f edge 
computing, focusing on existing challenges and a series of 
opportunities from the perspective of integration with emerg-
ing technologies in the IoE era. The main contributions of this 
paper are outlined as follows:

• We summary several key challenges in edge computing
including service migration, security and privacy preser-
vation, and deployment issues of edge node. Meanwhile,
the novel solutions supported by emerging technologies
(e.g., deep learning, blockchain, microservices) are dis-
cussed.

• We further point out the promising prospects from
the technology integration perspective, including AI,
blockchain, 6G and digital twin, and explore their po-
tential and mutual benefit.

• The new application scenarios supported by edge com-
puting, especially in the COVID-19 pandemic, including
remote-working, new physical retail industry, and digital
advertising are discussed. We further propose the edgeless
computing, which is the ultimate form of edge computing.

Related surveys. One of the most important literature
surveys of this field is the work by Shi et al. [12]. Their
work gave a formal definition of edge computing in academia
and pointed out the challenges. However, their proposed
solutions to the existing challenges of edge computing are
traditional. They did not examine the opportunities brought by
emerging technologies. Khan et al. [13] highlighted the core
applications and importance of edge computing in real life
scenarios. Nevertheless, their work did not adequately discuss
the possibilities provided by upcoming technologies and future
trends of edge computing. Varghese et al. [14] discussed the
opportunities and challenges in this area, but the two parts are
discussed separately and are not fully connected. Carvalho et
al. [15] provided another up-to-date survey of the field. Their
work focused on use cases for each edge computing architec-
ture and future research directions. A discussion of combining
edge computing with technologies from other disciplines is
missing therein. We particularly conduct in-depth discussions
on novel solutions to existing challenges in this field as well as

promising trends from the perspective of convergencing edge
computing paradigm with other emerging technologies in IoE
era.

The rest of this paper is organized as follows. In section II,
we berifly present the overview of edge computing, including
definition, five important concepts, and characteristics. Section
III describes several sigificiant challenges of edge computing
and corresponding solutions supported by integrating with
upcoming technologies. Our work is focused on section IV,
where we explore the mutual benefits of the integration of
emerging technologies and edge computing, discuss some new
application scenarios and finally propose the final development
form of edge computing paradigm. Finally, we conclude our
work in section V.

II. OVERVIEW OF EDGE COMPUTING

In this section, a brief overview of several edge computing
concepts, including mobile cloud computing (MCC), mobile
edge computing (MEC), fog computing, cloudlet computing
and the most popular collaborative cloud-edge-end framework
in recent years, is presented.

A. Paradigms of Edge Computing

In a conventional cloud-centric model, data collected by
various terminal devices such as photos, videos and the
surrounding environment must be transferred to the cloud
center for processing and then the results are sent back
[16]. The increasing amount of terminal devices and large-
scale data transmission have posed a significant challenge
to cloud computing, especially efficiency, energy usage and
latency issues. The emergence of edge computing has the
potential to deal with these challenges. Satyanarayanan et al.
[17] define edge computing as a new computing model that
deploys computing and storage resources (such as cloudlets,
microdata centers and fog nodes) at the edge of the network
closer to mobile devices or sensors. The ”edge” is regarded
as any computing resource and network between cloud and
terminal devices [12]. Generally speaking, the structure of
edge computing is generally divided into three layers: terminal
layer, edge layer, and cloud layer. This hierarchy depicts the
computational capabilities of edge computing elements and
their properties, as shown in Fig. 1.

Despite the rapid development of edge computing, the edge
computing community has yet to come to an agreement on
its standardized definitions, architectures, and protocols [18].
There have been various architectures at the edge, includ-
ing MCC, MEC, fog computing, and cloudlet computing.
Although their concepts overlap and the boundaries are not
particularly obvious, we still have appropriate characteristics
to distinguish them. Table I and Table II depict the main
comparisons amongst them, including attribute and feature.
It’s worth noting that when MCC employs cloudlet as part of
its design, the qualities are identical to those listed in the corre-
sponding column. Moreover, cloud-edge-end collaboration has
emerged as the most popular operational framework for edge
computing in recent years. In our work, this group of emerging
technologies is uniformly referred to as “edge computing.”
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Fig. 1: Three layers of edge computing architecture and
collaborative cloud-edge-end framework.

In this section, several conceptions of edge computing are
introduced.

1) Mobile Cloud Computing: The increasing usage of mo-
bile devices has occupied our lives and affected our way of
life [19], [20]. Entertainment, games, social networks, and
other applications based mobile terminals are becoming more
and more abundant. However, there are many restrictions such
as computing, storage capacity, and shared wireless medium.
Cloud computing is a way to host the execution of applications
by moving mobile devices to an integrated environment other
than itself, which can solve those issues in mobile computing.
According to [21], MCC, at its simplest, refers to an infras-
tructure where both data storage and data processing happen
outside of the mobile device. Mobile cloud applications offload
computational power and data storage from mobile phones to
the cloud, enabling smartphones and other mobile users to
access applications and mobile computing. MCC is becoming
the dominant way to run mobile applications [22].

2) Mobile Edge Computing: MEC is regarded as a critical
technology and architectural concept for the transition to
5G [23], [24]. The European Telecommunications Standards
Institute (ETSI) [25] defined it as an IT service environment by
providing cloud computing capabilities at the edge of a mobile
network, aiming to extend the concept of edge computing
to Wi-Fi and other non-3GPP access scenarios. MEC is
logically independent of other network parts and is suitable
for supporting high-security applications. Additionally, MEC
servers often have a strong computational capacity, making
them ideal for analyzing and processing large amounts of
data. MEC also supports the perception of edge applications,
especially the wireless access part. The MEC node can obtain
real-time network data such as base station ID, available
network bandwidth, and information related to the user’s loca-
tion, thereby achieving link-sensing adaptation [26]. Moreover,
MEC technology enables mobile network operators to offer
additional network information and congestion management
capabilities to third-party developers, increasing the number
of applications and services available to consumers.

3) Fog Computing: In 2012, Cisco proposed the concept
of fog computing, which comes from the fact that ”fog” is
closer to the ground than clouds. Fog computing can be treated
as the combination of MCC and MEC. Vaquero et al. [27]
defined fog computing as a scenario where a large number
of heterogeneous (wireless and sometimes autonomous) and
decentralized devices communicate and potentially cooper-
ate among them and perform storage and processing tasks
without the intervention of third parties. These tasks can be
utilized to support basic network functions or new services
and applications running in a sandboxed environment. Fog
computing establishes a continuum [28] between data centers
and data sources to provide users with computing, storage, and
network services, transforming the network into a “assembly
line” for data processing rather than a ”data pipeline”. Take
the vacuum cleaner as an example. Centralized fog nodes
(or IoT gateways) continuously collect information about
their surroundings from sensors in the home and activate the
vacuum cleaner when garbage is detected. But in the edge
computing solution, the sensors will judge whether there is
garbage respectively, and then send a signal to start the vacuum
cleaner.

4) Cloudlet Computing: Cloudlet is a concept proposed by
Satyanarayanan et al. [29] in 2009. They defined cloudlet as
trusted, resource-rich computers that provide storage resources
and computing near the mobile users (near or coexisting with
a wireless access point). The cloudlet originates from the
integration of mobile computing, IoT and cloud computing,
which plays the role of “data center in box” [18]. Cloudlet
computing consists of three main features: software-only de-
ployment, proximity deployment, and build based on standard
cloud technologies. Moreover, cloudlet has become a new
alternative technology to carry computing tasks on mobile
devices. The challenge of insufficient computing resources of
mobile devices by supporting cyber foraging [30] in mobile
computing is effectively solved. By implementing cloudlet dis-
covery, virtual machine (VM) provisioning, and VM handoff,
cloudlet computing also supports application mobility.

5) Collaborative Cloud-Edge-End Computing: Cloud-
edge-end computing is a collaborative processing model that
take full advantage of both edge computing and cloud com-
puting. As shown in Fig. 1, it is a decentralized network
with cloud as the center and layered construction, including
cloud-edge collaboration, edge-edge collaboration and edge-
end collaboration. Edge computing and cloud computing
complement and cooperate with each other. Edge servers
process data that requires immediate response. The cloud
server provides significant computing capacity and the ability
to integrate diverse types of information. Real-time interaction
between edge nodes and the cloud can help alleviate the data
heterogeneity issues for the cloud [31]. Furthermore, when
the storage capabilities of the edge nodes are insufficient,
the cloud may store a portion of the data and transfer it to
the client via the network as needed, therefore conserving
edge storage resources [32]. Cloud-edge cooperation is critical
in a variety of application scenarios, including content dis-
tribution networks (CDNs), industrial Internet, energy, smart
homes, and smart transportation [33]–[36]. In [37], Hong et al.
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proposed IIoT–edge–cloud computing model based on multi-
hop computation-offloading for resource-intensive applications 
(e.g., 3D sensing, AI processing, big data analytics), with the 
goal of reducing energy consumption and processing delay. 
For strengthening 5G heterogeneous network (HetNet) secu-
rity, Wei et al. [38] proposed a federated learning empowered 
cloud-edge-end cooperation model. The security is guaranteed 
by equipping node with an attack detection mechanism at the 
end, edge, and the cloud of 5G HetNet.

B. Edge Computing Characteristics

Edge computing has some notable features compared to
the cloud computing paradigm. Specially, we discuss three
main characteristics that makes up for cloud computing in
the context of processing massive data, including low latency
computing, more efficient energy consumption, and transferred
computing power.

1) Low Latency Computing: The advantage of the cen-
tralized architecture of cloud computing is that it is easy
to manage and maintain. However, it is no longer the opti-
mal strategy for geographically distributed applications. Some
popular location-based social networking applications (e.g.,
Foursquare, Mingle and Google Now) require computing
power closer to the data source to optimize system efficiency
and user experience [14]. Edge devices generate numerous
data streams, and it is impossible to make real-time decisions
when analytics is conducted on a remote cloud. For example,
Boeing 787 generates 5 Gigabytes of data every second
[12]. The bandwidth between the aircraft and other satellite
equipment or base stations can not withstand such a large
amount of data due to long request-to-response links. Consider
self-driving cars from Google as another example. A variety of
sensors and cameras capture traffic information in real-time,
generating nearly 1 GB of data per second for complex data
processing and driving decisions. Moreover, Americans drive
an average of 600 hours a year, equivalent to 2.16 million
seconds or about 2 Petabytes of data per vehicle per year
[12]. It is almost inconceivable that all data must be sent
to the cloud for processing before responding to the results.
The response time will be extraordinarily long and become a
bottleneck. Certain time-sensitive applications suffer the same
issue and impose strict limits on latency between edge devices
and cloud servers. Deploying some of the processing power
closer to the user is an effective way to solve the issues in
the above scenarios. The adoption of edge computing has
the potential to minimize processing latency and network
bandwidth requirements.

2) Efficient Energy Consumption: With the rapid devel-
opment of computing models (e.g., cloud computing), the
network bandwidth consumption of novel applications (e.g.,
video analytics) has increased sharply in recent years. Ac-
cording to the Cisco Visual Networking Index research [39],
video streaming services (e.g., YouTube, Hulu, and Netflix) are
expected to consume 79 percent of total network bandwidth
in 2022. High-bandwidth applications, such as online gaming,
Ultra-High-Definition (UHD), or 4K video streaming, require
a broadband connection with a speed of at least 5 Mbit/s,

placing a greater demand on network capacity. The high net-
work bandwidth consumption means high energy exhaustion
because a significant amount of electric power to deliver data
is required [40]. The emergence of edge computing could
help solve this tricky issue by processing more data utilization
changes. By building a group of coordination and management
system of distributed data centers, edge data centers ensure
effective resources utilization. Instead of running 24/7 like
a cloud data center, resources will become dormant when
they are not needed. Additionally, sensors and IoT devices are
being utilized to monitor energy use, assess energy levels in
real time, and provide a real-time perspective of consumption,
enabling organizations to make dynamic modifications to en-
ergy supplement and demand. Meanwhile, cooling data centers
requires a certain amount of energy. Due to the decreased size
and output of edge data centers, the tiny data center’s overall
energy consumption will decrease proportionately.

3) Transferred Computing Power: The emergence of intel-
ligent devices such as virtual reality glasses and face recogni-
tion applications altered our way of life profoundly. However,
these IoT devices and applications have some constraints
in battery life and computing power while executing some
complex activities [14]. While moving computing tasks to the
remote cloud has proven to be a useful solution, the challenge
of execution delays due to data exchange has always been
present. Edge computing aims to offload heavy processing
from mobile devices to network edge infrastructures such as
tiny cell base stations with computing and storage capacity,
therefore improving the user experience dramatically. By of-
fering communication capability from Radio Access Network
(RAN) and making computation resources closer to users,
it has the potential to significantly reduce latency, prevent
network congestion and extend the battery lifetime of terminal
devices.

III. CHALLENGES

Despite the benefits and promising prospect of edge comput-
ing, there are still many key issues remaining to be addressed.
Especially in IoE era, these major challenges are gradually
being amplified. This section discusses several research chal-
lenges followed by partial solutions supported by emerging
technologies such as deep learning (DL) technology [41],
blockchain technology, and microservices.

A. Service Migration

Application mobility is one of the significant factors that
should be taken into account. Although mobility increases the
flexibility of applications, it brings new challenges. Computing
resources in mobile applications may switch between multiple
devices as users move [42]. Resource switching requires
migrating the currently running service to another device. The
major issues concerning service migration are summarized
below:

• How to appropriately select the edge server to migrate
the service is a significant issue. The service scope of
multiple edge servers may overlap. Hence, if a user moves
into a specific area within the service area of multiple
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TABLE I: Attributes amongst four common edge computing models

Attribute Mobile Cloud Computing Mobile Edge Computing Fog Computing Cloudlet Computing

Key Features
Rich mobile applications to

be executed on a different

number of mobile devices.

Extend the concept of edge

computing to Wi-Fi and other

non-3GPP access scenarios.

The network service is not

only a data pipeline but also

a pipeline of data processing.

1. Data center in a box.

2. Dynamic VM synthesis.

Context Awareness High High Medium Low

Mobility Management Not specified Yes Not specified Not specified

Computing Power Low on mobile devices High Not specified Not specified

Application Portability High High Not specified Not specified

Latency High Low Not specified Not specified

Location for Computing Special dedicated buildings Base stations and nearby devices Devices along the routing path Nearby cloudlets

Access Mechanisms Bluetooth, Mobile Networks Mobile Networks Bluetooth, Wi-Fi, LAN Wi-Fi, LAN, WAN

Energy Consumption Low Low Low Low on mobile devices

Availability High Average High Moderate

Service Type Local Less global Less global Local

Standardzation Organizations NIST ETSI, 3GPP OpenFog Consortium, IEEE OpenEdge

Power Consumption Low on mobile devices High Low Moderate

Primary Motivator Academia Academia/Industry Academia/Industry Academia

Distance from Users Far Close Relatively close Close

Architecture
Central cloud with distributed

mobile devices
Localized/hierarchial Decentralized/hierarchical Localized

Security
Need to be offered on mobile

terminals and along cloud-to-things

Need to be offered on

edge network equipment (RAN, AP)

Need to be offered on

participant nodes

Need to be offered on

participant nodes

Virtualization

at the Edge
Yes Yes Not specified Yes, extends OpenStack

TABLE II: Features amongst four common edge computing models

Feature Mobile Cloud Computing Mobile Edge Computing Fog Computing Cloudlet Computing

Requirements for Infrastructure Yes Yes Yes Yes

Ultra-low Latency No Yes Yes Yes

Distributed Geographically No Yes Yes Yes

Support for Multiple IoT Applications No No Yes Yes

Standardized Yes Yes Yes No

Support for Large-scale Application No Yes No Yes

Support for Real-time Application No Yes Yes Yes

Location Awareness No Yes Yes Yes

Support for Heterogeneity Yes Yes No No

servers, it is supposed to think over choosing which server
to migrate service. Moreover, the resources available to
edge servers are an essential factor to consider. When
migrating a current user’s service to another edge server,
the edge server receiving the service migration should
have sufficient resources to satisfy the current user’s
service requests [43].

• Migration of services requires consideration of both the
duration and cost of the migration. Certain applications
are latency-sensitive, which means that low latency must
be guaranteed during service migration. Therefore, a
appropriate service migration strategy should attempt to
minimize total migration time. Moreover, the application
providers are mainly concerned with the final revenue.
The migration decision requires a trade-off between mi-
gration benefits and migration costs. Designing a mi-
gration solution that can optimize migration costs is

challenging.
• The unpredictability of user mobility and the request pat-

terns increase the difficulty of gaining the optimal service
migration approach. If the user equipment travels inside
a specified region and the borders of the two edge servers
are near together due to a particular movement mode, the
user equipment’s movement will have a dynamic effect
on the server performance.

• The diversity of applications and heterogeneity of edge
servers increase the complexity of service migration.
Many users and applications must be considered when
migrating services. Therefore, migrating ongoing services
is more complicated. If the current migration strategy is
used, unreasonable migrations may be repeated.

The mathematical models, such as markov decision process
(MDP), are proposed to make effective service migration
decisions. However, the global optimal solution obtained by
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MDP is based on simple theoretical assumptions, which is 
subject to the complex condition and a large amount of various 
parameters. This feature limits the applicability of mathemat-
ical models to service migration. Recently, AI technology, 
especially DL, has provided a promising solution for service 
migration decisions by considering complex factors, such as 
heterogeneity of node equippments, the dynamic of network 
environment, and real-time requirements of users’ rapid move-
ment. DL technology, especially RL can continuously learn 
from a large amount of historical data, constantly interact with 
dynamic environments and respond quickly to changes [5],
[44]. Especially, RL is able to perceive its environment, take 
corresponding actions, identify the optimal action to maximize 
reward in a given scenario. State, action, and reward are 
three key elements in whole process. When MEC and RL 
are integrated, the decision issue of service migration can be 
alleviated. Hence, three key elements above mentioned have 
the new representations in MEC network. The first i s “state”, 
which is able to denote the state of the MEC server that user 
equippments are currently covered. Next, “action” refers to a 
list of all available servers to which the current VM can be 
transferred. The final i s “ reward”, w hich r efers t o t he mobile 
user chooses an action mentioned above and gets the final 
reward. The ultimate goal is to minimize objective function’s 
value and Q-learning algorithm is utilized to maximize the 
reward of migration. Hence, there are more rewards for action 
with lower communication costs and migration costs of user 
equipment at the MEC network.

B. Security and Privacy Perservation

Compared to the cloud computing paradigm, edge comput-
ing can avoid the abuse and theft of users’ privacy data on
long transmission links by processing partial data at the edge
of the network. However, new security and privacy challenges
have emerged due to the access of multi-class and multi-device
devices in edge networks. The challenges can be denoted as:

• Edge computing devices are usually close to the user.
Therefore, MEC nodes adjacent to the user may collect
sensitive information [45], [46], including the user’s
identity, location information and application usage. Take
the smart home system as an example. The hackers
can easily track electricity usage to identify whether a
house is unoccupied, which increases the possibility of
items being stolen in the house. Furthermore, centralized
control becomes extremely difficult due to the discrete
nature of MEC nodes.

• Traditional approaches of security and privacy protection,
such as certificates and Public Key Infrastructure (PKI)
authentication, may not be suitable for being used on
edge infrastructures [47]. In dynamic changes of MEC
nodes, nodes must mutually verify the newly formed
MEC network. In addition, MEC nodes also need to
restrict or reject service requests from malicious and
compromised nodes.

• The device communication in the MEC network mainly
includes the communication between the IoT devices and
the MEC nodes and between the MEC nodes. Firstly,

the terminal equipment can directly communicate with
any MEC node. However, IoT devices may not be aware
of the existence of the MEC network, which makes
symmetric encryption technology unable to be used to
encrypt messages sent by IoT devices. The same is true
for asymmetric key cryptography technology. Secondly,
the MEC nodes involved in multiple paths cannot be fully
trusted, so communication between MEC nodes requires
end-to-end security.

• Service placement is an important research direction in
MEC, which aims to explore an optimal scheme to
improve mobile users’ quality of service (QoS) [48].
Existing service placement strategies, in particular, are
based on the degree to which customers value services.
However, the degree of customer perference may involves
some sensitive personal information such as history data,
locations, and customized needs. Hence, implementing
an effective privacy preservation scheme is a challenging
task.

Various edge services put forward new needs for adequate
privacy protection. Aside from designing an efficient strategy
of preserving privacy information, it is vital to consider
how to combine the traditional privacy protection with the
characteristics of edge data processing in a diversified service
environment. Moreover, if some emerging technologies (e.g.,
federated learning, blockchain) and edge computing are well-
integrated, they can offer great potential for addressing the
aforementioned partial challenges concerning security and
privacy.

Incorporating federated learning into edge computing.
In traditional machine learning methods, the training data must
be centralized on a single machine or in a cloud center. As
a distributed DL technology, federated learning [49]–[53] en-
ables users to collaboratively train an algorithm while keeping
local data samples on the devices. The various data generated
by the user equipment (e.g., wireless channel quality, battery
life, and energy consumption) and edge nodes (e.g., computing
load, wireless communication quality, task queue) are utilized
as raw training data for model input. Federated learning
avoids the privacy leakage problem caused by uploading these
sensitive data to the cloud center, only submitting learned
model weights to update [54]. In dealing with the challenges
of service placement in MEC, federated learning allows users
to send the trained results instead of uploading all the users’
privacy data, such as perference information, to the cloud
center. User privacy information is well protected in this way.

Integration with blockchain technology. Blockchain is a
distributed ledger technology that does not require centralized
control and is protected by encryption technology [55], [56].
It provides a secure, transparent, and non-tamperable platform
for network data communication, sharing, and transactions.
Furthermore, the blockchain guarantees the automatic exe-
cution of predefined rules and terms by intelligent contract
technology, and protects data privacy and account security by
the asymmetric encryption algorithm.

The blockchain here refers to the ability of network partici-
pants to record in the distributed billing system. The core parts
of blockchain, such as consensus protocol, ledger topology,
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and incentives, will be extended in integrated systems to 
accommodate different levels of edge computing systems and 
combinations [8]. The integration covers the fundamental 
layers of blockchain and major capabilities of edge computing, 
which provides more secure large-scale data storage and 
effective computing without the need for costly encryption 
overheads. Block chain technology can realize security au-
thentication, secure data storage and secure computing to 
protect the security and privacy of edge network. On one 
hand, blockchain technology allows each user to maintain their 
own changeable keys, which is convenient for users to offer 
access and manage data without the involvement of any third 
parties [8]. On the other hand, coordination on the peer-to-
peer basis is allowed by blockchain’s pseudonymous property, 
and metadata (e.g., source, destination, and content) will not 
be disclosed to anyone.

C. Deployment Issues

There are still many challenges in the deployment of edge
computing nodes such as business selection, investment re-
turns, and operating model. By introducing the microservices
technique, the challenge concerning deployment of application
packages will be effictively alleviated.

Business needs and scenario selection is the first issue that
needs to be considered in the deployment scenario, especially
in the 5G era. Whether it is edge computing for individual
users in the enhanced Mobile Broadband (eMBB) scenario, or
edge computing for vertical field (e.g., live games, Internet of
vehicles [57], [58], smart manufacturing), deployment needs
to fully consider the capacity and the feasibility of the business
scenario.

The second is network index and investment returns. The
main stakeholder [59] in the edge ecosystem is classified into
two categories: infrastructure owners and software developers.
The first one usually refers to operators and cloud providers
such as Google Cloud and Amazon Cloud. They are responsi-
ble for collecting and storing data, maintaining and managing
software and hardware facilities [60]. This business pattern
is transparent to users, and subscribers only need to pay for
the service without knowing the technical details. The latter
mainly includes content providers and startups companies.
They support the deployment of edge servers, create added-
value applications and help enrich and expand the innovative
services. Technology without economic benefits is hard to
sustain. In an edge computing system, the maintenance of
hardware and software is particularly challenging due to the
geographical dispersion of edge nodes. Whether the cloud
service provider or the content provider pays for maintenance
and management expenses must be considered. Furthermore,
it is also necessary to effectively reduce the cost of users’
network usage. The closer the computing resources is to the
edge of the network, the better experience for users. However,
it will leads to the decrease of access users, the reduction of
network edge revenue and the increase of the total cost.

The third is the operating model and management. Infras-
tructure as a service (IaaS), Platform as a service (PaaS), and
Software as a service (SaaS) in cloud computing also exist

in edge computing. The operators are able to offer different
services such as local offloading services, edge computer room
rental, unified IaaS capabilities when facing various corporate
customers. Different with large enterprises, operators provide
unified planning and deployment of IaaS and PaaS platforms
for small and medium-sized enterprises, which applies to
situations where edge nodes are scarce, and the payoff of
management is limited [61]. However, the third-party PaaS
platform and the management of third-party applications in
the edge system need further exploration and improvement.

The fourth is reliability assurance. Protecting the physical
environment of edge nodes is also challenging due to the
lack of effective measures [62], including data backup, data
recovery, and audit measures. Compared with storing data
in a stable cloud computing environment, the attackers may
modify or delete the user data on the edge node to destroy
some evidence. Take the traffic supervision scenario as an
example [58], [63]–[65]. The high-precision camera on the
road records the normal and abnormal conditions, trajectory
data, and illegal records of the vehicles. In a traffic accident,
these data are the critical evidence to find criminal attacks.
The offenders can get away with the law by attacking data on
edge nodes. Similarly, household consumption stored in edge
nodes and personal health information in electronic medical
systems may also become the target of attacks. Moreover,
extreme weather conditions (e.g., snowstorms, strong wind)
will lead to immeasurable damage of edge data, which is
unacceptable for enterprises and customers. The edge nodes
also can not provide adequate measures to recover data. When
constructing the entire edge system, it is necessary to leverage
infrastructures coordination to ensure physical reliability and
utilize multiple backup measures to ensure data reliability.

The final one is the deployment issue of application pack-
ages. The virtualization technology, such as container, aims
at distributing packaged applications as low-overhead virtual
machines (VMs) to edge servers [66]. However, it is not trivial
to decompose monolithic cloud applications into distributed
packages and install them into hierarchical IoT system topolo-
gies, especially to meet applications’ specific demands (e.g.,
QoS, performance). Therefore, it is necessary to introduce
novel programming paradigms that integrate the various as-
pects of IoT system architecture layers to facilitate distributed
software development. Microservices is a promising approach
for modularizing applications and services at the process level.
A single application is decomposed into non-interfering atomic
services in a microservices architecture. Each service unit
that performs a specific task, consumes only a tiny amount
of computing resources in order to software developers can
quickly build it. These units are operated, updated, and de-
ployed independently so that the developer team can carry out
the continuous delivery of functions. The general applications
are divided into several small modules and deployed to the
edge nodes [11]. Each module can compute, store and utilize
the network resources without affecting other modules. The
convergence of distributed IoT and microservices will facilitate
package deployment optimization for service delivery and
address the deployment challenges of application packages.
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Fig. 2: The overview of edge intelligence.

IV. PROMISING DIRECTIONS

This section will discuss promising directions with the
burgeoning of IoE, including emerging technologies, new
application scenarios, and the final development form of edge
computing.

A. Emerging Technologies

1) Artificial Intelligence: The concept of AI was proposed
in 1956. AI refers to the technology that uses algorithms to
make machines imitate human thinking to solve problems.
So far, outstanding achievements have been widely produced
in some fields (e.g., Computer Vision, Natural Language
Processing, and Intelligent Robots). According to Gartner’s
prediction, by 2022, more than 80% of enterprises will include
AI components in their IoT projects [67]. In particular, as
the most important branch of AI, DL technology has brought
the vigorous development of AI applications and services. DL
can recognize patterns, detect and analyze abnormal data (e.g.,
population distribution, air quality, temperature, and humidity)
of edge devices, and then send the intelligent analysis results
to decision-making applications [68]–[72].

In fact, edge computing and AI are progressively merging,
mutually benefiting from the realization of edge intelligence,
as shown in Fig.2. Edge computing can provide rich real-time
training data and diverse operating environments for AI models
[73]–[75]. Meanwhile, AI can provide edge computing with
powerful learning capabilities. Edge intelligence is projected
to move as many DL computations as feasible from the
cloud to the edge, enabling a variety of distributed, low-
latency, and dependable intelligent services [76]. Moreover,
edge intends to integrate DL into the edge to provide dynamic,
adaptive edge maintenance and management [4]. To deal with
the dynamically changing network environment, emerging
learning methods in DL also bring new opportunities to edge
intelligence [77]. Take federated learning as an example.
In addition to addressing the privacy challenge of service
placement of MEC network in Section III, federated learning
can also solve the key problem that performance is affected
by unbalanced data and harsh communication environment.

Moreover, the number of communication rounds required to
train the model is reduced by controlling the number of local
update steps (increasing the amount of calculation for each
user equipment), which shows that federated learning has a
good balance between communication cost and computation
cost in edge network [78]. Lin et al. [7] tries to combine fed-
erated learning with meta learning. By using a small amount
of local data to train a meta model, it is possible to quickly
adapt to the task of the target edge node. Transfer learning
is also a hot research topic [79]–[81], which aims to improve
the target task’s performance by transferring the existing task’s
knowledge to the current target task. As the upstream of the
machine learning model, transfer learning adapts to multi-
source heterogeneous data collected on different edge devices
through decoupling model, and the training data and training
time requirements of the target field have been significantly
reduced. Zhou et al. [82] proposed a CNNEF framework that
effectively detects abnormal activities in the edge computing
environment by using embedded features for transfer learning,
which overcomes the limitations of the traditional Convolu-
tional Neural Network (CNN) model. Abu et al. [83] proposed
a family health detection edge computing method based on
transfer learning. Their work only needs to fine tune a small
amount of labeled data to train the model, which can greatly
reduce the health crisis caused by the epidemic. More and
more methods will be combined with edge computing to make
the edge more intelligent. Furthermore, we discussed several
other promising research directions about edge intelligence.

• Accelerate AI services through edge computing. At
present, there have been some studies using DL tech-
nology to optimize mobile edge communication systems.
However, it is also essential to develop special methods
for optimizing learning computing tasks by combining
edge computing characteristics with edge devices. For
a large number of AI tasks with different priorities and
requirements (such as CPU and memory), it is also crucial
to find the right collaboration edge node and allocate
the appropriate resources. Moreover, Game Theory algo-
rithms may be applied to edge intelligence to accelerate
AI services through edge computing.

• Improve the edge intelligence efficiency of real-time
mobile communication systems towards 5G. In the 5G
era, communication links with extremely low latency
and high reliability are required. However, general op-
timization and prediction schemes based on DL require
quite a long running time to converge to the result,
which is not suitable for mobile edge systems, especially
edge computing tasks that require a rapid response at
the millisecond level. Edge intelligence should provide
various support for different types of services to eliminate
the delays caused by caching, networking, and computing
[48].

• Build the incentive and business model of edge intel-
ligence. The realization of AI services involves three
parties: mobile operators, service providers (SPs)/content
providers (CPs), and mobile users. The user equippments
(UEs) of a small number of mobile users can provide
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Fig. 3: The common benefits of edge computing and
blockchain.

remaining computing resources after meeting their own
computing requirements. However, a large number of
UEs may depend on the AI computing capabilities of
edge nodes and other user devices. In addition, edge
nodes spanning multiple mobile operators need to meet
the AI computing requirements of SPS and CPS. There-
fore, designing a reliable and effective edge intelligence
incentive framework holds great promise.

2) Blockchain Technology: The combination of blockchain
and edge computing has become an unstoppable trend [84],
[85]. In addition to addressing security and privacy issues
mentioned in section III, the convergence also brings some
novel opportunities and directions, as shown in Fig.3. First
consider the benefits of edge computing for blockchain. The
transaction time in blockchain is highly related to the perfor-
mance and processing power of the server [86], [87]. Some
high-performance processors provided by AMD and NVIDIA
in the edge computing infrastructure can support the whole
transaction. Moreover, in the centralized network architecture,
the data stream that blockchain nodes communicate must pass
through the whole network before returning. Combining with
edge computing can eliminate the need for data traversing the
core network and solve the problem of network latency in
the blockchain. Then consider the benefits of blockchain for
edge computing. The edge computing infrastructure is still dis-
persed among telecom operators, which means that application
developers will have to interact with each telecom operator
to ensure that applications can run between consumers in a
country and across borders. The usual solution is to aggregate
operators into an entity, such as cloud service providers such as
AWS and Azure, with a unified control interface in the public
cloud field, so as to monopolize the cloud service market
[88]. Instead, blockchain technology may be utilized to build
a decentralized edge computing marketplace that connects
suppliers of edge infrastructure with those in need, without
relying on a single point of control.

The distributed architecture makes edge computing chal-
lenging to manage heterogeneous networks. By building dis-
tributed control on edge nodes, blockchain ensures the correct-

ness, consistency, and validity of edge data and regulations
throughout their life cycle. This can effectively solve the
mobility problem between heterogeneous nodes located at
the edge of the network. Moreover, the scattered data in the
edge network is more likely to be lost or stored incorrectly.
The transaction management provided by the blockchain has
potential to address this challenge. For example, the record
of edge data becomes unchangeable once it is stored on the
transaction ledger. In this context, edge devices can perform
large-scale computing or collaboration in an untrusted net-
work environment [89]. Blockchain technology also provides
transaction transparency and data integrity for edge network,
and allows the replication of publicly verified data records
across edge nodes [90]. Moreover, issues such as network
congestion, link failure, and privacy leakage may occur in the
data interaction and service migration between heterogeneous
devices and edge servers due to illegal attacks. The solution
to this issue is to add the block mining process to each edge
device, verify the data transaction, and protect and connect
through the immutable ledger to improve the security of the
edge network.

In current cloud-based blockchain services, Microsoft pro-
vides blockchain as a service based on the Azure cloud
platform, and cloud-hashing in the UK offers Bitcoin mining
services to users who purchase services online. The entire
process does not require users to install and deploy any
equipments. Other companies such as IBM, Google, and
Oracle integrate blockchain ledger into their business-level
cloud services. The blockchain transaction economic model
based on edge computing is missing and will be the focus of
future research.

3) 6G: The deployment and comprehensive promotion of
5G have brought the world the ultimate user experience of
mobile internet, and communication capabilities and service
quality have been improved by leaps and bounds. However,
the next ten years will transition from Industry 4.0 to Industry
X.0. 5G cannot cope with application scenarios requiring
microseconds and Tps levels, such as holographic remote
transmission, remote surgery, and extended reality (XR). As
the next generation of revolutionary communication technol-
ogy, 6G wireless network will support a transmission rate of
TB per second and a significantly low transmission delay. The
speed is 50 times that of 5g network and the delay is half that
of 5g network.

The development of 6G will continue to accelerate the
evolution from the IoT to the Intelligent Internet of Things
(IIoT). When data is transferred from cloud servers to edge
devices, 6G provides functions such as high-speed security,
ultra-high reliability, and ultra-low latency, which greatly
reduces data loss rate and bit error rate and ensures seamless
data connection between edge devices [91]. Consider the the
unmanned aerial vehicle (UAV) system under COVID-19 pan-
demic. To deal with the epidemic situation, various data such
as the image, digital, CT scanning and other data obtained by
the UAV will be directly sent to the edge server for processing.
The edge will train the AI model to accelerate the processing
and data analysis and then send results to relevant government
departments. All devices are connected via 4G networks in this
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process, and the transmission rate is slow, only 100 Mbps. 
Even 5G networks with speeds of up to 20 Gbps cannot meet 
the needs of future emergencies. For example, the deterioration 
of critical patients requires immediate feedback. The social 
distance and isolated persons in the floating p opulation also 
need to be monitored in real-time. In these critical scenarios, 
6G can provide a microsecond response [92] to deal with 
challenges. Meanwhile, the deployment of edge computing 
in the 6G network will improve the system performance, 
realize core network traffic optimization, and provide a  novel 
network service. Furthermore, compared with cloud service 
providers such as Amazon and Google, operators in edge 
computing systems will have more advantages in computing 
and communication resources, which allows them to regain 
their market position and increase the added value of their 
services in 6G era.

4) Digital Twin: The Digital Twin (DT) originated from 
the NASA project of the US Department of Defense, which 
is utilized to maintain and guarantee the health of aerospace 
vehicles by virtualization technology. It makes full use of vari-
ous physical models and combines sensor data, algorithms and 
decision analysis to realize real-time virtual mapping of the 
physical world on the information platform, thereby reflecting 
the entire life cycle of the corresponding physical entity [93],
[94]. A series of enabling technologies (e.g., AI, blockchain, 
6G) drive digital twins to support some application scenarios 
such as smart home, smart city, and smart transportation. 
Fig. 4 shows the applications of digital twins. Digital twin 
network (DTN) [31] is a network of many-to-many mappings 
formed from many one-to-one DTs, which aims to enable 
the dynamic interaction and coordinated evolution of a large 
number of physical and virtual objects. By linking several DT 
nodes in DTN, physical objects and virtual twins are able to 
interact, cooperate, exchange information, perform activities, 
and establish an information-sharing network.

Physical to physical (P2P) and physical to virtual (P2V) 
communication in DTN network require ultra-low sensor 
delay, data processing delay, and feedback delay in some 
time-sensitive application scenarios such as medication control 
and remote surgery. The convergence with edge computing is 
empowered to alleviate this issue. The cloud-edge-end frame-
work offloads the computing tasks of the twin terminal to the 
edge network, which mainly solves the device’s shortcomings 
in terms of resource storage, computing performance, and 
energy efficiency. C ooperative c loud-edge-end c omputing is 
able to provide DTN with low-latency computation, increased 
computational ability with constrained resources, and con-
tinuous update. Processing and analyzing closer to the edge 
will reduce the communication delay of mutual mapping in 
physical space and virtual space. Digital twins systems based 
on edge deployment will have greater flexibility i n defining, 
developing, and utilizing real-time IoT systems.

B. New Application Scenarios

The emergence of edge computing paradigm has supported
the new applicaiton scenarios, including remote-working, the
physical retail industry, and digital advertising.

• Working in Post-epidemic Era. The outbreak of
COVID-19 has had a profound impact on the way we live
and the operating model of human society [95]. It will not
be resolved fast and will continue for a long time. Around
300 million people have been infected with coronavirus
worldwide to date, with over 4 million deaths. Not only
human beings, but all walks of life are also experienc-
ing unprecedented tests. The weaknesses of the Internet
architecture that we rely on every day are completely
exposed under epidemic. Enterprises must also respond to
the ever-changing business world and promote the long-
term transition to intelligent edge computing solutions
to cope with the post-epidemic era. Firstly, significant
changes have taken place in the way employees work.
We call it the “Remote Revolution”. Remote collaboration
and home office have become the norm. Both consumers
and companies are looking for positive ways to meet
office requirements during the quarantine period. Most
of the virtual desktop infrastructure (VDI) hosted in the
cloud allows any device to access it at any time. However,
VDI architecture has some shortcomings, including High
construction cost and over-reliance on network environ-
ment. By introducing some implementation schemes of
edge computing architecture, such as Intelligent Desktop
Virtualization (IDV) and Virtual OS Infrastructure (VOI),
employees may more efficiently utilize their devices at
home, resulting in cost savings, less hardware needs, and
more flexible operation [96]. Different from VDI, which
concentrates all desktop computing resources in the data
center and sends interfaces to terminal devices, edge com-
puting takes a more decentralized approach to meeting
operational technological requirements while simplifying
administration and deployment functions. Edge comput-
ing solutions enable IT to manage and protect desktop
images and devices while maintaining high performance,
mobility, and flexibility for users. Thanks to the rapid
development of edge computing paradigm, organizations
may rapidly and inexpensively introduce desktop virtual-
ization without investing in infrastructure.

• Physical Retail Industry. Edge computing shows ex-
traordinary marketing potential in user personalization
and in-depth positioning and provides users with an un-
precedented digital product experience. In order to meet
social distancing requirements and comply with epidemic
prevention policies, the physical retail industry has been
hit like never before. It is undergoing a transformation
to survive and compete with the online retail industry.
The ways of self-help include building a real-time supply
chain, forming a fully automatic manufacturing chain and
providing customers with a personalized shopping expe-
rience. By deploying edge computing systems, brick-and-
mortar retailers [97] are committed to enabling customers
to seamlessly transition from the physical to the digital
experience via new channel technology. The store may
offer a virtual reality experience to attract additional con-
sumers, as well as real-time inventory data presented on
touch displays. Moreover, if a customer does not have a
favorite product, the system will intelligently recommend
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Fig. 4: Digital twin framework.

other products based on the historical preferences of this
customer. All data will no longer simply pass through
the edge but will continue to integrate existing data to
track target users in order to improve user experience.
In addition to providing users with a better shopping
experience, edge-based systems cases will include smart
shelves with dynamic pricing, digital signage, and more.
Additionally, edge computing technology enhances the
offline experience of the store, which continues to operate
even when the Internet is down or the main

• Digital Advertising. The data processing model com-
bined with edge computing can accelerate data-driven
advertising decisions and decrease users’ time for ad-
vertising, which has made a huge contribution to digital
advertising such as video advertising [98], [99]. In other
cases, edge computing will make the processing power
available on consumer devices grow, and data will be
processed on the user device itself. We have seen edge
computing used to enhance user privacy. Edge computing
can keep the user’s data from leaving the local device,
and the user’s local device can use personal data to make
advertising decisions, which enables third parties to ac-
curately place advertisements without directly obtaining
the data. Edge computing enhances the privacy of Internet
advertising by minimizing the amount of data transmitted
by consumer devices.

C. Trends

While edge computing has facilitated several advances
and displayed amazing promise, it is still a long way from
achieving its final form. Edge computing will finally transform
into “edgeless computing”. Edgeless indicates that the edge
will collaborate with itself and interact with other devices
directly rather than via the cloud. Specifically, the cloud-edge-
end architecture will abandon the cloud level and eliminate
the need for computing in the cloud center. The terminal
equipment will have the strong computational power and
the ability to handle large amounts of data. Take the smart
wearable device (such as Apple watch) as an example. The
smart watch is capable of monitoring the user’s nighttime sleep
quality. The device gathers different data (e.g., depth and light
sleep duration, heart rate fluctuations, blood oxygen content),
uploads them to a central server for extensive analysis, and
then presents the user’s sleep quality findings and makes
recommendations for future sleep adjustments. However, if
the smart watch uses its computational capacity to do a full
analysis and then directly provides the user with a sleep report,
the efficiency will be higher without the involvement of the
cloud. The data processing takes place entirely within the
terminal device, and it is no longer necessary to go back into
the cloud. In this context, the cloud server may function as a
data repository, and the edge nodes will also have their tiny
databases, rather than relying on the cloud. The more dispersed
the edge devices are, the more flexible the network is and the
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less traffic it carries. The vision that can be handled quickly 
anywhere will surely be realized in the future.

V. CONCLUSION

Today, edge computing is one of the most effective solutions 
to address some challenges associated with enormous volumes 
of data that various industries generate and consume every 
day. In this work, we have described the brief overview of 
edge computing; discussed the main existing challenges in 
edge computing and novel solutions supported by emerging 
technologies; and explored the possibility of technologies in-
tegration, finally discussed several new applications scenarios 
and proposed the final form of edge computing. We believe 
that the future of edge computing lies in the organic integration 
with emerging technologies. Convergence will transform man-
ufacturing and services, create actionable business intelligence, 
and develop flexible business ecosystems.
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