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Abstract—As an emerging technology, federated learning (FL)
involves training machine learning models over distributed
edge devices, which attracts sustained attention and has been
extensively studied. However, the heterogeneity of client data
severely degrades the performance of FL. compared with that
in centralized training. It causes the locally trained models of
clients to move in different directions. On the one hand, it slows
down or even stalls the global updates, leading to inefficient
communication. On the other hand, it enlarges the distances
between local models, resulting in an aggregated global model
with poor performance. Fortunately, these shortcomings can be
mitigated by reducing the angle between the directions that
local models move in. Based on this fact, we propose FedCos,
which reduces the directional inconsistency of local models by
introducing a cosine-similarity penalty. It promotes the local
model iterations towards an auxiliary global direction. Moreover,
our approach is auto-adapt to various non-IID settings without
an elaborate selection of hyperparameters. The experimental
results show that FedCos outperforms the well-known baselines
and can enhance them under a variety of FL scenes, including
varying degrees of data heterogeneity, different number of
participants, and cross-silo and cross-device settings. Besides,
FedCos improves communication efficiency by 2 to 5 times. With
the help of FedCos, multiple FL. methods require significantly
fewer communication rounds than before to obtain a model with
comparable performance.

Index Terms—Edge computing, federated learning, data het-
erogeneity, performance improvement, communication efficiency

I. INTRODUCTION

With the proliferation of sensing devices, a new era of
Internet of Things (IoT) is sparked. These distributed devices
generate significant amounts of data all the time, which
promotes artificial intelligence into our life, such as smart
healthcare system, automatic driving, smart city, etc. Tradi-
tionally, to reap the benefits of data of edge devices, the
predominant approach is to collect all the data to the remote
central cloud for processing and modeling. However, with
the rapid development of IoT applications, transmitting the
generated data results in high communication cost. Moreover,
uploading the data may impose great privacy leakage risk.
Under the limitation of legislation such as General Data
Protection Regulation (GDPR) [1], training the deep learning
model centrally by gathering data from users is impractical.

Edge computing is proposed to shift more computation to
the network edge, allowing the edge devices to train models
locally. However, insufficient data samples and local data shifts

would lead to a worse model. With the landing of feder-
ated learning (FL), training deep learning models in parallel
with the edge nodes becomes achievable. FL is a distributed
computing paradigm that multiple remote edge devices col-
laboratively train a global model without exchanging their
local data. It treats the collaborative edge devices as working
clients, training a machine learning model by local data and
synchronizing the parameters via the parameter server. Since
model parameters instead of raw data are transitted in the
training process, the risk of privacy leakage is greatly reduced
and the problem of communication overhead is alleviated'.
As an emerging machine-learning technique, FL is still in
the early stages of research [2]. Compared with the traditional
distributed machine learning, FL faces the challenge of data
heterogeity caused by the limitation of data transferring.
Specifically, for the traditional distributed machine learning,
where the training data of clients is sampled in IID (identically
and independently distributed) way, the stochastic gradients of
local models are unbiased estimates of the full gradients [3],
[4]. In this case, all the clients have roughly the same optimal
target. The local models move in the same direction. There-
fore, the performance is almost identical with the centralized
methods even if the local models are synchronized after
multiple local iterations [5]-[7]. On the contrary, accuracy
significantly degrades under more widespread non-IID data
distributions [8], [9]. The heterogeneity of client data has been
deemed as a pivotal factor suppressing the performance [10]
since the standard algorithm FedAvg [11] is proposed. In this
situation, the condition of unbiased estimation is no longer
met. Although it can be alleviated by reducing the number
of local iterations (e.g., as an extreme case, all the local
models are iterated only once in each communication round),
intolerable communication overhead would be introduced.
Therefore, how to enhance the learning performance with
limited communication resources is a foundational goal of FL.
Many previous works has been done to try to improve the
performance of FL in a variety of aspects. Among them, plenty
of studies focus on local training [12]-[14]. For instance,
FedProx [12] adds a proximal term to restrict the local model
not far from the current global one. FedMMD [13] has the
same goal but by making their output distribution similar.

Generally, in IoT scenarios, the number of model parameters is relatively
small compared to the massive amount of raw data continuously generated.



But they may slow down model updates since they enforce
the local models close to the stale model. Besides, from the
experimental study [15], FedAvg still performs best in many
kinds of FL scenes. Other approaches attempt to improve
aggregation scheme [16]-[19], which either requires additional
public data for model distillation [17] or introduces expensive
training costs for obtaining sufficient model samples [16],
which is not suitable for edge devices. Some works [20],
[21] attempt to speed up training to reduce the communication
rounds, but they have no effect on improving performance or
even hurt performance [15]. Thus, in practice FedAvg still is
the widely accepted one.

In the non-IID data scenarios, the local model of each
client updates iteratively to its local optimum based on the
data itself. During the local iterations, local models move in
diverse directions, which causes the two following problems.
Firstly, the gains from local training would be offset by
the aggregation of local models, which slows down or even
stalls the global updates to lead to inefficient communication.
Secondly, local models are far away from each other, which
causes the aggregated model distant from all local models,
leading to poor model performance on all local data. What’s
worse, to reduce the communication cost, the clients usu-
ally perform multiple SGD steps before aggregation, which
enlarges the distances further. From our investigation, these
shortcomings can be addressed by reducing the angle between
the directions that local models move in. Based on this fact, we
propose a new Federated enhancement with Cosine-similarity
penalty (FedCos). We introduce an auxiliary global direction
that all clients refer to in the local training phase to reduce
the directional inconsistency of local models. This constraint
accelerates the global updates and diminishes the distances
between local models so that the aggregated model is not far
away from all the local optima. By analyzing the execution
process, we observe FedCos explores more points around the
convergence point of FedAvg in the parameter space, which fa-
cilitates more points closer to the global optimum to be found.?
Meanwhile, FedCos is auto-adapt to the FL settings. The effect
of penalty is tuned automatically according to the degrees of
heterogeneity of data. Elaborate hyperparameter selection for
different scenes is no longer required. In conclusion, the main
contributions are summarized below:

« We investigate how data heterogeneity leads to inefficient
communication and performance degradation in detail,
and explore the angle between the directions that local
models move in is the critical issue.

o We propose FedCos, which reduces the directional in-
consistency of local models by introducing a cosine-
similarity penalty. FedCos can obtain better models than
FedAvg and is auto-adapt to the settings without elaborate
hyperparameters selection.

e We construct a wide variety of FL scenes comprising

2In fact, due to the nonconvexity of neural network, SGD and other
optimization methods aim to find minima. Here we do not distinguish minima
and optima, which is not affect the analysis of this paper.

different degrees of data heterogeneity, varying amounts
of participants, under cross-silo and cross-device set-
tings. FedCos outperforms other well-known FL methods
(FedAvg, FedProx, FedOpt and FedAvgM) regardless of
FL scenes, and can enhance them. Furthermore, FedCos
improves the efficiency of communication. It greatly
reduces the number of communication rounds to obtain
global models with the same performance. To our best
knowledge, FedCos is the first enhancement that can
persistently outperform and enhance FedAvg and other
FL methods in a variety of scenes.

II. RELATED WORK

As an extension of distributed training, McMahan et al. [11]
first propose the concept of federated learning and related
training paradigm FedAvg. After that, a lot of attention has
been attracted to explore its potential and applicability. It
has been shown that the data heterogeneity of clients induce
performance decline [8], [22], [23]. To address this issue, exist-
ing methods primarily adjust the local training. Among them,
FedProx [12] adds a regularization to the local loss function,
which enables the local parameters not far from the global
parameters. FedMMD [13] tries to constrain the distribution
of the local model close to the global one. SCAFFOLD [20]
manually modifies the drift of local training. However, most
of them fail to outperform FedAvg in multiple FL scenarios.
Another approach improves the performance by modifying the
aggregation scheme. For example, FedBE [16] introduces a
Bayesian scheme, where the global model is regarded as the
expectation of model distribution, but too much training cost is
introduced. FedDF [17] introduces data distillation technology
to distill the global model from multiple local models, but
additional public data is needed. FedPA [18] constructs a pos-
terior model replacing the weighted average model. The prior
assumption of uniform distribution is suspicious. DRFA [19]
aims to solve a more general problem with arbitrary weights
for local clients, which makes the problem harder.

Additionally, some studies enhance the performance under
specific context. GKT [24] focuses on the scenario where
the edge has limited resources. FedRobust [25] considers the
data distribution has a common drift on one client. CFL [26]
and IFCA [27] divide the clients into several classes and
learn a model for each class, where the data distribution is
heterogeneous. These studies for specific problems are unsuit-
able for general FL scenes. Besides accuracy, FL also faces
other challenges [2] such as communication, privacy, security,
personality, which also arouse wide attentions [28]-[32] but
are out of the scope of this paper. In addition, many traditional
studies such as the Ascent Method [33] and ADMM [34] focus
on similar problems with theoretical guarantees, which are
not generalizable to the deep learning-based FL, where strong
duality is no longer satisfied.

III. PROBLEM STATEMENT

A. Background: FedAvg structure

In this paper, we discuss the distributed network as shown in
Fig. 1. It involves N edge devices as clients and one parameter
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Fig. 1. The federated learning structure for distributed edge data.

server to jointly learn a global model x € R™ without data
sharing by federated learning (FL). Each device i € [1,N]
owns one local dataset D;. The aim can be formulated as the
following problem

N
argnr;inf(m) = Z)\ifi(l’), (1)
i=1

where f; represents the loss function on client i, and A,
is the weight satisfying Zf\il)\i = 1. To facilitate this,
Federated Averaging algorithm (FedAvg) is proposed in the
federated setting, which tackles the problem iteratively. More
specifically, each client performs SGD up to T steps and
synchronizes the model every K steps, i.e., synchronization
happens at steps Z = {nK|n = 1,2,---}. There are two

phases in each federated learning round:

Local training (on client). For client i € S, where S
denotes the set of clients participating in the training. The
local model iterates from ] (r € Z), which is initialized to
the latest received global model ", and updates as

o P = 2 gV fi(a] T B), )

where t = {0, --- , K —1}, B; is the mini-batch sampled from
client ¢’s local data D;, and n; is the learning rate. After K

steps, the client sends the local model z[ ™% to the server.
Global aggregation (on server). The global model is
updated as follows:

=3 Nt 3)
i€ES
where \; = %, and then the global model parameters

are distributed to all or selected clients for the next “local
training and global aggregation” round.

In each round, some or all clients participate in the training,
which corresponds to distinct FL scenarios called “cross-
device” or “cross-silo” respectively.

B. Directional inconsistency

Data heterogeneity of clients, i.e., non-IID data setting, is a
common phenomenon in FL, which seriously affects FedAvg’s
performance. Although numerous methods are proposed, few

approaches exceed FedAvg in all scenes. Li et al [15] ex-
haustively compare FedAvg and other three typical improved
methods (FedProx [12], SCAFFOLD [20] and FedNova [14]),
finding out FedAvg still exceeds others in a variety of non-IID
scenarios. As the standard solution of FL, FedAvg is still the
most appropriate baseline that most studies concern.

In non-IID scenarios, the local model of each client updates
iteratively to its local optimum. During the local iterations,
local models move in different directions, which causes two
problems as follows:

Problem 1 (Communication inefficiency). Heterogeneity
slows down, even stalls the global updates, making the training
inefficient, even aborting the training halfway in practice.

In each round, we define the displacement vector of client
1 after the local training phase as d; = leK — 2. Based on
equation 3, we obtain the displacement vector of the global
model d = ZN A;d; whose norm representing the moving

distance of thezEllobal model can be denoted as

N N
ldll = 11> Nidill = J Do A2dill2 + Y Xidslilllldsll cos 65,
i=1 i=1 i
(C))
where 0;; is the angle between two vectors d; and d;. When
we fix ||d;|| and A; (1 <4 < N) (which are dominated by the
learning rate and data amount respectively), ||d|| is determined
by 9”

If the data distribution among the parties is homogeneous
(i.e., IID), for any z, ¢ and j, V fi(x) = V f;(z). As a result,
all the local models move roughly in the same destination
(Fig. 2(a)), namely 6;; ~ 0. If ||d;|| = ||d|] 1 < i < N), we
have ||d|| = ||d||. Thus in IID setting, the moving distance of
the global model is as large as the local one.

If the data distribution among the clients is heterogeneous
(i.e., non-IID), Vf;(x) and Vf;(x) are quite different. In
this case, all the local models move in different direction
(Fig. 2(b)). Since in high-dimensional space, any two vectors
are almost perpendicular, i.e., 6;; ~ 90°. If ||d;|| = ||d|| and
A =X(0 < ¢ < N), we have ||(f\| = %, which means
in the non-1ID data settings, the global model moves far less
distance than local one. When N is large, the global model
updates are very slow, even stalled (/N — 00). To mitigate this
problem, from (4), a smaller 0;; leads to a larger ||aAl , which
means the global model moves further. It also be verified in
Fig. 3(a) and Fig. 12(c) in the experiment section.

Problem 2 (Poor performance). The convergence point of
FedAvg is far from the true global optimum in non-IID settings.

Based on Taylor’s theorem, if the distance between a point
z and the optimum of one client (e.g., x7) is small, = is a
suitable model for its local data. Therefore, we aim to find
a point close to the optima of all clients. Under the non-IID
condition, the distances between the local optima of different
clients are large. If x is too close to the optimum of one client,
it usually has bad performance for other clients. The global
optimum achieves the best balance between different clients,
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Fig. 2. Examples of FL update with two clients.(a) IID setting; (b) Non-IID
setting;(c) adjusting the angle between the directions that local models move
in.

which is not too far away from all the local optima. Actually,
Xie et al. [35] prove that SGD favors the flat minima. Izmailov
et al. [36] also point out that the optimum is located in a flat
region, where the performance is almost the same (referred
to as “optimal region” for short). SGD usually stays at a
point at the edge of the region. Hence it is feasible to find
a representative point on each optimal region, which is closer
to the optimal regions of other clients. As shown in Fig. 2(c), if
we adjust the angles between the directions that local models
move in (e.g., f12 — 61,), and keep the local models in or at
the edges of the optimal regions, the new aggregated model
(e.g., 2'"*?) is better than the previous one (e.g., 2" %) for
being closer to the local models. Suppose there are two clients
satisfying ||d1]| = ||dz2|| = ||d|| and Ay = A2, and the angle
between ||d;|| and ||dz|| is #12. The distance between global
model and local model is ||d|| cos %. A smaller angle between
d; and dy may lead to a better aggregated model. It also be
verified in Fig. 3(a) and Fig. 12(b) in the experiment section.

From the above investigation, reducing the directional in-
consistency of local models would be a critical issue to
mitigate the influence of data heterogeneity, which motivates
us to introduce a cosine-similarity penalty to reduce the angle
between the directions that local models move in.

Algorithm 1 FedCos: Federated learning with Cosine-
similarity penalty

Input: K, T, 20 d°=0
1: Server sends 2° and d° to all clients.
2. fort=1to T do
3:  (Local training:)
4: Each client in S updates the local model z! by mini-
mizing (5).

50 if t%K == 0 then

6: Each client in S sends z! to the server.

7: (Global aggregation:)

8: The server updates 2 and d' by (3) and (7).

9: The server randomly selects a subset of clients S,
and sends 2! and d’ to the clients in S.

10  end if

11: end for
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Fig. 3. Reducing the inconsistency of directions of clients’ models helps
improve model performance. The experiment settings are the same as those
in Fig. 12.

IV. METHOD

A. FedCos

Based on the above analysis, we try to decrease the angle
between the directions that any two local models move to
in the local training phase. However, it is impractical to get
others’ direction vectors. Therefore, we construct a global
direction to constrain the local model updated along this direc-
tion. By adding this auxiliary direction, all the local models
update towards the same direction to mitigate the direction
inconsistency. Meanwhile, we use the auxiliary direction in
which the global model moves, the performance degradation
of global model is avoided. Based on this design, the loss
function of the local model is

Li(xi;cfcr,d%) = f(z:) + pi(1 — cos6;), 5)

where p; is the weight of directional consistency, ", dr are
the initial global model and the global direction in this round,
and 6; is the angle between (x — Z") and d", so

(xi — 2", d")

[l =27l - [l ]|

cosb; = (6)
We define 0; = 0 (ie., cosf; = 1) if ||lz; — 27| or ||d"|| is
equal to 0. We employ the direction in which the latest global
model is moving as the reasonable global direction, i.e.,

dr — AT _ iT7K7 (7)

where 2"~ ¥ is the global model of the last round. Base on the
above formation, we propose our algorithm FedCos (Federated
learning with Cosine-similarity penalty) and summarize it in
Algorithm 1. FedCos is similar to FedAvg with a few differ-
ences. In the local training phase, instead of just minimizing



the loss f;(x) based on the local data, each client adds a
direction penalty. In the global aggregation phase, the server
also calculates the new global direction referenced in the next
round besides aggregation as FedAvg.

Moreover, we do not limit the form of f;(z;) in (5).
Therefore, FedCos also can be regarded as an increasement
on other methods of federated learning. For instance, if f;(x;)
is the cross entropy function, the basic method is FedAvg. If
fi(x;) is the cross entropy function adding a term ||z; — £ |2,
the basic method is FedProx.

B. Property analysis

We discuss some advantages of FedCos.

Property 1. FedCos can mitigate the inconsistency of direc-
tions of clients’ models.

This property is the motivation of FedCos, which is con-
sistent with the practical experiments. In Fig. 3, we illustrate
the dirctional inconsistency by randomly selecting two local
models (indexed by ¢ and j). In Fig. 3(a) shows the change
of angle of the two local models (i.e., the angle between
2K 37 and x§+K —2") in non-IID scenario at each aggre-
gation. For FedAvg, as the training progresses, the direction
of local clients become different. By contrast, FedCos reduces
the inconsistency with smaller angles. Fig. 3(b) illustrates the
performances on test dataset for relevant models. It shows
that FedCos with less inconsistency outperforms other two
methods. Therefore, reducing the inconsistency of directions
of clients’ models helps improve model performance.

Property 2. FedCos is auto-adapt to data heterogenity without
selecting penalty weight elaborately.

For FedCos, the update of local model is controlled by f;(x)
and h(xz) = pi(1 — cosb;) (5), where 0 < h(z) < 2u,; and
usually f;(z) > 0. The influence of penalty veries for different
data heterogenity. For IID scenarios, all the local models of
clients move in the same direction. The given global direction
is consistent with the local optimal ones (cos6; ~ 1). In this
situation, FedCos automatically degrades to FedAvg when the
penalty term approaches 0. For non-IID scenarios, more seri-
ous data heterogeneity leads to more direction inconsistency
of local model updates, which enhances the effect of penalty
even for a fixed p; (i.e., a bigger h(x)), and vice versa.

In the local training phase, f(z) is dominant and h(x) has
little influence in the first few iterations (usually we choose
a small p;). FedCos has little difference from FedAvg. When
fi(x) approaches 0, i.e., the local model is close to the local
minimum, h(xz) becomes more effective. This penalty only
constrains the orientation of local model updates. Since there
is a flattened optimal region [35], [36], direction variation
has little influence on accuracy once the model reaches the
area, which guarantees f;(x) and h(z) get small simultane-
ously. Therefore, FedCos cannot has little influence on the
performance of local model. Furthermore, due to reducing
the model inconsistencies by the same auxiliary direction, an
better aggregated model can be gained.
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local optima
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Fig. 4. Comparing the global model trajectories among FedAvg, FedProx
and FedCos with 80 rounds. The points with darker colors denote the models
from later rounds.

Therefore, FedCos provides a universal performance im-
provement scheme, which is auto-adapt to the changes of data
heterogeneity. We do not need to elaborately select the penalty
weight regardless of the non-IID degrees of data. A fixed one
would perform well for many kinds of FL settings, which is
verified in the following experiments.

In contrast, FedProx reduces the differences between the
local models and the aggregated global model by adding the
penalty ||z — 2| with weight p, which plays an invariant role
no matter how heterogeneous the data is. Moreover, for IID
scenarios, there is little difference between the local models,
but the penalty takes an opposite effect that prevents the model
from approaching the optimum. Thus FedProx has to develop
a complex heuristic method to tune p carefully (section 5.3
in [12]).

V. PERFORMANCE ANALYSIS

To illustrate the properties of FedCos, we construct a
simple two-dimensional federated example Fig. 4. There are
two clients with local convex optimization problems denoted
by fi(z) and fy(x).> The global optimization problem is
f(z) = fi(x) + f2(z). Since fi(x) and fao(x) are quite
different (which simulates the non-IID scenario), the optimum
of f(x) is different with both local ones. With the same
parameter settings (such as the learning rate, the number
of local steps, and the number of rounds), we run FedCos,
FedAvg and FedProx respectively. For FedAvg, it cannot
achieve the global optimum. Specifically, the local models
(almost) reach the local optima after iterating enough steps at
the end of one round. In this case, the global model is close
to the middle point of two local optima, rather than the true
global optimum. FedProx, which attempts to deal with this
problem by decreasing the distances of local models, forces
the local models updating near the global model of the last
round. Unfortunately, FedProx fails to outperform FedAvg.
Furthermore, since it restricts the update of local models,
we discover FedProx converges slower than FedAvg from the

3In the example, the explicit functions are f1((=(0y, (1)) = 0.5(z gy —
6)2 + 0.75(%(0) — 6).7}(1) + 0.5$?1), f2(($(0)7$(1))) = 0.5(1‘(()) —3)% —

0.5(z gy — 3)z(1) + 0.517(21). The initial point of model is (5.1, —3.1).



trajectory of the global model. For FedCos, the global model
walks around the convergence point of FedAvg so that it
can achieve some points closer to the global optimum. For
the scenes with more clients, they can be regarded as the
superposition of multiple scenes with two participants, where
the same phenomenon exists (more details in Appendix A.1).

Although Fig. 4 only shows a toy example, it helps us to
comprehend the advantages of FedCos as follows: FedCos can
achieve the point closer to the global optimum than FedAvg.

At first we analyze that in each round the aggregated
model of FedCos moves further in the given global direction
- %. The local
optimization for FedCos is f;(x)+p;g(z), while it for FedAvg
is f;(z). Since rotating the coordinate system does not affect
the distance and the relationship between the points or vectors,
for convenience we use a matrix X! € R%*? rotating the

coordinate system to a new one so that dX = [||d]|,0,--- , 0],
i.e., the global direction is along the first dimension. For
simplicity, all the analysis is in the new coordinate system,
and we do not times X explicitly, i.e., x means zX. For any
component ;) of x, we have

than FedAvg’s. Suppose g(z) = 1

og(z) 1 dpllz =2l — (@ — & d)(zx) — 2)
A (i) ld]| |z — |
_ 1 dglle =@l — dll(z0) — E0) (@6 — i)
lldl| lz — 2|3
A 2 _ A2
(z©0) — 2(0) - ‘va || <0 =0,
_ |z — 2|
(z0) — Z0))(T@) — @) .
d Q0.
o — 2] s

¥
From (8) the partial derivative is nonnegative in the direction
of the auxiliary global direction.

In one round that d" is fixed, if client ¢ starts local training
of FedAvg and FedCos with the same model, the local model
is updated by (2) for FedAvg and

el =2l -V fi(al T Bi) = V(i) 9)
for FedCos, where Vg(z[™") = [gi((i)),~- ) 3‘2352)]? Com-
r+t

pared to (2), equation (9) adds —n;u; Vg(z] ") at each step,
which has an nonnegative component along the direction of
dr (8). Intuitively speaking, all the local models of FedCos
move further than FedAvg’s in the direction of the global
direction. The parameter p; controls the distance of the two
points. Thus, the aggregated global model also move further
than FedAvg’s in this direction.

Then we investigate the relationship of global models be-
tween FedAvg and FedCos. When FedAvg converges, i.e., the
local models and the aggregated model are fixed. As shown
in Fig. 5(a), The local model of FedCos is close to the cor-
responding one of FedAvg, but has an offset along the global
direction. The aggregated model is above the FedAvg’s (named
reference model). Hence in the next round, the global direction
is still pointing up. Due to the constraint of V f;(z} ", B;), the
local model of FedCos cannot move up endlessly. At some
round, the local model of FedCos does not move up, and the
aggregated global model does not move up too (Fig. 5(b)).

local optima _ local optima aggregation agi?:::iton dglz*cu:;lil(sm fa]:l(:)ll;:ll'y
. ., . < e aggreg ageregs sloba
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Fig. 5. The description of running FedCos.

In the next round, the global direction is no longer pointing
up (e.g., it points horizontally to the right in Fig. 5(c)). In this
case, the local model does not achieve the position as high as
the previous one. The aggregated model is below the previous
one (Fig. 5(c)). Thus in the next round, the global direction
is changed to point down, and the aggregated model goes on
too (Fig. 5(d)). In this way, the aggregated model of FedCos
walks around the reference model round by round, showing
the phenomenon in Fig. 4. The “radius” is controlled by g,
since it is related to the distance the aggregated model moving.

From the above analysis, the global models of FedCos are
around the convergence point of FedAvg. Therefore, with a
proper p;, which makes the “radius” smaller than the distance
between the convergence point of FedAvg and the true global
optimum, there are some points of FedCos closer to the true
global optimum than the convergence point of FedAvg. In
high-dimensional space, FedCos cannot iterate through all the
points on the hypersphere determined by 1, but it can explore
sufficient points around the convergence point of FedAvg to
explore points closer to the true global optimum with large
probability.

VI. EXPERIMENTS
A. Experimental settings

1) Baselines, Datasets and Models: We choose Fe-
dAvg [11], FedProx [12], FedAvgM [37], [38] and FedOpt [39]
as baselines. Since we need hundreds of edge devices in our
experiments, we silulate them on a server as most of previous
literatures for federated learning. All methods are implemented
with PyTorch1.8 and trained on GeForce RTX 3090 GPUs. We
conduct experiments on 4 datasets and corresponding models
as:

o CIFARI10 [40]. CIFAR10 consists of 60000 32x32 color
images in 10 categories, with 6000 images per category.
The training set contains 50000 training images and the
test set contains 10000 images. For CIFAR10, we use a
CNN network with 2 convolutional-pooling layers plus 2
fully connected layers. In Section VI-D1 Lenet is used,
which also shows similar results.

o FMNIST [41]. Fashion-MNIST is an updated version of
MNIST. It has 28x28 grayscale images of 70000 fashion
products from 10 categories. Each category has 7000
images. The training set contains 60000 images and the



TABLE I
PERFORMANCE (TOP-1 VALIDATION ACCURACY) COMPARISON ON CIFAR10 UNDER DIFFERENT DATA SETTINGS, WHERE N = 5.

Totally non-IID | 90% non-IID | 70% non-1ID 11D

FedAvg 49.56 64.30 66.82 68.78

FedProx(0.1) 44.75 61.75 65.30 66.27

FedAvgM(0.5) 48.35 64.06 66.38 67.95

FedOpt(1.5) 51.21 66.11 68.94 70.57
FedCos(0.01) 54.54 (4.987) 68.33 (4.037) | 70.50 (3.681) | 71.75 (2.971)
FedCos(0.02) 54.80 (5.247) 69.83 (5.537) | 71.46 (4.641) | 73.30 (4.521)

FedProx(0.1)+FedCos(0.02)
FedAvgM(0.5)+FedCos(0.02)
FedOpt(1.5)+FedCos(0.02)

50.85 (6.107)
54.30 (5.951)
54.46 (3.251)

67.68 (5.937)
69.27 (5.217)
69.97 (3.867)

70.65 (5.357)
71.01 (4.637)
72.64 (3.701)

7143 (5.167)
72.39 (4.447)
73.37 (2.801)

TABLE 11
PERFORMANCE (TOP-1 VALIDATION ACCURACY) COMPARISON ON FMNIST UNDER DIFFERENT DATA SETTINGS, WHERE N = 7.

Totally non-IID | 90% non-1ID | 70% non-IID 11D

FedAvg 74.91 85.15 86.83 88.04

FedProx(0.1) 74.47 84.35 86.12 87.51

FedAvgM(0.5) 74.76 85.18 86.65 87.98

FedOpt(1.5) 75.47 85.97 87.60 88.43
FedCos(0.01) 79.21 (4.307) 87.37 (2.221) | 88.69 (1.861) | 89.46 (1.427)
FedCos(0.02) 80.63 (5.721) 87.61 (2.461) | 89.08 (2.251) | 89.52 (1.487)

FedProx(0.1)+FedCos(0.02)
FedAvgM(0.5)+FedCos(0.02)
FedOpt(1.5)+FedCos(0.02)

7823 (3.767)
78.72 (3.967)
80.76 (5.291)

87.15 (2.801)
87.49 (2.311)
87.51 (1.541)

88.56 (2.441)
88.67 (2.021)
89.03 (1.431)

89.22 (1711
89.31 (1.331)
89.45 (1.021)

test set contains 10000 images. Compared to MNIST,
the complexity of the task is increased. For FMNIST,
we use a multi-layered perceptron network with 2 fully
connected layers.

o CIFARI100 [40]. CIFAR100 consists of 100 classes, each
of which has 500 images for training and 100 images
for testing. For CIFAR100, we use ResNet18 with group
normalization.

o Shakespeare [11] is built from The Complete Works
of William Shakespeare. It consists of 143 characters
with 517,106 samples. Each client takes all the samples
of one character as local data. We use a two-layer
LSTM classifier containing 100 hidden units with an 8D
embedding layer. The task is a next-character prediction
with a sequence of 80 characters as input, and there are
80 classes of characters in total.

2) Hyperparameter setting: For all experiments, SGD is
used as the optimizer in the local training phase, and the
learning rate is 0.01 as default.

For Table I, 5 clients use the same hyperparameters. The
batch size is 128. The number of local training steps in each
round is 400. The result is after 500 epochs for each client
(about 100 rounds of aggregation). For Table II, 7 clients are
with the same settings as above. For table III, 5 clients are
involved. The batch size is 64. The number of local training
steps in each round is 200. The result is after 300 epochs for
each client.

For Fig. 6, all the data are sorted by labels and divided into
2N equal subsets. Each client is randomly allocated 2 subsets
as its local dataset. We set the batch size 64 and the number
of local training steps in each round is 200. It shows the result
after 500 epochs for each client.

TABLE III
PERFORMANCE (TOP-1 VALIDATION ACCURACY) COMPARISON ON
CIFAR 100 UNDER DIFFERENT DATA SETTINGS WITH N = 5.

Totally non-IID | 90% non-IID | IID

FedAvg 50.51 52.84 64.93
FedProx(0.01) 50.34 50.54 64.58
FedCos(0.01) 52.62 54.49 65.13
FedCos(0.02) 53.37 55.50 65.35

For Table IV the data distribution method is the same as
Section VI-B2. We set the batch size 64 and the number of
local training steps in each round is 100. All the methods run
250 rounds. For Table V, each client takes all the samples of
one character as local data. The batch size is 10. The learning
rate is 0.5. The number of local training steps in each round
is 50.

B. Performance comparison

To compare the performance more comprehensively, we
investigate the performance of the candidate methods for both
FL scenarios named “cross-silo” and “cross-device” [42]. In
cross-silo scenario, all the clients take part in the local training
in each round, while in cross-device scenario only a part of
clients is active in each round. We construct experimental
scenes with various non-IID data settings and different number
of participants to verify the effectiveness of FedCos exhaus-
tively.

To compare the performance of FedCos, FedAvg and Fed-
Prox in different degrees of data heterogeneity, we construct
4 diverse scenes. (1) Totally non-IID setting: M classes of
data are sorted by labels and divided into N equal subsets.
Each client contains one as its local dataset. (2) 90% non-IID



TABLE IV

PERFORMANCE COMPARISON OF CNN (THE BEST PERFORMANCE OF THE GLOBAL MODEL IN 250
ROUNDS AND THE PERFORMANCE AT THE END OF THE TRAINING).

TABLE V
PERFORMANCE COMPARISON OF TWO-LAYER
LSTM AFTER 100 ROUNDS IN
CROSS-DEVICE FL CIRCUMSTANCES.

CIFAR10 FMNIST
10% 20% 10% 20% Shakespeare
Best | Last | Best | Last | Best | Last | Best | Last 10% | 20%
FedAvg 49971 | 48.69 | 51.44 | 50.61 | 82.69 | 79.68 | 8329 | 79.96 FedAvg 37.46 | 38.08
FdeProx(0.1) | 49.38 | 49.63 | 50.66 | 50.38 | 82.44 | 79.73 | 83.26 | 79.68 FdeProx(0.01) | 35.60 | 35.64
FedCos(0.02) | 54.90 | 52.54 | 57.97 | 56.15 | 84.49 | 82.21 | 86.07 | 84.35 FedCos(0.005) | 40.25 | 40.91
FedCos(0.05) | 59.36 | 57.50 | 61.80 | 59.07 | 85.69 | 85.22 | 86.74 | 85.87 FedCos(0.01) 41.80 | 42.96
60 120 120
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Fig. 6. Performance comparison under non-IID settings where N = 20.

setting: Based on totally non-IID setting, 10% of data of each
client are extracted, shuffled and then divided into N parts.
Each client has one. Thus each client has 10% of homogeneous
data. (3) 70% non-IID setting: Like 90% non-IID setting, each
client has 30% of homogeneous data. (4) IID setting: The data
are randomly shuffled and divided into IV parts. Each client
contains one.

1) Cross-silo FL with a few number of clients: Table I
shows the performance comparison of FedAvg, FedProx, and
FedCos with CNN on CIFAR10, where 5 clients are involved.
The penalty weight for FedProx is 0.1.* For FedCos, we
investigate two weights, i.e., y; = 0.01 and 0.02. For different
degrees of data heterogeneity, FedCos leads to a gain of at
least 3% over FedAvg and other 3 baselines in all cases.
Then we enhance each baseline method with FedCos. It shows
that FedCos can significantly improve the performance under
various data heterogeneity. Interestingly, in the IID setting,
FedCos still improves the baselines. This is because the notion

“In these experiments, the perforance of FedProx with too small penalty
weights(e.g., 0.01) would degenerate to FedAvg.

Fig. 7. FedCos enhances the communication efficiency of baselines on
CIFARI10.

of “IID” is based on statistics, while heterogeneity is pervasive
among clients in practice. Table II illustrates the performance
of MLP on FMNIST. We harvest the similar conclusions.

We also investigate more complex medels and datasets.
Table III° illustrates the performance of ResNet18 (with group
normalization) on CIFAR100 with 5 clients. FedCos still
significantly outperforms others.

2) Cross-silo FL with multiple clients: When more clients
join in, FedCos still leads the way. We increase the number
of clients to 20, and the results are illustrated in Fig. 6. On
CIFARI1O, after 500 epochs (about 100 rounds), the accuracy
of FedCos with p; = 0.02(0.01) reaches 57.14 (55.12),
while the accuracy of FedAvg is only 50.63. On FMNIST,
FedCos significantly improves the accuracy compared with
FedAvg from 81.52 to our best result of 85.36 (84.55) with
i 0.02(0.01). FedProx has a similar performance to
FedAvg but worse than FedCos.

3) Cross-device FL: Table 1V illustrates specific results,
where 100 edge devices join in the FL training, and 10%/20%
of clients are randomly chosen in each round. Since different

5Since the performance of FedProx with penalty weight 0.1 is too poor, we
use 0.01 instead.
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FedCos enhances the communication efficiency of baselines on

clients contribute the updates in each round, the global model
is not as stable as it in the cross-silo scenario. As a result,
we employ a larger penalty to impose the global constraints
(e.g., we set u; = 0.05). Here, we list the best results in 250
rounds and the results at the end of the training. With different
proportions of participants, FedCos is superior to baselines in
both measures. Table V illustrates the performance of LSTM
on Shakespeare dataset with 143 clients. FedCos is also better
than FedAvg and FedProx.

C. Comparison of communication efficiency

FedCos can improve the communication efficiency of each
rounds. With the same settings as that in Table I, we firstly per-
form the 4 baselines for 100 rounds. Then we investigate how
many communication rounds are required for the enhanced
approaches to train the same performance models. Fig. 7
shows the results on CIFAR10, where FedCos can reduce
communication rounds by 50%. It means by the enhancement
of FedCos, the communication efficiency of baselines is im-
proved. The same results are in Fig. 8, where the settings on
FMNIST are the same as that in Table II. The communication
efficiency is improved by 2 to 5 times. Meanwhile, it seems
that the improvement is more obvious for larger degrees of
heterogeneity of data. It fits our insight that data heterogeneity
leads to more serious directional inconsistency of local models,
which slows down the global updates.

D. Additional experiments

1) Detailed Comparison with FedOpt: From Table I and
Table II, FedOpt performs best in 4 baselines, and it can
also increase the moving distance of the global model with
carefully selected hyperparameters. FedOpt adjusts the learn-
ing rate of global updating 7,, where FedAvg is the case
with n, = 1. Fig. 9 shows the performance comparison

50
Iy
40
Q
S FedAvg
30 S FedCos(0.01)
) —— FedOpt(1.3)
20 FedOpt(1.5)
—— FedOpt(1.7)
0 50 100 150 200

rounds

Fig. 9. Comparison of FedCos and FedOpt.

—————— FedAvg

—— FedCos(0.01)
FedCos(0.02)
FedCos(0.05)

top-1 accuracy

0 20 40 60 80 100
rounds

Fig. 10. Performance comparison for ResNet18.

between FedCos and FedOpt with various 7),. For the first
several rounds, FedOpt speeds up the training like FedCos.
However, no matter what the learning rate is, FedOpt performs
as same as FedAvg after 200 rounds. In contrast, FedCos
keeps ahead of FedAvg and FedOpt all the time. Furthermore,
for FedOpt a larger 1, would make the training instability.
In our experiment, when 7, = 1.7, it has apparent jitter
on the performance curve. As 7), continues to increase, the
performance would seriously decrease.

2) Performance comparison under deeper neural networks:
To demonstrate the applicability of FedCos, the performance
for more deeper neural networks is investigated. Fig.10 shows
the results under total non-IID setting on CIFARI10 for
ResNet18, which is typical deep neural network much more
complex than previously evaluated models. Same as before,
FedCos with various of panelty weights outperforms FedAvg
much more. It should be noted that, since batch normalization
does not suit the Non-IID setting, we replace it with alter-

60

top-1 accuracy

2 | e FedAvg
—— FedCos(0.01)
FedCos(0.02)

0 100 200 300 400 500 600
rounds

Fig. 11. Performance comparison with 3200 epoches.
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Fig. 12. Mechanism illustration of FedCos.

native group normalization mechanism [43]. Due to the high
computational overhead, most of previous works explore the
mechanism of FL by simple networks.

3) Performance comparison under long time training: In
order to investigate the influence of round number, we greatly
increase the training time. Fig. 11 shows the comparison
under totally non-IID setting on CIFAR10, where each client
iterates 3200 epochs (more than 600 rounds). At the end of the
training, FedCos with p; = 0.02(0.01) achieves 58.58(57.66),
while FedAvg is only 56.83. For the best result on the test
dataset, FedCos with p; = 0.02(0.01) achieves 59.73(58.48),
while FedAvg is only 57.45. Although the gap between
FedCos and FedAvg is narrowed, FedCos still outperforms
FedAvg at the end of training. In practice, it is no need to
spend so much computational overhead and communication
cost, which can be saved by fewer local iteration steps and
aggregation round. So it does not affect the results of the
previous comparison.

E. Mechanism visualization

As noted in the analysis of previous section, the directional
inconsistency of local models is the crucial factor degrading
the performance of FL methods in non-IID scenarios, and
FedCos eases the inconsistency by the given global direction
vector. Fig. 3 and Fig. 12 further verify the results under the
totally non-IID scenario in Table II. Specifically, Fig. 12(a)
shows the moving distance of one local model. For FedCos,
the moving distance of the local model is smaller than it for
FedAvg, and the angle between the moving directions of two
local models is smaller (Fig. 3(a)). Therefore, the distance of
any two local models for FedCos is smaller than FedAvg’s
(Fig. 12(b)), which validates the analysis in Fig. 2(c). FedCos
obtains the local optima (approximately) closer to each other
than FedAvg. Thus, the aggregated model is closer to all the
local optima and performs better performance.

The global model only has little changes for FedAvg in
each round, while it moves farther for FedCos, as shown
in Fig. 12(c). Thus the global model updates of FedCos are
more efficient, which confirms the view in Fig. 2(b). Moreover,
although the moving distance of the local model for FedProx
is small (Fig. 12(a)), the angle is large and comparable with
FedAvg’s (Fig. 3(a)). Accordingly, the distance between the
two local models is not as small as expected (Fig. 12(b)).

Meanwhile, because of the strong constraint, the local model
for FedProx degrades the efficiency of local training. FedProx
performs worse than FedCos/FedAvg, despite with smaller
local models’ distances than FedAvg’s.

VII. CONCLUSION

In this work, we propose FedCos to improve model accuracy
in FL. FedCos introduces an auxiliary global direction to guide
the dirction of local model in training. This scheme improves
the performance of the aggregated model by reducing the
directional inconsistency of local models. We analyze the
properties of FedCos, and point out that FedCos can obtain
better models than the standard FL method FedAvg. From the
experiments, FedCos vastly outperforms FedAvg in a variety
of FL scenes. Due to the complexity of analysis, in this paper
more rigorous theoretical proofs are not given, which would
be explored in future work.
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VIII. APPENDIX

A. FL example with multiple clients

For the simple federated example with more participants,
the same phenomenon exists. Fig. 13 illustrates 3 clients. The
initial point is (4.53, 0.38). As in the example in Fig. 4,
the trajectory of the global model in FedCos is around the
stationary point of FedAvg. FedCos can obtain better models
closer to the global optimum than FedAvg.
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Fig. 13. Comparison of the trajectories of global models by FedAvg, FedProx
and FedCos on a simple example with 3 participants. All the methods perform
80 rounds. The points with darker colors denote the models from later rounds.



