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Abstract—Non-terrestrial networks (NTNs), which integrate
space and aerial networks with terrestrial systems, are a key
area in the emerging sixth-generation (6G) wireless networks.
As part of 6G, NTNs must provide pervasive connectivity to a
wide range of devices, including smartphones, vehicles, sensors,
robots, and maritime users. However, due to the high mobility
and deployment of NTNs, managing the space-air-sea (SAS) NTN
resources, i.e., energy, power, and channel allocation, is a major
challenge. The design of a SAS-NTN for energy-efficient resource
allocation is investigated in this study. The goal is to maximize
system energy efficiency (EE) by collaboratively optimizing user
equipment (UE) association, power control, and unmanned aerial
vehicle (UAV) deployment. Given the limited payloads of UAVs,
this work focuses on minimizing the total energy cost of UAVs
(trajectory and transmission) while meeting EE requirements.
A mixed-integer nonlinear programming problem is proposed,
followed by the development of an algorithm to decompose, and
solve each problem distributedly. The binary (UE association) and
continuous (power, deployment) variables are separated using the
Bender decomposition (BD), and then the Dinkelbach algorithm
(DA) is used to convert fractional programming into an equiva-
lent solvable form in the subproblem. A standard optimization
solver is utilized to deal with the complexity of the master
problem for binary variables. The alternating direction method
of multipliers (ADMM) algorithm is used to solve the subproblem
for the continuous variables. Our proposed algorithm provides a
suboptimal solution, and simulation results demonstrate that the
proposed algorithm achieves better EE than baselines.

Index Terms—Sixth-generation networking, space-air-sea com-
munication, satellite-access networks, unmanned aerial vehicle,
Bender decomposition, Dinkelbach algorithm, alternating direc-
tion method of multipliers.

I. INTRODUCTION

R esearch on 6G wireless networks is currently underway
in both academia and industry [1]. One major component

of 6G networks is non-terrestrial networks (NTNs) that consist
of space and aerial-based networking [2]. NTNs are expected
to provide global connectivity to regions and areas that are out
of reach of existing terrestrial networks. For instance, NTNs
can provide wireless network access to maritime users, called
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low-end user equipment (UE), that cannot directly connect to
any satellite. In particular, these low-end UEs can get network
services from an aerial access network near them [3]. However,
high-end UEs can directly connect with low-earth orbit (LEO)
satellites. Thus, a coordinated space-air-sea (SAS)-based NTN
network can extend the existing coastline base stations (CBSs)
coverage seamlessly. This heterogeneous SAS-NTN can meet
the increasing maritime network requirements, i.e., seamless,
energy-efficient, and high throughput coverage. The design
of NTNs faces many challenges, including the coordinated
integration of space, air, and sea platforms. While some of
these issues have been addressed in the past (see Section II),
nonetheless, the joint maritime users’ fronthaul and backhaul
communication mechanisms and UAV deployment techniques
in heterogeneous networks are missing.

The main contribution of this paper is a novel SAS-NTNs
architecture that enabled each maritime UE to connect with
the terrestrial networks. For reliable communication in this
network, maritime users with a high gain antenna, i.e., high-
end UEs (HUEs), can directly associate with a LEO satellite
or a CBS depending on their vicinity. However, low-end
UEs (LUEs) cannot effectively communicate with a LEO
satellite or a CBS due to low antenna gain [4]. In particular,
LUEs require assistance from UAVs, i.e., UAVs could transmit
LUEs’ data to a LEO satellite or CBS, using aerial-to-satellite
(A2S) links [5] or aerial-to-ground (A2G) links. These LUEs
limit themselves for long transmission distance due to power
consumption constraints [6]. As a result, the UAV is regarded
as an effective mode of communication for LUEs in the
maritime environment. UAVs are quickly deployed on the
place of interest, which is critical in isolated maritime regions
[7]. Our key contributions are summarized as follows:

• We propose a novel heterogeneous SAS network archi-
tecture for next-generation maritime mobile networks.
To serve maritime users, we propose the use of a LEO
satellite coupled with UAVs and CBSs for the service
provisioning of low-end and high-end UEs.

• We study the problem of resource management in the
SAS-NTNs to optimize resource block allocation, trans-
mit power control, and UAVs deployment for maximizing
network energy efficiency (EE). An energy efficiency
maximization problem is formulated by considering the
constraint of the limited payload of UAVs and also their
power consumption.
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• The problem of resource allocation in the SAS maritime
network is formulated as a mixed-integer nonlinear pro-
gramming (MINLP) problem. The goal is to optimize the
utility function considering the energy efficiency of the
network.

• Due to the problem’s high complexity, we propose a
novel algorithm to solve the MINLP problem, composed
of the Bender’s decomposition (BD), Dinkelbach algo-
rithm (DA), alternating direction method of multipliers
(ADMM) algorithm, and an optimization solver.

• The BD algorithm decomposes the main problem into
a master problem and another subproblem to obtain the
solution efficiently. The variables of the original problem
are divided into two subsets so that a first-stage master
problem is solved over the first set of variables, and the
values for the second set of variables are determined in a
second-stage subproblem for a given first-stage solution.

• We use the Dinkelbach algorithm for the subproblem to
transform fractional programming into an equivalent form
and adopt ADMM in the inner loop to distributedly solve
the continuous large-scale problem. We use the optimiza-
tion solver in the master problem to solve pure integer
programming with complexity reduction considerations.

• We evaluate the performance of our proposed algorithm
in the simulation. Our numerical results demonstrate that
the proposed algorithm achieves a near-optimal solution
and outperforms the other baselines. The proposed algo-
rithm achieves EE up to 9% and 10% compared to greedy
and dynamic algorithms, respectively.

The rest of this paper is organized as follows. In Section
II, the research background and the objective are presented.
Section III represents the system model. In Section IV,
we formulate the optimization problem. In Section V, the
problem decomposition and the proposed algorithms are
presented. Numerical results and corresponding analyses are
provided in Section VII. The main notations are given in
Table I.

II. RELATED WORK

We now review the prior works in the area of NTNs,
satellite and UAV-based networking, maritime communication,
and their combinations. We particularly show the classification
of maritime users, i.e., we can provide networking resources
to each maritime user based on their antenna gain and feasible
connectivity. Despite significant advances, prior works remain
limited as they do not address the challenges of maritime
users’ resource allocation based on their classification and
overall network energy efficiency by jointly considering all
the network nodes involved in SAS-NTNs.

Various elements of NTNs such as LEO satellite con-
stellation deployment have been examined in the literature,
including satellite number minimization [8] and [9], coverage
maximization [10], communication latency reduction [11], and
heterogeneous network design [12]. For satellite constellation
optimization, several intelligence algorithms are used, includ-
ing the genetic algorithm (GA), differential evolution (DE),

immune algorithm, and particle swarm optimization (PSO)
[24]. The work in [9] developed a non-dominated sorting
evolutionary algorithm for regional LEO satellite constellation
design to match UE needs while reducing satellite cost. The
authors in [13] proposed a satellite constellation for continuous
mutual regional coverage based on the evolutionary optimiza-
tion approach. It has been explored the relationship between
the coverage ratio and the number of satellites. The works
in [10] and [14] used an evolutionary algorithm to optimize
the coverage of target areas while designing regional satel-
lite constellations. To reduce the end-to-end latency, authors
in [11] devised a progressive satellite constellation network
building method. The work in [15] investigated the use of
LEO satellites within the context of the Internet of Things.
The performance of satellite constellation design with a few
intelligent algorithms, i.e., GA, DE, immunity algorithm, and
PSO, was compared in [16] to enhance satellite coverage capa-
bilities. NTNs face a slew of new difficulties, including high
bit error rates, extended propagation delays, and unreliable
connections. As a result, it’s important to think about how to
incorporate network operations into NTNs efficiently.

A significant number of related prior works on NTNs fo-
cused on solutions that can improve the connectivity of ground
networks by using UAVs [17]–[32]. The authors in [17]–
[29] concentrate primarily on static type UEs. The authors in
[30]–[32] investigated how to optimize the ergodic achievable
rate by remotely monitoring the UAV trajectory to deal with
the moving UEs. Meanwhile, the rotary-wing UAV placement
problem is widely studied to provide useful results. However,
in the case of fixed wing UAVs, the key issue is their optimum
transmission and trajectory. In particular, the trajectory of
UAVs is determined by taking into account the maximum
velocity or acceleration to achieve the maximum sum rate,
the minimum service flight time, and the optimum energy
efficiency in the network.

There have been a number of recent works that looked at the
co-existence of UAVs and ground base stations (GBSs) [33]–
[37]. The use of a GBS as a central controller for a UAV-
based network was proposed in [33] to maximize the sum
rate by taking radio access and backhaul links into account.
To counter the dynamics of UAV-based networks, the authors
in [34] proposed the idea of multihop backhaul networks. The
works in [35]–[37] analyzed the outage probability of the GBS
and UAV networks. In [37], the authors studied the sum rate
of the network by taking outage probability into account. The
authors in [38] studied a GBS and multiple offshore relay
nodes for a cooperative multicast communication strategy
for maritime users based on combined beamforming (BF)
optimization and relay design. The authors in [39] provide
a maritime communication network design in which a GBS
provides wireless backhaul for shipborne base stations, while
the shipborne base stations act as mobile access points for
user ships Although GBS may provide end-users with real-
time services and high data rates, their network coverage in
marine communication is restricted. Furthermore, deploying
expensive floating edge computer equipment in deep oceans
is too expensive. Consider UAV technology, which necessitates
the use of edge servers to deliver seamless and real-time
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services to moving boats. An edge server’s coverage diameter
(e.g., a tiny cell base station) is often less than 300 m. As
a result, moving vessels will encounter frequent handovers
in GBS networks. More critically, vessels engaged in marine
communication may lose network connectivity.

In addition, several recent works [40]–[45] studied the use
of multi-layer heterogeneous network architectures for NTNs.
Specifically, in [42], the authors studied the problem of UAV
satellite integration for a hybrid flying autonomous vehicle.
Meanwhile, the authors in [43] investigated the optimal al-
titude of UAV to analyze the suitable coordination in case
of communication between satellite and UAV with a focus
on reducing latency. Similarly, the work in [44] analyzed
the coverage and rate of a multi-UAV network in a disaster
scenario. In [45], the authors considered an airborne cellular
network and studied the problem of resource allocation, i.e.,
transmit power control for the various time-critical application.

In this prior art [33]–[37], [40]–[45], the spectrum resources
that have a direct effect on the EE of a SAS-NTN were
not taken into account. To examine the relationship between
the satellite backhaul, the CBS backhaul links, and the
radio access linkages in SAS networks, it is essential to
consider the joint problem of user association, resource
allocation across all communication links within the SAS
network, and the deployment of UAVs above sea region
which is missing in the literature. However, the preceding
studies all regarded satellites, UAVs, and CBS to be the
only network node of SAS-NTNs. Furthermore, prior works
primarily consider direct connections, leaving out backhaul
transmission. In response to the aforementioned finding,
we offer a unique SAS-NTNs architecture to overcome the
maritime UEs communication problem according to their
classification. For SAS-NTNs EE, a combined problem of UE
association, power control, and UAV deployment is developed.

III. SYSTEM MODEL

As shown in Fig. 1, we consider a realistic heterogeneous
SAS maritime communication network consisting of a LEO
satellite1 s, a set U of U UAVs that serve as aerial base
stations (ABSs)2, and a set C of C CBSs. The coverage area
of each CBS is planar in the sea with a radius ν centered
at (0, 0) ∈ R2. We define a set Ml of Ml LUEs and a set
Mh of Mh HUEs. We define a set M = Ml ∪Mh of M
maritime UEs. To capture the dynamic nature of the nodes,
i.e., satellite, ABSs, and UEs. We consider the network within
a certain time duration T that is divided into a set N of N−1
time slots. Due to the short duration in each time slot n, the
network configuration is considered fixed. Therefore, we will
then analyze network performance in a one-time slot. CBS can
serve the coastal region, but its broadband services are limited
due to significant non-line-of-sight path loss. Various UEs are
present in the waters, such as cruise ships and vessels equipped
with high gain antennas that can directly connect with the

1Hereinafter, the satellite is considered as a LEO satellite unless otherwise
stated.

2Hereinafter, the UAV is considered as an ABS unless otherwise stated.

Figure 1: Illustration of space-air-sea networks architecture.

satellite or a CBS depending upon their location. Conversely,
LUEs, e.g., seamen, fishers, offshore platform users, maritime
internet-of-things (MIoT) devices within the coverage region
of the satellite or CBSs, cannot directly access their services
and require service by ABSs. However, the satellite and CBSs
will provide radio access to the HUEs and backhaul services
to the deployed ABSs.

A. Communication Model

In the considered scenario, all the communication links
operate over the Ka-band (26.5 – 40 GHz), which is a
well-defined millimeter wave (mmW) range suitable for
satellite communication and future 5G links, as discussed
in [46]. Directional transmissions over the mmW band
are unavoidable to resolve the incredibly high path loss.
Consequently, in compliance with established standards
such as IEEE 802.15.3c [47], a service provider node uses
the multi-access time division scheme (TDMA) to provide
services to its maritime users. Each maritime UE is a set
element that seeks services that must be scheduled over
the mmW band at each time slot n. In practice, the mmW
transceiver must align its beams during a beam training stage
so that the maximum beamforming gain is achieved. This
phase of training will introduce a non-negligible TDMA
system overhead, which can be particularly important as the
number of mmW users increases. We assume that a beam
training overhead time per transmission over the mmW band
had already been established for the training phase as given
in [47]. Moreover, due to the considerable distance between
the satellite and LUEs, the interference experienced by LUEs
from the satellite is negligible. Although each ABS shares
the same frequency spectrum to provide downlink services
to LUEs, therefore these LUEs experience interference from
non-associated ABSs. Similarly, the satellite and CBSs share
the same frequency spectrum, which also leads to interference
at the ABSs and HUEs.

B. Network Deployment Model

The satellite orbits at an altitude hs (from the sea surface),
and it provides wireless backhaul connectivity to ABSs and
radio access to HUEs in its coverage region. The ABSs are
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sparsely deployed on the sea near coastal areas [48] to provide
connectivity to the set of LUEs in their coverage region. This
model considers that each ABS has a total mission flight
time T . During T , each ABS u must serve LUEs in its
coverage region. As mentioned earlier, the UAV flight time T
is discretized into a set N of N equally-spaced time slots with
the length of each time slot is given as Lu = T

N . Moreover, the
value of N should be properly chosen to guarantee that the
ABS location remains unchanged within each time slot and
fulfill the network requirements, i.e., task processing. Each
ABS u flies at a fixed height hu above the sea surface in each
time slot n. Thus, at each slot n, the position of each ABS u
in three-dimensional coordinates will be:

du(n) =
[(
xu(n), yu(n), hu

)]T
,∀u ∈ U ,∀n ∈ N . (1)

Similarly, the position of an LUE ml is dml =
(xml(n), yml(n), 0), and the position of a HUE mh

will be dmh = (xmh(n), ymh(n), 0). Both types of
UEs will be distributed in a specified region at sea.
Moreover, the position of each CBS can be represented by
dc = (xc, yc, 0). Additionally, the satellite position can be
given by ds = (xs, ys, hs), which remains constant during
the studied time. The ABS backhaul service can be provided
by the satellite, or a CBS [49] depends upon its position in
each time slot n.

C. ABS Energy Consumption Model

The ABS’s overall energy consumption is made up of two
parts. The first is an energy associated with communications,
and this energy is generated by radiation, signal processing,
and other electronics. The other component of energy is
propulsion, which is required to keep the UAV aloft as well
as to support its movement if necessary. We consider an
autonomous ABS that can operate as an aerial relay node
and a base station in a sea environment. This ABS can
perform resource allocation, dynamic mission planning, inter-
cell handover, and other tasks [50]. The maximum speed of the
ABS in each time slot is vmax. Thus, the maximum distance
that an ABS travels within each time slot will be Luvmax.
The energy consumption of the ABS for traveling from one
location to another in each time slot can be given by [51]:

Eflight
u (n) =

(
κu
∥∥vu(n)

∥∥3
+ ζu
‖vu(n)‖ + ζu‖µu(n)‖2

q2‖vu(n)‖

)
+ ∆j

Λ ,∀u ∈ U ,
(2)

where κu and ζu are constants which depends on the ABS
characteristics (e.g., weight, wing size, air density, etc.), Λ is
any infinitesimal time step, q is the gravitational acceleration,
and ∆J = 1

2π
(
‖vn(n+ 1)‖2 − ‖vn(n)‖2

)
is the kinetic

energy. Here, π is the mass of the UAV’s payload3, vu is
the speed, and µu is the acceleration of each ABS n. We
assume that the distance of each ABS to UEs, CBSs, and
the satellite remains constant within each time slot n. The
operating time of each ABS u is calculated primarily by the
fuel for flying and the battery for communication. The fuel of a

3Hereinafter, we ignore the change in weight of the ABS as more battery
and fuel are consumed over time for simplicity.

Table I: SUMMARY OF NOTATIONS

Notation Description
du 3D coordinates of ABS u → du = {xu, yu, hu}
dml Position of low-end UEs ml → dml = {xml , yml , 0}
dmh Position of high-end UEs mh → dmh = {xmh , ymh (n), 0}
ds(n) Position of the satellite s → ds = {xs, ys, hs}
dc Position of the CBS c → dc = {xc, yc, 0}
Ku Set of resource blocks allocated for each ABS u
Zs Set of resource blocks allocated for a LEO satellite
Yc Set of resource blocks allocated for each CBS
gu,ml Radio-access channel gain from ABS u to low-end UE ml

gs,u Backhaul channel gain from satellite s to ABS u
gc,u Backhaul channel gain from CBS c to ABS u
gs,mh Radio-access channel gain from satellite s to high-end UE mh

gc,mh Radio-access channel gain from CBS c to high-end UE mh

pu,ml Transmit power from ABS u to low-end UE ml

ps,u Transmit power from satellite s to ABS u
pc,u Transmit power from UAV u relay node to CBS c
ps,mh Transmit power from satellite s to ABS u
pc,mh Transmit power from CBS c to ABS u
γu,ml SNR between ABS u and low-end UE ml

γs,u SNR between satellite s and ABS u
γc,u SNR between CBS c and ABS u
γs,mh SNR between satellite s and high-end UE mh

γc,mh SNR between CBS c and high-end UE mh

rml,u Achievable datarate from ABS u to low-end UE ml

rs,u Achievable datarate from satellite s to ABS u
rc,u Achievable datarate from CBS c to ABS u
rs,mh Achievable datarate from satellite s to high-end UEs mh

rc,mh Achievable datarate from CBS c to high-end UEs mh

fixed-wing ABS is assumed to be large enough for our studied
time of the network performance. To validate the obtained
energy consumption model, we investigate the case of steady,
straight and fixed heights with constant speed V , i.e., v(n) =
V and µu(n) = 0. Then, (2) can be modified as:

Eflight
u (n) =

(
κuV

3 +
ζu
V

)
. (3)

Equation (3) is a classical model of the energy consumption
in aerodynamics [52]. The model comprises two components
in (3), where V 3 is used to overcome the parasite drag and
1
V allows overcoming the elevated drag. Therefore, the flying
ABSs power can be calculated as:

P flight
u (n) = Eflight

u (n)× Lu, (4)

where Lu represents the duration of each time step.

D. Low-End UE-ABS Data Link Analysis

In the SAS network, each ABS u is placed at a high-
enough altitude to enable LoS transmission. Therefore, we use
a general composite channel model coefficient that consists of
both small-scale and large-scale fading between each ABS u
and the low-end UE ml at each time slot n, as follows:

gu,ml(n) = βu,ml(n)
√
ξu,ml(n), (5)

where βu,ml(n) is the small-scale fading coefficient with
E[|βu,ml |2] = 1.53 [53] and ξu,ml(n) is the large-scale fading
coefficient. Each ABS knows the coordinates of LUEs and
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channel distribution information, i,e., ξo and |βu,ml |2. The
large scale fading at each time slot n will be:

ξu,ml(n) =
ξ0

‖
(
du(n)− dml(n)

)
‖2
,∀u ∈ U ,ml ∈Ml, n ∈ N .

(6)
In (6), ξ0 is the reference channel gain at 1m and
‖
(
du − dml

)
‖2 is 3D Euclidean distance between ABS u

and low-end UE ml. We consider a Rician distribution for
modeling the small-scale fading between LUE ml and ABS
u to compensate for the LoS and multipath scatterers that
can be experienced by each receiving LUE in the network.
Specifically, adopting the Rician channel model is justified
by the fact that the channel between ABS u and LUE ml

is primarily dominated by LoS [54]. Moreover, the Doppler
effect due to mobility in network nodes is compensated by
existing frequency synchronization techniques, i.e., phase-
locked loop as discussed in [55]–[57]. Each ABS shares
the same set of resource blocks to provide downlink ser-
vices to LUEs. Therefore, the interference in ABS-LUE link
from non-associated ABSs and CBSs at time slot n will
be Ωu,ml =

∑
∀u′ 6=u

∑
∀m′

l 6=ml
pu′gu′,m′

l
+
∑
∀c∈C

pcgc,ml . Here u′

is non-associated ABSs, pu′ is the transmit power of non-
associate ABSs, and pc is the transmit power of CBSs. Thus,
the signal-to-noise ratio (SINR) between this link can be given
as:

γu,ml(n) =
pu,ml(n)gu,ml(n)

Ωu,ml + σ2
, ∀u ∈ U ,ml ∈Ml, n ∈ N ,

(7)
where pu,ml(n) is the transmit power of ABS u to low-end UE
ml in the kth RB, and σ2 is the the noise power. Moreover,
following [58], even when there is additional interference
at the receiver, we suppose that the aggregate interference
follows a Gaussian distribution and the corresponding power
is incorporated into the noise term σ2. The achievable data
rate without transmission diversity between low-end UE ml

and ABS u in each time slot n will be:

ru,ml(n) = Bu log2

(
1 + γu,ml(n)

)
, (8)

where Bu is the bandwidth of each RB k over the band
allocated from ABS u to LUEs ml at time slot n.

E. Satellite based ABS Backhaul Link Analysis
The satellite provides backhaul services to the ABSs outside

of the CBS coverage region. Therefore, we consider that the
ABS u and the satellite s are equipped with one antenna each.
Therefore, the channel model between ABS u and the satellite
s can be define as:

gs,u(n) = βs,u(ξs,u)−1/2, ∀u ∈ U , n ∈ N . (9)

where βs,u is the Rician fading channel coefficient and
ξs,u represents large-scale fading for pathloss. The ds,u =(√

(xs − xu)2 + (ys − yu)2 + (zs − zu)2
)

denotes the dis-
tance between satellite s and ABS u. Thus, large-scale path
loss on the mmW links will be given by [59]:

ξs,u(dB) = ωs,u + ζs,u10 log10

(ds,u(n)

d0

)
+ ψs,u (10)

where ζs,u is the slope of the fit (path loss exponent), ωs,u
indicate the intercept parameter (path loss at reference distance
d0) [47], and ψs,u models the deviation in fitting (dB) which is
a zero mean Gaussian random variable with standard deviation
δu. The small scale fading coefficient will be:

βs,u =

√
Ks,u

1 +Ks,u
+

√
1

1 +Ks,u
Ξs,u, (11)

where Ksu is the Rician factor and Ξs,u ∼ N (0, 1). We can
now simplify the channel gain:

gs,u(n) =
(

d0
ds,u(n)

) ζs,u
2

10−
ωs,u+ψs,u

20

(√
Ks,u

1+Ks,u
+
√

1
1+Ks,u

Ξs,u

)
(12)

The interference at time slot n in this link from CBSs will be
Ωs,u =

∑
∀c∈C

pcgc,u. Here pc is the transmit power of CBSs.

Thus, the SINR between this link can be given as:

γs,u(n) =
ps,u(n)gs,u(n)

Ωs,u + σ2
, ∀u ∈ U ,∀n ∈ N , (13)

where ps,u(n) is the transmit of satellite s in the zth RB
to ABS u at time slot n. The achievable data rate between
satellite s and ABS u in each time slot n can be calculated
by Shannon capacity:

rs,u(n) = Bs log2

(
1 + γs,u(n)

)
, (14)

where Bs denotes the bandwidth allocated to the channel
from satellite s to UAV u at time slot n.

F. CBS based ABS Backhaul Link Analysis

The CBS provides backhaul services to the ABSs near
coastline under their coverage region. Therefore, the channel
model between ABS u and the CBS c will be:

gc,u(n) = βc,u(ξc,u)−1/2, ∀c ∈ C, u ∈ U , n ∈ N , (15)

where βc,u is the Rician fading channel coefficient
and ξc,u represents the large-scale fading. dc,u =(√

(xc − xu)2 + (yc − yu)2 + (zc − zu)2
)

is the distance be-
tween CBS c and ABS u. Thus, large-scale path loss on the
mmW links will be:

ξc,u(dB) = ωc,u + ζc,u10 log10

(dc,u(n)

d0

)
+ ψc,u, (16)

where ζc,u is the slope of the fit (path loss exponent), ωc,u
is the intercept parameter (path loss at reference distance d0)
[47], and ψc,u models the deviation in fitting (dB) which is a
zero mean Gaussian random variable with standard deviation
δc. The small scale fading coefficient will be:

βc,u =

√
Kc,u

1 +Kc,u
+

√
1

1 +Kc,u
Ξc,u, (17)

where Kcu is the Rician factor and Ξc,u ∼ N (0, 1). We can
then simplify the channel gain:

gc,u(n) =
(

d0
dc,u(n)

) ζc,u
2

10−
ωc,u+ψc,u

20

(√
Kc,u

1+Kc,u
+
√

1
1+Kc,u

Ξc,u

)
.

(18)
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The interference at time slot n in this link from non-associated
CBSs will be Ωc,u =

∑
∀c′ 6=c

pc′gc′,u. Here c′ is non-associated

CBSs, and pc′ is the transmit power of non-associated CBSs.
Thus, the SINR between this link can be given as:

γc,u(n) =
pc,u(n)gc,u(n)

Ωc,u + σ2
,∀c ∈ C,∀u ∈ U ,∀n ∈ N , (19)

where pc,u(n) is the transmit of CBS c to ABS u over the yth
RB at time slot n. The achievable data rate between CBS c
and ABS u in each time slot n can be calculated by Shannon
capacity:

rc,u(n) = Bc log2

(
1 + γc,u(n)

)
, (20)

where Bc is the bandwidth allocated to the channel from
CBS c to ABS u at time slot n.

G. Satellite-HUEs Data Link Analysis
In the SAS network, HUEs are considered with a high gain

antenna that can directly connect with the satellite s. The
satellite provides backhaul services to HUEs out of the CBS
coverage region. Therefore, we consider that the satellite s and
the HUE mh are equipped with one antenna. Therefore, the
channel model between the satellite s and HUE mh will be:

gs,mh(n) = βs,mh(ξs,mh)−1/2, ∀mh ∈Mh,∀n ∈ N ,
(21)

where βs,mh is the Rician fading channel coefficient and
ξs,mh represents the large-scale fading for pathloss. ds,u =(√

(xs − xu)2 + (ys − yu)2 + (zs − zu)2
)

is the distance
between satellite s and HUE mh. Thus, the large-scale path
loss on the mmW link will be [59]:

ξs,mh(dB) = ωs,mh + ζs,mh10 log10

(ds,mh(n)

d0

)
+ ψs,mh

(22)
where ζs,mh is the slope of the fit (path loss exponent),
ωs,mh indicate the intercept parameter (path loss at reference
distance d0) [47], and ψs,mh models the deviation in fitting
(dB) which is a zero mean Gaussian random variable with
standard deviation δmh . The small scale fading coefficient will
be:

βs,mh =

√
Ks,mh

1 +Ks,mh

+

√
1

1 +Ks,mh

Ξs,mh , (23)

where Ksmh
is the Rician factor and Ξs,mh ∼ N (0, 1). We

can then simplify the channel gain:

gs,mh(n) =
(

d0
ds,mh (n)

) ζs,mh
2

10−
ωs,mh

+ψs,mh
20

(√
Ks,mh

1+Ks,mh
+
√

1
1+Ks,mh

Ξs,mh

)
(24)

The interference at time slot n in this link from non-
associated ABSs and CBSs will be Ωs,mh =

∑
∀u∈U

pugu,mh +∑
∀c∈C

pcgc,mh . Here pu is the transmit power of ABS u and pc

is the transmit power of CBS c. Thus, the SINR between this
link can be given as:

γs,mh(n) =
ps,mh(n)gs,mh(n)

Ωs,mh + σ2
, ∀mh ∈Mh,∀n ∈ N ,

(25)

where ps,mh is the transmit of satellite s to HUE mh over
the zth RB at time slot n. The achievable data rate between
satellite s and HUE mh in each time slot n can be calculated
by Shannon capacity:

rs,mh(n) = Bs log2

(
1 + γs,mh(n)

)
, (26)

where Bmh is the bandwidth allocated to the channel from
satellite s to HUE mh at time slot n.

H. CBS-HUEs Data Link Analysis
Each CBS provides backhaul services to the HUEs near the

coastline under their coverage region. Although empirical path
loss models can accurately forecast average signal intensity
in the marine environment, they are unable to account for
the local oscillations caused by the destructive summing of
sparse multipath signals. Ray trajectory-based path loss models
mathematically detect the trajectories of the most dominating
rays arriving at the receiver to solve this problem. As a result,
the phase shift of each ray is described and taken into account
in the path loss computation, resulting in a more accurate
representation of the received signal strength’s local peaks
and nulls [60]. Therefore, path loss between a CBS c and a
HUE mh link can be modeled as curved-earth two-ray (CE2R)
which take into account the earth curvature [60]:

ξc,mh = −10 log10


(

λ

4πdc,mh

)2
2 sin

(
2πhchmh
λdc,mh

)2
 ,

where ξc,mh is the propagation loss in dB, λ indicate wave-
length of signal, hc and hmh is the height of CBS c and HUE
mh, respectively. Additionally, dc,mh(n) is the 3D Euclidean
distance between CBS c and HUE mh at each time slot n as:

dc,mh(n) = ‖
(
dc(n)− dmh(n)

)
‖2,∀c ∈ C,∀mh ∈Mh,∀n ∈ N ,

(27)
The channel gain between this link can be given as:

gc,mh(n) = βc,mh10−ξc,mh (n)/10, ∀c ∈ C, u ∈ U , n ∈ N .
(28)

The interference at time slot n in this link from ABSs
and non-associated CBSs will be Ωc,mh =

∑
∀u∈U

pugu,mh +∑
∀c′ 6=c

∑
∀m′

h 6=mh
pc′gc′,m′

h
. Here c′ is non-associated CBSs, pc′

is the transmit power of non-associate CBSs, and pu is the
transmit power of ABSs. Thus, the SINR between this link
will be:

γc,mh(n) =
pc,mh(n)gc,mh(n)

Ωc,mh + σ2
, ∀c ∈ C,mh ∈Mh, n ∈ N ,

(29)
where pc,mh(n) is the transmit of CBS’s c to HUE over yth
RB at time slot n. The achievable data rate between CBS c
and high-end UE mh in each time slot n can be calculated by
Shannon capacity:

rc,mh(n) = Bc log2

(
1 + γc,mh(n)

)
, (30)

where Bc is the bandwidth allocated to the channel from
CBS c to HUE mh at time slot n.
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IV. TOWARDS AN ENERGY-EFFICIENT HETEROGENEOUS
SAS-NTN MARITIME NETWORKS

Our main objective is to provide a decentralized approach
that enables the network operator to manage each marine UE
and to find its optimal resource allocation based on both its
position and user type. Therefore, we seek to maximize the
network energy efficiency η by factoring in the sum rate Rt
and total power Pt. Moreover, we need to find the optimal 3D
coordinates of the ABSs du. To realize this, we optimize the
position of the ABSs jointly with the marine UEs association
a and transmit power control p. We formulate the resource
allocation and ABSs deployment problem of maximizing
the system energy efficiency (Bit/Joule) for the SAS-NTN
networks. To formulate this problem, we next define a series
of constraints as follows:

Each ABS must return to its initial position at the end of
the flight time. This constraint ensures downlink connectivity
to LUEs in the marine environment with the pre-defined route
and stationary points, so each ABS must travel within the
specified area [48]:

du(1) = du(N), ∀u ∈ U . (31)

Then we have the following constraint, which ensures that the
distance covered by the ABS between two consecutive time
slots corresponds to the distance that can be calculated by the
speed and time limits. The ABS’s mobility is restricted by its
maximum propulsion speed, vmax. Furthermore, ABS requires
a minimum stall speed vmin in some severe conditions to retain
mobility.∣∣du[n+ 1]− du[n]

∣∣ ≤ (vmaxLu) , ∀u ∈ U ,∀n ∈ N . (32)

To ensure the kinematic energy budget for each ABS, the
threshold must be met at each time slot n of the flight:

Eflight
u (n) ≥ Eth(n), ∀u ∈ U ,∀n ∈ N . (33)

The ABS’s flight power consumption should be:

P flight(n) ≥ Eflight
u (n)

Lu
, ∀u ∈ U ,∀n ∈ N . (34)

The flight speed of each ABS should be within the range at
which the LUEs downlink criterion must be met:

vmin(n) ≤ vu(n) ≤ vmax(n), ∀u ∈ U ,∀n ∈ N , (35)

where vmin(n) and vmax(n) denote the minimum and max-
imum speed of each ABS at the time slot n respectively.
The ABS speed limit can be adjusted according to the LUEs
requirements [61]. The boundary conditions for each ABS
altitude to ensure LoS connections for LUEs have also been
established:

hmin(n) ≤ hu(n) ≤ hmax(n), ∀u ∈ U ,∀n ∈ N , (36)

where hmin ensures a LoS link between the ABS and LUEs,
and hmax is an upper bound defined by air traffic control [62].
It is considered that each ABS can utilize the satellite (space-
to-air) or any CBS (coastline-to-air) for backhaul connectivity.
The aggregated achievable rate of all ABSs-to-LUEs links

should remain within the channel capacity of satellite-to-
ABS and CBS-to-ABS links. These constraints guarantee the
capacity of the backhaul as follows:

U∑
u=1

Ml∑
ml=1

ru,ml(n) ≤
U∑
u=1

ru,s(n), ∀n ∈ N , (37)

U∑
u=1

Ml∑
ml=1

ru,ml(n) ≤
C∑
c=1

U∑
u=1

rc,u(n), ∀n ∈ N . (38)

Each ABS u need to satisfy the demand of each associated
LUEs data rate which can be defined as:∑

n∈N
au,mlru,ml(n) ≥ rth, ∀u ∈ U ,∀ml ∈Ml, (39)

where rth is the minimum data rate requirement of each LUE.
The downlink transmit power of each ABSs u for associated
LUEs should be remain within the power budget limits:

0 ≤ au,mlpu,ml(n) ≤ pmax, ∀u ∈ U ,ml ∈Ml, n ∈ N ,
(40)

To ensure a safe distance between the U ABS, we define a
secure distance that can avoid an overlap in their coverage
region. This threshold distance can be defined for all ABSs
∀i, j ∈ U :

‖di(n)− dj(n)‖2 ≥ dth, ∀i, j ∈ U , i 6= j. (41)

Each ABS u can assign each resource block k at each time
slot n to a maximum of one LUE that can be given as:

U∑
u=1

K∑
k=1

Ml∑
ml=1

au,k,ml(n) ≤ 1,∀n ∈ N ,

au,k,ml(n) ∈ {0, 1}, ∀u ∈ U ,∀k ∈ K,∀ml ∈Ml.

(42)

In addition, each ABS u can be associated with atmost one
backhaul service node, depending on its position in the sea,
which can be defined as:

U∑
u=1

as,u(n) ≤ 1, as,u(n) ∈ {0, 1}, ∀n ∈ N ,

C∑
c=1

U∑
u=1

ac,u(n) ≤ 1, ac,u(n) ∈ {0, 1}, ∀n ∈ N ,

(43)

The satellite s can assign each resource block z at each time
slot n to a maximum of one HUE or ABS for backhaul that
can be given as respectively:

Z∑
z=1

Mh∑
mh=1

as,z,mh(n) ≤ 1, ∀n ∈ N ,

as,z,mh(n) ∈ {0, 1}, ∀k ∈ K,∀mh ∈Mh,

(44)

Z∑
z=1

U∑
u=1

as,z,u(n) ≤ 1, ∀n ∈ N ,

as,z,u(n) ∈ {0, 1}, ∀k ∈ K,∀u ∈ U .
(45)
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Similarly, each CBS c can assign each resource block y at each
time slot n to a maximum of one HUE or ABS for backhaul
that can be given as respectively:

C∑
c=1

Y∑
y=1

Mh∑
mh=1

ac,y,mh(n) ≤ 1, ∀n ∈ N ,

ac,y,mh(n) ∈ {0, 1}, ∀c ∈ C, y ∈ Y,∀mh ∈Mh,

(46)

C∑
c=1

Y∑
y=1

U∑
u=1

ac,y,u(n) ≤ 1, ∀n ∈ N ,

ac,y,u(n) ∈ {0, 1}, ∀c ∈ C,∀y ∈ Y,∀u ∈ U .

(47)

The large transmission distances between the satellite and
ABSs are assumed to be constant at each time slot n due
to the short interval. The satellite and CBSs must meet the
downlink demand of associated HUEs i.e.:∑

n∈N
as,mhrs,mh(n) ≥ rth, ∀mh ∈Mh, (48)

∑
n∈N

ac,mhrc,mh(n) ≥ rth, ∀c ∈ C,∀mh ∈Mh, (49)

where rth is each HUE datarate requirement threshold, re-
spectively. Similarly, the downlink transmit power of satellite
s for associated devices in each z RB should remain within
the power budget limits:

0 ≤ as,ups,u(n) ≤ pmax, ∀n ∈ N ,∀u ∈ U , (50)

0 ≤ as,mhps,mh(n) ≤ pmax, ∀mh ∈Mh,∀n ∈ N . (51)

The downlink transmit power of each CBS c for associated
devices in each y RB should remain within the power budget
limits:

0 ≤ ac,upc,u(n) ≤ pmax, ∀c ∈ C,∀u ∈ U ,∀n ∈ N , (52)

0 ≤ ac,mhpc,mh(n) ≤ pmax, ∀c ∈ C,∀mh ∈Mh,∀n ∈ N .
(53)

A. Problem Formulation

Given the network specifics described above, our objective
is to establish an efficient allocation of resources and a
maritime UE association scheme that will maximize the EE of
the network while meeting the request for user data services
within a limited period. We can define the total network EE
(Bit/Joule) as follows:

ηEE(n) =
Rt(n)

Pt
+(n)

, (54)

where Rt indicates the total data rate and P+
t indicates the

non-negative power needed to transmit this data and operate
the network nodes at time slot n, For the sake of understand-
ing, we can define a separate EE for each network node. The
EE of U ABSs at time slot n can be defined as follows:

ηu(n) =
Ru(n)

Pu
+(n)

=
∑
U

∑
Ml

(
ru,ml(n)

pu,ml(n) + pflight

)
, ∀n ∈ N .

(55)

The EE of satellite s at time slot n can be defined as:

ηs(n) =
Rs(n)

Ps
+(n)

=

∑
U

∑
Mh

(
rs,u(n) + rs,mh(n)

ps,u(n) + ps,mh(n) + pcircuit
s

)
∀n ∈ N . (56)

Similarly, the EE of C CBS at time slot n can be stated as
follows:

ηc(n) =
Rc(n)

Pc
+(n)

=

∑
C

∑
U

∑
C

(
rc,u(n) + rc,mh(n)

pc,u(n) + pc,mh(n) + pcircuit
c

)
, ∀n ∈ N .

(57)

Thus, the total network EE can now be define as:

ηEE(n) = ηu(n) + ηs(n) + ηc(n), ∀n ∈ N . (58)

According to the above analysis, the optimization problem of
both HUEs and LUEs association, resource allocation, and
ABSs deployment for maximizing the SAS network EE can
be formulated as follows:

max
a,p,du

ηEE,

s.t. (31)− (53),
(59)

where ηEE is given in (54). The objective function in (59)
is a function of users’ association a, transmission power p,
and the ABS 3D deployment dn. In the given problem, the
UEs association constraints in (42), (44), and (46) are integer
(binary) constraints. Similarly, the ABS selection constraints
in (43), (45), and (47), are also integer constraints, and
the objective function in (59) is in fractional form, which
makes this problem a mixed integer non-convex fractional
optimization problem. Moreover, the problem is combinatorial
due to the association (binary) constraints in (42), (44), and
(46). In fact, this problem is a non-deterministic polynomial-
time hard (NP-hard) problem.

V. PROPOSED SOLUTION

In this section, we will present our proposed algorithm
based on the BD, DA, ADMM, and Gurobi optimizer [63].
We developed our algorithm architecture based on the BD
structure. Then we solve the master problem by using the
Gurobi optimization solver. In the sub-problem, the DA is used
to handle fractional programming. We use ADMM to provide
a distributed solution in the inner loop of the DA. Details are
given in the following subsections.

The main challenge of solving the problem (59) is the
non-concavity caused by the fractional form of the objective
function and non-convexity due to maritime UEs association
(binary) variables constraints given in (42), (44), and (46),
and ABSs backhaul selection variable given in (43), (45), and
(47). In order to obtain the solution to this problem, we first
decompose (59) into three subproblems by taking advantage of
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its block separability.Thus, the first subproblem is established
for the ABS EE at each time slot n, as follows:

max
au,pu,du

ηu(n),

s.t. (31)− (43),
(60)

The second subproblem is established for the satellite EE at
each time slot n, as follows:

max
as,ps

ηs(n),

s.t. (44), (45), (48), (50), (51).
(61)

The third subproblem is established for the CBSs EE at each
time slot n, as follows:

max
ac,pc

ηc(n),

s.t. (46), (47), (49), (52), (53).
(62)

We next tackle each problem individually.

A. Aerial Base Stations Energy Efficiency (ABSs-EE)

This part introduces an optimization scheme of LUEs’
association, transmit power control, and ABSs’ deployment
for (60). This optimization algorithm describes maximizing
the ABSs’ energy efficiency in the SAS-NTN networks based
on BD, DA, ADMM, and optimization solver.

1) Bender Decomposition for ABS EE: The BD algorithm
is a solution approach for tackling constraints in optimization
problems based on the idea of partition and delayed constraint
generation [64]. Firstly, a mathematical problem formulation
is proposed [64] as MINLP, then decompose the problem in
two parts:
• A master problem, which deals with binary constraints

by branch and bound (B&B) technique, finds values for a
subset of the original variables and associated constraints.

• One or more subproblems are used to find the solution
for the remaining original variables by any linear pro-
gramming (LP) method while keeping the master problem
variables constant.

Both problems are solved iteratively until convergence. In the
master problem, there are some added constraints called the
Benders Cut to cut the solution region. When the upper and
lower bounds meet or the difference between them is lower
than a certain threshold, the optimal solution will be given.

Initialization: We first assume that the master problem
has a trivial solution and can be solved by generating the
initialization in the given problem. Then, we need to assign
the loop counter, i.e., iu = 1. In our problem, we have an
association variable au in binary form, and, thus, the upper
and lower bounds will be aUB = 1 and aLB = 0 respectively.
Moreover, we implement a function χu as an auxiliary vari-
able, representing the objective function of the subproblems
within the objective function of the master problem. We can
set the initial value for a function χψu as χdown

u , to avoid an
unbounded solution in the first iteration when there is no cut in
the master problem. It can be initiated with a negative value,
i.e., −106.

Subproblems: The idea behind the construction of subprob-
lems is to fix the value of association variables au to avoid
them. Therefore, we can express the subproblem as given in
(63). We can represent the dual variable for the fronthaul
constraints in each ABS u that fixed association variables
values, i.e., κiuu,ml from ABS u to LUE ml and backhaul
constraints κius,u and κiuc,u form the satellite s and CBS c to
ABS u respectively. Hence, the subproblem can be obtained
with only transmit power and ABSs’ deployment continuous
variables, and it can be represented as:

max
pu,du

η̃u, (63a)

s.t. η̃u =
Ru (ãu,pu,du)

P+
u

, (63b)

au,ml = aiuu,ml : κiuu,ml , u ∈ U ,∀ml ∈Ml, (63c)

as,u = aius,u : κius,u, ∀u ∈ U , (63d)

ac,u = aiuc,u : κiuc,u, c ∈ C,∀u ∈ U , (63e)

(31)− (41), (63f)

where ãu the fixed value of each association vector from
the initial master problem solution, and this fixing value
constraint is stated in (63c), (63d), and (63e). After solving this
subproblem, we will get the sub-optimal transmit power p∗u
and the deployment vector d∗n

4 for each ABS u. This obtained
subproblem will be solved by utilizing DA in Section V-A2.

Convergence Analysis and Bounds: This process is used to
derive upper and lower bounds that are used as the stopping
criterion for the algorithm and as a condition for the con-
vergence. In this step, we obtain the upper and lower bound
difference. The objective function at iteration iu provides the
upper bound, which is stated as:

ηiuUB =
R̃u

(
aiuu ,p

iu
u ,d

iu
u

)
P̃u

(
aiuu ,p

iu
u ,d

iu
u

)+ , (64)

where R̃u and P̃u are intermediate values of both parameters at
iteration iu which depend on the sum rate from all associated
LUEs and transmit power consumption respectively. The lower
bound can be given as:

ηiuLB = χiuu . (65)

Therefore, the stopping criterion can be stated as:{
ηiuUB − η

iu
LB ≤ ε, stop,

otherwise, continue, (66)

where ε is a pre-defined tolerance parameter. Thus, after
convergence the sub-optimal values of a∗u, p∗u and d∗u can
be obtained.

Master Problem: This problem deals only with association
variables while all other variables remain fixed. The loop

4Hereinafter, the ABSs’ deployment vector can be alternatively used with
these notations, i.e., du = {xu, yu}.
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counter can be update as iu = iu+1, and after that the solvable
problem become as follows:

max
au,χu

χu, (67a)

s.t. (42), (43) (67b)
(69), (67c)

χu ≥ χdown , (67d)

where inequality constraint in (67c) represents the Bender cut
in the master problem. At every iteration, the new Benders cut
will generate and append to the master problem. Additionally,
the previous iteration’s Bender cuts remain the same in the
master problem. The master problem becomes the mixed inte-
ger programming problem which only decides the associations
and this can be solved with an optimization solver to reduce
the complexity. At each iteration, we obtain the optimal values
of association a∗u and auxiliary variable χu.

After each iteration of the master problem, we solve the
subproblem again using the obtained local optimal values.
Therefore, when the optimal criterion of upper and lower
is met, the iteration process will stop. These details of the
Benders technique are presented in Algorithm 1. After getting
the optimal user association a∗u, the subproblem is still non-
convex due to its objective function. Note that the objective
function is non-convex in (63b). Therefore, we apply the Tay-
lor approximation to the numerator term in (63b) to linearize
the objective function as given in equation (68).

Lemma 1. Since the first-order Taylor approximation is the
global lowest bound of a convex function and the global upper
bound of a concave function [65].

Proof: See Appendix A.
2) Dinkelbach Algorithm for ABS EE: We use the DA

to address the fractional nature of the objective function.
Fortunately, this method will always converge to local optima
[66]. The DA is widely adopted in solving the fractional
programming [67]. It can be observed from (63) that it has
a fractional objective function. Therefore, we can employ
nonlinear fractional programming to transform the original
problem in fractional from into an equivalent subtractive form.
Without loss of generality, the system maximum average EE
can be given as:

η̃∗u =
Rlbu,ml

(
ã∗
u,p

∗
u,d
∗
u

)
P+
u

= arg max
pu,du

Rlbu,ml
(
ã∗u,pu,du

)
P+
u

,

(71)

Algorithm 1 Outer Loop Bender Decomposition

1: Input: Initialize variables ã, loop counter iu, χψu = χdown

2: Output: optimal solution a∗u, p∗u, and d∗n
3: while ηiuUB − η

iu
LB ≥ ε do

4: Subproblem
5: obtain p∗u and d∗n using Dinkelbach algorithm
6: Bounds calculation
7: calculate upper and lower bounds ηiuUB and ηiuLB

by (64) and (65)
8: Master Problem
9: step 1: Increment in loop counter iu = iu + 1

10: step 2: Add the new Bender cut in (67)
11: step 3: Solve the updated master problem in (67)
12: step 4: Acquire the optimal value a∗u and χu
13: end while

then, we introduce a Remark 1 to solve the optimization
problem in (63).

Remark 1. When Rlbu,ml (ãu,pu,du) ≥ 0 and P+
u > 0 is

fulfilled, the objective function in (63) can be rewritten to
a parametric subtractive form equivalently if and only if the
following condition is satisfied:

max
pu,du

Rlbu,ml
(
ã∗u,pu,du

)
− η∗uP+

u

= Rlbu,ml
(
ã∗u,p

∗
u,d
∗
u

)
− η∗uP+

u .
(72)

This Remark 1 illustrates that there exists an equivalent trans-
formed problem with an objective function in subtractive form,
which leads to the same maximum η∗u obtained by directly
solving (63). Our objective function is a strictly monotonic
increasing function of ηu which can be stated as:

F (au,pu,du; ηu) = Rlbu,ml (ãu,pu,du)− ηuP+
u . (73)

Thus, the equivalent optimization problem in subtractive form
is reformulated as:

max
pu,du

F (ãu,pu,du; ηu),

s.t. (63b)− (63f).
(74)

The nonlinear fractional objective function is transformed into
a subtractive objective function, which is a multi-objective
convex optimization problem whereby the variable ηu (non-
negative) can be regarded as a negative weight of pu.At last,
parameter ηu updates itself after each iteration and finally
obtains the sub-optimality condition, which can be defined as

Rlb
u,ml =

U∑
u=1

Ml∑
ml=1

ãu,mlBu,ml

log2

{
1 +

pu,mlg0

(Ωu,ml + σ2)
(∥∥∥(du,local(n)− dml(n)

)∥∥∥2)
}
−

pu,mlg0
{∥∥∥(du(n)− dml(n)

)∥∥∥2 − ∥∥∥(du,local(n)− dml(n)
)∥∥∥2} log2 e{∥∥∥(du,local(n)− dml(n)

)∥∥∥2}{pu,mlg0 + (Ωu,ml + σ2)
(∥∥∥(du,local(n)− dml(n)

)∥∥∥2)}


(68)

χu ≤ ηiuUB +

U∑
u=1

Ml∑
ml=1

κiu
u,ml

(
au,ml − aiu

u,ml

)
+

U∑
u=1

κiu
s,u

(
as,u − aiu

s,u

)
+

C∑
c=1

U∑
u=1

κiu
c,u

(
ac,u − aiu

c,u

)
, (69)

f(du)lb =
∥∥du1,local − du2,local

∥∥2 + 2
(
du1,local − du2,local

)(
du1 − du2

)T
. (70)
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Algorithm 2 Inner Loop Dinkelbach Algorithm

1: Input: loop counter j = 0, energy efficiency ηu = 0,
maximum tolerance Υ

2: Output: optimal power p∗u, and UAVs deployment d∗u
3: Maximum energy efficiency = η∗u
4: while ‖F (au,pu,du; ηu) ≥ Υ‖ do
5: Solve the subproblem (74) by ADMM to find the the

optimal solution p∗u and d∗u with ηu
6: Calculate ηu = Ru

P+
u

with obtained p∗u and d∗u
7: Calculate new F (au,pu,du; ηu) with updated ηu, p∗u

and d∗u
8: Update loop counter j = j + 1
9: end while

η∗u. The details of DA are provided in Algorithm 2. The safe
distance constraint is given in (41) between ABSs is of the
quadratic type. Therefore, we provide the following lemma 2
to linearize it.

Lemma 2. We can linearize this constraint by approximating
it with first-order Taylor expansion, which can also be the
lower bound for the distance threshold as given in (70).

Proof: See Appendix B.
3) ADMM for ABS EE: For the subproblem, we use

ADMM to solve it in a distributed way. An ADMM is
commonly used to decouple the constraint linked with all
ABSs. The original problem also costs a great deal of time
and resources. By splitting the problem into small problems,
time and money can be saved in green communication.

Firstly, we need to turn (74) into a solvable problem. In
this subproblem, we introduce three auxiliary variables ωu, νu
and ou as global copies, which implies that three new equality
constraints are applied to the subproblem (74), which can be
given as:

pu = ωu, ∀u ∈ U , (75a)
xu = νu, ∀u ∈ U , (75b)
yu = ou, ∀u ∈ U , (75c)

where ωu is the global copy of transmit power variables.
Similarly, νu and ou are the global copies of x and y
coordinates’ decision variables for each ABS deployment,
respectively. Therefore, the ABS’s deployment vector du in a
global problem can be represented by Θu. Thus, we can find
that constraints (40) and (41) are involved in all the ABSs.
The corresponding subproblem (74) is then reformulated as:

max
pu,ωu,du,ou

F (ãu,pu,du; ηu), (76a)

s.t. 0 ≤ au,mlωu,ml(n) ≤ pmax, ∀u,ml, (76b)∑
i,j∈U,i6=j

f(Θu)lb ≥ dth, (76c)

(31)− (39), (76d)
(63b)− (63f), (76e)
(75a)− (75c). (76f)

The problem’s augmented Lagrangian function is given by

Algorithm 3 ADMM Distributed Algorithm for Subproblem

1: Input: Initialize variables t, φ, Π, ρ,
2: while the criterion to stop is not met do
3: Central Controller Update
4: continue
5: wait
6: until obtained updated φu, Πu, Ξu, pu, du from all

ABSs
7: step 1: Solve problem (80) and find the optimal

ω̃u and Θ̃u

8: step 2: Send these ω̃u and Θ̃u to all ABSs
9: step 3: Update the variable t = t+1

10:
11: ABSs Updates
12: continue
13: wait
14: until from the central controller, obtained updated ω̃u

and Θ̃u

15: step 1: Solve (81), and find the optimal solution
p̃ and d̃

16: step 2: All fix valued constraints on dual variables
update:

φu[t+ 1] = φu[t] + ρ (ω̃u − p̃u)

Πu[t+ 1] = Πu[t] + ρ(ν̃u − x̃u)

Ξu[t+ 1] = Ξu[t] + ρ(õu − ỹu)

17: step 3: Send updated p̃, d̃, φu[t+1], Πu[t+1] and
Ξu[t + 1] to the central controller for upcoming
iteration

18: end while

(77). We consider that the global copy variables ωu and
Θu are managed by the central controller, and the variables
pu and du are processed locally by the ABSs. Based on
the above analysis, the global consensus problem for finding
global variables ωu and Θu is formulated as follows:

min
ωu,Θu

(78), (80a)

s.t. 0 ≤ au,mlωu,ml(n) ≤ pmax, ∀u,ml, (80b)∑
i,j∈U,i6=j

f(Θu)lb ≥ dth, (80c)

where p̃u, x̃u and ỹu indicate the constant values which can
be obtained by ABSs’ update. Therefore, to update pu, xu
and yu, we need to solve the following problem at each ABS
u:

min
pu,du

(79), (81a)

s.t. (31)− (39), (81b)
(63b)− (63e). (81c)

where ω̃u, ν̃u and õu indicate the fixed values which can be
obtained by the central controller’s update. Therefore, the dual
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variables φu, Πu, and Ξu can be updated at each ABS u by
the following equation:

φu[t+ 1] = φu[t] + ρ (ω̃u − p̃u) , (82a)
Πu[t+ 1] = Πu[t] + ρ(ν̃u − x̃u), (82b)
Ξu[t+ 1] = Ξu[t] + ρ(õu − ỹu). (82c)

The summary of this ADMM is depicted in Algorithm 3 and
the solution process is shown in Fig. 2. We have decomposed
and provided iterative algorithms for ABS EE (60). As we
discussed the solution algorithm in detail in earlier sections,
in the upcoming problems, these same algorithms will be
applied directly to the respective problems without any
explanation.

B. Satellite Energy Efficiency (Sat-EE)

This section deals with the satellite EE maximization prob-
lem (61) by utilizing the same previous algorithms. Firstly,
BD will apply to decompose, and then DA will transform
the subproblem objective into a subtractive form. After that,
ADMM will solve the subproblem, which is given as follows:

1) Bender Decomposition for Sat-EE: First, the loop
counter, i.e., is = 1 is initialize. Then the variables as for
U ABSs, and Mh HUEs association is initialized with the
upper bound aUB = 1 lower bound aLB = 0. Moreover, the
function χs as an auxiliary variable, representing the objective
function of a subproblem within the master problem’s objec-
tive function, whose unitize value can be set as χs = 10−6 to
avoid an unbounded solution.

Subproblem: We can express the dual variable for the
ABSs and HUEs association, i.e., κs,u and κs,mh , respectively.
Thus, the subproblem can be define as:

max
ps

η̃s, (83a)

s.t. η̃s =
Rs (ãs,ps)

P+
s

, (83b)

as,u = aiss,u : κiss,u, u ∈ U , (83c)

as,mh = aiss,mh : κiss,mh , ∀mh ∈Mh, (83d)

(48), (50), (51). (83e)

Convergence Analysis and Bounds: The objective function
at iteration ψ provides the upper bound, which is stated as:

ηisUB =
R̃s
(
aiss ,p

is
s

)
P̃s

(
aiss ,p

is
s

)+ . (84)

The lower bound can be define as follows:

ηisLB = χiss . (85)

Thus, the stopping criterion can be stated as:{
ηisUB − η

is
LB ≤ ε, stop,

otherwise, continue, (86)

Master Problem: The loop counter updates as is = is + 1,
and after that, the solvable problem becomes as follows:

max
as,χs

χs, (87a)

s.t. (44), (45), (87b)

χs ≤ ηisUB +

U∑
u=1

κiss,u

(
as,u − aiss,u

)
+

Mh∑
mh=1

κiss,mh

(
as,mh − aiss,mh

)
, (87c)

χs ≥ χdown, (87d)

2) Dinkelbach Algorithm for Sat-EE: The objective func-
tion in the satellite subproblem can be transformed as follows:

F (as,ps; ηs) = Rs (ãs,ps)− ηsP+
s . (88)

Thus, the equivalent optimization problem in subtractive form
is reformulated as:

max
ps

F (ãs,ps; ηs),

s.t. (48), (50), (51).
(89)

3) ADMM for Sat-EE: In this subproblem problem, we
introduce an auxiliary variable ωs as a global copy, which
implies that a new equality constraint is applied to the sub-
problem (89), which can be given as:

ps = ωs. (90)

We can find that constraints (50) and (51) are involved in all
the satellite’s associated nodes. The corresponding subproblem
(74) is then reformulated as:

max
ps,ωs

F (ãs,ps; ηs), (91a)

s.t. 0 ≤ as,uωs,u(n) ≤ pmax, ∀u, (91b)
0 ≤ as,mhωs,mh(n) ≤ pmax, ∀mh, (91c)
(48). (91d)

L = F (ãu,pu,du; ηu) +

U∑
u=1

(
φu (pu − ωu) + Πu (xu − νu) + Ξu (yu − ou)

)
+
ρ

2

U∑
u=1

(
‖pu − ωu‖22 + ‖xu − νu‖22 + ‖yu − ou‖22

)
,

(77)

F (ãu,pu,xu,yu; ηu) +

U∑
u=1

(
φu(p̃u − ωu) + Πu(x̃u − νu) + Ξu(ỹu − ou)

)
+
ρ

2

U∑
u=1

(
‖p̃u − ωu‖22 + ‖x̃u − νu‖22 + ‖ỹu − ou‖22

)
,

(78)

F (ãu,pu, xu, yu; ηu) + φu(pu − ω̃u) + Πu(xu − ν̃u) + +Ξu(yu − õu) +
ρ

2

(
‖pu − ω̃u‖22 + ‖xu − ν̃u‖22 + ‖yu − õu‖22

)
, (79)
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Figure 2: Illustration of Bender decomposition, Dinkelbach algorithm,
and ADMM working procedure for ABSs.

The problem’s augmented Lagrangian function can be define
as follows:

L = F (ãs,ps; ηs) +
(
φs (ps − ωs)

)
+
ρ

2

(
‖ps − ωs‖

2
2

)
(92)

We consider that the global copy variables ωs are managed
by the central controller, and the variables ps are processed
locally by the satellite. Based on the above analysis, the
global consensus problem for finding global variables ωs is
formulated as follows:

min
ωs

F (ãs,ps; ηs) +
(
φs(p̃s − ωs)

)
+
ρ

2

(
‖p̃s − ωs‖

2
2

)
,

(93a)
s.t. 0 ≤ as,uωs,u(n) ≤ pmax, ∀u, (93b)

0 ≤ as,mhωs,mh(n) ≤ pmax, ∀mh, (93c)

where p̃s indicates the constant values which can be obtained
by the satellite’s update. Therefore, to update ps, we need to
solve the following problem at satellite:

min
ps

F (ãs,ps; ηs) +
(
φs(ps − ω̃s)

)
+
ρ

2

(
‖ps − ω̃s‖

2
2

)
,

(94a)
s.t. (48). (94b)

where ω̃s indicates the fixed value which can be obtained by
the central controller’s update. Therefore, the dual variable φu
can be updated at each ABS u by the following equation:

φs[t+ 1] = φs[t] + ρ (ω̃s − p̃s) . (95a)

C. Coastline Base Stations Energy Efficiency (CBSs-EE)

This section deals with the CBSs EE maximization problem
(62) by utilizing the same previous algorithms. Firstly, BD
will apply to decompose, and then DA will transform the
subproblem objective into a subtractive form. After that,
ADMM will solve the subproblem, which is given as follows:

1) Bender Decomposition for CBSs-EE: Firstly, the loop
counter, i.e., ic = 1 is initialized. Then the variables ac for U
ABS and Mh HUEs association is initialized with the upper
bound aUB = 1 lower bound aLB = 0. Moreover, the function
χc as an auxiliary variable, representing the objective function
of a subproblem within the master problem’s objective func-
tion, whose unitize value can be set as χc = 10−6 to avoid an
unbounded solution.

Subproblem: We can express the dual variable for the
ABSs and HUEs association i.e., κc,u and κc,mh respectively.
Thus, the subproblem can be define as:

max
pc

η̃c, (96a)

s.t. η̃c =
Rc (ãc,pc)

P+
c

, (96b)

ac,u = aicc,u : κicc,u, ∀c ∈ C,∀u ∈ U , (96c)

ac,mh = aicc,mh : κicc,mh , ∀c ∈ C,∀mh ∈Mh,
(96d)

(49), (52), (53). (96e)

Convergence Analysis and Bounds: The objective function
at iteration ic provides the upper bound, which is stated as:

ηicUB =
R̃c
(
aicc ,p

ic
c

)
P̃c

(
aicc ,p

ic
c

)+ . (97)

The lower bound can be define as follows:

ηicLB = χicc . (98)

Thus, the stopping criterion can be stated as:{
ηicUB − η

ic
LB ≤ ε, stop,

otherwise, continue, (99)

Master Problem: The loop counter update as ic = ic + 1,
and after that the solvable problem become as follows:

max
ac,χc

χc, (100a)

s.t. (46), (47) (100b)

χc ≤ ηicUB +

C∑
c=1

U∑
u=1

κicc,u

(
ac,u − aicc,u

)
+

C∑
c=1

Mh∑
mh=1

κψc,mh

(
ac,mh − aicc,mh

)
, (100c)

χc ≥ χdown, (100d)

2) Dinkelbach Algorithm for CBSs-EE: The objective func-
tion in the satellite subproblem can be transformed as follows:

F (ac,pc; ηc) = Rc (ãc,pc)− ηcP+
c . (101)

Thus, the equivalent optimization problem in subtractive form
is reformulated as:

max
pc

F (ãc,pc; ηc),

s.t. (49), (52), (53).
(102)
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3) ADMM for CBSs-EE: In this subproblem, we introduce
an auxiliary variable ωc as a global copy, which implies that
a new equality constraint is applied to the subproblem (102),
which can be given as:

pc = ωc. ∀c ∈ C. (103a)

We can find that constraints (52) and (53) are involved in
each CBS c. The corresponding subproblem (102) is then
reformulated as:

max
pc,ωc

F (ãc,pc; ηc), (104a)

s.t. 0 ≤ ac,uωc,u(n) ≤ pmax, ∀c, u, (104b)
0 ≤ ac,mhωc,mh(n) ≤ pmax, ∀c,mh, (104c)
(49). (104d)

The problem’s augmented Lagrangian function can be define
as follows:

L = F (ãc,pc; ηc) +
(
φc (pc − ωc)

)
+
ρ

2

(
‖pc − ωc‖

2
2

)
(105)

We consider that the global copy variables ωc are managed
by the central controller, and the variables pc are processed
locally by each CBS c. Based on the above analysis, the
global consensus problem for finding global variables ωc is
formulated as follows:

min
ωc

F (ãc,pc; ηc) +
(
φc(p̃c − ωc)

)
+
ρ

2

(
‖p̃c − ωc‖

2
2

)
,

(106a)
s.t. 0 ≤ ac,uωc,u(n) ≤ pmax, ∀c, u, (106b)

0 ≤ ac,mhωc,mh(n) ≤ pmax, ∀c,mh, (106c)

where p̃c indicates the constant values which can be obtained
by satellite’ update. Therefore, to update pc, we need to solve
the following problem at each CBS:

min
pc

F (ãc,pc; ηc) +
(
φc(pc − ω̃c)

)
+
ρ

2

(
‖pc − ω̃c‖

2
2

)
,

(107a)
s.t. (49), (107b)

where ω̃c indicates the fixed value which can be obtained by
central controller’s update. Therefore, the dual variable φc can
be updated at each CBS c by the following equation:

φc[t+ 1] = φc[t] + ρ (ω̃c − p̃c) . (108a)

In the next part, we examine the operation and complexity of
algorithms for the proposed problems.

VI. SUMMARY AND COMPLEXITY ANALYSIS

As shown in Fig. 2, to solve the MINLP problem for
the SAS-NTN networks, this framework consists of Bender
decomposition, the Dinkelbach algorithm, ADMM, and an
optimization solver. Bender’s decomposition minimizes the
complexity of solving the original MILNP by breaking it down
into smaller, independent subproblems. Benders’ cuts reduce
feasible regions with no optimal solution in each iteration.

When using ADMM in a subproblem, it will produce an
optimal solution in O(1/ε2) iterations [68].

Furthermore, by analyzing the updates in each iteration,
the needed complexity for each iteration may be determined.
In the ABS EE scenario, updating the power and coordinates
requires O(U × Ml), where U and Ml represent the ABSs
and their associated LUEs, respectively. We utilize the convex
solver to find a solution because there is no closed-form
solution for calculating these variables. As a result, the
complexity of these variable update iterations is determined
by the solver and the platform employed. Following that,
the global update requires O(U) as a projection function,
resulting in linear complexity. Finally, we have a constant
complexity specified as O(3) for the update of dual variables.
It is worth noting that because the number of ABSs U is
so small in comparison to the number of LUEs Ml we
may ignore it. As a result, the worst-case complexity for a
single loop is O(U ×M). If Γ is the maximum number of
iterations required to reach a sub-optimal solution, then the
total execution time of the algorithm is Γ×O(M ×K). This
suggests that by adjusting the parameters of ε, U , and Ml

our technique can converge within a certain time limit. This
same process of complexity analysis is applicable to satellite
EE and CBS EE solutions [69].

VII. SIMULATION RESULTS AND ANALYSIS

We now evaluate the performance of our proposed frame-
work. We investigate one random commerce route in the
international seas between five ports for HUE travel that is
around 500 km in length. Each port has one CBS that connects
the port and the neighboring region to the users. Similarly,
LUEs, i.e., fishermen and private boats, are taken into account
in these territories up to a 20 km region in the sea. However,
because of LoS linkages and low-gain antennas, these LUEs
rely on ABSs for connectivity. As a result, 10 ABS are
stationed in this location, traversing their predetermined course
over the sea route for LUEs. As stated in [70], we assume
that worldwide satellite coverage is accessible over the whole
studied period of this network.

We consider a 1000 km x 1000 km square region with 50
HUEs spread randomly and equally for our simulations. In the
case of LUEs, we assess their dispersion along the neighboring
shoreline, where there are 50 of them and their distribution is
random and uniform in a 20 km x 20 km square area. All
five CBS under consideration are located near the coast, ap-
proximately 500 km apart. At a height of 200 km, the satellite
is deemed in orbit, and all ABSs are initially released into
the aerial field at a height of 30 meters. All statistical results
are averaged over a large number of independent experimental
iterations in which the initial locations of the LUEs and HUEs
are randomized. All simulation results were conducted using
Python. Gurobi [71] is an optimizer that is used to solve all
optimization problems. Although the simulation does not cover
all conceivable circumstances in real-world networking, the
results offer an overview of the utility of our proposed strategy.
The remaining main parameters are shown in Table II.
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(a) ABS EE convergence. (b) Satellite EE convergence. (c) CBS EE convergence.

Figure 3: Illustration of the convergence results of three problems i.e., ABS EE, satellite EE, and CBS EE.

Table II: Simulation Parameters

Parameters Values
CBS radius 100 km
Feasible lower bound χdown = 10−6

Maximum transmit power Pmax = 33 dBm
Noise power spectral density N0 = −174 dBm/Hz
Carrier frequency f = 30 GHz
Satellite and CBS bandwidth Bs,Bc = 10 MHz
ABS bandwidth Bu = 10 KHz
Rician fading channel parameter β = 1.53
HUE Antenna Gain Gi = 25 dBi
UAV Antenna Gain Gu = 25 dBi
Standard deviation δu,δmh , δc = 0.1
reference distance pathloss ωs,u, ωc,u, ωs,mh = 46.4
pathloss exponent ζs,u, ζc,u, ζs,mh = 2

Fig. 3 analyzes the convergence of our proposed algorithms
for all three problems. The convergence of the ABSs’ EE
problems can be observed in Fig. 3a. The values of upper
bound and lower bound are the optimization goals of the
subproblem and master problems, respectively. According to
Fig. 3, the value of the upper bound is always more than the
ideal value, whereas the value of the lower bound is always
less than the optimal value. The BD method can converge
and approach the suboptimal solution. It can be observed that
the BD algorithm for ABS EE converges to a suboptimal
solution within 11 iterations. The convergence of satellite
EE problems can be found in Fig. 3b. This problem also
converged to a suboptimal solution with four iterations. This
problem converges more quickly than the ABSs’ EE problem
due to fewer problem’s information sharing with the network
controller. Similarly, the convergence of CBS EE is presented
in Fig. 3c. This problem also converges rapidly due to less
amount of information sharing among network operator and
each CBSs. This problem also converges to a suboptimal
solution within four iterations.
We compared our results with four baseline algorithms, which

can be defined as follows:

• Centralized Algorithm: This method, which has a com-
plexity of O(N × log(N)), requires a coordinator and
demands the entire information as inputs for addressing
the defined problem in a centralized way. This scheme can
be considered as its results achieve an optimal solution.

• Greedy Algorithm: We may use this technique to de-
velop a locally optimal solution that approximates the

globally optimal solution at each iteration. In contrast, the
greedy algorithm cannot guarantee a globally optimum
solution. The algorithm’s level of complexity is O(N2)
[69].

• Random Algorithm: This method is distinguished by
its degree of unpredictability, which employs uniform
random distributions as inputs to achieve excellent per-
formance in terms of average values over all potential
input options.

• Dynamic Programming: A basic approach that takes
into account all of the association and resource allocation
pairings and returns suboptimal results. The algorithm’s
level of complexity is O(N2 × logN).

Fig. 4a compares our proposed ABS EE algorithms with
the baselines. From this figure, we observe that, when the
number of LUEs in the network is set to 10, the proposed algo-
rithm provides the same outcomes as the centralized schemes.
Moreover, when the number of LUEs in the network grows,
the proposed algorithm produces near-optimal results due to
interference and spectrum division in the network. However,
the proposed approach outperforms the greedy, random, and
dynamic allocation-based algorithms for any number of LUEs.
Furthermore, as the number of LUEs associated with the
ABSs grows and more bits move through this network, the
total energy efficiency of the ABSs also increases, improving
network performance. The proposed algorithm for ABS EE
achieves up to 27%, 12%, and 7.7% when compared with
random, greedy, and dynamic approaches, respectively, with
the number of ABS is set to 10 and LUEs is set 50.

Fig. 4b evaluates the EE of the satellite. According to Fig.
4b, our technique achieves near-optimal results for any number
of HUEs while the number of ABSs is fixed, which is set at 10
for satellite-based backhauling. However, under the same net-
work setups, our technique outperforms the greedy, dynamic,
and randomized allocation schemes. Furthermore, when the
number of HUEs associated with the satellite increases, the
network energy efficiency increases due to more data bits
traveling across this network. The proposed algorithm for
satellite EE achieves up to 16.5% and 57%, when compared
with greedy and dynamic approaches, respectively, and the
number of ABSs is set to 10 and HUEs is set to 50.

Fig. 4c shows how our proposed scheme for CBS EE
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(a) ABS EE vs baselines. (b) Satellite EE vs baselines. (c) CBS EE vs baselines.

Figure 4: Illustration of our proposed algorithms comparison with two baselines for three problems i.e., ABS EE, satellite EE, and CBS EE.

(a) ABS EE vs number of deployment (b) EE vs HUEs (c) ABSs deployment with LUE’s association

Figure 5: Illustration of the ABSs’ EE, Sat EE, CBS EE, and ABSs’ deployment.

relates to the other four baselines. It is demonstrated that
the proposed schemes provide near-optimal results for any
number of HUEs with a fixed number of ABSs, which is
assumed to be 10. In this context, the proposed schemes
outperform the randomized allocation schemes. Furthermore,
as shown in Fig. 4c, when the number of HUEs in the
network’s surrounding region increases, the EE of the network
improves because of an increased amount of bits traveling
through the network, thus improving the overall CBSs network
performance. The proposed algorithm for CBS EE achieves
up to 27% 14.2% and 53.3% when compared with greedy,
dynamic, and randomized approaches, respectively, and the
number of ABSs is set to 10 and HUEs is set to 50.

We show in Fig. 5a how the number of ABSs deployed in
the network affects the performance of ABS EE. We begin
by deploying 5 ABSs in the selected zone and then increase
them one by one to assess their impact. It can be shown that
as the number of deployed ABSs in the network grows, so
does the ABS EE. Furthermore, when the number of ABSs
is low, the proposed methodology performs better at first
since there is less interference in the system. The total system
performs better as the number of ABSs increases gradually,
but its relative results with centralized methods are lower due
to more power consumption with ABS deployment. However,
when compared to greedy, randomized, and dynamic schemes,
our proposed algorithm achieves up to 9.8%, 51% and 9.83%
respectively, with the fixed number of LUEs which is set to

50.
In Fig. 5b, we show how the EE of total HUEs relates to the

satellite and CBS’s. The satellite has a higher energy efficiency
than CBS. This trend has two main reasons: satellites produce
their energy from renewable energy sources such as solar
energy, which is much less expensive than the running costs of
CBS, and according to the system model, a satellite is a more
viable network providing source in deep-sea waters than CBS
because it can associate multiple HUEs, resulting in better
results.

In Fig. 5c, we demonstrate the ABS deployment in the
designated zone. The deployment of 5 ABSs, as well as
the LUEs association, are depicted. The ABS positions are
denoted by various colored circles. And the ground users are
denoted by triangles of the same color as the connecting ABS.
The ABS association depends upon the ABS EE maximization
by taking into account all the QoS constraints as mentioned
in the optimization problem (60).

VIII. CONCLUSION

In this article, we have studied a maritime wireless
communication network that will be used to support future
6G networks. In this network, we designed a novel joint
resource allocation of LUEs and HUEs, their association,
transmit power control, and the ABSs’ deployment problem.
We then devised an optimization problem to improve the EE
of deployed ABSs, satellites, and CBSs. We have proposed
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a resource allocation algorithm framework based on joint
Benders decomposition, the Dinkelbach algorithm, and
the ADMM to handle this problem. This semi-distributed
algorithm reduces the processing load on the network’s
controller while increasing system flexibility. Finally,
simulation results show that our proposed method meets the
convergence and performance requirements. Future research
will investigate the energy and communication efficiency of
integrating a larger number of satellites.

APPENDIX A
PROOF OF LEMMA 1

We provide the Taylor approximation of the numerator in
(55) with (68). We can define the first-order of the Taylor
series as follows:

f(x0) + f ′(x0)(x− x0). (A.1)

Let assume du,local is local point of du. Now, we can expand
Taylor series for this function (55) at point du,local. Before
the Taylor series expansion, let’s review a few logarithmic
properties. The change of base rule can be given as:

loge x =
log2 x

log2 e
, (A.2)

it can be modified as:

log2 x = (loge x)(log2 e) = (lnx)(log2 e), (A.3)

therefore, we replace the term x in the natural logarithm with
the following term:

ln

{
1 +

pu,mlg0

(Ωu,ml + σ2)
(∥∥∥(du(n)− dml(n)

)∥∥∥2)}. (A.4)

Now, the derivative of natural the logarithmic function can be
given as follows:

d(ln[f(x)])

dx
=

1

f(x)
f ′(x). (A.5)

Now, let’s take the derivative of the term given in (A.4)
with respect to du which is given in (A.6). After getting
the derivative term, we can put all the terms in (A.2) to get
the required expansion term of the objective function, which
can be given in (A.7). We consider that x0 = du,local is
the local point around which the Taylor series is expressed.
Similarly, we put the above-mentioned logarithmic identities
in the expansion terms given in (A.7).

APPENDIX B
PROOF OF LEMMA 2

We applied the Taylor series expansion to the quadratic
safe distance constraint, which makes it linearize and can be
solved with a standard solver. Here, we consider the local point
du,local for each ABS around which the Taylor series applies.
The first-order Taylor series can be expressed as:

f(x0) + f ′(x0)(x− x0). (B.1)

Here, function can be represented as:

f(du) = ‖du1 − du2‖2. (B.2)

We can simply the norm function as follows:

f(du) =
〈
du1 − du2,du1 − du2

〉
(B.3)

Let’s take the first-order derivative of function (B.3) according
to Leibniz formula which can be expressed as:

(uv)′ = u′v + uv′. (B.4)

Lets put our function into the above the equation:

f(du)′ = du1 − du2 + du1 − du2, (B.5)

which can be simplify as follows:

f(du)′ = 2(du1 − du2), (B.6)

Lets combine all the terms and put in first order Taylor series
as given in (B.1 ):

‖du1,local − du2,local‖2 + 2(du1 − du2) · (du1,local − du2,local),
(B.7)

which can be modified as follows by applying the dot product
property of transposition:

‖du1,local − du2,local‖2 + 2(du1,local − du2,local) · (du1 − du2)T .

(B.8)
So this is the simplified first-order Taylor expansion of the
safe distance quadratic constraint.
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