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ABSTRACT
This work introduces a new training and compression pipeline to build Nested Sparse ConvNets, a class
of dynamic Convolutional Neural Networks (ConvNets) suited for inference tasks deployed on resource-
constrained devices at the edge of the Internet-of-Things. A Nested Sparse ConvNet consists of a single
ConvNet architecture containing N sparse sub-networks with nested weights subsets, like a Matryoshka
doll, and can trade accuracy for latency at run time, using the model sparsity as a dynamic knob. To attain
high accuracy at training time, we propose a gradient masking technique that optimally routes the learning
signals across the nested weights subsets. To minimize the storage footprint and efficiently process the
obtained models at inference time, we introduce a new sparse matrix compression format with dedicated
compute kernels that fruitfully exploit the characteristic of the nested weights subsets. Tested on image
classification and object detection tasks on an off-the-shelf ARM-M7 Micro Controller Unit (MCU), Nested
Sparse ConvNets outperform variable-latency solutions naively built assembling single sparse models trained
as stand-alone instances, achieving (i) comparable accuracy, (ii) remarkable storage savings, and (iii) high
performance. Moreover, when compared to state-of-the-art dynamic strategies, like dynamic pruning and
layer width scaling, Nested Sparse ConvNets turn out to be Pareto optimal in the accuracy vs. latency space.

Keywords Deep Learning · Neural Network Compression · IoT · Latency-Quality Scaling ·MCU

1 Introduction

THE ability to deploy fast Convolutional Neural Net-
works (ConvNets) at the edge of the Internet-of-

Things (IoT) reflects the possibility of building ubiqui-
tous intelligent services with high efficiency and privacy
standards. In many IoT applications, the end-nodes are
lightweight devices powered by tiny Micro Controller
Units (MCUs), characterized by small form factor, minimal
storage and memory resources, i.e., few MBs of FLASH
(1-2MB) and hundreds of KBs of RAM (≤512kB), and
single-core CPUs clocked at few hundreds of MHz (100-
400 MHz). To bridge the gap between such stringent hard-
ware constraints and the computational and storage re-
quirements of modern ConvNets, a considerable research
effort has been lately spent seeking optimization strate-
gies, like pruning [1, 2], precision scaling [3], compact
neural architectures [4, 5], and computational graph rewrit-
ings [6, 7]. Despite the remarkable results achieved, those
solutions follow a worst-case, accuracy-driven design and
optimization strategy generating static ConvNets tailored
for a specific setting. Static ConvNets show one main
limitation, that is, they spend the same maximal effort
in all situations, neglecting run-time changes that might

appear due to variations in the external environmental con-
ditions, the quality-of-service required by the user and the
surrounding context, and the resources consumed by other
software routines running in parallel on the same device.
A speculative and perhaps more efficient approach would
exploit contextual optimizations to minimize the average
resource usage improving the information-processing ca-
pability. For instance, a video surveillance system can
reduce the classification effort when the scene is empty,
lowering the energy consumption, then can switch into
a more accurate but expensive mode only if something
suspicious is detected. Alternatively, the latency of the
inference task might change to meet different throughput
requirements when the resource budget at the system or the
application level gets reallocated [8]. These practical ex-
amples suggest that the availability of dynamic ConvNets
capable of trading accuracy and computational costs at run
time represents a valuable tool to raise the bar of efficiency
for intelligent edge applications.

Building a dynamic ConvNet encompasses the choice of
a proper control mechanism to implement the latency-
quality scaling at run time. Recent works proposed several
architectural-level knobs, like the network depth [9], or
the layers width [10], but although the relative ease of im-
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plementation, operating on the architecture of the model
may be a too coarse option limiting the latency and accu-
racy trade-off. Moreover, it does not alleviate the pressure
on the storage memory as the full model configuration,
i.e., the one at the maximum width or maximum depth
might still be too large to fit into the FLASH memory. The
availability of more fine-grain control knobs to modulate
latency while keeping model footprint minimal is highly
desirable indeed, and model sparsity is a good knob can-
didate. Sparse training is less prone to accuracy losses,
and sparse models can be compressed via sparse encoding
formats [11]. However, how to leverage the weight sparsity
as the dynamic knob on compact ConvNets, e.g., the Mo-
bileNets [4], and how to deploy dynamic sparse ConvNets
efficiently on tiny general-purpose cores are open issues.

To this end, we introduce a new class of dynamic ConvNets
named Nested Sparse ConvNets. A Nested Sparse Con-
vNet is a convolutional deep neural network with a single
weight-set that can be operated at N different configura-
tions of increasing sparsity, resulting in a super-network
containing N sparse sub-networks with nested weight-sets,
like Matryoshka dolls as illustrated in Fig. 1. A low spar-
sity value corresponds to high accuracy, whereas a high
sparsity value results in a fast yet less accurate inference.
To let any ConvNet be transformed into a Nested Sparse
ConvNet, this work proposes an end-to-end pipeline that
comprises three main tools integrated over the full devel-
opment stack:

• at training time, a gradient masking technique that
properly routes the learning signals between the
nested sparse networks guaranteeing convergence and
high accuracy;

• at compile time, a sparse matrix compression for-
mat to fruitfully exploit the nested structure of the
weights set avoiding computationally expensive de-
coding stages;

• at run time, dedicated compute kernels that ensure
efficient processing and switching among different
sparse configurations with no additional latency cost.

To validate our proposal, we collected an extensive set
of results using as benchmarks ResNet9 [12] and two in-
stances of MobileNet (V1 and V2) [4, 5] for two vision
tasks, namely, image classification and object detection,
deployed on an embedded system powered by an ARM
Cortex-M7 MCU with 2MB of FLASH and 512KB of
RAM. As it will be discussed in the experimental section,
Nested Sparse ConvNets achieve an accuracy comparable
to that of independently trained sparse models and outper-
form other scalable ConvNets obtained through existing
dynamic methods, like dynamic pruning [13] and layer
width scaling [10], thereby proving to be Pareto optimal in
the accuracy vs. latency space.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews existing approaches to implement latency-
quality scaling in ConvNets. Section 3 describes the
proposed end-to-end pipeline consisting of the training
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Figure 1: A pictorial representation of a Nested Sparse
ConvNet, a super-network containingN sub-networks with
increasing value of sparsity (s1<s2<...<sN ): a low spar-
sity value corresponds to high accuracy, whereas a high
sparsity value results in a faster inference process at the
cost of lower accuracy.

methodology, the compression schema, and the sparse
computational kernels. Section 4 presents the collected
experimental results through an extensive assessment of
functional and extra-functional metrics. Section 5 dis-
cusses limitations and future works. Section 6 concludes
the work.

2 Related Works

This section offers a brief review of recent works on prun-
ing strategies and compressed sparse storage formats for
static ConvNets, as the proposed pipeline extends such
techniques in a dynamic context. Then it describes state-of-
the-art solutions for dynamic ConvNets and the limitations
that our proposal aims to overcome.

Pruning. The existing methods differ in terms of the prun-
ing policy they implement and the level of granularity at
which they are applied [14]. In terms of policy, even if
complex and rather elegant methods have been recently
proposed, e.g., gradient- or Hebbian-based methods [11],
those magnitude-based [15] are the preferred option in
many modern training pipelines because of their reliability
and ease of use. For what concerns the granularity, there
exist three main classes. The unstructured pruning plays
at the lower level, namely, on the individual weights of the
model [16], offering a high degree of flexibility in reaching
high accuracy targets. Such flexibility is paid at inference
time when the potential savings brought by zeroed weights
contrast with the regular code organization and memory
access pattern preferred by common Instruction-Set Ar-
chitectures. This issue is often solved with the aid of
specialized hardware units that can accelerate the irregular
flow, e.g., [17]. At a coarser granularity, block pruning
techniques [18] group neighboring weights in specific pat-
terns to decrease the indexing overhead and to ease the
adoption of sparse compute kernels on general-purpose
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Figure 2: Evolution of the training loop, from left to right. The full weight-set (θ) and the sub-nets (θsi ) get sorted and
processed with an increasing order of sparsity value (i.e., s1 < s2 < s3).

cores [19, 20]. At the coarsest level, filter pruning schemes
drop entire convolutional filters [1], achieving aggressive
storage savings and speed-up at the cost of substantial
accuracy loss due to fast information removal.

Compressed Sparse Storage Format. Dealing with
sparse arrays obtained by pruning irrelevant weights en-
ables substantial memory savings by storing the value and
the position of the remaining non-zero entries. Many dif-
ferent sparse storage formats exist in literature [21] and
their optimality is a function of the sparsity itself and the
access pattern needed, e.g., random, streaming, or trans-
posed access. For instance, to maximize the compression
efficiency, a simple bitmap is preferable for low sparsity
regimes, whereas coordinate-offset schemes (COO) are
more suitable in high-sparse regimes [11]. Sparse storage
formats like Compressed Sparse Row (CSR) or Columns
(CSC) [19] allow fast row access, and so can be used to im-
plement efficient sparse-matrix-vector and sparse-matrix-
matrix operations.

Dynamic Topology. One way of building scalable Con-
vNets is to play with the architectural structure of the
model, e.g., the width of the layers or the depth of the
network. The authors of [4] proposed to scale the number
of channels within each convolutional layer by a prede-
fined ratio, the width multiplier. Originally proposed as
a static design option, the authors of [10] introduced the
switchable batch-norm concept enabling a reliable training
procedure for dynamic width scaling. Alternatively, the
number of layers traversed during the forward pass can
be modulated by attention modules or gating blocks [9]
enabling a dynamic routing of the inner features, eventu-
ally with the addition of early-exit branches [22]. Notice
that the total storage space is dictated by the underlying
full-width model, or the full-depth model, plus the extra
modules possibly needed for controlling the topology at
run time.

Dynamic Sparsity. Relying on the intuitive principle the
higher the sparsity, the lower the latency, the authors
of [13] proposed a training flow for deep neural models
learned under concurrent sparsity levels. Despite the pre-
liminary results conducted on Recurrent Neural Networks
(RNNs) for Automatic Speech Recognition (ASR), known

to be redundant and hence more reliable to pruning [23],
we observed a substantial accuracy degradation on com-
pact ConvNets for image classification tasks. Moreover,
the training loop proposed in [13] is unaware of the re-
source usage and the achievable performance, leaving the
minimization of the storage footprint and the deployment
on real processing cores unsolved. Our proposal addresses
both issues, offering Nested Sparse ConvNets as an effec-
tive solution for ConvNet architectures deployed on actual
compute nodes for the IoT.

3 Building Nested Sparse ConvNets
3.1 Training

Training a Nested Sparse ConvNet is like concurrently
learning N sub-networks with increasing sparsity encap-
sulated within a single set of weights θ. Collecting and
composing the learning contributions coming from (and
directed to) the many sparse sub-networks is a challenging
problem as the learning of the weights shared among mul-
tiple sub-networks must be properly balanced to avoid sud-
den accuracy drops. For a better understanding, let’s recall
how pruning techniques for static ConvNets actually work.
Early methods, e.g., [15], suggested that pruned weights
must be bypassed during the gradient updates, but most
recent works [14] introduced an improved pruning-while-
training strategy that regrow lost connections achieving
higher accuracy results. This is the starting point for our
proposal. Managing the regrowth mechanism for a Nested
Sparse ConvNet is not straightforward as the current “state”
of a single weight (i.e., pruned or not-pruned) might differ
among the N sub-networks, generating conflicts that may
prevent convergence. To handle these constraints that may
bubble up during training, we developed a novel method,
referred to as gradient masking, precisely conceived to
route the learning signals among the sub-networks.

An abstract and pictorial view of the dynamics governing
the training steps of a Nested Sparse ConvNet using gra-
dient masking is reported in Fig. 2. The example is for
N=3 sub-networks of increasing sparsity s1 < s2 < s3
and illustrates the run of a single training step. The three
sub-networks are evaluated in sequence, following an in-
creasing order of sparsity, from low (s1) to high (s3), as

3



Algorithm Nested Sparse Training
1: function main(steps, S, block_shape, optimizer)
2: for t in steps do
3: optimizer.zero_grad() . Ĝ = 0
4: soft_labels = forward(θ)
5: Ĝ += backward(θ)
6: if pruneStep(t) then
7: for s in S do
8: Ms = getMask(θ, s, block_shape)
9: θs = θ ◦Ms

10: forward(θs, soft_labels)
11: ĝs = backward(θs)
12: Ĝ += Ms ◦ ĝs . Ĝ masking
13: end for
14: end if
15: optimizer.step() . Ĝ update
16: end for
17: M = {getMask(θ, s, block_shape) for s in S}
18: return θ, M
19: end function

20: function getMask(θ, s, block_shape)
21: blocks = groupBlocks(θ, block_shape)
22: idx = rankBlocks(blocks, s)
23: mask = ones_like(θ)
24: mask[idx] = 0
25: return mask
26: end function

depicted within the three frames labeled as s1, s2, s3. The
first frame on the left (labeled as Dense) is for the full
weight-set θ (i.e., sparsity s0=0%). The dense training
ensures stability, but the dense network is not included in
the final model deployed for inference at run time. Within
each frame, the corresponding sub-network undergoes a
pruning-while-training procedure consisting of a forward
(solid line) and a backward (dashed line) pass, with L as
the training loss driving the learning procedure, and si as
the sparsity constraint. Referring to the example in the
picture, the four frames processed in sequence are iterated
for a fixed number of training steps. The weights pruned
within each frame to reach the desired sparsity si no longer
contribute in the following stages, neither to the forward
nor to the backward propagation; this is illustrated in Fig. 2
with the shadowed gray regions. For instance, the gradient
computation from the sub-network with sparsity s2, i.e.,
g(s2), does not interfere with the previously computed gra-
dients, i.e., g(s1). This allows the entire weight-set θ to
evolve during the pruning-while-training process, while en-
suring that each sparse sub-network is learned considering
its own gradient contribution. The effect of the gradient
masking is twofold: first, it allows less sparse (and possi-
bly more accurate) sub-networks to influence the weights
of the more sparse and weaker ones; second, it shields
the more sparse (and hence less accurate) sub-networks,
preventing abrupt changes in the learning curve.

The three nested weight-sets {θ(s1), θ(s2), θ(s3)}, which
are all contained in the whole weight-set θ, get isolated,
processed, and returned in the form of a set of binary masks
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Figure 3: Example of the proposed NestedCSR format
applied to a 1×2 block sparse matrix W that can work in
three sparsity levels {s1, s2, s3}.

M = {M (s1),M (s2),M (s3)}, with θ(si) = θ ◦M (si)1.
This formulation can be generalized to any generic number
of sub-networks N of increasing sparsity si, resulting into
a set of N binary masks M = {M (s1), ...,M (sN )}, and
thus N weights subsets θ(si). Each mask Msi is obtained
through a magnitude-based rank and prune procedure over
the weight-set θ. Weights with lower magnitude are pruned
first, until reaching the desired sparsity si while enforcing
the nesting of all weight-sets θi:

s1 < ... < sN ⇒ θ(s1) ⊃ ... ⊃ θ(sN ) (1)

The pseudo-code of the training loop is reported in Al-
gorithm 1. It takes as inputs the set of sparsity lev-
els S = {s1, ..., sN} and the block_shape (m×n),
returning the weight-set θ and the set of masks M =
{M (s1), ...,M (sN )}. The training loop alternates dense
and sparse training epochs, according to a fixed scheduler
(line 6). At the beginning of each epoch, the gradient is
zeroed (line 3), then the forward and backward passes are
performed on the weight-set θ (lines 4-5) as a whole (the
Dense training frame in Fig.2). The set of weights is di-
rectly updated using the gradient value (line 15) during the
dense steps. During the sparse training steps (the si frames
in Fig.2), for each sparsity level s (line 7), the getMask
function generates a mask Ms (line 8). This mask is mul-
tiplied point-wise with θ to extract the sparse sub-network
θs (line 9) and then used to complete the forward and back-
ward passes (lines 10-11). For the sparse sub-networks,
the predictions of the dense model (line 4) are used as soft
labels (line 10) as a form of in-place distillation [24]. At
last, the local gradient ĝs relative to the sub-network θs is
masked and merged with the previous gradient contribu-
tions (line 12). Once the contributions of each sub-network
are accumulated in the global gradient Ĝ, the weight-set
θ is updated (line 15). At the end of the training, both the
weight-set θ and the set of nested masks M are returned
(lines 17-18). The getMask function used to obtain the
binary mask M (si) under a given sparsity value si works
as follows. First, weights are grouped into blocks of shape
m×n (line 21), where m is in the output-channels axis.
Second, blocks are ranked according to their magnitude
(L2-norm) through the rankBlocks function that returns

1◦ indicates the Hadamard product between two matrices.
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Figure 4: Example of the proposed compute kernel performing a sparse matrix-matrix multiplication (a) between a 1×2
block sparse matrix A encoded using the NestedCSR format and a dense matrix B with K rows. The entire matrix
multiplication is decomposed as a sequence of smaller operations (b) between 1 row of A and M columns of B. Such
inner operation is carried out as at most N operations (c) depending on the selected sparsity value si ∈ {s1, s2, s3}.

the position (idx) of the sorted weights in descending order
(line 22). Third, the least important si · |θ| weights are
pruned by setting to zero their values and the correspond-
ing items in the binary mask M (si) (lines 23-24).

3.2 Compression

Fig. 3 illustrates an example of the proposed sparse matrix
compression format, named NestedCSR, for a nested model
trained for three generic sparsity levels s1 < s2 < s3 and
using a 1 × 2 block shape. It is worth emphasizing that
the compression format is general and can be used for any
number of sparsity levels or block sizes. At the lower spar-
sity level (s1), the matrix comprises the red, green, and
blue non-zero blocks; at the medium sparsity level (s2),
the red and green blocks; at high sparsity level (s3), the
red blocks only. As shown in the picture, the three configu-
rations are a composition of three disjoint sparse matrices,
and this is precisely the property exploited by NestedCSR.
Each sparse sub-set is compressed using a block CSR
format [19]: the nz-values array stores the values of the
non-zero blocks in row-major order, the nz-iidx array stores
the number of non-zero blocks on each row, and the nz-jidx
the column position of each non-zero blocks. The three
arrays of each sparse sub-set are concatenated row-wise,
from the most sparse to the least sparse (from red to blue
in Fig. 3).

The footprint of a block-sparse matrix W with dimensions
R× C encoded through NestedCSR depends on the block
shape m×n and the number of sparsity levels (N ). The
following equation describes the size of the array:

|nz-values| = (1−smin) ·R·C
|nz-iidx| = N ·R

|nz-jidx| = (1−smin) · R·C
n·m

(2)

As can be inferred from the equations, the amount of stor-
age memory is weakly affected by the number of nested
configurations. The number of sparse sub-networks (N )
affects the size of nz-iidx, which is usually negligible com-
pared to that of the other two arrays. Therefore, the overall
memory footprint gets defined by the smallest adopted
sparsity value (smin), which is crucial for effective and
efficient deployment.

To accelerate the processing of a nested and compressed
sparse layer on a general-purpose core, we implemented a
custom compute kernel that performs a matrix multiplica-
tion C = A ·B between a sparse matrix (A) encoded using
the NestedCSR format and a dense matrix (B), as shown
in fig. 4a. The kernel handles both fully connected and
convolutional layers, adopting a convolution-as-GEMM
implementation for the convolutional layers [19, 25].

Like in classical CSR-based sparse matrix multiplication,
the whole operation is a sequence of small matrix opera-
tions between M columns of the dense matrix and 1 row
of the sparse matrix as shown in Fig. 4b. Such implemen-
tation reduces the cost of the indirection process needed
to access one element of the sparse matrix across multiple
multiply-and-accumulate (MAC) operations. Specifically,
it was experimentally found out that M=4 represents a
good trade-off between data-reuse and register pressure
on small MCUs. Following the NestedCSR format, since
a single row of the sparse matrix is encoded as N sparse
components, the multiplication is decomposed as N sparse
operations at most, as shown in fig 4c. Depending on the
sparsity value si selected at run time, only a fraction of
operations is processed, exploiting the model sparsity as
a practical knob to reduce the overall compute workload.
In this implementation, there is no additional cost from
switching the sparsity level, as the kernel can be special-
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Table 1: Accuracy results for MobileNetV1 on CIFAR-10.
Best results for each sparsity level are highlighted in bold.

Training Sparsity Accuracy Top-1 [%]
[%] w=1.00 w=0.75 w=0.50 w=0.25

Dense 0 90.08 89.35 88.32 85.31

Single Sparse
70 89.70 88.56 87.27 83.32
80 89.02 88.13 87.04 73.22
90 88.81 86.02 75.20 57.88

DSNN [13]
70 86.30 86.21 84.09 78.84
80 86.42 85.96 83.69 76.10
90 85.49 84.62 81.78 72.22

Ours
70 89.90 88.48 87.55 83.29
80 89.20 88.24 86.95 82.12
90 88.50 87.03 85.86 78.20

ized at compile time and then called at run time based on
the input si of the procedure.

4 Results
4.1 Experimental Set-up

4.1.1 Tasks, Datasets, and ConvNets

The proposed pipeline was tested and assessed on image
classification (IC) and object detection (OD) tasks using
the following data-sets.

CIFAR-10/100 (IC) [26] 60k 32× 32 RGB images an-
notated with 10/100 labels and split into 45k samples for
training, 5k for validation, and 10k for testing.

PASCAL VOC (OD) [27] 15870 RGB images picked
from the 2007 and 2012 PASCAL Visual Object Classes
Challenge, counting of 37813 objects annotated with 20
different labels. As suggested in [28], VOC07 and VOC12
trainval data were used for training, using VOC07 for
testing. We reduced the number of classes to the top-
10 labels recognized by the full-scale model. The image
resolution was re-scaled to 160 × 160 with a bi-linear
interpolation; this is mandatory due to the strict memory
constraints of the target MCU (512KB of RAM, 2MB of
FLASH).

The ConvNets used as benchmarks are lightweight models
suitable for the IoT segment and hence portable onto tiny
cores. Specifically, we operated ResNet (ResNet9) [12] for
IC on CIFAR-100, MobileNetV1[4] for IC on CIFAR-10,
MobileNetV2 [5] as backbone of the Single Shot Detector
(SSD) [28].

4.1.2 Training

The training procedure for the IC tasks was driven by the
SGD optimizer (momentum 0.9, weight decay 0.0005) for
300 epochs with batch size 128. The learning rate followed
a cosine annealing schedule starting from 0.05. The same

Table 2: Accuracy results for ResNet9 on CIFAR-100.
Best results for each sparsity level are highlighted in bold.

Training Sparsity Accuracy Top-1 [%]
[%] w=1.00 w=0.75 w=0.50 w=0.25

Dense 0 73.78 72.24 69.66 63.05

Single Sparse
70 72.93 71.09 68.29 58.90
80 72.61 70.90 67.72 57.40
90 72.15 69.98 65.04 52.15

DSNN [13]
70 72.9 70.48 63.38 45.25
80 72.83 69.70 62.48 44.69
90 71.62 67.56 60.15 40.92

Ours
70 73.56 72.04 68.82 58.70
80 72.94 71.05 68.38 57.30
90 71.19 69.59 65.92 52.93

procedure applied for training the SSD, except for the batch
size which was set to 32. Images were flipped and rotated
for data augmentation on the IC tasks, whereas we repli-
cated the strategy presented in [28] for OD. Each training
experiment was repeated three times using different seeds,
and the collected results were averaged. For what con-
cerns the sparse networks, we used S={70%, 80%,90%}
as the sparsity set and a constant block shape 1 × 2 for
each sparsity. Finding the optimal set S to achieve the best
accuracy, latency, and storage trade-off is out of the scope
of this work. As suggested by previous works on sparse
networks [20], the first layer of each ConvNet under test is
kept dense.

The training algorithm was implemented within the Py-
Torch framework (v1.5.1) and accelerated with a single
consumer graphic card by NVIDIA (Titan Xp).

In the remaining sections we refer to Dense as the dense
baseline network, Single Sparse as the model optimized
for a single sparsity level [15], Nested Sparse ConvNets for
our proposal, Slimmable as the dynamic model obtained
by layers width scaling [10], and DSNN as the dynamic
sparse model [13]. For Slimmable we adopted the official
repository2, whereas for DSNN we used an in-house im-
plementation as no open-source code was available at the
time of this writing.

4.1.3 Deployment

The collected performances refer to an off-the-shelf
NUCLEO-F767ZI board powered by an ARMCortex-M7
MCU operating at 216MHz. The board hosts 512KB of
on-chip SRAM and 2MB of FLASH. An in-house exten-
sion of the CMSIS-NN library v.5.6.0 [25] was integrated
with the sparse matrix multiplication kernels described in
the previous section, with a 1× 2 block-shape to exploit
the Single Instruction Multiple Data media accelerator of
the M7 core [19]. In compliance with the arithmetic re-
quirements of the CMSIS-NN library, the ConvNets were

2https://github.com/JiahuiYu/slimmable_networks
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Figure 5: Latency values normalized for each width to the NestedCSR@s=70%. The latency of the dense model at
w=1.00 is not shown as it exceeds the FLASH memory of the adopted device (2MB).

quantized to 8-bit using a layer-wise symmetric binary scal-
ing [3]. We adopted the GNU Arm Embedded Toolchain
(version 6.3.1) for cross-compilation.

4.2 Training Evaluation

To assess the quality and generalization properties of
the proposed nested training, we analyzed the accuracy
achieved over the IC tasks by ConvNet architectures of de-
creasing information capacity, that is, rescaled by means of
the width multiplier factor w ∈ {1.00, 0.75, 0.50, 0.25}.
Such a scaling operation must not be confused with the
dynamic width scaling of [10], which is discussed later in
Section 4.4. The results are collected in Tab. 1 and Tab. 2.

Nested Sparse vs. Single Sparse Training. Intuitively,
training a network for a single sparsity level should be a
best-case scenario because the parameters get optimized
for one specific sparsity level only. On the other hand,
training a Nested Sparse ConvNet encompasses the con-
current optimization of multiple sub-networks with shared
weights. Nonetheless, Nested Sparse ConvNets outper-
form individually trained sparse models in many cases, and
when they achieve a lower accuracy, the gap is rather low:
the worst-case accuracy drop is 0.31% for MobileNetV1
and 0.96% for ResNet9. The gradient masking technique
attains high accuracy indeed, even when classical single
sparsity pruning does not. For instance, the single sparse
MobileNetV1@w=0.25 with s=90% suffers from a dras-
tic accuracy drop (57.88%), whereas the Nested Sparse
model is 20.32% more accurate (78.20%), closing the gap
with the least sparse configurations (83.29% with s=70%).
The gradient masking technique also improves the least
sparse instances due to the proper involvement of the dense
model in the training loop. This can be inferred from the
results collected on the Nested Sparse ResNet9@w=0.75
with s=70%, which shows ≈ 1% more accurate than its
single sparse model counterpart, hence closer to the dense
model.

Nested Sparse vs. Dynamic Sparse NN (DSNN) Even
though training DSNNs has proven effective on RNNs

Table 3: Storage footprint of ResNet9 trained on Cifar100
and MobileNetV1 trained on CIFAR10. Single sparse mod-
els encoded with a block CSR [19]. Nested sparse models
encoded with the proposed block NestedCSR format.

Model Method Sparsity Storage [KB]
[%] w=1.00 w=0.75 w=0.50 w=0.25

Dense 0 3132 1774 800 208
MobileNetV1 Single 70 1458 834 384 106

Nested {70, 80, 90} 1464 839 387 108

Dense 0 2232 1259 562 143
ResNet9 Single 70 1014 575 260 68

Nested {70, 80, 90} 1016 576 260 68

for ASR [13], our results reveal quality drops on tiny
ConvNets for IC tasks. The DSNN training on Mo-
bileNetV1 is 3.40% less accurate than the single sparse
configuration and 13.65% less on the ResNet9. Except for
ResNet9@w=1.00 with s=90%, Nested Sparse ConvNets
outperform DSNNs, with an increasing gap for smaller
networks with lower width and higher sparsity (the highest
gap is for ResNet9@w=0.25 with s=90%).

4.3 Encoding Format Evaluation

Tab. 3 reports the storage profiles for ResNet9 and Mo-
bileNetV1, showing that Nested Sparse ConvNets achieve
remarkable savings. Three nested sparse configurations re-
quire as low as 1016kB (54% smaller than the dense base-
line) for ResNet9@w=1.00, and 1464kB (53% smaller)
for MobileNetV1@w1.00. Interestingly, a Nested Sparse
ConvNet takes almost the same storage of its least sparse
configuration. For instance, encoding a single instance
with sparsity 70% using block CSR [19] takes 1014KB
for ResNet9@w=1.00 (a mere 2kB less than NestedCSR)
and 1458kB for MobileNetV1@w=1.00 (6kB less than
NestedCSR). The models rescaled to the other widths fol-
low the same trend, confirming the effectiveness of the
NestedCSR format across a wide set of model configura-
tions.
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Figure 6: Latency-accuracy scaling for Slimmable ConvNets and Nested Sparse ConvNets. Grey area shows the
unfeasible solution space for the adopted MCU, i.e., FLASH footprint > 2MB.

The performance attainable with the NestedCSR format
further improved with the aid of the custom-designed com-
pute kernels. Fig. 5 reports a comparative analysis for
ResNet9 and MobileNetV1, both dense and sparse ver-
sions, using a classical CSR [19] and the proposed Nested-
CSR. The sparse kernels introduce a substantial speed-up
compared to the dense versions as expected, but even more
remarkable, they make Nested Sparse ConvNets reach com-
parable performance to single sparse ConvNets. Referring
to ResNet9, nested kernels perform slightly better than
single sparse kernels (1.83% on average) for high widths
(w=1.00 and w=0.75), and show some overhead for low
width (4.04% in the worst case). For MobileNetV1, the
nested kernels perform moderately worse (10.91% slower
on average) and the overhead increases more notably for
more sparse and smaller networks (up to 14.08% in the
worst case). The different internal structure of ResNet9 and
MobileNetV1 is the source of such gap. In MobileNetV1,
there are many convolutional layers, but only the 1 × 1
point-wise layers are sparsified, whereas in ResNet9, there
are fewer convolutional layers, but they are all sparse and
also show more channels with larger kernels (3× 3). De-
spite those penalties, nested kernels still preserve the la-
tency gain brought by sparsity. Moreover, a naive imple-
mentation of multiple sparse networks stored as separate
instances would not fit on the device due to the memory
constraints, an issue we overcome by means of our nested
solution.

4.4 Latency-Quality Scaling

Fig. 6 depicts the latency vs. accuracy trade-off achievable
by Nested Sparse ConvNets. The best dynamic behavior is
for larger widths. Looking at MobileNetV1@w=1.00, an
increase of sparsity from 70% to 90% has minimal effect
on accuracy (1.4%), but the speed-up is substantial: up
to 51% of latency reduction. ResNet9@w=1.00 follows
the same trend (Fig. 6b), where a higher sparsity level im-
proves latency by 62% with a moderate effect on accuracy
(2.37% loss). Rescaling the model width makes the trade-
off slightly worse as smaller ConvNets are less resilient to
sparsity. As a result, the accuracy gap increases and the

latency speed-up reduces when the ConvNets architecture
shrinks down. Nonetheless, for the smaller nets (w=0.25),
the accuracy drop of 5.09% for ResNet9 and 5.77% for
MobileNetV1 come with a large speed-up, 52% and 31%
respectively.

Fig. 6 also shows the dynamic behavior of ConvNets op-
timized with the Slimmable approach [10] offering a di-
rect comparison with our approach. Slimmable networks
at maximum width w=1.00 get too large to fit into the
FLASH memory (2MB), and only three configurations
out of four can be deployed on-device. Thanks to the pro-
posed training and compression pipeline instead, Nested
Sparse ConvNets meet the memory constraint even at full
scale (w=1.00). Except for the smallest width (w=0.25),
Nested Sparse ConvNets at s=70% and s=80% turn out
to be more accurate and faster than the slimmable mod-
els. The Pareto analysis reveals that the three rescaled
Nested Sparse ConvNets (w={0.75, 0.50, 0.25}) outper-
form the slimmable counterparts, originating eight Pareto
optimal implementations that, if stored together, consume
less storage than a slimmable model. Precisely, 904kB
for ResNet9 and 1334kB for MobileNetV1, that is, 28%
and 25% less than the deployable configurations of the
slimmable models (w ≤ 0.75). The downside is that a
single Nested Sparse ConvNet presents a moderate scaling
capacity compared to a slimmable model, which is intuitive
as the sparsity acts as a fine-grain control knob both on
accuracy and latency. However, the low storage footprint
paves the way to an attractive hybrid solution, where the
width multiplier serves as a static knob complementary to
the dynamic sparsity.

It is worth emphasizing that other scalable training meth-
ods, e.g., EfficientNet [29], TinyNet [30], and OFA [31],
play statically, i.e., at design time , on the topology of the
model architecture (i.e., width, depth, kernel sizes) and the
input resolution with the aim to achieve a higher accuracy
with the same resource budget. Such scaling methods are
of utter importance to the design of efficient ConvNets,
but their purpose differs from ours. We demonstrated that
tweaking at run time the accuracy-latency trade-off via
sparsity is feasible even with a reduced storage footprint,
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Table 4: SSD-MobileNetV2. Best results for each sparsity
level are highlighted in bold.

Training
w=0.50 w=0.35

Sparsity mAP Storage Latency mAP Storage Latency
[%] [%] [kB] [ms] [%] [kB] [ms]

Dense 0 68.32 869 1549 63.42 523 998

Single Sparse
70 66.01 508 1080 60.58 329 752
80 62.72 407 972 55.20 274 689
90 29.40 306 862 23.06 219 625

Ours
70 68.30

514
1225 63.12

334
883

80 66.37 1103 61.03 807
90 60.33 951 55.84 712

as only one compressed weight-set must be stored on-
device for a Nested Sparse ConvNet. Alternatively, our
solution can be used on top of existing neural architectures.

4.5 Object Detection

This last subsection aims to show the generalization ca-
pability of our approach on tasks different from image
classification. We evaluated a Nested MobileNetV2 on
a bounding-box detection task. The results reported in
Tab. 4 refer to configurations at w={0.50, 0.35}, which
are those meeting the FLASH memory constraint for our
target MCU. The Nested Sparse object-detector gets more
accurate than the sparse models trained as separate in-
stances. For the most sparse configurations (i.e., s=90%),
it is 31.85% more accurate (average over the two widths),
confirming the stability of the proposed training loop. With
regard to the latency, the conclusions brought by the image
classification tasks do hold here, with sparse models faster
than the dense models and our nested solution slightly
slower than single sparse instances. Also in this case, a
hybrid solution build through a superimposition of width
scaling and nested sparsity does enable a wider latency-
accuracy spectrum (∆Top-1/∆L = 12.46(%)/368(ms))
while cumulatively occupying 848kB, which is still less
than the single dense model at w=0.50.

5 Current Limitations and Future Works

The proposed training and compression pipeline enables
the use of model sparsity as a dynamic knob on tiny off-
the-shelf devices. Although the experimental assessment
revealed that Nested Sparse ConvNets outperform other
dynamic strategies while occupying a smaller storage foot-
print, some issues have not been addressed in the current
version of the work. First, the choice of the sparsity levels
is fixed manually prior to training. However, as the trade-
off accuracy vs. latency enabled by sparsity depends on
the model architecture and the task, designing the optimal
set of sparsity values is not trivial and should be auto-
mated. Second, although using the same sparsity ratio for
all layers of the network was proven effective in previous
works [20], exploiting the effects that different layers have
on both accuracy [32, 33] and latency [34] may lead to

new Pareto solutions. Thus, a possible future development
aimed at overcoming such limitations can integrate an auto-
matic search engine (like those presented in [35, 36]) in the
proposed pipeline such that multiple sparse configurations
are sampled and tested at training time to optimize storage,
latency, and accuracy simultaneously.

6 Conclusions

Nested Sparse ConvNets represent a novel class of dynamic
models conceived to trade-off latency with accuracy at run
time leveraging sparsity as a knob. We introduced a novel
training procedure capable of reaching highly accurate pre-
dictions, and in conjunction with a new storage format
and a library of custom compute kernel it enables the de-
ployment of elastic ConvNets on tiny off-the-shelf devices.
An extensive experimental assessment on tiny visual com-
puting tasks deployed on a low-end node powered by an
ARM M7 MCU reveals that Nested Sparse ConvNets can
be processed efficiently, they outperform state-of-the-art
dynamic strategies achieving optimality in the accuracy-
latency objective space, and can thereby represent a new
alternative for expanding the adoption of energy-efficient
adaptable computer vision tasks at the edge of the IoT.
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