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DASECount: Domain-Agnostic Sample-Efficient

Wireless Indoor Crowd Counting

via Few-shot Learning
Huawei Hou, Suzhi Bi, Lili Zheng, Xiaohui Lin, Yuan Wu, and Zhi Quan

Abstract—Accurate indoor crowd counting (ICC) is a key
enabler to many smart home/office applications. Recent devel-
opment of WiFi-based ICC technology relies on detecting the
variation of wireless channel state information (CSI) caused by
human motions and has gained increasing popularity due to
its low hardware cost, reliability under all lighting conditions,
and privacy preservation in sensing data processing. To attain
high estimation accuracy, existing WiFi-based ICC methods
often require a large amount of labeled CSI training data
samples for each application domain, i.e., a particular WiFi
transceiver or background deployment. This makes large-scale
deployment of WiFi-based ICC technology across dissimilar
domains extremely difficult and costly. In this paper, we propose
a Domain-Agnostic and Sample-Efficient wireless indoor crowd
Counting (DASECount) framework that suffices to attain robust
cross-domain detection accuracy given very limited data samples
in new domains. DASECount leverages the wisdom of few-
shot learning (FSL) paradigm consisting of two major stages:
source domain meta training and target domain meta testing.
Specifically, in the meta-training stage, we design and train two
separate convolutional neural network (CNN) modules on the
source domain dataset to fully capture the implicit amplitude and
phase features of CSI measurements related to human activities.
A subsequent knowledge distillation procedure is designed to
iteratively update the CNN parameters for better generalization
performance. In the meta-testing stage, we use the partial CNN
modules to extract low-dimension features out of the high-
dimension input target domain CSI data. With the obtained
low-dimension CSI features, we can even use very few shots
of target domain data samples (e.g., 5-shot samples) to train
a lightweight logistic regression (LR) classifier, and attain very
high cross-domain ICC accuracy. Experiment results show that
the proposed DASECount method achieves over 92.68%, and on
average 96.37% detection accuracy in a 0-8 people counting task
under various domain setups, which significantly outperforms
the other representative benchmark methods considered.

Index Terms—WiFi sensing, indoor crowd counting, cross-
domain detection, few shot learning.

I. INTRODUCTION

A
UTOMATIC indoor crowd counting (ICC) has important

applications in a number of areas, such as public health

management, security monitoring, and home/office automa-

tion. For instance, in the recent global outbreak of COVID-19,
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ICC helps maintain social distancing in the indoor environment

for effective epidemic prevention. Besides, knowing the exact

number of people enables to fine-tune the air-conditioner

for energy conservation and improve comfort in the indoor

office environment. Existing ICC methods are mainly based

on surveillance cameras, wearable sensors and radar, etc

[1]. Among them, using cameras raises concerns on privacy

violations and is highly susceptible to weak light conditions.

On the other hand, ICC based on wearable sensors causes

additional hardware overhead, e.g., a target needs to wear a

special bracelet, which is costly and inconvenient for public or

large-scale application scenarios. Although ICC based on radar

equipment enjoys high detection accuracy when the radars

are fined-tuned and properly deployed, the installation and

hardware costs are uneconomic for extensive deployment in

budget-limited home/office applications.

In recent years, there has been a growing interest in exploit-

ing WiFi signals for indoor wireless sensing applications. By

capturing the impact of human activity on the channel state

information (CSI) between the WiFi transmitter and receiver,

many indoor wireless sensing tasks can be effectively per-

formed, such as human presence detection, activity and gesture

recognition, respiration monitoring, as well as the focus of

this paper, indoor crowd counting [2]–[5]. Compared with the

above-mentioned ICC methods, WiFi has minimum privacy

violation issues and works under any lighting conditions.

Besides, WiFi routers are prevalent in home/office spaces,

thus the hardware infrastructure is already established in most

indoor environments. In addition, WiFi-based ICC takes a

cost-efficient device-free approach and does not require the

targets to wear additional sensors. Due to the above-mentioned

technical advantages, WiFi-based ICC is expected to be widely

used in future wireless sensing applications.

The existing WiFi-based ICC methods can be mainly di-

vided into two categories, depending on the need of manual

feature extraction [6]–[13]. One relies on explicit manual fea-

tures engineered from raw data, such as mean value, variance,

median, and range, and then uses threshold-based or learning-

based classifiers like support vector machine (SVM) to identify

the crowd number. The other takes a fully data-driven approach

and relies on deep learning models to extract the implicit

features from the raw data measurements and performs crowd

counting accordingly. The performance of the former method

is critically related to the data feature selection. For example,

to select the best-performing features, Zou et al. [6] proposed

a “Transfer Kernel Learning (TKL)” method that selects data

http://arxiv.org/abs/2211.10040v1
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features based on a mutual information criterion from a feature

pool including several statistical, transformation-based, and

shape-based features. The performance of the latter method

highly depends on iteratively training with a large number of

labeled samples. For instance, the number of training samples

used by WiCount [7] is more than 20000, which is difficult to

implement in realistic application scenarios.

Therefore, despite the respective contributions of the above

studies, the proposed methods suffer from a common draw-

back in practice. That is, although the well-trained deep

learning models may achieve highly accurate ICC in one

specific domain (even close to 100% accuracy), once used in a

new and dissimilar environment, e.g., different transceiver or

background deployment, the cross-domain detection accuracy

often plummets. For instance, our experiments show that the

accuracy decreases sharply from 99% to 12% after applying

a deep learning model trained in a rich-scattering office

environment to a more spacious conference room. To achieve

high ICC accuracy in a new domain, the above methods often

require training their models from scratch. In practice, this

is indeed infeasible because of the prohibitively high cost of

collecting and labeling a large number of data samples for each

new domain encountered. To facilitate large-scale deployment

in the future, the WiFi-based ICC method must be able to

achieve high classification accuracy across different domains

even if only a very limited number of samples are available

in cross-domain scenarios.

In this article, we leverage the wisdom of few-shot learning

(FSL) [14] to address the problems of model robustness and

insufficient sample size in cross-domain ICC applications. In

particular, we consider a practical scenario that the source

domain has sufficient labeled training samples collected offline

while the target domain only contains very few labeled sam-

ples. In this case, we propose a Domain-Agnostic and Sample-

Efficient wireless crowd Counting (DASECount) framework

that can achieve high ICC accuracy in both source and target

domains. To the authors’ best knowledge, this is the first work

that leverages FSL to achieve robust ICC performance across

different domains. The main contributions of this paper are

summarized as follows:

• We propose a DASECount framework for performing

robust cross-domain ICC tasks. The DASECount frame-

work includes two major stages: source domain meta

training and target domain meta testing. In the meta-

training stage, a priori deep learning CNN model is

trained on datasets collected in a local source domain to

extract features from CSI amplitude and phase input data.

In the meta-testing stage, the well-trained CNN extracts

the features of target domain data as the input to a tailor-

made classifier, which eventually reports the final ICC

result. The DASECount framework is particularly useful

as it requires as few as only 5 labeled data samples in a

dissimilar target domain to reach over 99% ICC accuracy.

• In the source domain meta-training stage, DASECount

devises two separate data pre-processing procedures for

CSI amplitude and phase data, respectively. After pre-

processing, it uses two CNN-based feature extractors

to derive the low-dimension amplitude and phase fea-

tures contained in the high-dimension input data, which

facilitates training of the target domain classifier with

very limited data samples. DASECount also applies a

knowledge distillation technique to iteratively update the

parameters of the CNN-based feature extractor, which

improves at least 5% ICC accuracy by experiments.

• For target domain meta-testing, we first use the source

domain feature extractor model to process the target

domain training data. The output low-dimension features

are considered as the input to train a lightweight classifier,

e.g., a logistic regression model. By doing so, we can

achieve high-performance cross-domain ICC even with

very limited target domain training data size.

• We have conducted extensive experiments to evaluate the

performance of the proposed DASECount framework in

cross-domain ICC tasks. Results show that, with only 5
labeled target domain training data samples per class,

DASECount achieves accuracy of over 97% in a 9-

class ICC task when the crowd is stationary, over 99%

when the crowd moving randomly, and over 92% in a

more complex scenario with a mixture of stationary and

moving crowds. We have also discussed the impact of

detailed module designs in the proposed DASECount

framework, e.g., selection of feature dimensions and clas-

sifier structures, on the cross-domain ICC performance.

Overall, the proposed DASECount method attains robust

and high accuracy in various cross-domain application

scenarios.

II. RELATED WORKS

A. Learning-based WiFi ICC methods

In recent years, deep learning methods have been widely

used in IoT applications, such as smart cities [15], Internet of

Vehicles [16], etc. For deep learning-based WiFi ICC methods,

Liu et al. proposed WiCount [7] model that implements a

deep neural network (DNN) for CSI-based crowd counting

and achieves 82.3% accuracy. The authors further improve

the accuracy to 88.66% with a new DeepCount model [8]

that combines conventional neural network (CNN) [17] and

long short-term memory (LSTM) [18] structures. Xi et al.

[9] exploited CSI phase information and built a Resnet-based

[19] model, achieving on average 99% accuracy of human

counting. Wand et al. [10] compared the performance of

different deep learning networks, including CNN, LSTM, and

gated recurrent unit [20], and showed that CNN achieves the

best crowd counting accuracy.

Although human activity causes fluctuation of both am-

plitude and phase, many studies only use the amplitude

information for ICC (like in [6], [11], [12]), mainly because

the phase information often suffers from more severe hard-

ware measurement noise such as carrier frequency offset and

sampling time offset [21]–[23]. Instead of using raw phase

measurements, Zong et al. [13] computed the phase difference

between adjacent antennas as the input to an SVM-based ICC

classifier. Liu et al. [24] utilized a CNN to extract the features

of the CSI amplitude and phase information and use both

features to detect human presence. It focuses on a binary
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Fig. 1. Schematics of the proposed DASECount cross-domain ICC method. The amplitude and phase of CSI measurements in both source and target domains
are first preprocessed. In the meta-training stage, a CSI feature extractor, consisting of two CNN submodels (for processing amplitude and phase input), is
trained on the source domain dataset , followed by a distillation process to refine the CNN model parameters. The parameters of the CNN submodels are
fixed after source-domain training. In the meta-testing stage, the few labeled data samples in the target domain are first processed by the feature extractor.
The combined amplitude-phase feature output is then used as the input for training a lightweight logistic regression (LR) classifier in a supervised manner.

classification problem which is a simplified special case of

the general crowd counting problem considered in this paper.

B. Few-shot Learning

FSL and cross-domain algorithms were originally developed

and applied in the field of computer vision and have now been

extended to multiple application fields [14], [25]–[30]. There

are several popular models to perform FSL. For instance,

matching networks [31] encodes the data of the source domain

and target domain into a feature space by learning an embed-

ding function. Then, it compares the similarity between the

two through cosine similarity to determine which category of

the target domain data belongs to. In recent years, researchers

realized the importance of a priori models, that is, how a model

that is fully trained and performs well on a task could be fine-

tuned to handle a new task through learning with a limited

number of samples. [25] proposed a meta-learning algorithm

named “MAML”, which is suitable for many popular learning

models that apply gradient descent for parameter training. The

model trained by MAML can be efficiently fine-tuned with

target domain data samples and it shows high classification

accuracy even under a very limited target domain training data

set.

Different from fine-tuning global model parameters like

MAML, [26] proposed a new method called “MTL”, which

first trains a deep neural network (DNN) in the source domain.

In the target domain, it fixes the general mass of neurons and

fine-tunes the other neurons by a few-shot training sample

of the target domain classification task. In a more recent

work [27], the authors took another FSL approach rather than

fine-tuning the parameters of the well-trained model in the

source domain. Instead, it utilized a pre-trained model as a

feature extractor to process the target domain few-shot training

samples for training a lightweight machine learning model.

C. Applications of FSL to Wireless Sensing

FSL methods have been practiced for CSI-based wireless

sensing applications such as human activity recognition and

gesture recognition. Shi et al. [32] proposed a MaNet-eCSI

architecture using a matching network for CSI-based hu-

man activity recognition which can achieve a cross-domain

recognition accuracy of 92.3% with 5 training samples of

the target domain. Zhang et al. [33] used MAML to train

and fine-tune a 4-layer CNN for cross-domain human body

activity recognition which reaches 89.6% accuracy with 5

samples of new activity datasets. [34] proposed a human

activity recognition model named “CSI-GDAM”, which uses

a convolutional block attention module [35] layer to extract

activity-related feature in CSI. CSI-GDAM reaches 99.74%

accuracy in 5-shot cases for cross-domain activity recognition.

For CSI-based gesture recognition, Yang et al. [36] proposed a

novel deep Siamese neural networks [37] with multiple kernel

variant of maximum mean discrepancies [38] for cross-domain

gesture recognition. The method can achieve an accuracy of

89.5% with only 1 sample in the target domain.

It is worth noting that the above cross-domain wireless

sensing methods mostly focus on fine-grained applications

that classify human activities from a given set of patterns,

such as a set of known gestures and body motions. In this

case, the induced CSI variations are of a similar pattern

and less sensitive to the background environment, thus high

classification performance is likely achievable with a small
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set of training samples in the new domain. In contrast to

fine-grained applications, accurate cross-domain ICC tasks are

more difficult because the CSI amplitude and phase variations

caused by human free activities do not exhibit fixed patterns,

instead are much more random and dependent on the domain

environment. In this case, an ICC classifier trained with source

domain data may face a severe over-fitting problem when

applied to a new target domain. In this paper, we fully consider

the unique challenge of cross-domain ICC tasks and propose

a DASECount framework that provides robust cross-domain

ICC performance.

III. CSI SIGNAL MODEL AND PREPROCESSING METHOD

In this section, we first introduce the WiFi sensing signal

model and data format. Then we describe the CSI data pre-

processing method to prepare input data for the cross-domain

ICC tasks of the DASECount framework as shown in Fig. 1.

A. CSI Signal Model

In WiFi communication, channel state information (CSI)

reflects the signal variations during transmission between the

transmitter and receiver, including channel amplitude atten-

uation and phase shift [2]. The channel frequency response

described by CSI is

H̃(f ; t) =

N∑

n=1

an(t)e
−j2πfτn(t), (1)

where N represents the number of multipaths, an(t) and τn(t)
represent the amplitude attenuation and propagation delay

in the nth path, and f denotes the carrier frequency. The

receiving signal could be described as

Y (f ; t) = H̃ ·X(f ; t) + n(f ; t), (2)

where X(f ; t) is the transmitting signal in frequency f and at

time t, Y is the conrresponding received signal, and n is the

receiver noise.

IEEE 802.11a/b/n WiFi protocol supports multiple-input

multiple-output (MIMO) and orthogonal frequency-division

multiplexing (OFDM) transmissions. CSI acquisition requires

specialized software operating on particular WiFi card chips.

Two popular WiFi CSI acquisition softwares are the Intel

5300 CSI Tool [39] and the Atheros CSI Tool [40]. While

the former supports 20Mhz bandwidth 30 subcarriers, the

latter supports two operating modes: 20Mhz bandwidth 56

subcarriers and 40Mhz bandwidth 114 subcarriers. In this

paper, we use the Atheros CSI tool to collect the CSI between

a pair of transceivers with 2 transmitting and 3 receiving

antennas, operating at 40MHz with 114 subcarriers. In this

case, the collected CSI data is expressed as a 4-dimensional

complex tensor H̄ ∈ CT×Nr×Nt×Nsc , where T , Nr, Nt, Nsc
are the number of time frames, receiving antennas, transmitting

antennas, and subcarriers, respectively.

B. Proposed CSI Preprocessing Method

To facilitate subsequent processing by machine learning

models, we propose the following preprocessing procedures

on the collected CSI tensor data. As shown in Fig. 2, we first

use a slide window of duration Ts to split the raw data into

equal segment of duration Tw. The resulting CSI data within a

tagged segment is expressed as H̃ ∈ CTw×Nr×Nt×Nsc . Here,

we set Ts < Tw to produce an overlap Tw − Ts between the

two adjacent segments, which brings two benefits: increase the

number of training samples after segmentation and traverse

the CSI variations caused by human movements in different

periods. Then, we extract the amplitude data H̃amp and phase

data H̃pha from each complex CSI data segment H̃.

CSI Time Stream

The 1st Segment  The 2nd Segment  The 3rd Segment

Tw

Ts Ts

Fig. 2. Illustration of the data segmentation process. The shaded parts in the
figure represent the overlap between two segments.

It is a common practice to impose noise reduction methods,

such as Hampel [23] and low-pass filters [41], to amplitude

data for fine-grained application scenarios like gesture recogni-

tion and respiratory monitoring. However, for a coarse-grained

application like ICC, our empirical results show that amplitude

noise reduction may lead to severe performance degradation

as it may falsely remove the random high-frequency signal

variations caused by simultaneous movements of multiple

people. Therefore, we use the raw CSI amplitude data without

applying the noise reduction technique.

Here, we first rearrange the amplitude data to a dimension

of Nrt×Tw×Nsc , where Nrt = Nr ·Nt denotes the number

of parallel CSI between the transmit and receive antennas.

Then, we process each H̃amp with Layer Normalization [42].

Specifically, we denote âl,i,j as the amplitude measurement

corresponds to the lth Tx-Rx antenna pair, the ith time slot

and the jth sub-carrier. Then, we compute the mean µl and the

standard deviation σl of the Tw×Nsc amplitude measurements

taken from the lth antenna pair. The normalization method for

each amplitude measurement is expressed as

al,i,j =
âl,i,j − µl

σl
, ∀l, i, j. (3)

After layer normalization, we denote the amplitude data as

Hamp.

For phase data processing, due to hardware impairment of

WiFi chips, such as carrier frequency offset, and sampling

time offset [24], the CSI phase data often change abruptly in

adjacent time slots. Here, we first use the “unwrap” function

to correct phase jump, and then compute the phase difference
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Fig. 3. Data collection scenarios. Data collection is conducted in 2 rooms, each containing LOS and NLOS scenarios.

TABLE I
NOMENCLATURE

Symbol Terminology Description

S Source domain dataset Contains multiple ICC tasks of the source domain

T Target domain dataset Contains multiple ICC tasks of the target domain

Dtrain Training set of S Training samples of an ICC task in the source domain

Dval Validating set of S Validating samples of an ICC task in the source domain

Dsup Support set of T Few-shot samples of an ICC task of the target domain, used to train a classifier

Dque Query set of T Used for evaluating the performance of the target domain classifier

x∗ Input sample Includes the CSI amplitude part H
amp
∗

and the CSI phase difference part H
phd
∗

y∗ Label The ground-truth number of people in the scene

φ CNN parameters Contains amplitude and phase difference submodel φamp, φphd

ψ Feature extractor Generated by using partial parameters of φ

θ Classifier For specific ICC tasks in the target domain

between two adjacent receiving antennas to eliminate random

phase noise [13], and denote the phase data after processing

as Hphd.

With a bit abuse of notation, we denote the data samples

in the ith segment as denoted as xi = (Hamp
i , H

phd
i ), where

H
amp
i is the CSI amplitude part and H

phd
i is the CSI phase

difference part. For each measurement xi, we append a label

yi ∈ {0, 1, · · · ,M} denoting the number of people in the test,

where M denotes the maximum number of people considered.

IV. THE PROPOSED DASECOUNT FRAMEWORK

In this section, we introduce the DASECount framework for

cross-domain ICC tasks. We divide the CSI data into source

domain datasets and target domain datasets, respectively. The

source domain dataset contains a large number of labeled

sample sets collected from a local pre-set scene, while the

target domain data set contains limited labeled data samples

collected from the scene to be detected. For ICC tasks, CSI

is often sensitive to the deployment of the WiFi transceivers

and the surrounding environment. Without loss of generality,

we consider a particular equipment deployment and room

environment as the source domain scenario, and any significant

change of equipment deployment or environment from the

target domain leads to a new target domain scenario.

An example source-target domain setup is illustrated in Fig.

3. We consider two rooms where Room A is a rich scattering

office room and Room B is a spacious conference venue.

Besides, we also consider both line-of-sight (LOS) and non-

line-of-sight (NLOS) WiFi equipment placements, where the

human targets are in the LOS and NLOS channels of the

WIFi transceivers, respectively. In total, there are four different

scenarios, we consider without loss of generality that Room

A LOS case as the source domain, and the rest three as target

domains.

As shown in Fig. 1, after data collection and preprocess-

ing, the proposed DASECount framework contains two main

stages: the meta-training stage and the meta-testing stage. We

will describe each stage below. The symbols involved are

shown in Table I.

A. Source Domain Meta-training Stage

We denote the source domain dataset as S =
(Dtrain,Dval), where Dtrain = {Dtrain

s }Ss=1 , (xi, yi)
I
i=1

is the training set, Dval = {Dval
s }Ss=1 , (x̂j , ŷj)

J
j=1 is the

validating set. Here, s represents the sth type of ICC task in

the source domain. For example, in the simulation section, we

consider S = 3 types of ICC tasks, where s = {1, 2, 3} corre-

sponds to ICC tasks when the targets are under static, dynamic,

and a mixed static and dynamic motions, respectively. Besides,

I and J denote the total number of data samples used for
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Fig. 4. The structure of the CNN stacks. The amplitude and phase difference
submodels have the same CNN structure in the figure.

training and validation, respectively. The detailed descriptions

are presented in Section V-A.

In the meta-training stage, we first train a CSI feature

extractor using the source domain dataset S by supervised

learning. We denote the model parameters of the feature

extractor as φ, which contains two sub-models, one processes

CSI amplitude information denoted as φamp and the other

processes CSI phase difference information denoted as φphd.

Different from [24], where amplitude and phase modules are

concatenated by a fully connected layer, the amplitude and

phase difference submodels of DASECount are independent

and described below.

To fully exploit both the chronological and subcarriers

correlations, we apply a 2D CNN consisting of 6 convolutional

blocks and a fully connected layer, as shown in Fig. 4. Each

convolutional block contains a convolutional layer (64 3 × 3
convolution 2D kernels), a batch normalization layer, a Relu

activation function, and a max-pooling layer. The number of

neurons in the fully connected layer is the same as the number

of sample classes. It is worth mentioning that the first pooling

layer has a kernel of 4× 2 and all the others have a kernel of

2× 2.

The process of training φ is expressed as follows:

φ = argmin
φ

Lce(Dtrain;φ), (4)

where Lce represents the cross-entropy loss between source

domain data and corresponding labels. We train the φ on the

training set Dtrain and evaluate it on the validating set Dval.

We present the training procedures of the amplitude and phase

submodels in Algorithm 1.

Algorithm 1 Training Procedures of the Feature Extractor

Input:

Merged training set Dtrain;

Output:

Feature extractor φ = (φamp, φphd);
1: Initialize model parameters φamp, φphd, learning rate η.

2: for all H
amp
i of xi ∈ Dtrain do

3: Calculate the output ŷ
amp
i = f(Hamp

i ;φamp)
4: Calculate Lce(ŷampi , yi)
5: Update φamp = φamp − η∇φampLce(ŷampi , yi)
6: end for

7: for all H
phd
i part of xi ∈ Dtrain do

8: Calculate the output ŷ
phd
i = f(Hphd

i ;φphd)

9: Calculate Lce(ŷphdi , yi)
10: Update φphd = φphd − η∇φphdLce(ŷphdi , yi)
11: end for

12: Output φamp, φphd

To improve the generalization capability of the feature

extractor, we apply the knowledge distillation technique [43],

which has shown effective performance improvement of FSL

problem for image classification [27]. We treat the original

trained CNNs in Algorithm 1 as the initial teacher model φ0,

and iteratively distill knowledge from the teacher model to a

student model using the same source domain training dataset.

Input 
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KL

Total Loss

Loss 

CE

KL

Input 
Hard 
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Loss 

CE
Predictions

Training teacher model

Training student model
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KL
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Input xi  0
Hard 
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Predictions

Training teacher model
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Total 
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Fig. 5. The model knowledge distillation procedure. The figure shows the
process of training the 1st generation distilled model. The total loss is used
to update the model parameters of φ1.

In the proposed DASECount framework, the teacher and

student models have the same structure, and we use a fixed

training set Dtrain as the input to all the models. As shown in

Fig. 5, suppose that the input for training models is xi and the

corresponding label is yi. Let f(xi;φ0) denote the output of

the initial teacher network given an input xi. To obtain the first

distilled model φ1, we use yi as the hard label and f(xi;φ0)
as the soft label of the input xi. Similarly, to generate the

kth distilled model φk, we solicit both the hard label yi and

the soft label f(xi;φk−1) to the input xi and minimize the

weighted loss caused by both the hard and soft labels [44].
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Therefore, the distillation of the kth model can be written as

follows:

φk = argmin
φ

(αLce(Dtrain;φ)+

(1− α)KL(f(Dtrain;φ), f(Dtrain;φk−1))),
(5)

where α ∈ [0, 1] is the weight of cross-entropy (CE) loss,

KL represents the Kullback-Leibler divergence between two

distributions. Both the amplitude and phase CNN models

are distilled several times. The parameter update of model

distillation is shown in Algorithm 2. After distillation, we

have obtained a series of distilled model {φk}
K
k=0. We choose

one model φm = (φampm , φphdm ) to generate the final CSI

feature extractor, denoted as gψ, where ψ represents the model

parameters. We will demonstrate the selection method of the

distilled models and the advantage of distillation to the cross-

domain ICC performance in Section V-C6.

Algorithm 2 Distillation Procedure of Feature Extractor

Input:

Merged training set Dtrain;

Initial feature extractor φ0 = (φamp0 , φ
phd
0 );

Output:

(φampk , φ
phd
k )Kk=0;

1: for k=1:K do

2: Initialize the kth model φk = (φampk , φ
phd
k )

3: for all H
amp
i of xi ∈ Dtrain do

4: Calculate the output f(Hamp
i ;φampk )

5: Obtain soft label f(Hamp
i ;φampk−1 )

6: Update φ
amp
k by the Equation (5)

7: end for

8: for all H
phd
i of xi ∈ Dtrain do

9: Calculate the output f(Hphd
i ;φphdk )

10: Obtain soft label f(Hphd
i ;φphdk−1)

11: Update φ
phd
k by the Equation (5)

12: end for

13: end for

B. Target Domain Meta-testing Stage

After obtaining the distilled CSI feature extractor in the

source domain, we select the output of a particular layer as

the feature to train the target domain classifier. For instance,

as illustrated in Fig. 4, the choice can be the feature map

of FC, CNN-1, CNN-2, etc, and we leave the discussion

of feature map selection in Section V-C4. For the target

domain, we denote the dataset as T = (Dsup,Dque)Tt=1,

where Dsup = {Dsup
t }Tt=1 , (xpt , y

p
t )
P
p=1 is the support set,

Dque = {Dque
t }Tt=1 , (xqt , y

q
t )
Q
q=1 is the query set and t

represents the tth ICC task in the target domain. Because the

support set contains very limited labeled training samples, we

use a shallow classifier parameterized by θ. Some example

classifiers include logistic regression (LR) and support vector

machine (SVM), etc. In particular, we minimize the cross-

entropy loss with the FSL training samples of the support set:

θ = argmin
θ

Lce(Dsup; θ). (6)

Using LR as the classifier, the meta-testing procedure in the

target domain is shown in Algorithm 3. Finally, we evaluate

the performance of the classifier in the query set Dque.

Algorithm 3 Training procedure of target domain classifier

Input:

Support set Dsup of an ICC task in the target domain;

Feature extractor gψ;

Output:

An LR classifier θ for the ICC task;

1: for all few-shot samples x
p
t ∈ Dsup

t do

2: Compute feature map Φp = gψ(x
p
t )

3: Reshape feature map to 1D vector and augment 5 times

4: Training the LR classifier:

5: θ = θ − η(− 1
P

∑P

p=1[(y
p
t −

1

1+e−WT Φp
)Φp])

6: end for

V. EXPERIMENT RESULTS

In this section, we perform experiments to evaluate the

performance of the proposed DASECount framework. We

first describe the experiment setups and parameter settings in

Section V-A. Then, we show the performance of the CNN-

based feature extractor in handling source domain ICC tasks

Section V-B. In Section V-C, we present the results of cross-

domain ICC tasks, where we compare DASECount with other

benchmark methods and discuss design factors that influence

the performance.

A. Experiment Setups

We use a laptop as the transmitter and a desktop as the re-

ceiver, where both devices communicate with Atheros 802.11n

WiFi card (AR9580/AR9382). Meanwhile, both devices run

Ubuntu 14.04 system and the receiver uses the Atheros CSI

tool to collect the CSI. The transmission works in the 2.4GHz

spectrum, occupying 40MHz bandwidth with 114 subcarriers,

using 2 transmitting antennas and 3 receiving antennas. The

transmit rate is set to 100 pkts/s. All the collected data packets

are parsed by the Atheros CSI tools and further processed

by MATLAB. All the data processing and computations are

performed on a Dell PowerEdge T640 server with 256GB of

RAM and a Tesla P100 GPU.

For cross-domain ICC task setups, we conduct experiments

in 2 rooms where each room contains a line-of-sight (LOS) and

a none-line-of-sight (NLOS) experimental scenario, resulting

4 different scenarios in total. As shown in Fig. 3, room A is

an office space while room B is a lecture hall. The considered

cross-domain scenario setup is similar to that in [45].

To measure the effects of different types of human activity

on performance, we consider the following three motion types

and collect data for each type when 0 to 8 (i.e., 9 classes)

volunteers are in the room.

• Static: volunteers are required to remain seated but can

act freely, such as eating, typing, or sleeping;

• Dynamic: volunteers walk randomly walk around the

venue;
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• Mixed: there is no restriction to the volunteers’ activities,

and they can move freely in the venue including but not

limited to walking, sitting, eating, and sleeping.

CSI data of each category (4 scenarios × 3 motion types ×
9 classes = 54 categories in total) are collected for 5 minutes to

obtain a total of about 30000pkt for each category. In the CSI

pre-processing stage, we set segmentation window Tw as 200

(i.e., 2 seconds as a unit) and sliding window Ts as 50 (i.e.,

0.5 seconds), so we obtain 600 segments for each category.

After preprocessing, we have obtained CSI data of 3 motion

types in each scenario, where each scenario-motion pair has

5400 samples (600 samples × 9 classes). We treat these

different motion types as different ICC tasks in each scenario

(i.e., subscript s for source domain and t for target domain in

IV-A). Without loss of generality, data samples collected under

Room A LOS scenario are used as source domain dataset S
and samples in other 3 scenarios are used as target domain

datasets T .

B. Feature Extractor Configuration

We generate the feature extractor in the source domain

dataset S, which contains data of all the three motion types.

We train a unified feature extractor rather than one for each

of the 3 motion types. Therefore, we combine the samples

of all motion types to build a united dataset, and then divide

it into training set (i.e., Dtrain in IV-A)) and validating set

(i.e., Dval in IV-A) in a ratio of 9 to 1. Hence, the training

set Dtrain contains 3 × 9 × 540 = 14580 samples and the

validating set Dval contains 3× 9× 60 = 1620 samples. The

training of the feature extractor is carried out on Dtrain. Some

main training parameters involved are shown in Table II. Both

the amplitude and phase difference submodels are trained with

the same training parameters.

TABLE II
TRAINING PARAMETERS OF FEATURE EXTRACTOR

Batch size Epochs Learning rate Optimizer

8 30 10
−3 Adam

After training, we evaluate the ICC performance of the

amplitude and phase difference submodels on the source

domain validation set Dval. In Fig. 6, we show the loss and

accuracy variations in 30 training epochs. As can be seen from

Fig. 6a, the training loss of the amplitude submodel drops

rapidly in the first 10 epochs and gradually converges after

30 epochs. The accuracy of the model reaches 98% on the

validation set. The loss and accuracy of the phase difference

submodel vary similarly to the amplitude submodel during the

training process.

Besides, we perform knowledge self-distillation 6 times to

the original feature extractor, obtaining 7 generation models

in total. Some main distillation parameters involved are shown

in the table III. Cross entropy loss weight α in Equation (5) is

set to 0.5. Among these models, we select a model with the

best ICC accuracy as the target domain feature extractor, i.e.,

the 4th generation model.
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(b) Phase difference Submodel

Fig. 6. Training loss and ICC accuracy of the amplitude and phase difference
submodels in the meta-training stage.

TABLE III
DISTILLATION PARAMETERS OF FEATURE EXTRACTOR

Batch size Epochs Learning rate Optimizer Weight decay

100 100 10
−3 SGD 5 · 10−4

C. Performance of DASECount

In the meta-testing stage, k-shot samples in the target

domain are input to the obtained extractor to compute the

corresponding feature maps, where k ∈ {1, 5} correspond

to 1-shot and 5-shot cases, respectively. Here, we choose

the feature maps from the penultimate convolutional block

to train and evaluate the target domain LR classifier with 1-

shot learning and 5-shot learning (the feature map CNN-2 in

Fig.4). As shown in Fig. 4, the 64 × 3 × 3 feature map is

flattened to a 1×576 vector. After concatenating features from

the amplitude and the phase difference submodels, we have

obtained a 1× 1152 feature vector. Then, each k-shot sample

vector is duplicated five times. For 1-shot learning, only 1

training sample is available for each class of the 9 classes.

After duplication, the dimension of training data is 45×1152.

For 5 shot learning, 5 samples are available for each class so

that the dimension of training data is 225×1152, accordingly.

1) ICC accuracy with LR classifier: Table IV shows 1-shot

and 5-shot results of the LR classifier with the 4th generation

distillation feature extractor. All the accuracy result is an

average obtained by repeating the experiment 10 times.
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(c) Confusion Matrix of Mixed type

Fig. 7. Confusion matrix of classification results in the Room B NLOS scenario.

TABLE IV
FEW-SHOT RESULTS FOR META-TESTING SCENARIOS

Room A NLOS Room B LOS Room B NLOS

1 shot
Static 90.05% 88.63% 85.64%

Dynamic 94.63% 93.41% 93.29%
Mixed 80.65% 77.17% 76.26%

5 shot
Static 98.29% 97.83% 97.26%

Dynamic 98.33% 98.94% 99.17%
Mixed 96.85% 94.61% 92.68%

We see that, compared with 1-shot learning, the accuracy

improvement of 5-shot learning ranges from the lowest 4%

(Dynamic type of Room A NLOS) to the highest 16% (Mixed

type of Room B NLOS), which matches the intuition that in-

creasing the number of shots improves detection performance.

For the Room A NLOS scenario, the LR classifier achieves

an average accuracy of 97.82% with 5-shot learning. The

high accuracy is because only the transceiver deployment is

changed compared to the source domain. As for the Room B

NLOS scenario, the average detection accuracy drops slightly

(about 1.5%) because of the change of the entire surrounding

environment. From the perspective of motion types, the ac-

curacy is higher (average 98.81% with 5-shot learning) with

the Dynamic type and lower (average 94.71% with 5-shot

learning) with the Mixed type, because of the higher degree of

randomness in the CSI measurements under the Mixed motion

type of the crowd.

Fig. 7 shows the confusion matrixes of ICC results in

the Room B NLOS scenario. The (i, j)th element denotes

the probability that the ground-truth i people is identified

as j people. We see that the detection accuracy decreases

slightly when more people participate in the experiment.

Overall, DASECount achieves very high accuracy (i.e.,over

99%) where the error margins are mostly within 1-2 people.

If we consider a presence detection problem, i.e., detecting

whether there are any people in the room, with 5-shot learning,

the proposed DASECount method achieves 100% accuracy.

Fig. 8. Detection accuracy comparisons of different cross-domain ICC
methods. CNN AMP and CNN PHD represent the CNN amplitude and phase
difference feature extractor submodels, respectively. LR is a logistic regression
classifier directly trained with 5 samples. DASECount is the proposed method.

2) Advantage of cross-domain learning: To evaluate the

performance of the proposed DASECount method, we present

the classification accuracy when the following three bench-

mark classifiers are used in the Room B NLOS scenario:

(1) Source-domain CNN amplitude feature extractor;

(2) Source-domain CNN phase difference feature extractor;

(3) Directly train the LR classifier based on the 5 samples;

Fig. 8 shows the comparison result. If we directly apply

the CNN feature extractor to the target domain ICC task

without FSL, the accuracy is very poor, this verifies our

claim that environment difference has a large impact on the

ICC performance. The LR classifier is trained with raw CSI

data (flattening CSI data to a vector without feature extractor

processing). It achieves an average accuracy of 54.88% in the

scenario. This is because the few target-domain data samples

are not sufficient to train a classifier with high-dimension of

raw input data. Overall, the proposed DASECount framework

outperforms the benchmark methods by at least 30% in all the

motion types considered.
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TABLE V
INFLUENCE OF COMBINED FEATURES

AMP PHD DASECount

1 shot
Static 81.15% 74.79% 85.64%

Dynamic 91.45% 76.28% 93.29%
Mixed 67.56% 59.04% 76.26%

5 shot
Static 90.89% 91.82% 97.26%

Dynamic 95.05% 91.50% 99.17%
Mixed 88.20% 84.91% 92.68%

3) Advantage of combined amplitude and phase features:

DASECount combines features in CSI amplitude and phase

difference information from the target domain to train a

lightweight LR classifier. Since the feature extractor contains

independent amplitude and phase difference submodels, the

target domain LR classifier can be trained using features

extracted from one of the submodels alone. Specifically, the

vector length of the joint feature (1 × 1152) is twice as long

as that of the single amplitude or phase feature (1 × 576).

Table V shows the comparison results of LR classifiers in

the Room B NLOS scenario, where the AMP represents the

LR classifier is trained only with the amplitude feature and

the PHD represents the LR classifier is trained only with the

phase difference feature. Compared with amplitude or phase

difference feature alone, the accuracy improvement of the

LR classifier trained on joint features ranges from the lowest

1.84% (Dynamic type) to the highest 17.22% (Mixed type) for

1-shot learning. For 5-shot learning, the accuracy improvement

ranges from the lowest 4.12% (Dynamic type) to the highest

7.77% (Mixed type).

4) Selection of feature map: The CNN feature extractor of

DASECount has 6 convolutional blocks and a fully connected

layer, and the extracted features of each layer have different

dimensions and contain different information. We have tested

the features from the last two convolutional blocks and the

fully connected layer to train the LR classifier. Table VI shows

the performance of LR classifiers trained with 3 different kinds

of features in the Room B NLOS scenario. Compared with

features from the fully connected layer (FC in the table) and

the final convolutional block (CNN-1 in the table), features

from the penultimate convolutional block result in the best

ICC accuracy in all cases.

TABLE VI
INFLUENCE OF FEATURE MAP FROM CNN

FC(1×18) CNN-1(1×128) CNN-2(1×1152)

1 shot
Static 61.01% 66.18% 85.64%

Dynamic 71.01% 84.41% 93.29%
Mixed 39.03% 60.27% 76.26%

5 shot
Static 83.92% 90.14% 97.26%

Dynamic 87.54% 93.39% 99.17%
Mixed 79.14% 83.79% 92.68%

5) Selection of classifier model: We compare different

target domain classifiers: logistic regression (LR), support

vector machine, and K-nearest neiber (NN) in the Room B

NLOS scenario. Experiment results in Table VII show the

three machine learning classifiers have similar performance,

while the LR classifier is slightly better than the other two by

about 2% detection accuracy.

TABLE VII
PERFORMANCE OF DIFFERENT MACHINE LEARNING CLASSIFIERS

LR SVM NN

1 shot
Static 85.64% 79.93% 79.60%

Dynamic 93.29% 91.59% 87.01%
Mixed 76.26% 73.06% 72.41%

5 shot
Static 97.26% 96.07% 95.12%

Dynamic 99.17% 98.78% 98.18%
Mixed 92.68% 91.78% 88.59%

6) Effect of distillation: In the meta-training stage, we

have distilled the amplitude and phase difference submodels

6 times and obtained 7 generations of models in total. We

conduct experiments under the Mixed type ICC in the Room

B NLOS scenario and evaluate the performance of the target

domain LR classifier using different generation models as

the feature extractor. The influence of different distillation

generation models is shown in Fig. 9. As can be seen from the

figure, compared with the model of generation 0, the accuracy

of the target domain classifier can be improved by 3-10%

after several rounds of distillations, but the performance of

the proposed DASECount drops after 4 rounds of distillation.

Therefore, we need to track the ICC accuracy of each round

of distillation and select the best one to produce the feature

extractor.
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Fig. 9. Influence of the generation of knowledge distillation on the perfor-
mance of target domain classifier. PHD+LR represents the phase difference
submodel as the feature extractor. AMP+LR represents the amplitude sub-
model as the feature extractor. DASECount represents the proposed method,
which combines both of amplitude and phase difference submodels as the
feature extractor.

7) Compared with MAML FSL method: Fig. 10 shows the

comparison in scenario Room B NLOS with 5-shot learning.

In particular, we compare the performance of the proposed

FSL-based DASECount method with the well-known MAML

method. It shows that the accuracy of the proposed DASEC-

ount method is on average 27.86% higher than MAML when
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using only amplitude as the input measurement, and 13.6%

higher when using only amplitude as the input measurement.

In both cases, the proposed method significantly outperforms

the benchmark MAML. Besides, we can further improve the

accuracy by combing the phase and amplitude features under

the proposed DASECount framework.
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Fig. 10. Detection accuracy comparisons of proposed DASECount and
MAML in Room B NLOS scenario with 5-shot learning.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have proposed a DASECount frame-

work based on FSL to achieve highly accurate and robust

cross-domain ICC performance. DASECount contains a meta-

training stage and a meta-testing stage. In the meta-training

stage, DASECount trains a CSI feature extractor consisting

of the amplitude and phase difference CNN submodels with

supervised learning. We also applied a knowledge distillation

procedure to iteratively update the parameters of the CNN

submodels for better generalization performance. In the meta-

testing stage, thanks to the feature extractor that generates

low-dimension features of the target domain data, DASECount

attains very high cross-domain ICC accuracy with a simple

lightweight LR classifier given very limited target domain

data samples. Experimental results show that the proposed

DASECount achieves over 92.68%, and on average 96.37%

detection accuracy, in a 0-8 people counting task under

various domain setups, which significantly outperforms the

other representative benchmark methods considered. Overall,

the proposed DASECount framework significantly enhances

the robustness of cross-domain ICC tasks and reduces the

operating cost in large-scale deployment of future WiFi-based

indoor sensing applications.

Notice that the training of feature extractor is performed

offline just once on the source domain dataset. We can

therefore perform the training on a powerful server using the

sufficiently large source domain dataset, and fix the parameters

of the feature extractor after the training converges. In our sim-

ulations, the complete CNN feature extractor contains 189513

training parameters and the training process converges in less

than 5 minutes. In the target domain, we reuse the obtained

feature extractor and only need to train a lightweight LR

classifier consisting of only 1153 training parameters. Besides,

the training is performed on a very small target domain data

set following the FSL paradigm. Therefore, the classifier in

the target domain can be quickly trained with the few-shot

samples, and it takes less than 1 second in our simulations

to complete the training. Overall, the proposed DASECount

framework can be quickly extended to perform ICC in new

target domains with very low computational complexity.

It is an important working direction for us to further

improve the robustness of DASECount in some application

cases. For example, if the location of the WiFi transceiver or

the background environment of devices changes significantly,

it may cause sample data distribution shift and affect the

training performance of the classifier. In this case, it requires

recollecting labeled data samples and retraining the classifier,

which however is very costly if the change happens frequently.

A more feasible yet much more challenging solution is for

DASECount to adapt to new domains with an unsupervised

learning method. A promising method is to design a zero-shot

framework based on a generative adversarial network (GAN),

which requires no labeled data at all. This is considered as an

important future work.
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