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Abstract—Nowadays Internet of Things and Industry 4.0
devices are often connected wirelessly. Current wireless sensor
network (WSN) deployments are relying in most cases on the
industrial, scientific, and medical (ISM) bands without central-
ized resource scheduling. Thus, each device is a potential source
of interference to other devices, both within its own WSN but
also to devices in other collocated WSNs. If the transmission
behavior of devices from other WSNs is not random, we are able
to find patterns in the time domain in their channel access. This
is, for example, possible for periodic channel access, which is
quite common for WSNs with demanding low-power and reli-
ability requirements. The main goal of this work is to detect
multiple sources of periodic interference in time slotted signal-
level measurements and estimate the time windows of future
transmissions. This gives a WSN a certain understanding of the
radio surrounding and can be used to adapt the transmission
behavior to thus avoid collisions. For this, the multihypothesis
tracking algorithm is adapted and used together with timeslot-
based interference measurements on low-cost sensor nodes. The
applicability of the algorithm is shown with extensive simula-
tions and the performance is demonstrated with measurements
on a time-division multiple access-based WSN built upon the
Bluetooth low-energy physical layer.

Index Terms—Bluetooth low energy (BLE), channel coexis-
tence, interference, multihypothesis tracking (MHT), wireless
sensor network (WSN).

I. INTRODUCTION

ITH the rise of Internet of Things (IoT) and Industry
4.0, the number of wireless sensor networks (WSNs)
and devices with wireless transceivers is steadily increasing.
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Most of these devices rely on the use of the unlicensed indus-
trial, scientific, and medical (ISM) band. This is however
limited in capacity and each additional device is a potential
source of interference to other devices, both within its own
WSN but also to devices in other collocated WSNs. In this
context, we consider interference as access to the channel by
an device external to our WSN, may it be cross-technology or
intertechnology interference. Especially in the 2.4-GHz ISM
band, many technologies, such as Bluetooth low energy (BLE),
wireless local area network (WLAN), and ZigBee, share the
same channels, and thus collisions are unavoidable.

Collisions with other devices can cause packet loss in a
WSN and thus result in an increasing number of retransmis-
sions. The collisions can also affect the interfering devices and
if they also rely on retransmissions, this again increases the
probability of collisions. Due to the increasing number of lost
packets and retransmissions, the energy consumption of the
devices will increase, which is especially problematic for low-
power IoT devices. Collisions can also cause the violation of
real-time constraints since the data might not reach the target
in time due to a backoff time before resending again. This is
a severe problem in safety-critical applications and industrial
control systems.

To minimize the number of collisions, it is important that
a WSN evaluates the interference behavior of other devices
in close proximity and gains a certain awareness of the radio
frequency surrounding. A typical approach is to measure the
traffic or error rates and avoid highly occupied channels or
exclude these channels from hop lists [1]. This only considers
current or past interference events but cannot actively prevent
future collisions. However, if the interfering device shows a
certain pattern, we are able to use this information and predict
future collisions. A WSN with the possibility to reschedule
the own communication, e.g., certain time-division multiple
access (TDMA)-based wireless protocols, can incorporate the
future channel access and choose different transmission times
to thus avoid collisions. For this, however, the interference has
to show a systematic pattern and cannot be purely random.
Although random access to the channel is a usual approach
for the media access control (MAC) protocol in many WSNs,
some MAC protocols show a deterministic, periodic access to
the channel, which is often the case for low-power devices
and sensor networks.

In this work, we present an approach that allows us to
track periodic multisource interference at TDMA timeslot level
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and predict future channel access of devices outside the own
WSN. We continuously measure the average signal level in
the channel of our WSN for all TDMA timeslots, which
allows us to evaluate the signal interference from external
devices. The main challenge here is to assign different mea-
sured interference signals to different interferer sources and
track them over time. For this, we adapted the multihypothe-
sis tracking (MHT) algorithm, originally proposed in 1979 by
Reid [2], which is typically used for radar target or visual
tracking. It allows a systematic solution to the data asso-
ciation problem, i.e., associating uncertain measurements to
known tracks, by considering all combinations of interference
observations.

The contributions of this work are as follows.

1) We present a timeslot-based interference measurement
solution with low-cost hardware that can be used for
channel surveillance in WSNs. Based on these mea-
surements, we build the interference tracking on real
hardware.

2) For one example use case, a TDMA-based wireless
network protocol, we include the measurement proce-
dure and show the periodic interference prediction for
future timeslots.

3) We implement and adapt the well-known MHT algo-
rithm to track periodic multisource interference based
on the presented TDMA network.

4) With extensive simulation, we show the limitations
of the MHT for interference tracking and verify
the performance of the algorithm in the multisource
interference case.

5) Finally, we demonstrate the interference tracking capa-
bility of our algorithm with an example measurement.

The rest of the work is organized as follows. In Section II,

we discuss and present related work in the field of WSN
interference, interference estimation, and the MHT algorithm.
The system model and our example use case are presented in
Section III, including the measurement procedure and used
protocol. Additionally, an example measurement is given.
Section IV introduces the basic idea of the MHT including
the adaptations to interference tracking. The performance of
the MHT and its applicability are evaluated in Section V by
measurements and simulations. Finally, conclusions are drawn
in Section VI.

A. Notation

Scalars are written as x, while vectors and matrices are
denoted as lowercase and uppercase boldface, respectively
(x and X). Time indices are indicated with subscript xy.
Conditional parameters are marked with |, e.g., xgk—1 is the
parameter x at time k conditioned on the previous timestep
k—1.

II. RELATED WORK

This work assumes deterministic, or more specific periodic
channel access from external devices for the interference track-
ing. Therefore, we first discuss if this assumption is valid
considering the 2.4-GHz ISM band. Then, we present related
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work in the field of interference measurement and estimation,
followed by literature references to the used MHT algorithm.

A. Interference in Wireless Sensor Networks

We consider the access to a wireless channel in a WSN
to be either random or deterministic. If the channel access
from a device or network is purely random, no communication
pattern can be observed and used to predict future message
collisions with the own transmissions. This is the case for
random channel access within the own network and random
access of external devices. To coexist in channels with a high
percentage of random access, a common approach is the clear
channel assessment (CCA) procedure [3] or simply to avoid
these highly occupied channels at all. Natarajan et al. [4] and
Guo et al. [5] studied the type of interference and unwanted
channel access that WSNs have to face, especially in the
unlicensed 2.4-GHz ISM band.

For low-power applications, devices have to stay in energy-
saving mode as long as possible and avoid activating the radio
unit to receive packets from another device without guaranteed
transmission. A commonly used approach is to perform a part
of the communication synchronized, which results in periodic
channel access. Communication protocols, such as Bluetooth
Mesh, Thread, or WLAN, all include these synchronized low-
power amendments in newer releases, which shows a trend
toward a more deterministic communication. In the following,
we list the periodic behavior of some communication systems
and devices in the 2.4-GHz ISM band.

1) BLE—connection initializer periodically polls the con-
nected devices in a TDMA fashion [6], where the
connection interval (CI) defines the time interval that
regularly separates the start times of connection events.
Although frequency hopping is used in BLE, for channel
selection algorithm #1 the connection events will occur
periodically at 37 times the CI [7].

2) WLAN—IEEE 802.11 sends beacon frames periodically
from an access point to announce its presence and pro-
vide the SSID to the devices. They typically show a
period of 102.4ms [8]. The Wi-Fi6 (IEEE 802.11ax)
standard supports the Target Wake Time mechanism [9]
that allows to define a certain wake-up time for devices
which will result in a periodic channel access.

3) Thread is a low-power mesh network protocol for IoT
products. The Thread 1.2 specification [10] introduced
synchronized sleepy end devices (SSEDs) for enhanced
low-latency and low-power features. Communication
with these devices happens periodically at scheduled
intervals.

4) ZigBee supports a beacon-enabled mode [11] for syn-
chronization with dedicated timeslots for devices con-
nected to the network coordinator or router.

5) WirelessHART is an industrial wireless communication
protocol. Due to its TDMA structure, it will mostly show
periodic channel access where the period depends on the
configuration [12].

6) Microwave oven radiates a spectrum centered at
2.45GHz, which can act as a severe source of
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interference in the 2.4-GHz ISM band. The output cycle
is tied to the 50-Hz ac input cycle [13] and therefore
shows a period of 20 ms.
Even if the majority of a communication protocol shows no
periodic behavior, the periodic parts may be enough to track
the source of interference and apply countermeasures for the
own network.

Our proposed method for interference tracking heavily relies
on periodic access to the channel and the algorithm fails if
the majority of the communication protocol utilizes random
channel access. One example of this would be IEEE 802.11
where the access has a strong random nature depending on
carrier-sense multiple access (CSMA) and random backoff
times. However, even though the access can be considered
random, higher network layers of the communication protocol
can produce periodic access to a certain extent. Gu et al. [14]
and Waldmann et al. [15] showed that specific applications,
such as video streaming on Youtube or Netflix, show a distinct
pattern in the channel access. Since the video data is mostly
buffered and transmitted with a certain rate in chunks, we can
again overall assume periodic access with a small uncertainty
due to the CSMA characteristic.

B. Interference Measurement and Estimation

While the different sources of disturbances for WSNs are
well studied, the topic of mitigating is mostly limited to
channel switching or including the risk of collisions in an
occupied channel in the requirements of the wireless link. In
recent years, there is a growing need for a better understand-
ing of channel usage, especially in the already very crowded
unlicensed ISM bands. Wireless networks cannot only rely
on theoretical interference, they have to observe the wireless
channel and use this information to optimally adapt to the
current circumstances. Ideally, no additional hardware like a
spectrum analyzer is needed and the channel surveillance is
part of the communication system itself. Homssi ef al. [16] and
Lee and Kim [17] demonstrated methods to improve channel
awareness by evaluating the interference in different communi-
cation channels in the 2.4-GHz ISM band. A wireless network
can use this information to select the best suitable channels
for communication while continuously evaluating the situation
and adapting to changes.

To further increase awareness, not only the link quality of a
channel is important but also a classification of the interference
that causes link degradation is needed. Uy et al. [18] demon-
strated an approach to detect the presence of interference in
a channel and additionally classify it as low, medium, or
strong. Additionally, they provide estimates for the duration
of the interference. Jin er al. [19] evaluated especially the
interference caused by BLE and WLAN in the 2.4-GHz ISM
band. They observed predictable patterns of the interference
and were able to identify and distinguish interference based
on received signal strength indicator (RSSI) measurements.
Grimaldi ef al. [20] and Zacharias et al. [21] studied the pos-
sibility to detect and classify sources of interference in WSNs.
They proposed methods to measure interference directly on
low-cost sensor nodes by continuously measuring the RSSI
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of the channel without detecting the interfering packets. Our
work uses a similar measurement approach, although we focus
on the tracking of individual sources of periodic interference
over time. This will enable the possibility to predict future
channel access. Additionally, the estimated period can provide
information about the source of interference, e.g., different
communication protocols will show different typical transmis-
sion periods.

With the knowledge of future channel access from other
devices, a wireless network can adapt its own communica-
tion to avoid collisions. Carhacioglu e al. [22] showed with
the example of BLE and IEEE 802.15.4 that it is possible to
minimize the collisions and improve the performance of the
network by rescheduling the communication of one device.
They assume that the channel access of the devices is known at
a central station and can thus calculate timeframes where trans-
mission happens simultaneously on the same channel. With
this information, the devices can react and reschedule accord-
ingly. However, this approach can only mitigate devices that
are known to a central coordinator and share their information.
Our work aims to passively listen to the channel and find peri-
odic interference which can be used similarly to this work for
rescheduling. For this, we can not only analyze the current
and past interference which is typically done in the presented
literature, we have to track the current interference and need
to estimate future transmissions.

To track the source of periodic interference, one key element
is to estimate the transmission interval. Different sources will
show a distinct period or pattern in their transmit behavior and
with an accurate period estimation future collisions with the
own communication can be predicted. Bernhard et al. [23] and
Stoica et al. [24] presented methods to estimate the period of
sparse point processes that can also be used for interference
tracking. However, without additions, the presented algorithms
are not able to track multiple sources of interference and fail
in distinguishing sources with the same interference pattern,
e.g., multiple WLAN sources.

C. Multihypothesis Tracking

The main challenge in the interference tracking task is to
assign the different interference measurements to a target and
distinguish it from other sources and noise. For this, our work
uses the MHT algorithm, originally proposed in [2]. The MHT
is well studied in the literature and there exist several imple-
mentations for various applications, especially in the field of
radar and visual tracking [25], [26], [27].

Because of the ability to evaluate multiple possible hypothe-
ses, it provides a systematic solution to the data association
problem, which makes it perfect for periodic multi-interference
tracking. However, with an increasing number of combina-
tions, the computational complexity of the algorithm gets
challenging. Kim et al. [27] and Sheng er al. [28] dis-
cussed improvements to the computational critical parts of the
MHT algorithm. To keep the computational manageable, the
MHT relies on efficient pruning, i.e., delete unlikely combina-
tions and only keep promising tracks alive. Another approach
is to group the different tracks to keep the computational
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complexity manageable [29]. This is, for example, needed if
we can group interference events which then show a periodic
behavior in a larger scale. Ciaparrone et al. [30] surveyed var-
ious deep learning approaches in video multiobject tracking,
including the MHT tracking. In these approaches, parts of the
MHT are improved using deep learning.

III. SYSTEM MODEL AND IMPLEMENTATION

The idea of this work is to track periodic multisource
interference in WSNs. The additional information about the
radio frequency surrounding can be used to identify other
devices, detect intrusion of the network, or for synchronizing
to specific interference to monitor the behavior. The example
use case on which we focus in this work is the prediction of
future interference events in a TDMA-based wireless network
protocol. Instead of dealing with current or past interference
like CSMA, we are able to predict future transmissions of
other devices. This enables the possibility to reschedule the
own transmission to actively avoid collisions. The interference
tracking and prediction can be performed by a central station
without power constraints, however, CSMA has to be per-
formed by each node individually, which might be infeasible
for low-power nodes. CSMA proved to be a good mechanism
to avoid collisions, however, in highly synchronized applica-
tions, it cannot be applied since devices wait for packets at
specific times that cannot be delayed by CSMA.

We chose a TDMA network with high reliability and low-
power requirements, where we explain how the interference
measurement works and how we are able to track periodic
interference. The TDMA-based protocol is managed by a cen-
tral network coordinator, where each node in the network has
its own communication timeslot. We show how the needed
measurements can be performed directly within the TDMA
framework and use the MHT algorithm to perform predictions
of future interference. However, neither the following measure-
ment procedure nor the proposed algorithm for interference
tracking is limited to the presented communication protocol
or use case.

The interference tracking itself consists of two parts: the
interference pattern measurement and the tracking with the
MHT. In the first phase, the signal level of the channel is
measured and the data is collected at a central unit. In the
second phase, the measured interference is evaluated to track
and distinguish the different sources. Important to mention is
that the interference measurement should not be performed
by energy constraint low-power sensor nodes in the network,
since this would dramatically increase the needed energy for
these devices. The interference measurement is performed by
separate nodes without energy limitations or the network coor-
dinator. The calculation is done at the network coordinator side
where the information can be distributed to the low-power
nodes during the regular communication with these devices.

For the tracking, the MHT algorithm described in [27] was
implemented. Since the original use case of the MHT is object
tracking in visual or radar data, adaptations are made to tackle
the special cases that occur in the timeslot-based interference
tracking task. New measurements can be evaluated in an online
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Fig. 1.  Format of the EPhESOS superframe, including the beacon for
synchronization and the timeslots of the individual nodes.

fashion and predictions for future collisions within the own
network can be made.

A. Hardware and Protocol

The TDMA protocol we use in this work is the energy-
and power-efficient synchronous sensor network (EPhESOS)
protocol [31]. In an EPhESOS network, each node gets a spe-
cific timeslot for the communication assigned by the network
coordinator. All possible timeslots are collected in a so-called
superframe, which repeats periodically with a defined super-
frame period. This assures a controlled and deterministic
access to the channel. It also avoids collisions within the
network since nodes are only allowed to communicate dur-
ing their assigned timeslot. Due to the fixed beacon interval
and the timeslots, the communication can be performed highly
synchronized, which allows the nodes to stay in energy-saving
mode most of the time and the time with an active radio
unit is minimized. With the periodic beacons, the interference
information can be easily distributed to the nodes and they
can react accordingly. Another advantage is the availability of
the EPhESOS source code, which allowed us to implement the
interference measurement directly within the network protocol.
This gives us the possibility to show the interference tracking
performance of our algorithm with real measurements. Fig. 1
depicts the frame format of the EPhESOS protocol, including
the beacon for synchronization followed by the timeslots for
the different nodes.

For the measurements and practical implementations in this
work, we consider the EPhESOS protocol on top of the BLE
physical (PHY) layer. As a hardware platform, the Nordic
NRF52840 [32] controller with an integrated transceiver unit
is used.

B. Timeslot-Based Interference Measurement

To perform the required measurements, we introduce sniffer
nodes, which are special sensor nodes that measure the sig-
nal level of the channel continuously and transmit the data to
the network coordinator. Instead of direct message reception,
only the signal strength is considered, which allows observ-
ing the interference from any communication standard. The
channel access in the EPhESOS network is only controlled
within the network, the interference of an external device can
appear at any timeslot. However, for devices interfering with
the target WSN with a periodic transmit behavior, specific
patterns can be detected if the interference is observed across
multiple superframes. For example, if we assume a superframe
period of 100 ms, the interference of an IEEE 802.11 WLAN
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Fig. 2. Example measurement with the NRF52840 nodes in the presence
of two periodic interferers. Timeslots with a higher average signal level than
—90dBm are marked black; otherwise, they are left empty.

beacon with a period of 102.4 ms will appear in each subse-
quent superframe a certain number of timeslots later. If now
multiple subsequent superframes are considered, we are able
to distinguish periodic interference from random interference.
In addition, we can distinguish multiple periodic interferences
from each other. We restrict the measurement resolution to
the timeslot duration and measure the average signal levels
of the timeslots using energy detection, a feature in IEEE
802.15.4 [33] and available in many commercial transceivers.
It allows an automatic averaging of the signal level of the cur-
rent channel for a duration of 128 s, which is used to measure
the signal level within all timeslots of the superframes.

C. Example Measurement

To demonstrate the interference measurement and visual-
ize the patterns of periodic interference, experiments with
the following setup are conducted. A TDMA network with
one network coordinator and one sniffer node is placed in
an office environment and the interference is measured. To
show the different patterns, two interferers are placed nearby
which transmit at a period of 102.4 and 92.4ms, respec-
tively. Both the measurement system and the interferer, use the
BLE 2M PHY layer with a 2-MHz bandwidth and Gaussian
frequency shift keying as modulation scheme. This example
measurement was performed on BLE channel 22 with a center
frequency of 2.45 GHz and a transmit power of +4 dBm.

Fig. 2 depicts the result of one such measurement, showing
the interference of the timeslots over the measured subse-
quent superframes. If in a timeslot the measured signal level
is above a —90-dBm threshold, it is marked black; otherwise,
it is left empty. The first interferer transmits with a 102.4-ms
period, which is larger compared to the superframe duration
tsg = 100ms. Therefore, the observation of the interference
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shifts to a later timeslot (i.e., higher timeslot number) with
every new superframe. This results in the two lines with a
positive slope one can recognize among the random pattern of
interference which is shown in black rectangles in Fig. 2. The
second interferer, which transmits with a period of 92.4 ms
has a lower period as compared to the target WSN. Thus, the
resulting interference appears several timeslots earlier in every
new superframe. This pattern is difficult to detect in the mea-
sured pattern from Fig. 2. In Section V, we will see how the
MHT is able to find and track also this pattern.

This and other measurements conducted during the work
are published as an open-source dataset and can be found
on GitHub and Zenodo under InSecTT TDMA Interference
Dataset [34].

The challenge now is to find the periodic interference pat-
tern in the measurements and distinguish them from each other
and from the random interference. Additionally, we want to be
able to track the interference over time and make predictions
for the appearance of interference in future superframes. This
task is solved with an adaptation to the MHT algorithm.

IV. MULTIHYPOTHESIS INTERFERENCE TRACKING

The general idea of the MHT is to delay the data association
decision by keeping multiple hypotheses active until ambigu-
ities are solved. In each superframe, there will be multiple
interference observations, which were already shown in Fig. 2.
The goal is to find the interference observations from the
same periodic source and connect them from one superframe
to the other. These connected sequences of observations are
referred to as track hypotheses which are managed in a tree-
like structure, the so-called track trees. In each superframe, the
existing track hypotheses are updated with new measurements.
However, if for a track hypothesis in a track tree multiple
observations would fit, the track hypothesis is updated with
those multiple measurements in separate branches. This of
course leads to ambiguities since now multiple track hypothe-
ses (in one track tree) share the same observations and all but
one of these tracks have to be eliminated, which is referred
to as pruning. For making a pruning decision we will define
a scoring to favor the track hypotheses connecting observa-
tions from periodic interferers over random interferers. The
global hypothesis is the best set of track hypotheses (based on
the score) that are not in conflict, i.e., that do not share any
interference observation at any superframe.

To demonstrate how the MHT algorithm works for
interference tracking, Fig. 3 depicts the schematic for a sim-
plified case with one periodic interferer (x) and one random
interferer (o). In this example, the periodic interferer has a
slightly larger period compared to the superframe duration of
the TDMA protocol, hence in each subsequent superframe, the
interference occurs one timeslot later.

In the initial superframe SF, no track hypotheses are avail-
able for an update, hence a new track hypothesis is started
for the interference detected in TS,. In the following super-
frame SF,, two interference observations are available for this
track hypothesis, so it is updated with both forming a track
tree with two separate branches. The subsequent superframes
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Fig. 3. Schematic of the MHT algorithm for a simplified example with one
periodic interferer (x) and one random interferer (o). The two lines mark the
track hypotheses that the MHT will consider.

SF3 and SF4 contain only one observation each and both track
hypotheses are updated accordingly. The two track hypothe-
ses in the track tree share now the same observations in SF;
and SF3;. As mentioned before, this results in a conflict that
has to be solved in the following superframes and based on
the individual track scores, only one of these track hypotheses
will survive. This procedure continues for all superframes.

Track hypotheses do not have to start at the first superframe
and therefore the MHT algorithm uses all new detections also
as the starting point of new track hypotheses. On the one
hand, this ensures that every possible track is considered, but
on the other hand, this dramatically increases the number of
track hypotheses with every superframe. This is another rea-
son why pruning is essential for the successful application
of MHT. Problems with updates occur if there is no suitable
detection for a track hypothesis available. This happens, for
example, at crossing points, i.e., the observations of multiple
interferers overlap in time and are not distinguishable, or if an
interference detection is missing due to measurement errors.
To mitigate this problem, the track hypotheses are not only
updated with detections but also with predictions.

To handle the update and prediction steps of the MHT algo-
rithm, a separate estimator for each track hypothesis is used.
For this, we introduce the vector x; describing the state of a
track hypothesis at time k

. — [jﬂ (1)

where sy is the timeslot number occupied at time k and § is
the corresponding velocity. In the context of interferer times-
lot estimation, the velocity corresponds to the timeslot shift
from one superframe to the next. For example, for a periodic
interferer that transmits with the same period as our network,
the velocity is zero. For the chosen state vector, the velocity
is proportional to the period of the interferer and can be used
to estimate the period and the timeslot position in the next
superframe.

To provide a better overview of the individual steps, Fig. 4
depicts the flow diagram of the MHT algorithm including the
corresponding sections where the individual blocks will be
discussed. The changes of the original MHT algorithm for

1033

Track Prediction
Section IV-A

overflow|underflow
Section IV-B
Section IV-E

new
measurement

Gating
Section IV-C

remaining
track

start new updated tracks

S —

new tracks — > Track Scoring

N —

Global Hypothesis

N —

Tree Pruning
A

Section IV-D

track trees

Fig. 4. Flow diagram of the multihypothesis interference tracking algorithm.

interference tracking are mainly within these blocks. One addi-
tional block for interference tracking is overflow|underflow
marked in blue, which will be discussed in Sections IV-B
and IV-E. Here, all the special exceptions are handled which
will occur in the interference tracking case.

A. Kalman Filter and Model

The state estimates X, of the individual track hypotheses
are calculated by using a Kalman filter [35]. To represent the
behavior of the periodic interference, we propose the following
state transition model:

1 1
Xk=|:0 1]xk_1+w 2)

|

where a constant velocity, i.e., a constant period of the inter-
ferer, is assumed. The state noise process w ~ N(0, Q) is
modeled as a multivariate normal distribution with zero mean
and covariance Q. For the tracking, only the timeslot number
si is accessible for measurement, therefore, the observation
matrix H is introduced to map x to an observation state

z=[1 0]xc+v 3)

d

with the measurement noise v ~ A'(0, R). The noise covari-
ance matrices Q and R can be used to tune the characteristics
of the Kalman filter, e.g., favor measurements over prediction.

The tracking with the Kalman filter for every new super-
frame can be divided into two steps, prediction and update.
In the prediction step, the model proposed in (2) is used to
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perform a prediction for the state Xx—; and the covariance
matrix Pyx—1 of the current timestep k using

Xik—1 = FX_j1x—1 4
Pii—1 = FP_ 11 FT +Q. (5

In the update step, the measurement residual y; and residual
covariance matrix Sy are calculated with

Vi = zx — HXpe—1 (6)
S = Hf’]dk_lHT +R 7

where z; is the current detection. With this, the optimal
Kalman gain Ky is calculated

K, = lsk‘kleTSk_l. (8)

If in the current superframe a valid interference observation
exists for an update, the new state and covariance can be
calculated using

Xk = Xejk—1 + Keyx 9)
P = I — K H)Pgi— 1. (10)

If no valid observation is available, the current state and
covariance are directly computed by the prediction steps (4)
and (5).

B. Accounting for the Limited Number of Timeslots

A TDMA superframe consists of ntg timeslots and therefore
the proposed linear Kalman model in (1) is only valid for
{s e R: 0 <s < nrs}. For a periodic interferer with § # 0,
the estimation of the Kalman filter will always exceed nts (or
fall short of 0) at some point in time. Due to its periodicity,
interference with § > 0 will simply “wrap around” and appear
in a timeslot at the beginning of the superframe. The same
happens for § < 0 in the other direction.

In the following, we define a falling short of the lower bound
of s after an update (s < 0) as underflow and exceeding the
upper bound of s after an update (s > nts) as overflow, respec-
tively. To model this behavior, the timeslot number s in (1) is
corrected after the prediction step according to

s, for 0 < s < nrg
Scor = { mod(s, nts), for s < 0 (underflow) (11)
mod(s, nts), for s > nrg (overflow)

where mod(-, -) is the modulo operation. This assures that
every Kalman prediction results in a timeslot number within
the superframe structure, i.e., 0 < s < nts.

C. Gating

Updating every track hypothesis with every new interference
observation leads to a high number of track hypotheses and
eventually to problems in finding the global hypothesis. In
fact, most interference observations will not fit the existing
track hypotheses because it is either random interference or
interference from another source. To keep the number of track
hypotheses manageable, a simple gating mechanism is applied
to decide whether a track hypothesis is updated or not. For this
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decision, we calculate the Mahalanobis distance di [36] of a
track hypothesis for new interference observations by

& =y S;'wx (12)

where y; is the measurement residual calculated by (6) and
Sk is the residual covariance matrix calculated by (7). Only if
dy is below a defined gating threshold dy;,, the track hypoth-
esis will be updated with the new interference observation.
The Mahalanobis distance is originally used to whiten differ-
ent measurements. However, one additional advantage is that
the residual covariance matrix Sy will naturally adapt the gat-
ing. At initialization of the Kalman filter, S; will be large,
allowing a higher residual. With increasing Kalman updates,
Sk will decrease, resulting in a tighter bound and fewer false
track updates. If RSSI values of the measurements are avail-
able, an additional gating with these values can be applied to
improve the distinction of the individual track hypotheses. At
no other point of the MHT algorithm, the RSSI values are
directly needed for tracking.

D. Managing the Individual Track Hypotheses

Since the MHT algorithm allows to update every track
hypothesis with every observation in a superframe, ambigu-
ities are unavoidable. With no countermeasure, the number of
track hypotheses in the individual track trees will grow expo-
nentially, since in every new superframe new branches are
generated. Therefore, a good scoring of the individual track
hypotheses and the pruning of unlikely paths as soon as pos-
sible is crucial for the feasibility of the algorithm. To keep the
number of track hypotheses at a manageable level, after an
update the steps track scoring, finding the global hypothesis,
and tree pruning are applied.

1) Track Scoring: The individual track hypotheses are
scored using the log-likelihood ratio (LLR) between the target
hypothesis and the false alarm hypothesis with the corre-
sponding probabilities Prx and Ppg at timestep K. The
target hypothesis is defined as the marginal likelihood of the
observation distribution of the Kalman filter. It is defined as
Gaussian distribution with AN (zx; HXx—1, Sk). As we have no
information about the false hypothesis, i.e., an uninformative
prior, the likelihood is chosen uniformly distributed across the
nts possible timeslots with Prj; = n{sl This results in the
LLR as

K L _LlyTg-!

P T detS: exp( ¥k O Yk)

LLRg = log LK _ log | | 2 detSy ; .
Pr.x k=0 nrs

13)

To score the track hypotheses in an online fashion, the LLR
can be calculated recursively with

LLR; = LLR;—1 + ALLRy (14)

log(1 — Pp), no track update

ALLR; = {log nts — 3 log [278¢| — 3d7, track update
(15)

where Pp is the expected probability of detection, S is
the residual covariance from (7), and dj is the Mahalanobis
distance from (12) for timestep k.
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Fig. 5. Simplified example with only four timeslots to demonstrate the

two special cases, overflow and underflow, that can occur in the interference
tracking. (a) Overflow. (b) Underflow.

2) Global Hypothesis: After the update step and scoring,
we now have to find the most likely combination of all track
hypotheses given the set of track trees, the global hypothesis.
This multidimensional assignment problem can be formulated
as a maximum weighted independent set (MWIS) problem
as stated in [27] and can be solved exactly with a standard
integer linear programming (ILP) solver. This part is the most
computational intense and one reason to keep the number of
possible track hypotheses low.

3) Tree Pruning: The global hypothesis provides the set
of track hypotheses with the highest scores which are not in
conflict with each other. Track hypotheses or whole track trees
that show a conflict with this solution have to be pruned to
solve ambiguities. This ensures that the track trees will not
grow uncontrolled and only the most likely track hypothe-
ses survive. For this, the N-scan pruning approach described
in [27] is used, which can be summarized in two steps: first,
the result of the global hypothesis is used and the correspond-
ing track trees are identified. Second, for all track hypotheses
(the branches in the track trees), we go back N steps in the cor-
responding track trees and delete all tree branches that diverge
from the optimal track hypothesis, i.e., the one with the highest
score. These steps are repeated for each new superframe.

E. Adaptations to the Original MHT Algorithm

The standard MHT algorithm assumes that in each frame
the objects to be tracked are only at exactly one position (one
observation per superframe per interferer), though sometimes
the corresponding observation is missing due to measurement
errors. For the original use case—the tracking of physical
objects—this assumption is valid since a real object can neither
be in two different positions at the same time nor suddenly dis-
appear. However, this assumption does not hold for the TDMA
interference tracking and the two special cases, overflow and
underflow, have to be considered separately. Fig. 5 depicts
the differences to the initial assumption for an overflow and
underflow for a simplified example with nts = 4.

Overflows occur for periodic interferers with a higher period
compared to the superframe duration. Due to this longer
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period, at some point, the whole superframe will be skipped
as depicted for SFs in Fig. 5(a). This happens when the
interference observation is near the right border (here TS4
in SF4) and the next corresponding observation has a dif-
ference larger than the superframe duration. As a result, the
observation is at the beginning of SFg in this example. In this
case, no observation of the corresponding interferer will occur
in the superframe in-between and the MHT algorithm has to be
adapted to skip all updates for the corresponding track hypoth-
esis. Underflows, on the other hand, occur if an interferer
has a lower period compared to the superframe duration. As
depicted in Fig. 5(b), it is inevitable that at a certain point, two
observations of the same periodic interference source occur in
one superframe. Here, the MHT algorithm has to accept two
updates and consider the possibility that the corresponding
observations for one or both of these updates are missing due
to measurement errors.

In addition to the updating, these special cases need also
to be considered in the global hypothesis and pruning of the
track trees.

F. Limitations of the MHT Algorithm

The MHT algorithm was originally proposed for multiobject
tracking in video data, therefore, it processes the measure-
ments frame by frame. Additionally, it is assumed that objects
will not change the position between the frames much, there-
fore, the best performance for our use case is for an interferer
period close to the superframe period. The frame-by-frame
approach of the algorithm brings also a limitation to the track-
able interference. The upper bound for the interferer period
which can be tracked by our algorithm is two times the super-
frame period. In the case of a larger period, the interference is
only observable in every second superframe and since the algo-
rithm assumes that each measurable object is present in every
frame, the MHT fails at this point. One way to overcome this is
to run an additional MHT algorithm that considers only every
second superframe. Here, the algorithm would simply estimate
half the period which can be corrected easily afterward.

The lower bound for the interferer period which can be
tracked by our algorithm is not as strictly defined as the upper
bound. Below half the superframe period, interference obser-
vations will start to occur two times in the same superframe for
the same periodic interferer. The frame-to-frame approach will
not allow detecting interrelated interference, hence the algo-
rithm will simply use two separate track hypotheses for the
same interference. For predicting future interference events,
this brings no disadvantage and the separate tracks can be
merged by postprocessing, e.g., by combining suitable track
hypotheses with nearly the same RSSI level.

Another limitation is the amount of interference that can
be processed with the MHT algorithm. If there is too much
periodic or random interference per considered superframe,
the number of track hypotheses will dramatically increase
and hence also the computational complexity of the MWIS
problem. At this point, the MHT may still be able to predict
future unoccupied timeslots, however, there might not be
enough free timeslots left for the nodes to react to blocked
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TABLE I
CONFIGURATION FOR SIMULATION AND MEASUREMENTS

BLE Channel nrts tsp trs
22 100  100ms  0.9ms

timeslots. In this case, it may be beneficial to follow the
classical approach of switching to a less occupied channel.

Additionally, the time resolution of the measurements has
to be considered. Since the measurements are timeslot-based,
the duration of one slot will define our measurement resolu-
tion. We will not be able to detect interference with a much
smaller transmission duration compared to the timeslot dura-
tion. However, this will not affect our use case, since these
very short interferences may not disturb the functionality of
our network. If a higher time resolution is needed, the signal
level of fractions of a timeslot can be measured and used for
tracking.

V. EVALUATION OF THE INTERFERENCE
TRACKING PERFORMANCE

In this section, the interference detection capability of the
MHT algorithm is verified with simulations and real-world
measurements. For this, the proposed TDMA frame structure
for the EPhESOS network with the configuration from Table I
is used, where fsp is the superframe duration and trs is the
timeslot length. As depicted in Fig. 1, this will leave a window
of 10ms reserved for the beacon and the additional guard
times which is also the duration in each superframe where
no measurements are available. These parameters are used for
both, the simulations and the real-world measurements with
the EPhESOS network.

To assess the performance of the MHT algorithm, we com-
pare the estimated tracks with the observations without noise
and random interference. For the simulations, the observations
of the periodic interferer are directly accessible. However, for
the real-world measurements, we cannot make this separation.
Therefore, we performed reference measurements directly at
the interferer sources and measured the timing. These addi-
tional measurements are only available in our test scenario and
are not accessible for the real application since the interference
is generally assumed unknown with no possibility to measure
it individually.

To measure the performance, the problem is mapped to a
binary classification, i.e., does interference appear in a times-
lot and is it estimated correctly. As metrics the true positive
rate (TPR) and true negative rate (TNR) are used, which are
defined as

true positive
TPR =

— . (16)
true positive 4 false negative

true negative
TNR =

. —. 17
true negative + false positive {17
Since we are more interested in the timeslots with detected
interference and the data is highly unbalanced, i.e., we have
much more free timeslots than timeslots with interference
observations, the TPR is the better performance metric.
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Fig. 6. True rates for all interferer periods in the defined limitations for

the algorithm including the 95% confidence interval calculated over the 1000
Monte Carlo realizations.

However, for binary classification, the TPR alone is not
sufficient. If, for example, the MHT algorithm always iden-
tifies interference in all timeslots, the TPR leads to a perfect
result, which is obviously not the case. This is because the
TPR does not consider the false positives and therefore, we
also included the TNR in our evaluation. The false negative
rate (FNR) and false positive rate (FPR) are not considered,
since in our mapped binary classification they are just the
“one-minus-version” of the true rates.

The interference simulation and tracking with the MHT
algorithm are implemented in Python, which gives us the
possibility to perform the evaluations on different platforms.
Except for the computational effort, the simulation has no
limitations like simulation length or the number of simulated
interferers. A computational critical part in the MHT algorithm
is solving the MWIS problem as mentioned in Section IV-D.
To solve this, we used two different ILP solvers, Gurobi [37]
and CBC [38]. For the comparison of the computational effort,
the Python library CProfile is used which allows for evaluating
the code execution time of the individual blocks of the MHT
algorithm.

A. Performance for Different Interference Periods

The MHT works best for interference with a period similar
to the superframe duration. However, in this section, we eval-
uate the performance for all trackable interferer periods with
simulations. For this, we test the MHT within the theoreti-
cal limits defined in Section IV-F. The upper bound, i.e., two
times the superframe period, results for the given configura-
tion in 200 ms. As the lower bound is not clearly defined, i.e.,
tracks with a too low period can be split into multiple tracks
with a higher period, we will consider interferer periods down
to 20 ms, which will result in 5 track hypotheses for such an
interferer. This is also the period with which a microwave oven
might interfere in the 2.4-GHz frequency band.

Fig. 6 depicts the TPR and TNR for all interferer periods
in the defined range. Additionally to the periodic interference,
5% of the timeslots are occupied by random interference from
different sources. For the presented results 1000 Monte Carlo
realizations with a random starting point of the periodic
interference and noise were conducted for 1000 superframes
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each. The curves represent the mean true rates of all 1000 real-
izations including the 95% confidence interval, which fits the
mean quite well and is therefore hardly distinguishable. Within
the defined limits, the interference tracking shows good results
with an expected performance drop near the upper bound of
200 ms. In this region, the measured distance of interference
timeslot numbers is becoming too large until, finally, the
interference starts to skip every second superframe, thus mak-
ing it unable for the MHT algorithm to track it anymore. For
lower periods, a performance fluctuation can be observed since
here multiple track hypotheses for each periodic interferer
are generated, which also increases the possible combinations
among the track hypotheses and the random noise. As a result,
additional wrong track hypotheses are generated which will
lower the TPR. The simulation shows significant performance
differences for selected frequencies, especially between 20
and 60ms. Even with an increasing number of Monte Carlo
realizations, there is no averaging effect observable. For inter-
ferer periods below half the superframe duration, the MHT
algorithm has to use multiple tracks for one interferer (see
Section IV-F). For certain periods, multiple track solutions
exist and some suboptimal solutions lead to a lower TPR.
However, even for these suboptimal solutions, the TPR always
stays above 0.9, which we consider a good performance.
Overall, the MHT was able to detect over 95% of the timeslots
with interference most of the time and at least 90% for periods
under 40 ms. The TNRs curve shows that also the number of
wrongly identified interference observations was good for all
simulations.

B. Performance for Multiple Interferer

The previous evaluation only covered the single peri-
odic interferer case. However, now we want to show the
performance and capability of the MHT for multiple sources
of periodic interference. For this, we again performed
interference simulations and applied the MHT algorithm. We
conducted 25000 different interference scenarios, where for
each we first choose a random number of periodic interferer
nine from 1 to 5 and then selected for each a random period
from 50 to 150ms. Like before we mapped the problem to
a binary classification and calculated the TPR and TNR for
the real interference compared with the tracked one. Fig. 7
shows the empirical cumulative distribution function (eCDF)
of the results where we additionally marked the 5% and 50%
probability, including the corresponding TPR and TNR. In the
multi-interference case, only 5% of the results showed a TPR
below 0.9558 and a TNR below 0.9937. This shows that even
with multiple periodic interferences the MHT is capable of
separating the individual sources and performing predictions.

Fig. 7 considered the combined results for all njy;, how-
ever, we additionally want to evaluate how the performance
of the MHT algorithm depends on the number of interferers.
Fig. 8(a) shows the eCDF of the TPR for 1, 3, and 5 interfer-
ers. The TNR does not change significantly for the different
nine and is not depicted in this figure. With increasing number
of interferers the performance of the MHT drops, however,
even for njyy = 5 the TPR is still 0.9489 for 95% of the
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Fig. 7. eCDF of the true rates for 25000 periodic interference realizations
with a random number of interferers between 1 and 5, and random period
between 50 and 150 ms.

TABLE 11
TPR AND RMSE RESULTS OF THE INDIVIDUAL nj,; FOR
THE P5q AND Pgs5 PROBABILITY MARK

TPR RMSE
Nint Pso Pos Pso Pos
1 09840 09676 0.1620ms  0.3595 ms
2 0.9809 09621 0.2368 ms  0.4368 ms
3 0.9778 0.9588 0.3060ms  0.5020 ms
4 0.9741 09542 0.3634ms  0.5680 ms
5 09704 09489 0.4144ms 0.6255ms

simulations. Additionally to the TPR, we also calculate the
root mean-squared error (RMSE) between the estimated track
of the MHT and the detected interference. Fig. 8(b) depicts
the empirical complementary cumulative distribution function
(eCCDF) for the RMSE, again for 1, 3, and 5 interferers. Here,
we can again see a performance decrease if the MHT has to
estimate multiple interferers.

Table II summarizes the main results of Fig. 8 for all simu-
lated njy. The results in the Pos columns depict, for example,
the performance of the MHT which can be expected for 95%
of the simulations. By increasing the number of interferers, the
TPR only changes minimal since here we only evaluate if the
interference was detected in the right timeslot. The changes
in the RMSE are higher, however, for nj, = 5 we still could
achieve an RMSE of 0.6255ms. This can be considered a
good performance since the simulated measurement resolution
is 0.9 ms, which is the duration of one timeslot.

C. Computational Effort

The MHT algorithm solves the data association problem by
evaluating every existing track against every new measurement
and therefore heavily relies on the ability to keep the num-
ber of active tracks low. The computational demanding parts
of the MHT algorithm are the prediction steps for all tracks
with the Kalman filter and solving the MWIS problem for find-
ing the best set of tracks (see Section IV-D). The other parts of
the algorithm are mostly for managing the individual tracks in
a tree structure, however, they are still not neglectable due to
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Fig. 8. Individual simulation results for 1, 3, and 5 interferer with random

period between 50 and 150 ms. (a) eCDF of the TPR for the individual number
of interferer. (b) eCCDF of the RMSE for the individual number of interferer.

the large number of tracks. Cong and Hong [39] presented a
detailed analysis of the computational complexity of the MHT
algorithm. The computation effort depends on the number of
active tracks in the last superframe and the new interference
measurements in the current frame. They also state that finding
the best set of tracks, in our case solving the MWIS problem,
has the highest computational complexity.

We assume that the tracking will not be performed by the
wireless nodes or the network coordinator, but by an edge
computing device with more computational power. To evalu-
ate the feasibility of our MHT implementation we conducted
simulations similar to before with 1-10 periodic interferers
with random periods. For the evaluation, we used the Python
library cProfile, which provides the execution time and number
of executions of the individual components in the MHT imple-
mentation. The absolute measured time heavily relies on the
hardware and timer accuracy, however, it gives a good esti-
mation of the computational effort, especially regarding the
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interferers for the two most computational intense tasks in the MHT algorithm.

increasing number of interferers. We conducted the simula-
tions on two hardware platforms, on a Windows computer
with an Intel Core i7-8665U 1.90-GHz CPU with 16-GB
RAM, and on a Raspberry Pi 4 with 4-GB RAM. We con-
sider the computation feasible if the tracking can be performed
faster than the superframe period, which is 100ms in our
simulations. On the Windows platform with the higher compu-
tational power, we could easily perform the computations and
could satisfy our real-time constraints in most cases, includ-
ing enough time to transfer the results to the network. Only
for more than 8 interferers, the computations could not be
performed in sufficient time for some cases. We tried both
presented ILP solvers for the MWIS problem and noticed large
performance differences. The commercial solver Gurobi out-
performed the open-source solver CBC. The simulations on
the Raspberry Pi 4 could for some realizations not satisfy the
real-time constraints. Especially for 5 and more interferers,
the number of realizations with too high computational time
increased. The reason for this is not only the limited compu-
tational power of the Raspberry Pi 4 but also because of the
not optimized ILP solver CBC on ARM controllers.

Our evaluation also confirmed that the two most computa-
tionally demanding tasks are the track prediction and finding
the best tracks. Fig. 9 depicts the measured computational
time for the Kalman predictions and for solving the MWIS
problem for increasing number of interferences. Similar to
the literature, we observed that the computational time of the
prediction step increases linear with the number of interfer-
ers, while the computational time for finding the best tracks
increases quadratically. This holds for an increasing number of
periodic interferers, but also for random interferers. We fitted
the depicted curves with the measurements as 0.556n;,; +0.40
for the Kalman predictions and 0-1888”12m — 0.146n, + 1.70
for the MWIS problem. The result showed that while for
our simulation the computational time was feasible in most
cases, in real applications, further optimizations of our MHT
implementation have to be considered.

D. Measurement Results

In addition to the simulations, we prove the applicability
of the MHT for interference tracking with measurements.
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Fig. 10. Example measurement with peak detection and MHT applied. The
black rectangles mark the measurements and the connected circles mark the
estimated tracks.

For this, we use the measurement setup described in
Section III-C and perform the MHT algorithm on the exam-
ple measurement from Fig. 2. This measurement is avail-
able in the InSecTT TDMA Interference Dataset [34] under
“dataset/artificial_periodic_interferencel.”

However, in a real-world scenario, the duration of the
interference, e.g., the interference duration, can be larger than
one timeslot which results in detecting the same interference
over several consecutive timeslots. Aside from that, even if
the interference duration is shorter compared to the timeslot
duration, it can be detected in two timeslots if the interference
occurs at the boundary between the two. Though the MHT
can also handle this situation by constructing a separate track
hypothesis for each occupied timeslot, it may be beneficial to
only use one timeslot for each assumed source of interference.
To find the center of the interference we apply a peak detec-
tion based on the RSSI values of the individual timeslots.
A peak is defined as any timeslot whose two direct neigh-
bors have a lower RSSI value after applying a threshold. If
there are multiple peaks with the same RSSI value, the mean
timeslot number is used. The number of consecutive timeslots
can be saved in addition to the center for reconstructing the
interference duration after applying the MHT algorithm.

Fig. 10 depicts the results of the peak detection with the
subsequently applied MHT algorithm. The raw measurements
after the peak detection are marked with black squares and
the estimated periodic interferer positions with circles. The
MHT algorithm is clearly able to track both periodic interferers
(with periods of 102.4 and 92.4 ms) present. In the beginning,
the algorithm needs a few superframes to find the individ-
ual track hypotheses, though once synchronized the MHT is
able to perfectly follow the interference, even in the overflow
and underflow cases discussed in Section IV-E. The time it
takes to find the track hypotheses strongly depends on the
timeslot position at the start of the algorithm. For example,
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track hypotheses that start too close to the superframe borders
will take more time to be recognized. This effect can also
be observed in Fig. 10, as the 102.4-ms interference appears
at high timeslot numbers in the first few superframes consid-
ered by the MHTs and thus too close to the immeasurable
area. The MHT algorithm is also able to track the 92.4-ms
interference which is quite hard to distinguish from random
noise in Fig. 2 by optical inspection only. Also crossing points
of both interferences are no problem and the algorithm can
easily separate both tracks. It can be observed that for some
estimations there is no corresponding raw measurement. This
shows that even if the physical detection of the sniffer nodes
is missing, the MHT algorithm is able to reconstruct the tracks
due to the prediction of the Kalman filter.

Comparing the MHT estimation with the reference data
results in TPR = 0.890 and TNR = 0.998. These results
show a lower TPR compared to the simulations. However,
by closer inspection we observed that most errors are due to
an off-by-one timeslot prediction. The output of the Kalman
filter in the MHT algorithm is a float number. However, after
rounding to integer numbers for the TPR calculation, the esti-
mation appears in some cases one timeslot before or after. By
counting off-by-one errors as correct, we scored TPR = 0.999,
which shows that the lower TPR is due to the described inte-
ger rounding. If the MHT is used for interference avoidance,
this is only a minor problem, since here in addition to the
estimated occupied timeslot number, a guard time has to be
added to guarantee no collisions.

To give an idea of how precisely we are able to estimate
the timing of the interference observations, we additionally
calculated the RMSE between the MHT estimation and the
corresponding measurement. This resulted in an RMSE of
0.146 ms, which shows that the MHT is able to estimate the
position of the interference with a higher resolution than the
0.9-ms timeslot duration of the measurement system.

Due to the Kalman filter and the chosen model (1) and (2),
in addition to the timeslot number of the interference, also
an estimation of the velocity § is available. With this, we can
directly calculate the corresponding interference period #; in
ms using

(18)

with the superframe period tsg = 100ms and the timeslot
duration tTs = 0.9ms. Fig. 11 shows the error of the period
estimation for both track hypotheses over the superframe num-
ber. Here, the estimations of the track hypotheses do not start
right at the beginning and show a large error for the first
estimations. This is due to the fact that the Kalman filter is
initialized with § = 0. However, once the interference is iden-
tified the error rapidly drops in the following superframes and
reaches a steady state after a few superframes. In the steady-
state, this measurement shows and RMSE of 0.024 ms which
is a good result since the measurement resolution, i.e., the
timeslot length, is 0.9 ms.

ti = t1s § + tSF

VI. CONCLUSION

In this work, we showed the applicability of the MHT algo-
rithm for interference tracking in WSNs. With the proposed
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Fig. 11.  Absolute error of the period estimation over the measured super-

frames for both tracks. The tracking of the interference starts at superframes
3 and 12, respectively.

algorithm we were able to track periodic interference and dis-
tinguish it from random interference. The estimated period
can also provide additional knowledge of the interfering device
since different communication protocols show different behav-
ior on the channel access. We demonstrated the approach
with measurements from a TDMA-based WSN. However, our
approach is not limited to these kinds of networks. As long
as continuous measurements of the channel signal level are
available, the proposed algorithm can be applied. We are able
to synchronize to periodic sources and are able to provide
predictions about the time at which the interference will appear
in future times.

If the interference prediction is combined with a TDMA-
based network protocol, a central coordinator is able to
reschedule the timeslots of the nodes to avoid sending at pre-
dicted interference. This will reduce the collisions with devices
external to the WSNs and thus improve the coexistence in the
wireless channel. Moreover, it will not only reduce the number
of retransmissions in the own WSN but also for other devices.

The performance of our approach is shown with extensive
simulations and real-world measurements. In both scenar-
ios, the MHT algorithm was able to separate the periodic
interference from the random interference and to score a TPR
of over 0.9 and an RMSE of 0.146 ms for the measurement
set. The period estimation allows to distinguish the sources
of interference and the tracking allows to apply countermea-
sures, e.g., predicting future occupied timeslots and avoiding
collisions.
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