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Abstract—By introducing nonorthogonal multiple access
(NOMA) based millimeter wave (mmW) communication, it can
significantly improve the transmission efficiency of mobile edge
computing (MEC) offloading. In this paper, we are motivated
to investigate the resource allocation (RA) problem of the
NOMA-mmW scheme based MEC offloading system, by jointly
optimizing the beamwidth, user equipment (UE) scheduling
and transmit power. To tackle the mixed integer nonlinear
programming (MINLP) problem of delay minimization, we
develop the alternative optimization (AO) approach based RA
scheme, namely AO-RA, to obtain the close-optimum solutions.
In the AO-RA scheme, we propose the matrix control many-
to-one with externality (MC-M2OE) algorithm, to find the best
UE scheduling for the NOMA groupings of different types of
UEs. Up on the above, we further design the joint beamwidth
and transmit power (JBTP) algorithm, which determines the
optimal beamwidth and transmit power for the MEC offloading
transmissions. Our simulation results show the effectiveness of
the proposed AO-RA scheme in minimizing the offloading delay,
where our MC-M2OE and JBTP algorithms can significantly
outperform the existing approaches. From the simulation results,
we may conclude that, it needs to carefully address the trade-off
between beam alignment overhead and transmission gain, while
properly balancing the loading among different NOMA groups,
for the practical consideration of NOMA-mmW MEC technology.

I. INTRODUCTION

IN the B5G/6G era, there will be emerging new types of
applications [1], such as augmented/virtual reality online

games, autonomous driving, and smart everything. These ap-
plications exploit the same features of, computation intensive,
delay sensitivity, which definitely overload the capacity of
mobile terminals. The emergence of mobile cloud computing
(MCC) brings solutions to the above problems [2]. In addition,
some scholars also considered the security of user information
and proposed related routing protocols and algorithms [2, 3].
However, the high latency of mobile cloud computing still
cannot well meet the low latency requirements of users. For
this sake, mobile edge computing (MEC) technology will be
an indispensable enabler for high-computational and delay
sensitivity services, by means of distributing the computing
resources at the network edge in the vicinity of end-UEs
[4]. Therefore, MEC is bound to become one of the key
technologies for low-latency services in the B5G/6G networks
[5].

The current studies on MEC technology mainly focus on
three aspects: computing, caching, and offloading. In the field

of MEC computing, many scholars have addressed offloading
decision-making and computing resource management. For
instance, [6] investigated the joint problem of offloading
decision-making and computing resource allocation in the
vehicle network, aiming at improving the system computa-
tion time. In [7] and [8], they combined caching and MEC
offloading, and proposed a multi-user cooperative offloading
strategy based on cache-assisted MEC, which effectively re-
duced system energy consumption and task executing delay.
As for MEC offloading, K. Guo et al. designed the online
learning based offloading algorithm, which fully explored
the interplay between communication and computation with
enriched user experience and reduced energy consumption
[9]. In [10], the authors applied the MEC technology to
investigate a joint problem of fast charging station selection
and EV route planning, where a deep reinforcement learning
(DRL) based solution was proposed. In the vehicular edge
computing networks [11], Guo et al. discussed the possible
networking, communication and computing technologies for
6G vehicular network, narrated many promising hardware
devices and facilities with 6G characteristics, and analyzed the
pivotal roles of AI. In addition, the authors in [12] used the
block coordinate descent and successive convex approximation
to solve the problem of UAV trajectory optimization and
offloading decision-making, which effectively reduced the en-
ergy consumption in the UAV aided MEC system. Apparently,
the research on MEC offloading is of great significance, and is
playing the most important role in realizing MEC technology.

From the above research, we know that the current studies
on MEC offloading were mainly based on UHF communica-
tion. By contrast, the use of mmW communication will bring
significant benefits to MEC systems [13]. Compared with
UHF, mmW communication, with massive spectrum resources,
can hugely improve the transmission rate of MEC offloading,
which greatly reduces the task delay in the MEC system.
Due to the characteristics of short wave length, sensitivity to
blockage and high penetration loss, mmW communications
require highly directional transmissions in order to overcome
the propagation defects, and to provide enhanced capacity.
This makes the offloading of mmW MEC systems, especially
in resource allocation, much more complicated than that of
UHF communication based MEC systems.

Some researches on mmW based MEC technology have
been carried out, where the pioneer works [14, 15] showed
its feasibility, and proved that the combination of the two
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can effectively reduce the task offloading delay. Furthermore,
the current studies [16–18] have investigated how to apply
the mmW MEC technique to different wireless systems with
diverse applications. Specifically, in [16], they developed the
joint proactive computing and mmW communication scheme
for the wireless virtual reality (VR) system with ultra-reliable
and low latency demands. By contrast, the authors of [17]
proposed the unmanned aerial vehicle (UAV)-aided wireless
edging service system with mmW communication capability.
Further, Q. Chen et al. proposed a new architecture of mmW
MEC technology for the Industrial Internet of Things (IoT),
and effectively reduced the system energy consumption by
jointly optimizing communication and computing resources
[18].

Due to the characteristics of short wave length, sensitivity
to blockage and high penetration loss, mmW communications
require highly directional transmissions in order to overcome
the propagation defects, and to provide enhanced capacity.
This makes the offloading of mmW MEC systems, especially
in resource allocation, much more complicated than that of
UHF communication based MEC systems. In particular, the
authors of [19] designed a distributed joint hybrid beam-
forming and resource allocation algorithm, which also ad-
dressed the implementation issues for the future mmW MEC
system. In [20], the authors merged computation offloading
techniques for mmW MEC system and showed that, how the
joint optimization of computation/communication resources
was crucial to design an energy efficient MEC system. A
federated learning empowered computation offloading and
resource management (FLOR) was proposed in [21], which
could outperform the traditional convex solutions in terms
of computing complexity. The authors of [22] considered
the uplink MEC system, and formulated the problem of
minimizing the total energy consumption within the required
latency. In [23], they jointly considered mmW MEC offloading
under the coexistence of communication-oriented users and
computing-oriented users. In addition, the study in [24] paid
attention to the downlink of MEC offloading transmission, and
discussed the task offloading of mmW MEC by optimizing
backhaul bandwidth and edge server resource allocation to
reduce the overall delay. Nevertheless, the above works rarely
discussed the MEC offloading for multiuser scenarios, which
may challenge the accessing efficiency of mmW links with
limited beam coverage.

As a promising technology, nonorthogonal multiple access
(NOMA) has been recognized as a promising solution to
significantly improve the accessing efficiency for crowed net-
works, by allowing multiple users to share time and spectrum
resources in the same spatial layer via power-domain mul-
tiplexing. The state-of-the-art showed that the NOMA based
MEC offloading can significantly improve the link efficiency
and lower the overall latency [25–29]. For instance, [25]
proposed the MEC aware NOMA technique, which can exploit
the benefits of spectrum efficiency. The studies of [26] and
[27] addressed the radio resource management for the NOMA
aided MEC system under single-carrier and multi-carrier as-
sumptions, where the game theory based algorithms were
proposed to find the Nash equilibrium solution. Furthermore,

to investigate the energy efficiency problem, the authors of [28]
combined the NOMA MEC technology with wireless power
transmission (WPT) to overcome the double distance effect
of the far users. In [29], they discussed the trade-off between
minimizing offloading delay and energy consumption for the
NOMA based MEC system.

A. Motivations and Contributions

Against this background, in this paper, we are motivated
to study the delay performance of the NOMA-mmW scheme
based MEC system by optimizing the resource allocation for
the uplink transmissions of MEC offloading with multiple
UEs’ tasks happening simultaneously. Due to the poor data
processing capability and limited battery power of UAV, the
proposed NOMA-mmW MEC scheme can play a great role in
UAV Communication [30, 31]. In order to improve the spectral
efficiency and energy efficiency of the UAV communication
system, our scheme use NOMA and MEC technologies to
improve the link efficiency and reduce the communication
delays, and use mmW technology to better cope with the
UAVs’ communication channel dominated by the line-of-sight
(LoS) links. For clarify, the contributions of this paper are
summarized as follows.

• By blending the concepts of NOMA technology and
mmW communication, we conceive the transmission
scheme, namely NOMA-mmW, which is used for MEC
offloading to improve both the transmission and ac-
cessing efficiencies. To jointly consider UE scheduling,
beamwidth selection and power allocation, we formulate
the RA optimization problem aiming at minimizing the
average offloading delay. Upon analyzing, we develop the
alternative optimization method based resource allocation
(AO-RA) scheme to decouple the mixed integer non-
linear programming (MINLP) problem into series of solv-
able sub-problems, where the convergency and optimality
are proved.

• For solving the sub-problem of UE scheduling, we
equivalently transform it to a matching process between
two different kinds of UEs (F-UEs and nF-UEs) for
NOMA grouping. For this sake, we propose the so-called
matrix control aided many-to-one with externality (MC-
M2OE) algorithm, where the matrix control method is
developed to minimize the number of iterations required
for traversing all the possible join-in and swap actions for
each UE, as well as to reach the stable matching results.

• We propose the joint beamwidth and transmit power
(JBTP) algorithm to solve the sub-problem of optimizing
the beamwidth and transmit power of the NOMA-mmW
based offloading links. In particular, the non-convex
problem is equivalently converted to a series of convex
ones, where the fractional logarithm terms are tackled by
introducing efficient auxiliary variables and using first-
order Taylor expansion. Furthermore, the characteristics
of the proposed algorithms are also analyzed.

• We carry out the comprehensive performance analysis
for the NOMA-mmW based MEC offloading system.
Our simulation results show the effectiveness of the
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TABLE I
LIST OF NOTATIONS

Symbol Definition
⌈·⌉ Round up operation
K Total number of UEs
I Number of nF-UEs
J Number of F-UEs
Ck Data amount of the k-th UEs task
Dk Maximum delay requirement of the k-th UE
θbs Beamwidth of base station
θk Beamwidth of the k-th UE
τBA
k Time required for beam alignment of the k-th UE
τDT,F
j Data transmission delay of the j-th F-UE
τDT,nF
i Data transmission delay of the i-th nF-UE
Tp Time required for a pilot transmission
Υk Sector-level beamwidth used by the k-th UE
∆0 Time slot of a NOMA group
Q Maximum number of nF-UEs accessed by a NOMA group
Gbs Main lobe gain for the base station
Gk Main lobe gain for the k-th UE
z0 Side lobe gain
Lk Large-scale fading gain
dk Distance between the k-th UE and the base station
α Pathloss exponent
hk Nakagami-m fading channel of the k-th UE
N0 Noise variance
si,j Scheduling variable
θmin Minimum beamwidth
θmax Maximum beamwidth
pk Transmit power of UEs
pmax Maximum transmit power of UEs
Ei Channel condition information of i-th uF-UE
RnF

i Data rate of i-th uF-UE
RF

j Data rate of j-th F-UE

proposed AO-RA scheme in minimizing the offloading
delay. In particular, the proposed MC-M2OE and JBTP
algorithms can significantly outperform the existing al-
gorithms. We may conclude that, in the NOMA-mmW
offloading design of practical MEC system, one should
properly schedule UE transmission by setting a suitable
quota as well as finding the optimal NOMA grouping,
rather than simply investing more transmit power causing
unnecessary energy waste.

The remainder of this paper is organized as follows. In Sec-
tion II, we introduce the system model of our NOMA-mmW
based MEC. In Section III, we propose a low-complexity UE
scheduling scheme. In Section IV, we develop an iterative
algorithm for joint optimization of beamwidth and transmit
power. Numerical results for evaluating the performance of the
proposed schemes are provided in Section V. The conclusions
are made in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In our NOMA-mmW based MEC system conceived, as
shown in Fig. 1, the base station (BS) is located in the
origin of a sector area, and is equipped with a MEC server.
A range of user equipments (UEs) are randomly distributed
in the sector area, and their indexes are collected in the set
K = {1, 2, . . . ,K}. All the K UEs demand computing task
offloading, which are supported by mmW communications
with NOMA scheme employed. Assume that, each UE’s

Sector 1
Sector 2

Sector 3

F-UE nF-UEmmW beam

NOMA
Group 1

NOMA
Group 2

NOMA
Group n

TS1

TS2

TSn

...

MEC 
server

Fig. 1. Schematic for our NOMA-mmW MEC system conceived.

computing task can be represented by {Ck, Dk}, where Ck

is the data amount of UE k’s task, and Dk is the maximum
delay requirement of the task.

Due to the use of NOMA-mmW scheme, there are two
phases in the uplink transmission of MEC offloading: 1) beam
alignment, and 2) data transmission. During the first phase,
the best beamwidth is searched for one user by another. Let
us assume that the beamwidth of BS θbs is fixed to cover the
entire sector area, and the beamwidth of each UE, such as
θk, needs to be optimized. Hence, the time required for beam
alignment of an UE can be given by

τBA
k = ⌈Υk

θk
⌉Tp, ∀k ∈ K, (1)

where Tp is the time required for a pilot transmission, Υk

being a fixed value is the sector-level beamwidth used by UE
k.

After that, during the second phase, the UEs transmit
information of their tasks to the BS. We consider T number of
equally divided time slots (TSs), each of which has the value of
∆0 seconds. There are J UEs, denoted by J = {1, 2, . . . , J},
referred to as fixed UEs (F-UEs). Each of the F-UEs is
orthogonally pre-assigned one TS for offloading, where F-UE
j is scheduled in TS t, with assuming J = T . Further, the
NOMA scheme is employed to accommodate the other I UEs,
denoted by I = {1, 2, . . . , I}, on the existing T TSs. These
I UEs are referred to as non-fixed UEs (nF-UEs). Note that,
we have the following relations: K = J + I , K = J ∪ I,
J ∩ I = ∅. In another word, the nF-UEs in I need to be
clustered into different NOMA groups to access the scheduled
TSs, each of which has been assigned to a F-UE. For every
NOMA group, the total number of UEs (not including the F-
UE) are constrained by Q. The above process is referred to as
UE scheduling.

Based on the characteristics of mmW communications, the
effective antenna gains for the main lobe of transmitter and
receiver can be respectively expressed as

Gbs =
2π − (2π − θbs)z0

θbs
, (2)

Gk =
2π − (2π − θk)z0

θk
, ∀k ∈ K, (3)

where 0 ≤ z0 << 1 is the side lobe gain, and is assumed to
be the same for both the transmitters and the receiver.

Based on our NOMA-mmW scheme, the F-UEs and nF-UEs
are clustered into different groups for offloading the task data
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to the BS. In our system, the offloading links suffer both path-
loss and small-scale fading [32]. In particular, we assume path-
loss effect as: Lk = d−α

k for UE k, k ∈ K, where dk denotes
the distance between the k-th UE and the base station. While,
each link also experiences independent Nakagami-m fading,
denoted by hk for UE k, k ∈ K. Furthermore, the background
noise for each link is characterized by a zero mean, complex
Gaussian random variable with variance N0.

Moreover, within each NOMA group, the SIC decoding
is employed. Let us assume that, the decoding order of the
NOMA UEs always follows the descending order of channel
qualities, and the F-UE’s information is always decoded at
the last stage. For a NOMA group, the nF-UEs with poor
channel qualities are free of interference from the nF-UEs with
good channel qualities. To achieve a good trade-off between
the efficiency of energy and spectrum, we assume that, the
nF-UEs with poor channel qualities need longer time interval
for offloading, compared to the nF-UEs with good channel
qualities.

B. Problem Formulation

For the NOMA-mmW based MEC system conceived, it
aims to minimize the average delay of all UEs’ offloading,
where jointly considering the UE scheduling, beamwidth
selection and transmit power allocation. The optimization
problem can be expressed as

P0: min
ΘΘΘ,SSS,PPP

τ̄ = τBA +

∑
j∈J τ

DT,F
j +

∑
i∈I τ

DT,nF
i

K
, (4)

s.t. (a) si,j = {0, 1}, ∀i ∈ I,∀j ∈ J ,

(b)
∑
i∈I

si,j ≤ Q, ∀j ∈ J ,

(c)
∑
j∈J

si,j = 1, ∀i ∈ I,

(d) θmin ≤ θk ≤ θmax, ∀k ∈ K,
(e) pk ≤ pmax, ∀k ∈ K,
(f) Cj/R

F
j = ∆0, ∀j ∈ J ,

(g) Ci/R
nF
i ≤ ∆0, ∀i ∈ I,

(h) pi ≤ pi′ , θi ≥ θi′ for Ei ≤ Ei′ , i ̸= i′,∀i, i′ ∈ I,
(i) τBA + τDT,nF

i ≤ Di, ∀i ∈ I,

where si,j presents the scheduling variable, and si,j = 1
means that the i-th uF-UE is assigned to the j-th NOMA
group; θmin and θmax denote the minimum and maximum
beamwidth, respectively; pmax denotes the maximum transmit
power of UEs; Cj and Ci denote the computing task of j-th
F-UE and i-th uF-UE, respectively; ∆0 denotes the maximum
available transmission time for NOMA groups; Ei denotes the
channel condition information (CSI) of i-th uF-UE. Above, in
the objective function, the total delay comes from two parts:
beam alignment and data transmission. First of all, all the K
UEs sequentially carry out the beam alignment, hence, the
delay can be accumulated as

τBA =
∑
k∈K

⌈Υk

θk
⌉Tp ≈

∑
k∈K

Υk

θk
Tp. (5)

Furthermore, the data transmission delay for an UE, such as
F-UE j or nF-UE i, can be expressed as

τDT,F
j = j∆0, ∀j ∈ J , (6)

τDT,nF
i =

∑
j∈J

si,j(j − 1)∆0 +
Ci

RnF
i

, ∀i ∈ I. (7)

According to NOMA-mmW scheme, the data rate for nF-UE
i can be given by (8),

RnF
i = B log2

(
1 +

PnF
i

PnF
i′ + PF

j +N0

)
, i ∈ I, (8)

where PnF
i is defined as

∑
j∈J si,jGbsGipiEi, which

means the received power of nF-UE i; PnF
i′ is defined

as
∑

j∈J
∑

i′∈I,Ei′<Ei
si,jsi′,jGbsGi′pi′Ei′ , which repre-

sents the interference of other nF-UEs; PF
j is defined as∑

j∈J si,jGbsGjpjEj , which means the interference of F-
UEs, and we define Ex = Lx|hx|2, x ∈ {i, i′, j}.

By contrast, the data rate for F-user j can be written as

RF
j = B log2

(
1 +

GbsGjpj |hj |2Lj

N0

)
, j ∈ J . (9)

In problem (P0), the scheduling variables are collected in
the vector SSS = [sss1, sss2, . . . , sssI ], where defining sssi = [si,j ,∀t].
Note that, si,j is a boolean variable: only when si,j = 1, nF-
UE j is allocated to the NOMA group of F-UE i scheduled in
tth (assuming t = j) TS. The constraints (4b) and (4c) indicate
that, the maximum number of UEs is Q, while each UE can
be assigned to one group only. Furthermore, the beamwidth
variables are included in the vector ΘΘΘ = [θ1, θ2, . . . , θK ], and
they are limited in the range of (4d). Then, the power alloca-
tion variables are collected in the vector PPP = [p1, p2, . . . , pK ],
and constraint (4e) gives the upper-bound for transmit power
of each UE. In addition, (4f) and (4g) constrain that each
UE’s data transmission period should not be longer than ∆0.
While, the constraint in (4h) reflects that the nF-UEs with
good channel qualities will be assigned more transmit power
and narrower beamwidth. At last, we have the maximum delay
requirement for each UE, which is shown in (4i).

C. Problem Analysis

Seen from (8), the rate expression is non-convex, since
it contains the fractional terms of power allocation variable
and beamwidth variable, as well as including the products of
scheduling variables. Hence, in problem (P0), the objective
function is obvious not convex, and the constraints (4e)-(4i)
are not convex either. Furthermore, (4f) is a strict equality
constraint, which is extremely difficult to deal with. At last,
the scheduling variables are binary variables, which further
complicates the problem. Therefore, problem (P0) cannot be
converted to a convex problem, and is extremely difficult to
solve. The following proposition is given.

Proposition 1: Problem (P0) for the joint optimization of
UE scheduling, beamwidth, power allocation is NP-hard.

Proof: Problem (P0) can be decoupled into different
sub-problems. For instance, given the beamwidth and power
allocation, the sub-problem becomes a pure UE scheduling
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problem (P1). In order to minimize the average delay, problem
(P1) selects specific nF-UEs in each time slot, and can be seen
as a more restrictive or general traveling salesman problem
(TSP). As known, the traveling salesman problem can be
reduced to problem (P1). Since the TSP is a classic NP-hard
problem, problem (P1) is also a NP-hard problem. In that case,
we can prove that the original problem (P0) is NP hard.

In problem (P0), we can find that, the UE scheduling vari-
ables are independent of beam alignment variables and power
allocation variables. Hence, this observation motivates us to
decouple the original problem (P0) into the UE scheduling
sub-problem (P1) and the joint beam alignment and power
allocation sub-problem (P2), which can be solved by the
alternating optimization (AO) approach. Specifically, the two
sub-problems can be expressed as:

P1: min
SSSnF

{τ̄(SSS) | ΘΘΘ∗,PPP ∗} (10)

s.t. (4a) , (4b) , (4c),

and

P2: min
ΘΘΘ,PPP

{τ̄(ΘΘΘ,PPP ) | SSS∗} (11)

s.t. (4d) , (4e) , (4f), (4g), (4h), (4i).

From the above, we can derive the following lemma.
Lemma 1: Upon using the AO approach to solve problems

(P1), (P2), it is guaranteed to converge to an approximated
optimal solution to problem (P0).

Proof: Seen from the problems (P1), (P2) and (P3),
the objective function keeps the same, and hence, the fea-
sible regions for the solution of problems (P1) (P2) are
belong to problem (P0). During the nth iteration of the
AO approach, the optimal solution of problem (P1) is given
by {SSSnF∗(n) | Θ̃ΘΘ

∗
(n − 1), P̃PP

∗
(n − 1)}, which must be a

feasible solution of problem (P2). The corresponding objec-
tive value is denoted by τ̃1(n). Based on the above, we
can find the optimal solution of problem (P2), expressed
as {SSSnF∗(n),ΘΘΘ∗(n),PPP ∗(n)}, which gives the objective value
τ̃2(n). In this case, it is easily known that τ̃2(n) ≤ τ̃2(n).
By repeating the above process, the value of the objective
function must be decreasing as the number of iterations gets
bigger, which proves the convergency of the solutions obtained
by the AO approach.

For low-complexity design, we develop the AO-RA scheme,
in which the UE scheduling, beamwith selection and power
allocation are performed in an iterative approach to obtain a
joint promising solution to problem (P0). On the premise that
the UE’s location information and current CSI are known, the
base station can easily obtain the optimal resource allocation
by using the proposed AO-RA scheme, which decomposes the
original NP-hard problem (P0) into two simpler sub-problems:
the UE scheduling problem and the beamwidth and power
allocation problem. In particular, upon giving the beamwidth
and power allocation solutions, the UE scheduling problem
of (P1) can be solved by many-to-one matching method. In
turn, upon fixing the UE scheduling solution, the beamwidth
and power allocation problem of (P2) can be converted into a
convex problem, thereby giving its optimal solution. Note that,

the detailed procedure of our AO-RA scheme is provided in
Section IV-C.

III. MC-M2OE ALGORITHM FOR UE SCHEDULING

In this section, let us solve the UE scheduling problem.
Since the variables in SSSnF are integers, problem (P1) can not
be directly solved by convex optimization approach. As seen,
the UE scheduling problem can be interpreted as a many-
to-one matching between different UEs, where the nF-UEs
are regarded as the many-side, the F-UEs are refered to the
one-side. Further, known from (8), as the size of a NOMA
group changes, it will affect both the forms of the interferences
in its group and those in other related groups. This implies
our problem (P1) belongs to a many-to-one matching with
externalities being peer effects. To solve the problem, we
propose a novel low-complexity algorithm, namely matrix-
control aided many-to-one matching with externality (MC-
M2OE).

A. Modeling of Matching Algorithm

To comply with problem (P1), in our matching model, there
are two disjoint sets, including the F-UE set J , and the nF-
UE set I, which are the rational players aiming to maximize
their own benefits. Specifically, a matching is an assignment
of nF-UEs in I to F-UEs in J , and can be defined in the
following mathematical form.

Definition 1. Given two disjoint sets, i.e. the F-UE set J ,
and the nF-UE set I, a many-to-one matching is a mapping
from the set J ∪ I to its all subsets, such that:
1) j ∈ Ψ(i)⇔ i ∈ Ψ(j);
2) Ψ(j) ⊆ I, Ψ(i) ⊆ J ;
3) |Ψ(i)| ≤ Q, |Ψ(j)| ≤ 1.
Above, in 1), it indicates that nF-UE j is matched with F-UE
i, where the two equivalent expressions are given; In 2), a nF-
UE (or a F-UE) is matched with a subset of I (or J ); In 3), it
constrains the maximum quotas for matching, determined by
(4b) and (4c) in problem (P1).

Known from the objective function in problem (P1), the
utility of a nF-UE can be defined as the delay of its data
transmission, giving that

U nF
j := −(Ψ(j)− 1)∆0 −

Cj

RnF
j

, j ⊆ Ψ(i). (12)

By contrast, since each F-UE may share its spectrum with
multiple nF-UEs based on NOMA scheme, its utility should
reflect the delay of all UEs’ data transmission in the NOMA
group, which can be defined that

UF
i := −j∆0 − |Ψ(i)|(i− 1)∆0 −

∑
l∈Ψ(j)

Cl

RnF
l

, j ⊆ Ψ(i).

(13)

Furthermore, the total utility for a matching Ψ is defined by
collecting all the NOMA groups’ utility, given that

U∑(Ψ) :=
∑
i∈I

UF
i , j ⊆ Ψ(i). (14)
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To introduce the stability of a matching, we are motivated to
define two kinds of matching actions for our specific model.
Definition 2. Swap action: nF-UE j matched with F-UE i
and nF-UE j′ matched with F-UE i′ switch their NOMA
groups but not violating their delay requirements, and all
other matchings remain the same, such that: Ψsw(j) = {i′},
Ψsw(j′) = {i}, Ψsw(i) = {Ψ(i)\j} ∪ {j′}, Ψsw(i′) =
{Ψ(i′)\j′} ∪ {j}, subject to (4i).
Definition 3. Join-in action: nF-UE j leaves its current NOMA
group of F-UE i, and joins in another NOMA group of F-UE
i′ but not violating the delay requirement of nF-UE j, and all
other matchings remain the same, such that: Ψjo(j) = {i′},
Ψjo(i) = Ψ(i)\{j}, Ψjo(i′) = Ψ(i′) ∪ {j}, subject to (4i).

During our matching process, each nF-UE needs to find
its best NOMA group by trying all possible swap and join-
in actions. Nevertheless, the swap and/or join-in actions can
be approved only when the involved players’ interests are
improved. For this sake, we would like to introduce the
notion of “blocking group”, which indicates the condition that
approves a certain action.
Definition 4. Given a matching Ψ, including j ∈ Ψ(i),
j′ ∈ Ψ(i′), if nF-UEs j and j′ switches their NOMA groups
such that:
UF
i (Ψ) + UF

i′(Ψ) > UF
i (Ψ̃

sw) + UF
i′(Ψ̃

sw), subject to (4i),
then the swap action is approved, and is termed as “swap-
blocking action”, where (i, j, i′, j′) is defined as a blocking
group. By contrast, if nF-UE j leaves F-UE i and joins in
F-UE i′ such that:
UF
i (Ψ) + UF

i′(Ψ) > UF
i (Ψ̃

jo) + UF
i′(Ψ̃

jo), subject to (4i),
then the join-in action is approved, and is termed as “join-
in-blocking action”, where (i, j, j′) is defined as a blocking
group.

Based on the above definition, we can evaluate how the
UEs evolve their matching behivours with peer effects. For
each nF-UE, it can propose a swap action or a join-in action
to block the current matching status, the related F-UE will
check if it is approved. During our matching process, a swap
action or a join-in action is approved as long as the utilities of
the NOMA groups involved are increased, i.e. the delays for
the corresponding data transmission are decreased towarding
minimizing the objective function in (4). Note that, once
a blocking action is approved, the dynamic preferences of
different nF-UEs and F-UEs associated will be changed based
on evaluating the externalities of the interferences within each
NOMA group. The UEs keep executing approved swap and
join-in actions so as to reach a stable status.
Definition 5. A matching Ψ is “stable” if and only if there
does not exist a blocking action.
The notion of “stable” implies all the blocking actions in-
volved for all the UEs are indifferent, which is similar to [33].

B. Principles of MC-M2OE Algorithm
As the preliminaries definitions given above, we can now

introduce the principles of the proposed MC-M2OE algorithm.
Different from the traditional matching algorithm, our MC-
M2OE algorithm develops a high-efficiency matrix control
scheme, so as to obtain the stable matching results with a
relative low number of iterations guaranteed.

The detailed principles of the MC-M2OE algorithm are
summarized in Algorithm 1. As seen, there are three key
phases, including initialization phase, action phase, and update
phase. The key idea of our MC-M2OE algorithm is to find
the best NOMA group of F-UE for each nF-UE in an iterative
process. For this sake, we introduce two control matrices: 1)
the control matrix C, for indicating where the swap and join-
in actions can take place, and 2) the assignment matrix A, for
recording the current matching status. Note that, both matrices
C and A have I rows and J columns, which correspond to
nF-UE and F-UE indexes. For matrix C, we define that, if
C(i, j) = 1, nF-UE i and F-UE j are available for taking
actions, otherwise, they are not available if C(i, j) = 0.
While, for matrix A, we define that, if A(i, j) = 1, nF-UE
i is currently matched with F-UE j, otherwise, they are not
matched if A(i, j) = 0.

Specifically, in the initialization phase, the initial UE
scheduling is obtained by the random approach, and the initial
assignment matrix A is written accordingly. Then, the control
matrix C is initialized as C = 1 − A, where the non-zero
elements in C indicate the availability of taking actions. As
shown in Table I, the algorithm carries out the matching in
an iterative process of one nF-UE by one, and terminates if
C = 0. During the action phase, for each nF-UE i, it traverses
all possible swap or join-in action according to the non-zero
elements in the ith row of the control matrix C. Then, the
action with the highest utility is always selected. It is worth
noting that the nF-UE cannot perform the join-in or swap
action within its current NOMA group.

Algorithm 1: MC-M2OE algorithm for UE scheduling

Initialization Phase:
Set the assignment matrix A by random approach; Set the
control matrix C = 1−A; Set the temporary control
matrix TempC = C;
While C has non-zero elements
For each nF-UE i, do
If C(i, :) has non-zero elements
TempC(i, :)← C(i, :), then C(i, :)← 0.
According to TempC, calculate U∑ in (14) by trying
all possible join-in and swap actions;
Action Phase: Select the action with the maximum U∑
If a join-in action, then, A(i, j)← 0, A(i, j′)← 1;
Else a swap action, then A(i, j)← 0, A(i, j′)← 1,

A(i′, j)← 1, A(i′, j′)← 0;
Update Phase:
For join-in: C(i, ĵ)← TempC(i, ĵ), ∀ĵ ∈ {J \(j, j′)};
C (̂i, j)← 1, C (̂i, j′)← 1, ∀î ∈ {I\i, A(̂i, j) = 1};
For swap: C(i, ĵ)← TempC(i, ĵ), ∀ĵ ∈ {J \(j, j′)};
C(i′, j)← 0, C(i′, j′)← 0;
C (̃i, j)← 1, C (̃i, j′)← 1, ∀ĩ ∈ {I\{i, i′}, A(̃i, j) = 1};

End if
End for

End

During the update phase, the control matrix is updated
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by recording all the actions taken. When a join-in action is
performed, e.g., nF-UE i leaves its current NOMA group of
F-UE j, and joins in the group of F-UE j′, the corresponding
elements are disabled, i.e. C(i, j) = C(i, j′) = 0, except
which the other elements become enable for taking actions
and are updated to 1. When a swap action is performed, e.g.,
nF-UE i matched F-UE j and nF-UE i′ matched F-UE j′ swap
their NOMA groups, the corresponding elements are updated
to C(i, j) = C(i, j′) = C(i′, j) = C(i′, j′) = 0. Similarly, the
other nF-UEs (∀ĩ in Algorithm 1) in groups j and j′ become
available for taking actions. Note further that, TempC in the
table is used to record the non-zero elements in C.

C. Characteristics Analysis
Let us analyze the main characteristics of the proposed

MC-M2OE algorithm, which include the stability and the
complexity required. As shown in Algorithm 1, the proposed
MC-M2OE algorithm terminates when there is no blocking
group for improving the total utility. Let us assume that, the
final matching is denoted by Ψ∗. In other words, for each
nF-UE i∗, it can not leave its current NOMA group of F-UE
j∗ to join-in another NOMA group, or exchange group with
another nF-UE. Based on the above fact, we have the following
theorem.

Theorem 1: The proposed MC-M2OE algorithm can con-
verge to a stable matching Ψ∗ with a finite number of iterations
required.

Proof: Within the action phase of the algorithm, each nF-
UE needs to test the actions available in the matrix C, which
has finite number of rows and columns. Hence, the number of
actions for each UE is limited. Furthermore, once the possible
actions for all nF-UEs have been executed, C becomes zero-
valued, and the algorithm terminates. Therefore, the number
of iteration is also finite. At last, since only the join-in and
swap actions those strictly improve the total utility can be
performed, each nF-UE can be allocated to the best NOMA
group. Based on the above facts, the MC-M2OE algorithm can
converge to a stable matching Ψ∗ in finite iterations.

Based on the stability of the MC-M2OE, we are now able
to carry out its complexity analysis. Let us first define the
notion of complexity involved in this paper. As the number
of iterations may be different under different cases, the com-
plexity is computed always for the worst scenarios. During the
matching process for each nF-UE, we assume M is the upper-
bound for the number of combinations of NOMA groups,
where either join in action or swap action is executed. In the
worst scenarios, the optimal solution of the NOMA group for
a nF-UE always conflicts with other matched group during
each loop. Hence, each F-UE needs to change the matched
group at most M times. Moreover, each F-UE will update
the preference lists with a time complexity of O(MlogM).
Then, the time complexity of the MC-M2OE algorithm is
O(JM + JMlogM).

IV. JOINT OPTIMIZATION OF BEAMWIDTH AND TRANSMIT
POWER

To solve the sub-problem (P2), we propose an algorithm,
namely JBTP, for joint optimization of beamwidth and trans-

mit power.

A. Design of JBTP
Once having the UE scheduling solutions, the optimization

for beamwidth and transmit power in problem (P2) can be
re-written as

P3: min
ΘΘΘ,PPP

∑
k∈K

Υk

θk
Tp +

1

K

∑
j∈J

j∆0

+
1

K

∑
j∈J

∑
i∈Fj

[
(j − 1)∆0 +

Ci

RnF
i

]
, (15)

s.t. (4d) , (4e) , (4f), (4g), (4h), (4i).

Above, we define that:

Fj = {i | s∗i,j = 1, ∀i ∈ I}, j ∈ J , (16)

which includes the indexes of the nF-UEs associated with
the NOMA group of F-UE j. Note that, SSS∗ = {s∗i,j ,∀i, j}
are the UE scheduling solutions obtained by the MC-M2OE
algorithm. Furthermore, the data rate expression in (8) for the
nF-UE becomes

RnF
i = B log2

(
1 +

P̂nF
i

P̂nF
i′ + hatPF

j +N0

)
, i ∈ Fj . (17)

where P̂nF
i is defined as GbsGipiEi; P̂nF

i′ is defined as∑
i′∈I,Ei′<Ei

GbsGi′pi′Ei′ ; P̂F
j is defined as GbsGjpjEj .

Apparently, problem (P3) is still difficult to be directly
solved, since both the objective function and all the constraints
except (4e) are nonconvex. To make the problem solvable, we
need to convert the objective function and all the constraints
into convex ones, which aim to be equivalent.

1) Tackling Objective Function: In order to tackle the
problem, we need to convert the objective function and the
constraints in problem (P3) into convex. Seen from (17), the
data rate of nF-UE i contains the summation term of pi′/θi′ in
the denominator. This causes the nonconvexity of the objective
function in (15) and the constraint in (4i). Let us introduce the
auxiliary variables to replace the numerator and denominator
of the SINR. In particular, we define the auxiliary variables α0

i

and α1
i for the objective function. In that case, the optimization

problem (P3) can be equivalently converted into:

P4: min
ΘΘΘ,PPP

∑
k∈K

Υk

θk
Tp +

1

K

∑
j∈J

j∆0

+
1

K

∑
j∈J

∑
i∈Fj

[
(j − 1)∆0 +

Ci

B(log2(α
0
i )− log2(α

1
i ))

]
,

(18)
s.t. (4d) , (4e) , (4f), (4g), (4h), (4i),

(a) Gbs(
Z0

θi
+ z0)piEi +

∑
i′∈Fj ,Ei′<Ei

Gbs(
Z0

θi′
+ z0)pi′Ei′

+ Ej(
Z0

θj
+ z0)pj +N0 ≥ α0

i , , ∀i ∈ Fj , j ∈ J ,

(b)
∑

i′∈Fj ,Ei′<Ei

Gbs(
Z0

θi′
+ z0)pi′Ei′ + Ej(

Z0

θj
+ z0)pj

+N0 ≤ α1
i , , ∀i ∈ Fj , j ∈ J .
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where defining Z0 = 2π(1 − z0). Note that, (18a) and
(18b) respectively constrain the upper and lower bound of the
auxiliary variables.

Seen from the objective function in (18), all the terms
except the term of − log2(α

1
i ) are now convex. In this case,

let us apply the first order Taylor expansion to the term,
thereby giving the following proposition.

Proposition 2: The logarithmic term log2(α
1
i ) can be ap-

proximated by

log2(α
1
i ) ≤ Ω(α1

i ) = log2(α̃
1
i ) +

α1
i − α̃1

i

α̃1
i ln 2

,∀i ∈ I, (19)

where α̃1
i is a constant. The bound in the above inequality

becomes tight for α1
i = α̃1

i .
Proof: This can be found in [34].

By substituting (19) into (18), the objective function be-
comes a convex one. Let us now consider how to deal with
the constraints.

2) Tackling Equality Constraint: The constraint in (4f)
means that, each F-UE is scheduled to a specific time slot
to complete its MEC offloading. However, (4f) is an equality
constraint, and can not be directly transformed into a convex
form. In this case, the best option is to transformed the
equality constraint in to a pair of inequality constraints. Let
us introduce a parameter ε to set up an interval for the
offloading period of each F-UE. In this case, the constraint
in (4f) becomes

∆0 − ε ≤ Cj/R
F
j ≤ ∆0, ∀j ∈ J . (20)

Remark 1: The inequality constraints in (20) can closely
approximate the equality constraint (4f) as long as the param-
eter ε persists a relatively small value. Furthermore, when the
upper-bound holds, the constraint (20) will be equivalent to
(4f).

By substituting (9) into (20), it derives(
Z0

θj
+ z0

)
pj ≥

A0
jN0

GbsEj
, ∀j ∈ J , (21)(

Z0

θj
+ z0

)
pj ≤

A1
jN0

GbsEj
, ∀j ∈ J , (22)

where defining A0
j = 2

Cj
B(∆0−ε) − 1, and A1

j = 2
Cj

B∆0 − 1.
Seen from above, it readily finds that, the fractional terms of
pj/θj determine the non-convexity of the constraints (21) and
(22). To deal with this, let us introduce the auxiliary variable
ϱj to set up an upper bound of the inverse of transmit power
variable pj , giving that

1/pj ≤ ϱj , ∀j ∈ J . (23)

By replacing the varibale pj with ϱj , the constraints (21) and
(22) are converted to

Z0

θjϱj
+
z0
ϱj
≥

A0
jN0

GbsEj
, ∀j ∈ J , (24)

Z0

θjϱj
+
z0
ϱj
≤

A1
jN0

GbsEj
, ∀j ∈ J . (25)

Apparently, the constraint (25) is now convex. Whereas, the
constraint (24) is not convex with respect to the specific do-
main of variables. Hence, we need to further manipulate (24)
by applying the approach of the first-order Taylor expansion,
in order to guarantee the strict convexity.

Proposition 3: The fractional terms 1/θjϱj and 1/ϱj can
be respectively approximated by

1

θjϱj
≥ Θ(θj , ϱj) =

1

θ̃j ϱ̃j
− θj − θ̃j

θ̃2j ϱ̃j
− ϱj − ϱ̃j

θ̃j ϱ̃2j
, ∀j ∈ J ,

(26)
1

ϱj
≥ ψ(ϱj) =

1

ϱ̃j
− ϱj − ϱ̃j

ϱ̃2j
, ∀j ∈ J , (27)

where θ̃j , ϱ̃j are constants. The bound in the above inequalities
become tight for θj = θ̃j , and ϱj = ϱ̃j , respectively.

Proof: This can be found in [35].
At this stage, the optimization problem (P4) can be trans-

formed into:

P5: min
ΘΘΘ,PPP

∑
k∈K

Υk

θk
Tp +

1

K

∑
j∈J

j∆0

+
1

K

∑
j∈J

∑
i∈Fj

[
(j − 1)∆0 +

Ci

B(log2(α
0
i )− Ω(α1

i ))

]
,

(28)
s.t. (4d), (4h), (4i), (18a), (18b), (19), (23),

(24), (26), (27), and
(a) ϱj ≥ 1/pmax, pi ≤ pmax, ∀i ∈ Fj , ∀j ∈ J ,

(b)
Ci

RnF
i

≤ ∆0 − ε, ∀i ∈ Fj , j ∈ J ,

(c) Z0Θ(θj , ϱj) + z0ψ(ϱj) ≥
A0

jN0

GbsEj
, ∀j ∈ J .

In the above problem, (28a) constrains the maximum transmit
power for each F-UE, due to pj is replaced by the inverse of
ϱj . As shown by (28a), each nF-UE’s delay is now restricted
by the upper-bound shrink a tiny interval from the original
∆0. Last, (28c) is an approximated form of the constraint (24),
which can be known from Proposition 3.

3) Tackling Nonconvex inequality Constraints: Seen from
problem (P5), we find that, the convexities are guaranteed for
the objective function, as well as for the constraints (4d), (4h),
(19), (23), (24), (26), (27), (28a), and (28c). Hence, let us now
tackle the nonconvex inequality constraints remaining in the
problem.

Let us first deal with the constraint (18a) and (18b). It is
worth noting that, there exists the fractional term pi/θi, which
can be tackled by the approach similar to that for pj/θj .
Hence, we further introduce the auxiliary variable ϱi ≥ 1/pi,
thereby converting (18b) into:∑

i′∈Fj ,Ei′<Ei

Gbs

(
Z0

θi′ϱi′
+
z0
ϱi′

)
Ei′

+Gbs

(
Z0

θjϱj
+
z0
ϱj

)
Ej ≤ α1

i , (29)

where ∀i ∈ Fj , j ∈ J , which becomes a convex constraint.
For convenience, ξ0 denotes the left-hand side of the inequality
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(29). By contrast, although applying the transformation of (29),
(18a) persists non-convexity due to its feasible region defined
by being bigger than α0

i . Therefore, the linearity operation
provided in Proposition 3 should be employed. As a result,
the constraint (18a) can be transformed to∑

îj∈{i,j}

Gbs(Z0Θ(θîj , ϱîj) + z0ψ(ϱîj))Eîj +N0+

∑
i′∈Fj ,Ei′<Ei

Gbs(Z0Θ(θi′ , ϱi′) + z0Ψ(ϱi′))Ei′ ≥ α0
i , (30)

where ∀i ∈ Fj , j ∈ J , which is now a convex constraint. For
convenience, we denote the left-hand side of the inequality
(30) as ξ1.

For (28b), we now replace the variables 1/pi, 1/pj with the
auxiliary variables ϱi and ϱj , thereby giving

Gbs

(
Z0

θiϱi
+
z0
ϱi

)
Ei︸ ︷︷ ︸

Ξ0

−A1
i ξ0︸ ︷︷ ︸
Ξ1

≥ A1
iN0, (31)

where the first term Ξ0 is non-convex. Let us apply the
linearity operation in Proposition 3, giving the convex form:

Gbs(Z0Θ(θi, ϱi) + z0ψ(ϱi))Ei − Ξ1 ≥ A1
iN0. (32)

At last, the similar approach for tackling the objective
function can be applied to the constraint (4i). Let us define the
auxiliary variables β0

i and β1
i to transform the rate expression

of the nF-UEs. Then, it needs to bound the SINR of the nF-
UEs, where the similar approximation approaches are used.
In that case, our optimization problem can be eventually
converted to a convex form, expresses as

P6: min
ΘΘΘ,PPP

∑
k∈K

Υk

θk
Tp +

1

K

∑
j∈J

j∆0

+
1

K

∑
j∈J

∑
i∈Fj

[
(j − 1)∆0 +

Ci

B(log2(α
0
i )− Ω(α1

i ))

]
, (33)

s.t. (4d), (29), (30), (25), (28c), (32), and
(a) ϱk ≥ 1/pmax, ∀k ∈ K,
(b) ϱi ≤ ϱi′ , θi ≤ θi′ for Ei ≥ Ei′ , i ̸= i′,∀i, i′ ∈ I,

(c)
∑
k∈K

Υk

θk
Tp + (j − 1)∆0 +

Ci

B(log2(β
0
i )− Ω(β1

i ))

≤ Di, ∀i ∈ Fj , ∀j ∈ J ,
(d) ξ1 ≥ β0

i , ∀i ∈ Fj , j ∈ J ,
(e) ξ0 ≤ β1

i , ∀i ∈ Fj , j ∈ J .

Now, (P6) is a convex optimization problem, which can be
solved by CVX toolbox.

B. Principles of JBTP algorithm

In this subsection, we introduce the principles of the pro-
posed JBTP algorithm, which are summarized in Algorithm
2, where ∀i ∈ I,∀k ∈ K.

Algorithm 2: JBTP algorithm for solving problem (P2)

Initialization: 1) Set iteration index n = 0; 2) Set
maximum iteration number Nmax; 3) Set 0 < ϵ < 0.001;
4) Initialize parameters α̃1(0)

i , β̃1(0)
i , θ̃(0)k , and ϱ̃(0)k ;

5) Initialize variables α0α0α0(0),β0β0β0(0),α1α1α1(0),β1β1β1(0),ΘΘΘ(0),PPP (0);
While n < Nmax & |τn − τn−1| > ϵ do

Solve the convex optimization problem (P6) by
CVX toolbox;
Output: the solutions in nth iteration
α0α0α0(n),β0β0β0(n),α1α1α1(n),β1β1β1(n),ΘΘΘ(n),PPP (n);
Compute the objective value τ̃(α0α0α0(n),α1α1α1(n),ΘΘΘ(n))
according to (33);
Update the parameters for problem (P6):
α̃
1(n+1)
i ← α1

i
(n), β̃1(n+1)

i ← β1
i
(n), θ̃(n+1)

k ← θ
(n)
k ,

ϱ̃
(n+1)
k ← ϱ

(n)
k , n→ n+ 1;

End
Output: The optimal solution {ΘΘΘ∗,PPP ∗}.

As shown by Algorithm 2, it is necessary to find the
appropriate initial values of the parameters α̃1(0)

i , β̃1(0)
i , θ̃(0)k ,

and ϱ̃
(0)
k according to the relevant constraints of problem

(P6). During each iteration, we can apply the CVX toolbox
to solve the convex problem of (P6), thereby obtaining the
optimal solution {α1α1α1(n),β1β1β1(n),ΘΘΘ(n),PPP (n)}. At the end of
each iteration, it needs to update the parameters α̃

1(n+1)
i ,

β̃
1(n+1)
i , θ̃(n+1)

k , and ϱ̃
(n+1)
k , ∀i ∈ I,∀k ∈ K. By repeating

solving problem (P6) until the objective function converges,
the approximate optimal solution {ΘΘΘ∗,PPP ∗} of problem (P2)
can be finally obtained.

C. Principles of AO-RA scheme

Algorithm 3: AO-RA scheme for solving problem (P0)

Initialization: 1) Set iteration index m = 0; 2) Set
ϵ̃ > 0; 3) Set feasible values for {Θ̃̃Θ̃Θ(m), P̃̃P̃P (m)} in (P0);
While |τ̃m − τ̃m−1| > ϵ̃ do

Step 1: Give {Θ̃̃Θ̃Θ(m), P̃̃P̃P (m)}, run Algorithm 1,

Output: The assignment matrix SSSnF∗(m)
;

Step 2: Given SSSnF∗(m)
, run Algorithm 2,

Output: The beamwidth and power {Θ∗Θ∗Θ∗(m),P ∗P ∗P ∗(m)},
and the objective value τ̃m;

Step 3: Update the beamwidth & transmit power
for Algorithm 1,
Θ̃̃Θ̃Θ(m+1) ←Θ∗Θ∗Θ∗(m), P̃̃P̃P (m+1) ← P ∗P ∗P ∗(m);
m→ m+ 1;

End
Output: the optimal solution: SSSnF∗,Θ∗Θ∗Θ∗,P ∗P ∗P ∗.

Let us now introduce the principles of the AO-RA scheme
developed for solving the original problem (P0), where the
UE scheduling, beamwidth and transmit power are jointly
optimized. As shown in Algorithm 3, based on the rationale
of AO approach, for iteration n, we need to solve problem
(P1) by the MC-M2OE algorithm, giving the solutions AAA∗(n).
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Fig. 2. Average delay performance of the offloading transmission employing
the proposed AO-RA scheme.

Based on the above, we in turn find the optimal solution of
problem (P6), resulting in the solutions ΘΘΘ∗(n) and PPP ∗(n). By
repeating the above process, the final solution can be obtained
when the objective function of average delay is not improved
in demand. After our careful study, we find that, Algorithm 3
only needs a very few number of iterations (less than 10) to
converge.

V. NUMERICAL RESULTS

In this section, we provide a range of simulation results
for demonstrating the achievable delay performance of the
NOMA-mmW MEC systems employing the proposed algo-
rithms. In our simulations, we consider different number
of F-UEs and nF-UEs, in order to study the joint impact
of UE scheduling, beamwidth selection and transmit power.
In addition, the key simulation parameters include: 1) The
bandwidth available is B = 100MHz; 2) Quota of each
NOMA group Q = 3; 3) Beamwidth of each mmW link is
constrained by π/36 < θ < π/6; 4) Maximum delay for each
nF-UE is Di = 4.5s,∀i; 5) All mmW links follow Nakagami-
m fading with m = 5; 6) Path loss parameter α = 2.1. The
OMA scheme in this section refers to using a greedy algorithm
to group all UEs according to time slots, and the UEs in the
same group do not interfere with each other.

Fig. 2 investigate the delay performance of the proposed
AO-RA scheme and the OMA scheme when considering dif-
ferent number of F-UEs and nF-UEs, while varying maximum
transmit power. As we proved, the proposed AO-RA scheme
can always find the promising solutions of UE scheduling,
beamwidth and transmit power for the NOMA-mmW based
MEC offloading. First of all, we can see that, as the number
of UEs gets bigger, the average delay required by the AO-
RA scheme is increased, which is due to the ICI becomes
severer within the NOMA groups. It can be seen that the
performance of the case “I = 7, J = 3” is lower than that
of the case “I = 7, J = 4”. This is simply due to that, when
there are more F-UEs (i.e. more NOMA groups), our AO-
RA scheme will achieve a higher degree of selecting freedom
for UE scheduling. In that case, it will in turn increases
the probability of reducing the offloading transmission time
for more nF-UEs, which therefore results in decreasing the
average delay. Nevertheless, if keep increasing the number
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Fig. 3. Performance comparison of different UE scheduling methods for
NOMA grouping when fixing J = 7.

of F-UEs, the delay time spend on beam alignment will
become higher, and would be a dominant factor in minimizing
the average delay. From the above, we may conclude that,
the NOMA-mmW based MEC offloading needs to carefully
balance the selecting freedom of UE scheduling and mmW’s
beam alignment overhead. Furthermore, the performance gap
between “I = 7, J = 3” and “I = 7, J = 4” is much smaller
than the gap between “I = 7, J = 4” and “I = 10, J = 4”.
This implies that, the optimal solutions always prefer to assign
unbalanced number of nF-UEs to different NOMA groups. The
chances are that, the NOMA groups scheduled with higher
priorities have less probabilities of being outdated, then are
assigned with heavier loading of nF-UEs. Furthermore, we
also observe that, when more transmit power can be invested,
the delay for offloading transmission can be slightly reduced.
From the above observations, we may conclude that, the prac-
tical system design for NOMA-mmW based MEC offloading
should carefully carry out the UE scheduling, rather than
simply investing more transmit power causing unnecessary
energy waste. In addition, when “I = 4, J = 2”, it can be seen
that the performance of the OMA scheme is lower than that of
our AO-RA scheme, which confirms that the AO-RA scheme
can utilize the time-frequency resources more efficiently and
achieve lower average delay.

In order to study the impact of UE scheduling, we provide
Fig. 3 to compare the proposed M2OE algorithm with the
existing algorithms, where fixing the power allocation and
beamdwidth solutions. Note that, in the context of the greedy
algorithm, each NOMA group selects the nF-UEs with the best
channel qualities from the current available options, and it is
always fully loaded as long as there are nF-UEs available to
join in. By contrast, the random method refers to assign similar
number of nF-UEs to each NOMA group, where the nF-UEs
are selected randomly. As observed, our M2OE can always
achieve the best NOMA grouping results, and significantly
outperforms the other two methods. However, we can see that,
as the number of nF-UEs gets bigger, the M2OE algorithm’s
performance is slightly decreased, while that for the greedy
algorithm becomes better. This is due to the fact that, the
number of NOMA groups and the quota are fixed, more
NOMA groups will be fully loaded when there are more nF-
UEs, in which case, the ICI will dominate the performance.
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pilot transmission Tp.
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Fig. 5. Delay required by beam alignment when employing the JBTP
algorithm.

Furthermore, the greedy algorithm is outperformed by the
random method, which implies that the average delay perfor-
mance may be heavily degraded by fewer nF-UEs with poor
channel qualities. From the above, we may conclude that, in
the NOMA-mmW offloading design of practical MEC system,
one should properly schedule UE transmission by setting a
suitable quota as well as finding the optimal for the NOMA
grouping.

Furthermore, Fig. 4 shows how the beamwidth optimization
affects the delay performance. For comparison, in the figure,
we introduce the “max-beamwidth” and “min-beamwidth”
methods, which simply use {θk = θmax,∀k} and {θk =
θmin,∀k}, respectively. Note that, they all employ the same
NOMA grouping and power allocation approaches as the
proposed one. As seen, the proposed algorithms can signif-
icantly outperform the other two methods, regardless of Tp
employed. In the low Tp regions, such as Tp ≤ 0.0004,
the optimal beamwidth prefers to choose a medium value of
[θmin, θmax], and its contribution to reducing the total delay is
relatively limited. By contrast, as the value of Tp gets bigger,
the optimal beamwidth tends to approaching the maximum
beamwidth θmax. This obervation implies that, when using
mmW transmission for MEC offloading, one should carefully
balance the benifit of enhanced antenna gain by narrower
beamwidth and the increased delay cost by beam alignment.

Fig. 5 shows the delay of beam alignment τBA by evaluating
all the users while considering different the pilot transmission
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Fig. 6. Convergence performance of the proposed M2OE and JBTP
algorithms.

time Tp. Note that, on the x-axis, the indexes from 1 to 10
indicate nF-users, and those from 11 to 14 indicate F-users,
where assuming the UEs with smaller indexes have better
channel qualities. It can be seen that, for all the UEs, the
beam alignment delay τBA increases as the pilot transmission
time Tp gets bigger. Again, this observation confirms that,
for mmW communication based MEC offloading, the beam
alignment will demand a considerable amount of delay in
addition to data transmission, if pilot transmission is not
properly designed. Furthermore, we observe that, the F-UEs
have higher beamalignment delay than the nF-UEs, since they
utilize narrower beamwidth. This is because that, within each
NOMA group, the F-UE’s signal is always decoded at last,
and is free of ICI, which stimulate the F-UE to pursue higher
antenna gain for data transmission. Due to the similar reason,
the nF-UEs 1, 2, 3 with higher channel qualities need longer
delay of beam alignment than the rest of nF-UEs. By contrast,
we can see an exception that, when the pilot transmission time
is too long, such as Tp ≥ 0.0032, all the nF-UEs will have
almost the same delay for beam alignment. This observation
implies that, the JBTP algorithm tends to reduce the delay
of data transmission only by optimizing the transmit power,
regardless of the beamwidth used.

Finally, in Fig. 6, we evaluate the convergency of the
proposed algorithms. As you may aware, in Table 1 and
Table 2, they all involve the iterative processes for NOMA
grouping, joint beamwidth and transmit power optimization.
Seen from the figure, both the M2OE and JBTP algorithms can
converge to the optimal solutions within 20 iterations. Further,
as the number of nF-UEs increases, slight more iterations are
required. We also would like to mention that, the AO process
in Table 3 demands the number of iterations being smaller
than 5. Overall, the above facts confirm the low-complexity
feature of our proposed algorithms.

VI. CONCLUSION

In this paper, we have studied the delay performance of
the NOMA-mmW scheme based MEC offloading system. In
particular, we focused on solving the RA problem of jointly
optimizing the beamwidth, NOMA grouping and transmit
power, aiming at minimizing the average delay of MEC
offloading transmissions. To tackle the MINLP problem, we
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proposed the AO-RA scheme, where the MC-M2OE algorithm
and the JBTP algorithm designed are iteratively operated. We
have carried out the comprehensive performance evaluation
for the proposed algorithms. Our simulation results showed
that, the AO-RA scheme had high-efficiency in minimizing the
offloading delay. In particular, the MC-M2OE could always
find the best UE scheduling for NOMA grouping, while
demanding relatively low complexity. Furthermore, from the
delay performance we drew the conclusion that, in the prac-
tical MEC system design, one should properly schedule UE
transmission by setting a suitable quota as well as finding the
optimal NOMA grouping, rather than simply investing more
transmit power causing unnecessary energy waste.
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