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Abstract— Internet of Medical Things (IoMT) is igniting many 

emerging smart health applications, by continuously streaming 

the big data for data-driven innovations. One critical obstacle in 

IoMT big data is the power hungriness of long-term data 

transmission. Targeting this challenge, we propose a novel 

framework called, IoMT Big-data Bayesian-backward Deep-

encoder learning (IBBD), which mines deep autoencoder (AE) 

configurations for data sparsification and determines optimal 

trade-offs between information loss and power overhead. More 

specifically, the IBBD framework leverages an additional external 

Bayesian-backward loop that recommends AE configurations, on 

top of a traditional deep learning loop that executes and evaluate 

the AE quality. The IBBD recommendation is based on confidence 

to further minimize the regularized metrics that quantify the 

quality of AE configurations, and it further leverages 

regularization techniques to allow adjusting error-power tradeoffs 

in the mining process. We have conducted thorough experiments 

on a cardiac data streaming application and demonstrated the 

superiority of IBBD over the common practices like Discrete 

Wavelet Transform, and we have further generalized IBBD 

through validating the optimal AE configurations determined on 

one user to other users. This study is expected to greatly advance 

IoMT big data streaming practices towards precision medicine.   
Index Terms— Internet of Medical Things, Deep Learning, 

Data Mining, Regularization.   

 

I. INTRODUCTION 

ITH advancements of electronics, wireless, and 
intelligent algorithms [1, 2], Internet of Medical 
Things (IoMT) [3, 4], with high efficiency, 

intelligence, reliability, connectivity, and more features, is 
attracting intensive interests for smart health applications [5-8]. 
With the potential to continuously stream human bio-dynamics 
to the cloud, it is expected that IoMT can greatly boost the big 
data-driven precision health practices.  

IoMT, as illustrated in Fig. 1, is of great potential to capture 
and stream the bio-dynamics from multiple aspects, such as 
diverse bio-dynamics of the brain, cardiac, muscular, and 
skeletal systems. The big data captured can be streamed to the 
smart phone and/or cloud for further mining, thereby 
facilitating medical decision support, emergency alarm 

generation, lifestyle management and other data-driven smart 
health applications. Furthermore, the ubiquitous deployment of 
IoMT on the population-level practices is expected to bring 
even larger amounts of big data from the massive devices to the 
data mining facilities.  

One critical obstacle of IoMT currently is the power 
hungriness of the IoMT system, introduced by the continuous 
data transmission from massive devices on each individual. 
Frequent charging IoMT is troublesome and impacting its 
deployment in people’s daily lives. We in this study target this 
challenge and propose a new framework that leverages deep 
learning to sparsify the big IoMT data on the wearables and then 
reconstruct the bio-dynamics on the data mining facilities such 
as the smart phones and cloud centers, as shown in Fig. 1.  

An IoMT device usually consists of a signal sensing module, 
a micro-controller module, a wireless module, and a power 
management module. It is well known that the wireless module 
often consumes a significant amount of power compared with 
other modules [9]. Especially, when IoMT is continuously 
streaming bio-dynamics, the device may only last for a few 
hours or even a shorter time. Motivated by this, we believe that 
minimizing the wireless transmission power is of great potential 
to maximize the active time of the IoMT system. 

There have been previously reported studies on health 
monitor data compression [1]. Discrete Wavelet Transformation 
(DWT) has been a common practice in many studies [10-13], 
which firstly transforms the original signal to the time-
frequency domain, and then selects out significant wavelet 
coefficients for transmission. The coefficients are used on the 
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Fig. 1 An illustration of Internet of Medical Things (IoMT) for big data-
driven precision health (top), and the deep learning-enabled dynamics 
sparsification for efficient big data streaming (bottom). 
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receiver like a phone or cloud to reconstruct the original data. 

Lu et. al reported an Electrocardiogram (ECG) compression 

approach with DWT based on set partitioning in a hierarchical-

trees algorithm. Sahambi et. al developed DWT-based ECG 

digital signal characterization system. Jha et. al [14] applied 

DWT after empirical decomposition for two-stage ECG signal 

compression. DWT has also been applied to other IoMT 

modalities, such as the Electroencephalogram [1, 15] and 

Electromyography [16]. 
 Compressed Sensing (CS) is another common practice in 

various studies [13, 17-19], which uses a conversion matrix to 

transform the original signal to a new domain with sparse 

representations. On the receiver, the signal is reconstructed 

using the conversion matrix. Discrete Cosine Transform (DCT) 

has also been used in some studies [20-22], which applies the 

cosine waves as basic functions to perform signal projection 

and critical coefficient extraction. 
These methods reported have noticeable impact on the area, 

and at the same time substantial efforts on furthering the field 

are still urged. More specifically, how can we learn the complex 

dynamics in the data to facilitate the data sparsification? 

Machine learning methods, therefore, are attracting more and 

more attentions by leveraging complex critical pattern mining 

for data compression. Qian et. al [2] reported a Kmeans-based 

dictionary approach to compress the ECG data. The deep 

autoencoder (AE) was reported to compress the ECG signal in 

[23]. Abdellatif et. al [24] applied AE to compress the EEG 

signal for wireless power reduction. The transfer learning has 

also been combined to AE for multimodal data compression in 

[25]. Wei et. al [26] reported a hybrid method based on both 

compressed sensing and deep learning for privacy-aware data 

transmission.  
Interesting advancements have been made with these 

previous studies on machine learning and the most recent deep 

learning-based compression methods. Our research, however, 

targets a great challenge of deep learning-based intelligent 

compression in the field. More specifically, we will thoroughly 

investigate how the deep AE architecture design impacts the 

compression-induced power overhead and information loss. 

Further, we will investigate algorithms to determine optimal AE 

configurations to trade-off between the information loss and 

power overhead, thereby enabling error-power co-optimization. 

Our research will advance both theoretical and practical 

understanding of energy efficient IoMT.  
We in this study propose a novel framework called, IoMT 

Big-data Bayesian-backward Deep-encoder Learning (IBBD), 

which aims to, by leveraging two levels of backward 

optimization, mine the AE configurations and determine the 

optimal error-power trade-offs. More specifically, the IBBD 

framework leverages an additional external Bayesian-backward 

[27, 28] loop, on top of a traditional deep AE learning loop that 

is based on the backward propagation of error gradients. As 

illustrated in Fig. 2, the proposed Bayesian-backward learning, 

based on the metrics of the current and previous AE 

configurations, generates the AE configuration 

recommendation for the next iteration of evaluation. The 

recommendation is based on confidence to further minimize the 

regularized metrics that quantify the quality of AE 

configurations. The gradient-backward learning trains the 

configured AE architecture, and the metrics are afterwards 

generated that include information loss in terms of the signal 

reconstruction error, and the AE power consumption. Each red 

circle on top in Fig. 2, indicates an AE configuration that is 

expected to further minimize AE evaluation metrics; and each 

red dot in the bottom indicates the deep neural network learning 

trajectory in the configuration-constrained solution space.   

 The proposed IBBD framework enables multiple AE 

optimization tasks, such as best-effort-on-error optimization, 

best-effort-on-power optimization, and more importantly, 

optimal error-power co-optimization. We have conducted 

thorough experiments on ECG big data compression towards 

IoMT-empowered precision health, and demonstrated the 

effectiveness of the proposed framework for efficient IoMT big 

data streaming with the optimal deep learning of sparsification. 
Our contributions are summarized as below: 

(1) Proposing a novel IBBD framework that recommends AE 

configurations for evaluation with the top-level of optimization, 

and executes the recommendation with the bottom-level of AE 

learning; 
(2) Designing a regularized Bayesian-backward deep encoding 

learning approach, to quantify the quality of AE configurations 

by combing metrics including information loss and power 

overhead, thereby enabling error-power co-optimization; 
(3) Generalizing the proposed IBBD framework through 

validating the optimal AE configurations determined on one 

user to other users;  
(4) Conducting experiments on ECG big data compression and 

streaming, and demonstrating that the optimal AEs are superior 

to the common practices like DWT, error-minimum AE and 

power-minimum AE.   
This study therefore can greatly advance efficient IoMT big 

data streaming with optimal deep learning of sparsification, and 

can be generalized from ECG to other health modalities. 

 
Fig. 2 The proposed novel framework called, IoMT Big-data Bayesian-
backward Deep-encoder Learning (IBBD). 
Note. IBBD recommends AE architectures with Bayesian learning (top), 
and executes evaluation with gradient-backward learning (bottom). Each 
red circle indicates an AE configuration; and each red dot indicates the 
learning trajectory in the configuration-constrained solution space.   
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II. APPROACHES 

In this section we detail the proposed IBBD framework and 
theories of the algorithms, as well as thorough evaluations and 
comparisons for demonstrating effectiveness of IBBD. 

A. Algorithmic Framework Architecture 

As shown in Fig. 2, the top-level optimization in IBBD 
leverages the Bayesian-backward learning to iteratively 
recommend AE configurations to minimize the regularized AE 
cost function. The bottom-level executes and evaluates the AE 
configurations, yielding the metrics including the 
reconstruction error and encoding power overhead.  

B. Fundamentals of Deep Nonlinear Encoding    

As an unsupervised learning technique, AE firstly learns 
efficient data representations through an encoding function, and 
then reconstructs the input-referred output with a decoding 
function. As defined in (1), the AE learning process is 
minimizing the difference between the input and the 
reconstructed output, where �  and �  correspond to the 
functions of the nonlinear encoder and decoder, respectively, ���  is the � − �ℎ  sample in the 
 − �ℎ  instance of the training 
database, �  and �  give the length of the time-series and the 
total number of instances, respectively, and learning of � and � 
is executed simultaneously.  

 

�#, �# = ��� min�,� �∑ �∑ �����(�∙�)���#$%�&' ()�*+ �, - (1) 

We here have leveraged the Root Mean Square Error 
(RMSE) in (1) to evaluate the reconstruction information loss. 
With minimizing this loss, the AE learning process finally 
results in two functions �#  and �# . These two functions are 
also coupled with the AE configuration ., which is a set of / 
parameters that determines the AE architecture and learning 
process.  

For instance, one of the critical parameters is the depth of the 
nonlinear encoding function. Therefore, the encoder is a nested 
function as (2), where 0(.) determines the AE architecture and 
learning strategy based on the configuration . , and �(0) 
optimizes the neural connection weights based on the given AE 
architecture and learning strategy. Similarly, the decoder is also 
a nested function as (3) with the AE architecture and learning 
strategy given by the function 1(.).  

 � = �(0(.)), . = {34|6 = 1, … , /}           (2) � = �(1(.)), . = {34|6 = 1, … , /}           (3) 
 

Therefore, it is essential to find out the optimal configuration . to achieve maximum reduction of the information loss, which 
cannot be made by the AE learning process itself. It means, 
there is a hyperspace, as indicated in Fig. 2, which provides 
more dimensionalities by including both the . → loss  space 
and the consequent {0(.), 1(.)} → >?@A subspace. Next, we 
will detail the proposed Bayesian-backward deep-encoder 
learning framework to facilitate the hyperspace optimization for 
intelligent AE configuration determination. 

C. IBBD: IoMT Big-data Bayesian-backward Deep-encoder 

Learning  

The proposed novel framework, IBBD, aims to determine 
the optimal AE configuration through Bayesian-backward 
deep-encoder learning. Here we will detail how IBBD, through 
modelling the configuration and loss with Gaussian 
distributions, can recommend AE configuration at the top-level 
optimization. The embedding of the bottom-level AE learning 
and evaluation of the recommended configuration will also be 
detailed to indicate how two levels of IBBD cooperate with 
each other. Further, considering diverse power overhead for 
different AE configurations, the IBBD framework can regulate 
the loss including the reconstruction error and the power 
overhead, realizing error-power co-optimization. 

We here model the . → B  relationship with a Bayesian linear regression function [27] as (4), where U(.)  is the loss prediction function, X  is the noise, and B  is the actual loss corresponding to the AE configuration . . The prediction function U(.)  is modeled as, based on the probability theory and random process [27], a Gaussian function distribution as (5), where `(.) and ab(.) are the mean and variance of the function U(.)  in a Gaussian process de, respectively.    
 B = U(.) + X                                       (4) 

U(.)~de(`(.), ab(.))                          (5) 

hij = {B+ , Bb, … , Bk}                                 (6) 

hi. = {.+, .b, … , .k}                             (7) 

hk = {(.+, B+), (.b, Bb), … , (.k , Bk)}     (8) 
  
The distribution of U(.)  gives all possible functions to 

predict B from ., thereby statistically yielding the confidence 
of different AE configurations in terms of minimizing the AE 
loss. The optimal configuration is then recommended for AE 
execution and evaluation to generate the actual loss B, which 
serves as a new observation. Accumulatively, a set of 

observations hij   as (6) can be established based on iterative 
recommendations hi.  as (7). The pairs of configuration and 
observation form a set hk as (8), where � denotes the time or 
the iteration index.  

In the context of efficient IoMT big data streaming, the 
power overhead of the encoding process is an important factor, 
and we want power reduction in wireless data communication 
to be significantly higher than the data sparsification overhead. 
Therefore, we further propose a regularized loss as (9), to co-
consider the AE reconstruction error and the AE-decoder power 
overhead. The loss considers both �>?@A  and l(�#(0(.)) , 
which correspond to the relative RMSE with the learned AE 
( �#  and �#  together), and the power consumption of the 
encoder (�# only), respectively. �mn is the testing database. 

 B = o ∗ �>?@A��#�0(.)#, �#�1(.)#, �mn# +q ∗ l r�#�0(.)#s                                     (9) 
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The propose regularized loss in (9) can therefore trade-off 
between the AE reconstruction error and the encoding power 
overhead. The factors o  and t  are aiming to regularize the 
contribution of rRMSE and power, respectively, which are 
metrics that quantify the quality of AE configurations. The 
rRMSE, as (10), aims to normalize the RMSE in the loss, where �u is the n-th time series in the database.   �>?@A��#�0(.)#, �#�1(.)#, �mn# = 

∑ v∑ r���w�x#∙y##���s%�&' %
z{|(�u)�z��(�u))�*+ �}                  (10)  

 
The Bayesian linear regression model [27] for AE 

architecture can be represented as (11), where �(∙)  is a basis 
function for space transformation on . , and �  has a prior 
Gaussian distribution as (12) with a zero mean and ∑ as�  the 
covariance matrix. The mean and covariance of U(.) are then 
calculated as (13) and (14), respectively. By leveraging (11) and 
(13), (14) is further reduced to (15), where �(., .) concisely 
denotes the covariance operation, called a kernel function.  

   U(.) = �(.)��                                                                                                                                                                                                                                    (11) 
� = �(0, ∑ )�                                                       (12) 

` �(.) = �[U(.)] = 0                                           (13) 

ab�(.) = �[((U(.) − `(.))((U(.�) − `(.�))]   (14) 

ab�(.) = �(.)� ∑ �(.�)� = �(., .)                   (15)  
 
We here further introduce a squared exponential function as 

covariance, considering it yields a combination of infinite 
number of basis functions for the Bayesian regression model 
[29]. This more powerful kernel representing the covariance is 
as (16), where �.� − .��  gives the Euclidean distance 
between two AE configurations .�  and .� , and �  is a length 

scale. The prior distribution of U(hi.)  is thus given as (17), 
where hi.  is a set of AE configurations already evaluated. 
Similarly, the prior distribution of U(h.)  is given in (18), 
where h. is the AE configuration space. 

 

��� rU�.�#, U�.�#s = ��.�, .�# = ex p r��.��.��b�$ s (16) 

U(hi.)|hi.~�(0, �(hi., hi.))                        (17) 

U(h.)|h.~�(0, �(h., h.))                        (18) 
 

Further, the joint Gaussian distribution of the training 
outputs, U(hi.) , and the testing outputs U(h�) , based on the 
prior, is represented as (19), where �(hi., hi.) , �(hi., h.) , 
and �(h., h.) correspond to three covariance matrices. After 

considering the observations hij   with noise, �(0, a�b) , we 
introduce the noise item to (19), yielding (20). 

 
 

�U(hi.)U(h�)� |h�� , h�~� �0, ��(hi., hi.) �(hi., h.)�(h., hi.) �(h., h.)�- (19) 

 

                   � hijU(h�)� |hi., h�~ 

� �0, ��(hi., hi.) + a�b� �(hi., h.)�(h., hi.) �(h., h.)�-  (20) 

 
Next, the conditional distribution, based on the principles of 

conditioning the joint Gaussian prior distribution on the 
observations [30], is calculated as (21) through (23), where U(h�)|hi., hij , h� is the posterior probability of U(h�) given hi., hij ,  and h� , which correspond to AE configurations 
already evaluated, observed AE loss scores for these 
configurations, and the AE configuration space, respectively. � 
and � + 1  correspond to the most recent iteration index in 
IBBD, and next iteration, respectively.  

 

         U(h�)|hi., hij , h�= �(`k�+��h�#, ∑ )��h�#k�+                (21)  
`k�+��h�# = �(h., hi.)[�(hi., hi.) + a�b�]�+hij    (22) 

 ∑ =��h�#k�+ �(h., h.) 

−�(h., hi.)[�(hi., hi.) + a�b�]�+�(hi., h.)    (23) 
 

The Bayesian-backward learning on the mean `k�+��h�#
  is 

calculated as (22), where the predicted mean of U(h�) in the 
iteration � + 1  is estimated with the information from AE 
configurations already evaluated, hi. , observed evaluation 

results, hij , and the space h. itself. The covariance, ∑ ,��h�#k�+  is 

as (23), which only relates to hi.  and h. , not hij  . And the 
estimation is performed by linking hi.  and h.  through the 
kernel function in (16).  

We can observe that the Gaussian kernel gives almost unity 
for any two AE configurations which are very close to each 
other (if setting the length scale �  to be 1). The kernel result 
decreases when the distance of AE configurations increases.  

Now, the function values U(h�), corresponding to the AE 
configuration space h�, can be sampled from the joint posterior 
distribution described in (21) through (23). To determine the 
optimal AE recommendation, .k�+, with a minimum predicted 
function value, the confidence of different AE configurations is 
calculated as (24) by co-considering the mean and variance with 
a weighting factor t. Here t is selected as 2.756, corresponding 
to the 96% confidence level.    

 

.k�+ = ��� min.∈h. �`k�+��h�#(.) + t r∑ (.)��h�#k�+ s+/b-  (24) 

  

The recommended AE configuration, .k�+, is backward sent 
then from the top-level to the bottom-level of IBBD for 
execution and evaluation in the iteration � + 1.  
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D. IBBD Regularization Mechanisms  

To thoroughly investigate IBBD regularization mechanisms, 
we have taken into account three strategies, as (25) through 
(27), denoted as IBBD_r, IBBD_e, IBBD_g, respectively.  

 B = �>?@A��#�0(.)#, �#�1(.)#, �mn#             (25) 

B = l r�#�0(.)#s                                                 (26) 

B = o ∗ �>?@A��#�0(.)#, �#�1(.)#, �mn# 

  +q ∗ l r�#�0(.)#s                                        (27) 

 
IBBD_r ( o = 1, q = 0 ) as (25) focuses on rRMSE 

minimization, which is expected to yield AE configurations 
with minimum information loss but possible un-optimized 
power overhead. IBBD_e ( o = 0, q = 1 ) as (26), instead, 
searches AE configurations with minimum power overhead, 
without co-optimizing information loss. These two 
regularization strategies provide two special scenarios to 
demonstrate IBBD learning processes and facilitate comparison 
with IBBD_g. 

In contrast, IBBD_g as (27) co-optimizes both information 
loss and AE power overhead, mainly with the regularization 
factor q that is selected from a set of values. These thorough 
considerations will provide rich and interesting results to 
demonstrate the behavior and effectiveness of the proposed 
IBBD framework, which will be detailed in the results section. 

E. IBBD Generalization 

To conduct solid evaluation of the IBBD algorithm, we have 
firstly executed IBBD on the ECG data from one human 
subject, and then generalized the determined optimal AE 
configurations to other human subjects.  

More specifically, we have taken into account multiple 
dimensionalities for the AE configuration . , including the 
depth of the encoder, the AE input width, the number of feature 
maps of each stage, the max-pooling size, and the learning rate. 
This huge AE space is expected to contain high-quality AE 
candidates with both low error and power overhead, which, at 
the same time, poses a big challenge in AE configuration 
determination. We therefore apply the proposed IBBD 
algorithm on this AE space, on one human subject, to determine 
the optimal candidates.  

We will also analyze in detail the top ten optimal candidates 
for each IBBD_g regularization sub-strategy to demonstrate the 
consistent quality of candidates. For instance, for IBBD_g010, 
where o = 1  and q = 0.010 , we will evaluate ten optimal 
candidates, IBBD_g010_optA through IBBD_g010_optJ.  

Afterwards, we generalize the optimal AE candidate .��k to 
each �� ¡(�) , data of the subject ¢ , among @  human subjects 
and determine the AE quality with (28), where £ is any metric 
and ℳ is the corresponding metric function. 

 £ = ∑ ℳ��#�0(.��k)#, �#�1(.��k)#, �� ¡(�)#/@¥�*+  (28) 

F. Framework Evaluation 

We will also implement the common practice, DWT, to 

demonstrate the effectiveness of the proposed IBBD in terms of 
optimal AE configuration determination. Besides, the above-
mentioned IBBD_r and IBBD_e, will provide interesting 
comparison with signal-metric optimization. Further, multiple 
sub-strategies of IBBD_g allow us to thoroughly evaluate the 
IBBD behavior and effectiveness. Last, the generalization from 
one human subject to other subjects will offer a solid 
justification of the IBBD framework.   

III. RESULTS 

A. Experimental Setup 

Diverse bio-dynamics are provided by the well-known MIT-
BIH Arrythmia Database [31, 32], which has dozens of different 
types of arrythmia-related ECG abnormalities and is thus 
applied in our experiments. From each 30-min 360-Hz 
recording, we have selected 2+¦  samples that is about 24.27 
minutes and can be easily segmented with a window size of 2�. 
The ECG time series of ten high-fidelity recordings has been 
processed through a band-pass filter with a range of 0.5 Hz to 
49.5 Hz, to remove the baseline wander and power-line 
interference. 75% and 25% of the segments of each subject is 
used for training and testing, respectively.  

The regularization parameters evaluated for IBBD_g are 
chosen as: o = 1, q ∈ {0.010, 0.035, 0.050, 0.100} . The four 
sub-strategies are denoted as IBBD_g010, IBBD_g035, 
IBBD_g050, and IBBD_g100, respectively. A huge AE space 
has been explored, based on the depth of the encoder ({2,4,6}), 
the AE input width ({128, 256, 512} ), the number of feature 
maps of each stage ( {2,3,4,5,6,7,8} ), the max-pooling size 
(fixed at 2 to facilitate compression ratio determination when 
increasing the depth), and the learning rate (from 0.005 to 
0.025). 

The power consumption of the compression algorithms, 
including the AE-encoders and the DWT methods, is calculated 
based on the number of operations required and the power table 
of the ARM processor [33]. The Bluetooth data transmission 
power is based on the energy characterization table [34]. We in 
this study mainly focus on the algorithm design and validation, 
and in future, will implement the algorithms on the hardware 
for further experiments. Besides, IBBD enables a possibility of 
deactivating the Bluetooth module in enlarged no-transmission 
durations. The so-called ‘sleeping mode’ of Bluetooth can 
further minimize the significant static power consumed for 
maintaining connection, thereby greatly increasing the power 
saving. We in future will also investigate this great potential of 
further power saving offered by IBBD. 

B. Single-Objective IBBD Learning 

To investigate the behavior of IBBD and also provide 
interesting comparison, we have firstly evaluated the best-
effort-on-error optimization, i.e., IBBD_r, and the best-effort-
on-power optimization, i.e., IBBD_e. As shown in Fig. 3, the 
last 200 iterations are visualized in Fig. 3(a), and further 
zoomed versions are given in Fig. 3(a1) and Fig. 3(a2), for 
readability purpose. We can observe that IBBD either converges 
to the minimum error area (red dots) or the minimum power 
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area (blue dots), indicating its learning effectiveness under 
different regularization strategies. The DWT method is also 
included for comparison, indicating similar optimal 
configurations as those determined by the single-objective 
IBBD learning. 

Further, we have illustrated the top N (N=10) optimal 
configurations in Fig. 4.  The consistent quality of 
configurations is shown in Fig. 4(a), and further illustrated with 

zoomed-in graphs in Fig. 4(a1) and Fig. 4(a2). Diamonds 
indicate best optimal configurations. The distribution of 
IBBD_r is well concentrated and the best optimum is very close 
to other optimums. Similar quality is observed from IBBD_e.  

The best optimums of IBBD_r and IBBD_e have been 
compared further in Fig. 5 and Table I. In Fig. 5, IBBD_r and 
DWT4 (compression ratio 4) both have little information loss, 
when targeting error minimization. IBBD_e and DWT64 

 
Fig. 5 ECG reconstruction comparison, indicating similar quality between single-objective IBBD and DWT. (a) IBBD_r and DWT4 both have little 
information loss when targeting error minimization.  (b) IBBD_e and DWT64 sacrifice the reconstruction performance when minimizing power overhead. 

 
Fig. 3 Evaluations on the best-effort-on-error optimization, i.e., IBBD_r, and the best-effort-on-power optimization, i.e., IBBD_e, to investigate the behavior 
of IBBD and also provide interesting comparison. The effectiveness of IBBD will be mainly further demonstrated later in dual-objective learning. 
Notes. The optimal configuration search processes for both are visualized in (a). The zoomed in version for IBBD_r is in (a1), and for IBBD_e is in (a2). Only 
last 200 iterations are visualized in (a), and further zoomed versions are given, for readability purpose. Diamonds indicate the best optimal configurations. We 
can observe that IBBD either converges to the minimum error area (red dots) or the minimum power area (red dots), indicating its learning effectiveness under 
different regularization strategies. The DWT method is also included for comparison, indicating similar optimal configurations as those determined by single-
objective IBBD learning.  
 

 
Fig. 4 The top N (N=10) optimal configurations of IBBD_r and IBBD_e. The consistent quality of configurations is shown in (a), and further illustrated with 
zoomed-in graphs in (a1) and (a2). Diamonds indicate the best optimal configurations. 
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sacrifice the reconstruction performance when minimizing 
power overhead. We will later in dual-objective IBBD learning 
demonstrate the superiority of IBBD_g. Table I gives both 
details of both IBBD configurations, indicating similar RMSE 
and power for IBBD and DWT. We have also found that, 
IBBD_r prefers a smaller compression ratio and a large 
convolutional kernel size, which are important to extract the 
patterns and minimize information loss.  

C. Dual-Objective IBBD Learning  

The regularized Bayesian-backward deep encoding learning 
can further co-optimize the error and power, to provide AE 
configurations superior to DWT. We here have thoroughly 
evaluated four co-optimization regulation strategies: 
IBBD_g010, IBBD_g035, IBBD_g050, and IBBD_g100, with 

gradually increasing emphasis on power optimization.  
As shown in Fig. 6, when the regularization factor is only 

0.010, the corresponding algorithm IBBD_g010 still mainly 
targets error minimization. When increasing the factor to 0 .035, 
IBBD_g035 pushes the search process both downwards and 
rightwards, thereby providing AE configurations with error-
power co-optimization. Further increasing the factor to 0.050 
and then to 0.100, the IBBD_g050 and IBBD_g100 have more 
emphasis on energy optimization, and the latter one results in 
very attractive AE configurations. 

The top N (N=10) optimums of each strategy are further 
given in Fig. 7, to demonstrate the consistent quality of four 
IBBG_g strategies on error-power co-optimization, with 
different levels of emphasis on power. We find that, 
IBBD_g035 and IBBD_g050 have very similar top N 

TABLE IV. 
 

Notes. 

TABLE I. Summary of the best optimum of IBBD_r and the best optimum of IBBD_e, indicating a similar quality as DWT. 

 
Notes. CR: compression ratio; nLayer: depth of encoder (and decoder); nWidth: input width; nMap: number of feature maps of each layer; nKernel: 
convolutional filter size; nPooling: max-pooling size; nLearning: learning rate; units of RMSE and Power: mV and mW.  

CR nLayer nWidth nMap nKernel nPooling nLearning RMSE Power

IBBD_r 4 2 128 5 14 2 0.02 0.013 0.729

DWT4 4 0.012 0.720

IBBD_e 64 6 128 2 2 2 0.005 0.153 0.047

DWT64 64 0.152 0.045

 
Fig. 6 Evaluation of IBBD_g with different regularization strategies, i.e., IBBD_g010, IBBD_g035, IBBD_g050, and IBBD_g100, with gradually increasing 
emphasis on power optimization. Both big pictures, (a) to (d), and zoomed in illustrations, (a1) to (d1), are given. Diamonds indicate the best optimal 
configurations. When the regularization factor is only 0.010, the corresponding algorithm IBBD_g010 still mainly targets error minimization. When increasing 
the factor to 0.035, IBBD_g035pushes the search process both downwards and rightwards, thereby providing AE configurations with error-power co-
optimization. Further increasing the factor to 0.050 and then to 0.100, the IBBD_g050 and IBBD_g100 have more emphasis on energy optimization, and the 
latter one results in very attractive AE configurations. 
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optimums. IBBD_g100 has dramatically different top N 

optimums with more emphasis on power optimization. 
ECG reconstruction comparison of four IBBD_g 

regularization strategies, as shown in Fig. 8, indicates, during 

error-power co-optimization, larger regularization factors on 

power bring increasing information loss. But the signal 

reconstruction quality for IBBD_g decreases much slower than 

DWT, demonstrating the effectiveness of the proposed IBBD 

framework. 

  The best optimum under each of four strategies is 

summarized in TABLE II. There are several interesting findings 

here. Firstly, IBBD_g010_optA is has similar RMSE and power 

as DWT4. Secondly, IBBD_g035_optA and IBBD_g050_optA 

have a same AE configuration, with both lower power and 

 
Fig. 8 ECG reconstruction comparison of four IBBD_g regularization strategies, indicating, during error-power co-optimization, larger regularization factors 
on power bring increasing information loss. But the signal reconstruction quality for IBBD_g decreases much slower than DWT, demonstrating the 
effectiveness of the proposed IBBD framework. Especially, in (d), the IBBD_g100 has substantially better reconstruction than DWT64. 

 
Fig. 7 Top N (N=10) optimums of each strategy are further illustrated to demonstrate the consistent quality of four IBBG_g strategies on error-power co-
optimization, with different levels of emphasis on power. Diamonds indicate the best optimal configurations. 
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lower RMSE, than those of DWT8. Though DWT16 has 
slightly lower power, its RMSE is much higher. Thirdly, 
IBBD_g100_optA has both lower power and lower RMSE than 
DWT32, and though DWT64 has slightly lower power, its 
RMSE is substantially high (0.152 mV compared to 0.046 mV 
of IBBD_g100_optA).  

Therefore, we conclude IBBD_g035_optA (or 
IBBD_g500_optA) provides an AE configuration with 
moderate RMSE and power, and IBBD_g100_optA further 
decreases power by 3.2 times (0.202 mW to 0.063 mW), with 
only an increase in RMSE of 39%. Further, with more emphasis 
on power optimization, IBBD_g prefers to recommend AE 
configurations with a larger depth, a smaller amount of feature 
maps, a smaller convolutional kernel size, and a smaller 
learning rate. These indicate IBBD_g puts more attention on 
smaller but appropriate model sizes, and a smaller learning rate.   

D. Quality of Optimal Candidates 

To illustrate the ECG reconstruction quality of IBBD_g035 
and IBBD_g100 strategies, we have in Fig. 9 and Fig. 10 further 
demonstrated four optimums (optB to optE) for each. In Fig. 9, 
the illustrations of other four optimums of IBBD_g035, still 
indicate greatly better signal reconstruction morphologies than 
DWT16. In Fig. 10, IBBD_g100, with a slight sacrifice of 
performance, actually provides substantially better signal 
reconstruction morphologies than DWT64.  

TABLE III and TABLE IV summarize five optimums for 
IBBD_g035 and IBBD_g100, respectively. In the former table, 
the five optimums all have both lower power (no more than 
0.222 mW) and lower RMSE (no more than 0.034 mV), than 
DWT8 (0.360 mW in power and 0.051 mV in RMSE). Again, 
DWT16 obtains slighter lower power with a significant increase 
in RMSE (from 0.051 mV to 0.114 mV). The numbers of 

TABLE II. Summary of the best optimum for each of four IBBD_g strategies, which illustrate the superiority to DWT on error-power co-optimization. 

 
Notes. optA corresponds to the best optimum of each strategy.  

CR nLayer nWidth nMap nKernel nPooling nLearning RMSE Power

IBBD_g010_optA 4 2 128 7 14 2 0.02 0.014 0.732

DWT4 4 0.012 0.720

IBBD_g035_optA 16 4 128 5 12 2 0.005 0.033 0.202

IBBD_g050_optA 16 4 128 5 12 2 0.005 0.033 0.202

DWT8 8 0.051 0.360

DWT16 16 0.114 0.180

IBBD_g100_optA 64 6 128 5 8 2 0.005 0.046 0.063

DWT32 32 0.142 0.090

DWT64 64 0.152 0.045

 
Fig. 9 Further illustrations of other four optimums of IBBD_g035, indicating greatly better signal reconstruction morphologies than those of DWT. 
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feature maps, the convolutional filter sizes, and the learning 
rates, have shown some diversity. In the latter table, similar 
findings can be made and IBBD_g100 enables very attractive 
error-power co-optimization, by further decreasing the number 
of feature maps, and/or the convolutional filter size. The large 
reconstruction error of DWT64 in Fig. 9 is also reflected in 
TABLE IV, meaning that its direct drop of decomposed signal 
details [35, 36], causes big signal distortions.  

E. IBBD Generalization  

We have conducted generalization evaluations of 
IBBD_g035_optA and IBBD_g100_optA to ECG 
reconstruction on other human subjects, which, as shown in Fig. 
11, demonstrate the determined AE configurations are much 
better than DWT16 and DWT64, respectively. In TABLE V, we 
have summarized the performance of each subject, and 
provided the average RMSE and average power on all subjects. 

TABLE IV. Summary of five optimums of IBBD_g100, with both lower power and RMSE than DWT32, and substantially lower RMSE than DWT64. 

CR nLayer nWidth nMap nKernel nPooling nLearning RMSE Power

IBBD_g100_optA 64 6 128 5 8 2 0.005 0.046 0.063

IBBD_g100_optB 64 6 128 5 8 2 0.01 0.048 0.063

IBBD_g100_optC 64 6 128 5 12 2 0.025 0.048 0.071

IBBD_g100_optD 64 6 128 4 12 2 0.005 0.051 0.063

IBBD_g100_optE 64 6 128 5 6 2 0.025 0.052 0.059

DWT32 32 0.142 0.090

DWT64 64 0.152 0.045

TABLE III. Summary of five optimums of IBBD_g035, with both lower power and lower RMSE than DWT8, and much lower RMSE than DWT16. 

 

CR nLayer nWidth nMap nKernel nPooling nLearning RMSE Power

IBBD_g035_optA 16 4 128 5 12 2 0.005 0.033 0.202

IBBD_g035_optB 16 4 128 8 10 2 0.01 0.032 0.222

IBBD_g035_optC 16 4 128 7 8 2 0.025 0.034 0.207

IBBD_g035_optD 16 4 128 7 8 2 0.02 0.034 0.207

IBBD_g035_optE 16 4 128 8 10 2 0.005 0.033 0.222

DWT8 8 0.051 0.360

DWT16 16 0.114 0.180

 
Fig. 10 Further illustrations of other four optimums of IBBD_g100, indicating substantially better signal reconstruction morphologies than those of DWT64. 
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The results on all subjects have effectively shown similar 
findings as detailed previously on the single subject, meaning 
that the optimal AE configurations can be well generalized to 
other unseen subjects.  

More specifically, IBBD_g035_optA, on average, has power 
and RMSE as 0.202 mW and 0.043 mV, respectively, which are 
smaller than 0.360 mW and 0.046 mV, respectively, for DWT8. 
DWT16 decreases the power slightly to 0.180 mW, but 
increases RMSE greatly to 0.086 mV. Further, 
IBBD_g100_optA offers power as low as 0.063 mW, with 
RMSE only increased to 0.064 mV. DWT32, instead, has both 
higher power and higher RMSE, at 0.090 mW and 0.111 mV, 
respectively. DWT64 slightly decreases the power to 0.045 
mW, but sacrifices a lot in RMSE to 0.123 mW. 

IV. CONCLUSION 

We proposed and evaluated a novel framework, IBBD, 
denoting IoMT Big data Bayesian-backward Deep-encoder 
learning, to mine the optimal deep autoencoder configurations 
that can effectively trade-off between information loss during 
data sparsification and power overhead. The regularized 
Bayesian-backward deep encoding learning algorithm, at the 
top-level, quantifies the quality of AE configurations by 
combing metrics including information loss and power 

overhead, thereby generating optimal AE recommendations. 
The AE learning is executed at the bottom-level for 
configuration evaluation. The proposed algorithm has provided 
different optimums based on the settings, and allows the user to 
apply different strategies of error-power trade-off. Evaluated on 
the cardiac data streaming application, IBBG has demonstrated 
AE configurations with very attractive error-power co-
optimization, compared with the common practice – DWT 
methods that either have both higher power and higher RMSE, 
or have slightly lower power but a great sacrifice in RMSE. This 
study will greatly benefit IoMT big data streaming towards data 
driven-precision medicine.  
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