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Abstract—In this paper, we propose a state-of-the-art down-
link communication transceiver design for transmissive reconfig-
urable metasurface (RMS)-enabled simultaneous wireless infor-
mation and power transfer (SWIPT) networks. Specifically, a feed
antenna is deployed in the transmissive RMS-based transceiver,
which can be used to implement beamforming. According to the
relationship between wavelength and propagation distance, the
spatial propagation models of plane and spherical waves are built.
Then, in the case of imperfect channel state information (CSI), we
formulate a robust system sum-rate maximization problem that
jointly optimizes RMS transmissive coefficient, transmit power
allocation, and power splitting ratio design while taking account
of the non-linear energy harvesting model and outage probabil-
ity criterion. Since the coupling of optimization variables, the
whole optimization problem is non-convex and cannot be solved
directly. Therefore, the alternating optimization (AO) framework
is implemented to decompose the non-convex original problem.
In detail, the whole problem is divided into three sub-problems to
solve. For the non-convexity of the objective function, successive
convex approximation (SCA) is used to transform it, and penalty
function method and difference-of-convex (DC) programming
are applied to deal with the non-convex constraints. Finally,
we alternately solve the three sub-problems until the entire
optimization problem converges. Numerical results show that
our proposed algorithm has convergence and better performance
than other benchmark algorithms.

Index Terms—RMS, SWIPT, imperfect CSI, non-linear energy
harvesting, outage probability criterion.

I. INTRODUCTION

THE rapid development of wireless communication en-
ables the Internet-of-Things (IoT) to be utilized in more

scenarios, e.g., smart industry, smart medical and the Internet
of vehicles [1], [2]. Based on the relevant data, it is inferred
that the number of IoT devices worldwide will rise to 14.7
billion by 2030 in the future IoT networks [3]. However, IoT
devices are usually small in size, which makes the battery
capacity often limited and have difficulty in meeting the energy
requirements of rich applications in IoT. Therefore, energy
management for large-scale IoT devices is a critical issue.
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Meanwhile, to solve the path loss problem caused by high-
frequency communication and ensure that the coverage is not
reduced, the number of 5G base stations (BSs) is greatly
increased compared with 4G BSs [4]. In addition, massive
multiple-input multiple-output (MIMO) requires numerous
radio frequency (RF) links to provide support, which will
lead to a surge in power consumption and cost. Hence, it is
urgent to seek a novel transceiver architecture with low power
consumption and low cost.

As a promising technique for energy harvested in the IoT,
wireless energy transmission (WET) can convert the received
RF signal into electrical energies, which can be well applied
to solve the energy management of large-scale IoT devices
[5]. Simultaneous wireless information and power transfer
(SWIPT) is a valid mode in WET. Specifically, in SWIPT, the
user divides the received RF signal into an information decoder
(ID) and an energy harvester (EH) through power splitting
(PS) or time switching (TS) [6]–[10]. With MIMO technology,
SWIPT can also be implemented through antenna switching or
spatial switching. In antenna switching, each antenna element
is switched dynamically between decoding/rectifying in the
antenna domain [11]. In spatial switching, information or
energy is transmitted through eigenchannels obtained by eigen-
value decomposition of the MIMO channel matrix. According
to the above-mentioned implementation technology of SWIPT,
there have been many studies on the integration of SWIPT into
existing communication technology [12]–[14]. Power splitting
factor and signal autocorrelation matrix are designed jointly
to maximize the power harvested in the MIMO channel [12].
Buckley et al. proposed an energy receiving architecture under
orthogonal frequency division multiplexing (OFDM) system
[13]. Under this architecture, the user performs energy harvest-
ing and storage from the cyclic prefix of the signal. SWIPT in
non-orthogonal multiple access (NOMA) network was studied
in [14], authors consider energy harvested constraint and
the quality-of-service (QoS) requirement of each user and
minimize BS transmit power. For the various implementations
of SWIPT mentioned above, there are also studies comparing
these implementations in specific scenarios, especially PS
and TS [15]–[17]. The authors compare the attainable rate-
energy trade-off in SWIPT-based communication systems for
multiple-input single-output (MISO) channel [15] and MIMO
channel [16]. Zhou et al. considered the joint optimization of
resource allocation and power splitting in the OFDM system
[17]. Jiang et al. approximately obtained the optimal solution
to the probability of information and energy coverage for
UAVs assisting SWIPT networks and verified it with the
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Monte Carlo method [18]. All of the above works demonstrate
that the performance of the PS scheme is better than that of the
TS scheme. However, PS-based SWIPT can solve the energy
shortage in IoT devices, but the energy consumption and cost
of BSs also need to be considered urgently.

Considering the requirements to reduce the power con-
sumption and cost of the BS, the recently proposed reconfig-
urable metasurface (RMS) may be a potential solution. RMS
also known as reconfigurable intelligent surface (RIS), is an
advanced technology that makes it possible to reconfigure
wireless channels in wireless communications networks. RMS
contains many passive elements with adjustable phase and am-
plitude. Since RMS is a passive communication equipment, it
can only reflect or transmit signal and does not perform signal
processing. RMS has the characteristics of low cost and easy
deployment and is an environment-friendly communication
device [19]–[21]. Because of the above advantages of RMS,
it has been widely studied in both academia and industry.
Specifically, depending on the medium material, RMS is
mainly divided into three types: reflective RMS [22]–[25],
transmissive RMS [26], [27] and simultaneously transmitting
and reflecting (STAR) RMS [28], [29]. For reflective RMS,
it is also called intelligent reflecting surface (IRS) and used
to improve the energy efficiency and spectral efficiency of
communication networks, and RMS can make the system
obtain obvious performance gains in the main communi-
cation scenarios. Zhang et al. and Yang et al. maximized
the communication capacity of the IRS-assisted system in
MIMO systems, respectively [22]. Yang et al. applied IRS
to physical layer security to maximize the secret rate [24].
For the transmissive RMS, it can solve the problem of blind
coverage in the communication networks. Zeng et al. evaluated
the performance of the downlink RIS-assisted communication
system and summarized the selection of the optimal working
mode of RIS for a specific user location [26]. Zhang et al.
proposed an intelligent omni-surface communication system,
where transmissive elements adjust the phase of the received
signal to improve network coverage [27]. While STAR RMS
can split the incident signal into transmitted and reflected
signals, helping to achieve full spatial coverage on both sides
of the surface. Wu et al. studied the problem of resource
allocation in STAR RMS-assisted multi-carrier communication
networks [29]. In the above researches, RMS is used as a
communication auxiliary device for channel reconstruction and
performance boost in two modes.

Furthermore, RMS can also be used as a transmitter, which
is a very promising research direction. Tang et al. implemented
real-time communication of quadrature amplitude modula-
tion (QAM)-MIMO by using reflective RMS and verified
the theoretical model [30]. In terms of transmitter design,
transmissive RMS has better performance than reflective RMS,
which is mainly because of the following two reasons [31]–
[34]. One of the reasons is that when RMS works in the
reflective mode, the user and the feed antenna are located
on the same side of the RMS, which makes the incident
and the reflected electromagnetic (EM) waves to interfere
with each other. Another reason is that the transmissive RMS
transceiver can be designed with higher aperture efficiency

and operating bandwidth [31]. For the above reasons, applying
transmissive RMS to multi-antenna transmitter designs is a
potential technique in future wireless communications [35].

In view of the two important issues in IoT networks: the
limited battery capacity of the devices and the excessive energy
consumption of the BSs, we propose a downlink transmission
design scheme for SWIPT networks based on the transmissive
RMS transceiver. In order to make the design more practical, a
nonlinear energy harvesting model is applied to this network
model. Compared with the linear energy harvesting model,
the nonlinear model has higher energy conversion efficiency
[36]. Considering the difficulty of channel estimation in RMS-
assisted systems, the channel estimation error matrix is in-
troduced into our model to simulate the impact of imperfect
channel state information (CSI). In this paper, we aim to
maximize the system sum-rate downlink by jointly optimizing
RMS transmissive coefficient, power allocation, and power
splitting ratio with the outage probability criterion. Given that
the problem formulated is non-convex, it is necessary to design
a reasonable and effective algorithm to solve it. The main
contributions of this paper can be summarized as follows:

• We propose a novel transmissive RMS transceiver-
enabled SWIPT network architecture, where the RMS is
used as transceiver to implement beamforming. Specifi-
cally, RMS transmissive coefficient, transmit power al-
location and power splitting ratio are designed jointly
to maximize the system sum-rate. Taking into account
the imperfect CSI, we use outage probability to mea-
sure QoS and energy harvested requirements, which can
demonstrate the robustness of our design. However, it is
non-trivial to directly obtain the global optimal solution
to this problem since the high coupling of optimization
variables.

• We propose a joint optimization algorithm based on an
alternating optimization (AO) framework to solve this
formulated robust system sum-rate maximization prob-
lem. Specifically, the original problem is first transformed
into a tractable problem. Then, the original problem
is decoupled into three sub-problems with respect to
transmit power allocation, power splitting ratio and RMS
transmissive coefficient to be solved separately. Finally,
we alternately optimize the three sub-problems till the
entire problem converges.

• Numerical results reveal the superior performance of
the proposed algorithm in downlink multi-user SWIPT
networks with transmissive RMS as transmitter. Specifi-
cally, the algorithm first has good convergence. Secondly,
under the constraints of information and energy harvested
requirements based on outage probability criterion, the
robust joint optimization algorithm can improve the sum-
rate of system compared to other benchmarks under the
conditions of different number of RMS elements, number
of users, and maximum transmit power.

The rest of this paper is as follows. In section II, we
delineate the system model and optimization problem for-
mulation in transmissive RMS transceiver-enabled SWIPT
networks when considering the non-linear EH model and the
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hk,LoS =
[
1, e−j

2π
λ d sin θAoD

k cosφAoD
k , . . . , e−j

2π
λ (Nx−1)d sin θAoD

k cosφAoD
k

]T
⊗
[
1, e−j

2π
λ d sin θAoD

k sinφAoD
k , . . . , e−j

2π
λ (Nz−1)d sin θAoD

k sinφAoD
k

]T
,

(3)

imperfect CSI. Then, in section III, the proposed robust joint
optimization algorithm is elaborated. Section IV reveals the
performance superiority of the proposed algorithm compared
to other benchmarks. Finally, section V concludes this paper.

Notations: Matrices are represented by bold uppercase let-
ters. Vectors are denoted by bold lowercase letters. Scalars
are represented by standard lowercase letters. For a complex-
valued scalar x, |x| denotes its absolute value and for a
complex-valued vector x, ‖x‖ represents the Euclidean norm.
For a general matrix A, rank(A), AH , Am,n and ‖A‖ denote
its rank, conjugate transpose, m,n-th entry and matrix norm,
respectively. For a square matrix X, tr(X) and rank(X),
denote its trace, rank, and X � 0 denotes that X is a
positive semidefinite matrix. CM×N represents the M ×N
dimensional complex matrix space and j is the imaginary
unit. Finally, CN (µ,C) denotes the distribution of a circularly
symmetric complex Gaussian (CSCG) random vector with
mean µ and covariance matrix C, and ∼ stands for ‘distributed
as’.

II. SYSTEM MODEL AND OPTIMIZATION PROBLEM
FORMULATION

A. System Model

As shown in Fig. 1, the system model of transmissive
RMS transceiver-enabled SWIPT networks is first introduced
and it mainly includes a transmissive RMS transceiver and
K users with a single antenna. The transceiver is composed
of a transmissive RMS with N elements and a feed an-
tenna. It is worth noting that although we are considering a
transmissive RMS transceiver architecture, a portion of the
electromagnetic waves emitted from the feed antenna will
always be reflected. However, we can quantify this part of
the reflected electromagnetic wave by a certain ratio, so it
does not affect the algorithm design of this problem. In
this paper, for the convenience of analysis, we assume that
the electromagnetic wave is completely transmitted, i.e., no
incident electromagnetic waves are reflected. The transmissive
RMS is equipped with an intelligent controller which can
control the amplitude and phase shift of all transmissive
elements. We let f = [f1, ..., fN ]

T ∈ CN×1 represent the
RMS transmissive coefficient vector at the transmitter, where
fn = βne

jθn represents the amplitude and phase shift of the
n-th element respectively, which should satisfy

|fn| ≤ 1,∀n. (1)

The channel from the RMS transceiver to the k-th user can
be named as the RMS-user channel, and the channel gain
can be denoted by hHk ∈ C1×N . For ease of analysis, all
channels are assumed to be quasi-static flat fading, i.e., hHk is
constant within each transmission time T . It is worth noting
that the transmissive RMS transmits the signal passively and

Transmissive RMS 

transmitter

User k Feed 

antenna

RMS controller

RMS-user 

channel

EM waves

Power

Splitter

Information

Decoder

Energy

Harvester

Fig. 1. Transmissive RMS transceiver-enabled SWIPT networks.

has no ability to actively send and receive signals. We assume
that the communication works in time division duplex (TDD)
mode, i.e., the channel estimation is completed in the uplink
transmission. Downlink CSI can be obtained according to
channel reciprocity. This paper assumes that the transmissive
RMS transceiver cannot obtain the CSI perfectly, and the
specific modeling is explained below.

In this paper, we model the array of RMS as a uniform
planar array (UPA), which is a more realistic array response,
i.e., N = Nx×Nz , Nx and Nz denote the number of elements
in the horizontal and vertical directions of the transmissive
RMS, respectively. Herein, RMS-user channel is modeled as
a Rice channel model, which can be given by

hk =

√
β

(
dk
d0

)−α(√
κ

κ+ 1
hk,LoS +

√
1

κ+ 1
hk,NLoS

)
,∀k,

(2)
where β denotes the channel gain when the reference distance
d0 = 1 m, α is the path loss exponent between the RMS
transceiver and the user, dk is the distance between RMS
transceiver and the k-th user. κ denotes the Rician factor,
hk,LoS represents the LoS component, which can be deter-
mined by the Eq. (3) at the top of this page, where θAoD

k and
φAoD
k are the vertical angle and horizontal angle of the angle-

of-departure (AoD) at the RMS transceiver, respectively. d
denotes the spacing between successive antenna elements and
λ denotes the carrier wavelength. hk,NLoS represents the NLoS
component and [hk,NLoS](nx−1)Nz+nz

∼ CN (0, 1) is the
(nx − 1)Nz +nz element of the vector hk,NLoS. Accordingly,
the signal received by the k-th user can be denoted by

yk = hHk f

K∑
i=1

√
pisi + nk,∀k, (4)

where si denotes the signal from the RMS transceiver to the
i-th user, Without loss of generality, we usually assume that
it is an independent and identically distributed (i.i.d) CSCG
random variable, i.e., si ∼ CN (0, 1). nk represents additive
white Gaussian noise (AWGN) introduced at the k-th user’s
receiving antenna, and it is also usually set assumed to be
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i.i.d CSCG variable, i.e., nk ∼ CN
(
0, σ2

k

)
. pk represents the

power allocated to the k-th user and the following constraints
should be satisfied

pk ≥ 0,∀k, (5)

and
K∑
k=1

pk ≤ Pmax, (6)

where Pmax is the maximum transmit power of transmissive
RMS transceiver.

This paper considers transmissive RMS transceiver-enabled
SWIPT networks. Specifically, from the received RF signal,
each user adopts the PS protocol to coordinate energy harvest-
ing and information decoding, i.e., each user’s received signal
is divided into the ID and EH by the power splitter. The k-th
user divide the ρk portion of the received signal power to ID
and the rest (1 − ρk) portion to EH. Therefore, the received
signal for ID in the downlink of the k-th user is denoted by

yID
k =

√
ρkyk =

√
ρk

(
hHk f

K∑
i=1

√
pisi + nk

)
+ zk,∀k, (7)

where zk represents AWGN caused by the ID of the k-th user
and it is set to be an i.i.d CSCG variable, zk ∼ CN

(
0, δ2

k

)
.

Then, the signal to interference plus noise ratio (SINR) of the
k-th user is denoted by

SINRk =
ρkpk

∣∣hHk f
∣∣2

ρk
∑
i 6=k

pi
∣∣hHk f

∣∣2 + ρkσ2 + δ2
k

,∀k. (8)

In addition, for the k-th user, the received signal for EH in
the downlink can be given by

yEH
k =

√
1− ρkyk =

√
1− ρk

(
hHk f

K∑
i=1

√
pisi + nk

)
,∀k.

(9)
Accordingly, the power obtained by the k-th user for EH is
given by

pEH
k = E

{∣∣yEH
k

∣∣2} = (1− ρk)

(
K∑
i=1

pi
∣∣hHk f

∣∣2 + σ2
k

)
,∀k.

(10)
In this paper, a more practical non-linear energy harvested
model is adopted. Hence, the power harvested by the k-th
user can be expressed as

Ψ
(
pEH
k

)
=

(
∂k

Xk

(
1 + exp

(
−ak

(
pEH
k − bk

))) − Yk) ,∀k,
(11)

where ∂k represents the maximum energy harvested of the k-
th user, ak and bk are specific parameters related to the circuit.
Xk = exp (akbk)/(1 + exp (akbk)) and Yk = ∂k/exp (akbk).
We consider that under normalized time, the energy harvested
by the k-th user can be given by

Ek = Ψ
(
pEH
k

)
,∀k. (12)

Let Φk = E
{
hkh

H
k

}
= hkh

H
k ∈ CN×N represent the

channel covariance matrix of the k-th user in the downlink1.
Then, the SINR of the k-th user can be expressed by the
channel covariance matrix as

SINRk =
ρkpktr (ΦkF)

ρk
∑
i 6=k

pitr (ΦkF) + ρkσ2
k + δ2

k

,∀k, (13)

where F = f fH ∈ CN×N and it should satisfy rank (F) =
1,F � 0 and Fn,n ≤ 1,∀n. In addition, the energy harvested
of the k-th user is further denoted by

Ek = Ψ

(
(1− ρk)

(
K∑
i=1

pitr (ΦkF) + σ2
k

))
,∀k. (14)

To make the model more realistic, we consider that the CSI
of the downlink cannot be obtained accurately, i.e., in the
case of imperfect CSI. Specifically, the channel covariance
matrix is assumed to be expressed as Φk + ∆Φk, where
Φk ∈ CN×N denotes the covariance matrix of the estimated
channel in the downlink and ∆Φk ∈ CN×N is the error
matrix corresponding to the estimated error of Φk, which can
also be called the uncertainty matrix, because it represents the
difference between the estimated value and the true value [37].
Note that Φk and ∆Φk are Hermitian matrices, then the SINR
and the energy harvested for the k-th user is denoted by

SINRk =
ρkpktr ((Φk + ∆Φk) F)

ρk
∑
i 6=k

pitr ((Φk + ∆Φk) F) + ρkσ2
k + δ2

k

,∀k,

(15)
and

Ek = Ψ

(
(1− ρk)

(
K∑
i=1

pitr ((Φk + ∆Φk) F) + σ2
k

))
,∀k.

(16)
Accordingly, the k-th user’s achievable rate (bps/Hz) is ex-
pressed as

Rk = log2 (1 + SINRk) ,∀k. (17)

Since random matrix variable terms are involved in Rk,
we take its expectation, which can be defined as E {Rk}.
However, we can’t use general methods to directly obtain
a closed-form expression for the expectation. To solve this
problem, we approximate the expectation of the achievable
rate by applying Proposition 1 below.

Proposition 1: For any a and b, if X is a random vari-
able term or contains a random variable term, the following
approximation holds,

E
{

log2

(
1 +

aX

bX + 1

)}
≈ E

{
log2

(
1 +

E {aX}
E {bX}+ 1

)}
.

(18)
Proof : The proof of this formula is similar to the proof of

Theorem 1 in Ref. [38] and here the proof is omitted. �
For the convenience of analysis, we assume that ∆Φk is a

Hermitian matrix, and the elements on the diagonal are i.i.d.

1We consider a quasi-static channel model, i.e., during each transmission
time duration T , hk is a constant. Therefore, we use the instantaneous value
of the channel gain to compute the channel covariance matrix instead of the
expectation operator.
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OID
k = Pr {SINRk ≤ γth} = Pr

 ρkpktr ((Φk + ∆Φk) F)

ρk
∑
i 6=k

pitr ((Φk + ∆Φk) F) + ρkσ2
k + δ2

k

≤ γth

 ,∀k, (20)

OEH
k = Pr {Ek ≤ Eth} = Pr

{
Ψ

(
(1− ρk)

(
K∑
i=1

pitr ((Φk + ∆Φk) F) + σ2
k

))
≤ Eth

}
,∀k. (21)

cyclic symmetric real Gaussian random variables with zero
mean and σ2

Φ variance. Other elements are i.i.d. CSCG random
variables with zero mean and σ2

Φ variance. According to the
Proposition 1, we can take that the expectation of the k-th
user’s achievable rate as follows

E {Rk} ≈ log2

1 +
ρkpktr (ΦkF)

ρk
∑
i 6=k

pitr (ΦkF) + ρkσ2
k + δ2

k

 ,∀k.

(19)
Considering imperfect CSI, the user’s SINR is a random

variable, which means that we can only express the informa-
tion and energy harvested requirement with outage probability.
We define the information outage probability of the k-th
user as the probability that its SINR is smaller than the
threshold γth, which can be expressed as the Eq. (20), where
Pr {·} is the probability operator. Similarly, energy harvested
outage probability is defined as the probability that the energy
harvested is lower than the threshold Eth, which can be
expressed as the Eq. (21).

B. Problem Formulation

Let ρ = [ρ1, ..., ρK ], p = [p1, ..., pK ]. We consider that
the information outage probability of each user is not greater
than ζk, and the energy outage probability of each user is
not greater than εk. By jointly optimizing the power splitting
ratio ρ, RMS transmissive coefficient F and the transmit
power allocation p, the expectation of the system sum-rate
is maximized. Therefore, the original problem P0 can be
expressed as

P0 : max
ρ,p,F

K∑
k=1

log2

1 +
ρkpktr (ΦkF)

ρk
∑
i 6=k

pitr (ΦkF) + ρkσ2
k + δ2

k

,
s.t. pk ≥ 0,∀k, (22a)

K∑
k=1

pk ≤ Pmax, (22b)

0 ≤ ρk ≤ 1,∀k, (22c)
Pr {SINRk ≤ γth} ≤ ζk,∀k, (22d)
Pr {Ek ≤ Eth} ≤ εk,∀k, (22e)
Fn,n ≤ 1,∀n, (22f)
F � 0, (22g)
rank (F) = 1, (22h)

where constraint (22a) and constraint (22b) are the transmit
power allocation constraints of transmissive RMS transceiver,
constraint (22c) is the power splitting ratio constraint of
each user. To guarantee the QoS of user information and
energy harvesting at the same time, constraint (22d) ensures
that the information outage probability of each user is not
greater than ζk and constraint (22e) ensures that the energy
harvesting outage probability of each user is not greater than
εk. Constraints (22f)-(22h) are RMS transmissive coefficient
constraints.

As can be observed, the original problem P0 is non-convex
for following several reasons: First, the highly coupled vari-
ables make the objective function non-concave. In addition,
constraints (22d) and (22e) are constraints based on the outage
probability criterion, which are difficult to handle directly.
Finally, a non-convex rank-one constraint (22h) is introduced
after the RMS transmissive coefficient vector is lifted to a
matrix. Therefore, solving this problem is challenging.

III. ROBUST JOINT OPTIMIZATION ALGORITHM DESIGN
IN TRANSMISSIVE RMS TRANSCEIVER-ENABLED SWIPT

NETWORKS

A. Problem Transformation

Obviously, the problem P0 is a non-convex optimization
problem and needs to be transformed into a tractable convex
problem. Next, we reformulate the probability constraint (21d)
through a statistical model. Herein, OID

k can be rewritten as Eq.
(23) on the top of the next page. We introduce the auxiliary
matrix

Φ̃k = ρkpkΦk − ρkγth
∑
i 6=k

piΦk,∀k, (24)

and
∆Φ̃k = ρkpk∆Φk − ρkγth

∑
i6=k

pi∆Φk,∀k. (25)

Then the information outage probability of the k-th user can
be given by

OID
k = Pr

{
tr
((

Φ̃k + ∆Φ̃k

)
F
)
≤ ρkγthσ2

k + γthδ
2
k

}
,∀k.
(26)

We define a random variable χk = tr
((

Φ̃k + ∆Φ̃k

)
F
)
,∀k

and an intermediate variable to be optimized ck = ρkγthσ
2
k +

γthδ
2
k,∀k. Since Φ̃k, ∆Φ̃k and F are all Hermitian matrices,

the following Proposition 2 can be cited for the probability
distribution analysis of χk.
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OID
k = Pr

ρkpktr ((Φk + ∆Φk) F) ≤ ρkγth
∑
i 6=k

pitr ((Φk + ∆Φk) F) + ρkγthσ
2
k + γthδ

2
k

 ,∀k. (23)

OID
k = Pr {χk ≤ ck} =

∫ ck

−∞

1√
2πσe,k ‖F‖

exp

−
(
χk − tr

(
Φ̃kF

))2

2σ2
e,k‖F‖

2

 dχk,∀k, (30)

OEH
k = Pr

{
Ψ

(
(1− ρk)

(
K∑
i=1

pitr ((Φk + ∆Φk) F) + σ2
e,k

))
≤ Eth

}
= Pr

{
tr
((_

Φk + ∆
_

Φk

)
F
)
≤ ϕk

}
,∀k, (35)

Proposition 2: if X is a random matrix with CSCG random
elements with 0 mean and variance σ2

x, for any deterministic
matrix Y, the following formula is established

tr (YX) ∼ CN
(
0,σ2

xtr
(
YYH

))
. (27)

According to Proposition 2 [39], we can obtain χk ∼
CN

(
tr
(

Φ̃kF
)
, σ2
e,ktr

(
FFH

))
, where σ2

e,k can be given by

σ2
e,k = ρ2

kp
2
kσ

2
Φ + ρ2

kγ
2
th

∑
i 6=k

p2
iσ

2
Φ,∀k, (28)

then,

σ2
e,k = ρ2

kσ
2
Φ

p2
k + γ2

th

∑
i6=k

p2
i

 ,∀k. (29)

Therefore, the information outage probability of the k-th user
OID
k can be obtained by the Eq. (30), where ‖F‖2 = tr

(
FFH

)
.

According to the definition of the error function

erf (x) =
2√
π

∫ x

0

exp
(
−u2

)
du, (31)

the information outage probability of the k-th user can finally
be given by

OID
k =

1

2
− 1

2
erf

 tr
(
Φ̃kF

)
− ck

√
2σe,k ‖F‖

 ,∀k. (32)

Thus, constraint (22d) can be rewritten as

1

2
− 1

2
erf

 tr
(
Φ̃kF

)
− ck

√
2σe,k ‖F‖

 ≤ ζk,∀k. (33)

This formula can be converted to

tr
(
Φ̃kF

)
− ck ≥

√
2σe,k ‖F‖ erf−1 (1− 2ζk) ,∀k. (34)

Similarly, the k-th user’s energy outage probability OEH
k

is denoted by Eq. (35), where
_

Φk = (1− ρk)
K∑
i=1

piΦk,

∆
_

Φk = (1− ρk)
K∑
i=1

pi∆Φk and ϕk = Ψ−1 (Eth) −

(1− ρk)σ2
k. Then, we define a random variable $k =

tr
((_

Φk + ∆
_

Φk

)
F
)

. According to Proposition 2, we can

obtain $k ∼ CN
(

tr
(_
ΦkF

)
, β2
e,ktr

(
FFH

))
, where β2

e,k

can be given by

β2
e,k = (1− ρk)

2
K∑
i=1

pi
2σ2

Φ,∀k. (36)

Therefore, the k-th user’s energy outage probability OEH
k is

obtained by Eq. (37) on the top of the next page. Thus, the
constraint (22e) can be rewritten as

1

2
− 1

2
erf

 tr
(_
ΦkF

)
− ϕk

√
2βe,k ‖F‖

 ≤ εk,∀k. (38)

This formula can be converted to

tr
(_
ΦkF

)
− ϕk ≥

√
2βe,k ‖F‖ erf−1 (1− 2εk) ,∀k. (39)

Hence, we can transform the problem P0 into problem P1,
which can be given by

P1 : max
ρ,p,F

K∑
k=1

log2

1 +
ρkpktr (ΦkF)

ρk
∑
i 6=k

pitr (ΦkF) + ρkσ2
k + δ2

k

,
s.t. pk ≥ 0,∀k, (40a)

K∑
k=1

pk ≤ Pmax, (40b)

0 ≤ ρk ≤ 1,∀k, (40c)

tr
(
Φ̃kF

)
− ck ≥

√
2σe,k ‖F‖ erf−1 (1− 2ζk) ,∀k,

(40d)

tr
(_
ΦkF

)
− ϕk ≥

√
2βe,k ‖F‖ erf−1 (1− 2εk) ,∀k,

(40e)
Fn,n ≤ 1,∀n, (40f)
F � 0, (40g)
rank (F) = 1. (40h)

After the original problem is transformed, the AO frame-
work can be implemented to decouple the problem P1 into
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OEH
k = Pr {$k ≤ ϕk} =

∫ ϕk

−∞

1√
2πβe,k ‖F‖

exp

−
(
$k − tr

(_
ΦkF

))2

2β2
e,k‖F‖

2

 d$k =
1

2
− 1

2
erf

 tr
(_
ΦkF

)
− ϕk

√
2βe,k ‖F‖

 ,∀k.

(37)

K∑
k=1

log2

(
K∑
i=1

ρkpitr (ΦkF) + ρkσ
2
k + δ2

k

)
− log2

ρk∑
i 6=k

pitr (ΦkF) + ρkσ
2
k + δ2

k

 =

K∑
k=1

(gk (F)− ḡk (F)) ,∀k.

(41)

three sub-problems: RMS transmissive coefficient optimiza-
tion, transmit power allocation optimization, and power split-
ting ratio optimization. Then three non-convex sub-problems
are transformed into convex sub-problems by applying DC
programming and SCA, respectively. Next, by alternately
optimizing these three sub-problems to reach convergence, the
final RMS transmissive coefficient, transmit power allocation,
and power splitting ratio scheme can be obtained.

B. RMS Transmissive Coefficient Optimization

In this subsection, we first fix the power splitting ratio
ρ and transmit power allocation p, and optimize the RMS
transmissive coefficient F. The objective function can be
expressed as the Eq. (41), which is the difference of two
concave functions with respect to (w.r.t) F, which are not
concave. Herein, we approximate ḡk (F) linearly by SCA as
follows

ḡk (F) ≤ ḡk (Fr) + tr
(

(∇Fḡk (Fr))
H

(F− Fr)
)

, ḡk(F)
ub
,∀k,

(42)

with

∇Fḡk(Fr) =

ρk
∑
i 6=k

piΦ
H
k(

ρk
∑
i6=k

pitr (ΦkFr) + ρkσ2
k + δ2

k

)
ln 2

,∀k,

(43)
where Fr represents the value at the r-th SCA iteration.
Therefore, the problem P1 can be approximately expressed
as follows

P2: max
F

K∑
k=1

(gk (F)− ḡk (F)) ,

s.t. tr
(
Φ̃kF

)
− ck ≥

√
2σe,k ‖F‖ erf−1 (1− 2ζk) ,∀k,

(44a)

tr
(_
ΦkF

)
− ϕk ≥

√
2βe,k ‖F‖ erf−1 (1− 2εk) ,∀k,

(44b)
Fn,n ≤ 1,∀n, (44c)
F � 0, (44d)
rank (F) = 1. (44e)

Since the constraint (44e) is non-convex, we consider that
apply the DC programming to address this non-convex rank-
one constraint.

Lemma 1: For any square matrix B ∈ CN×N , B � 0 and
tr (B) > 0, whose rank is one can be equivalently expressed
as

rank (B) = 1⇒ tr (B)− ‖B‖2 = 0, (45)

where tr (B) =
N∑
n=1

σn (B), ‖B‖2 = σ1 (B) represents the

spectral norm of matrix B, and represents the n-th largest
singular value of matrix B. On the basis of Lemma 1, rank-
one constraint (44e) can be transformed in the optimization
problem P2 as follows

rank (F) = 1⇒ tr (F)− ‖F‖2 = 0. (46)

Then, a penalty factor ` is introduced and the above Eq. (46)
is added to the objective function of the problem P2. Next, it
is converted into the problem P3, which can be given by

P3: max
F

K∑
k=1

(
gk (F)− ḡk(F)

ub
)
− ` (tr (F)− ‖F‖2) ,

s.t. tr
(
Φ̃kF

)
− ck ≥

√
2σe,k ‖F‖ erf−1 (1− 2ζk) ,∀k,

(47a)

tr
(_
ΦkF

)
− ϕk ≥

√
2βe,k ‖F‖ erf−1 (1− 2εk) ,∀k,

(47b)
Fn,n ≤ 1,∀n, (47c)
F � 0, (47d)

where ` represents the penalty factor associated with the rank-
one. Because ‖F‖2 is a convex function, the problem P3 is
still not a convex problem, which can be linearized by using
the SCA technique, and its lower bound can be given by

‖F‖2 ≥ ‖F
r‖2 + tr

(
umax (Fr) umax(Fr)

H
(F− Fr)

)
, (‖F‖2)

lb
,

(48)
where umax (Fr) denotes the eigenvector corresponding to

the largest eigenvalue of the matrix F at the r-th SCA
iteration. Thus, the problem P3 can be further converted into
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K∑
k=1

log2

(
K∑
i=1

ρkpitr (ΦkF) +ρkσ
2
k + δ2

k

)
− log2

ρk∑
i6=k

pitr (ΦkF) + ρkσ
2
k + δ2

k

 =

K∑
k=1

(
hk (pi)− h̄k (pi)

)
. (50)

h̄k (pi) ≤ h̄k (pri ) +
ρktr (ΦkF)(

ρk
∑
i 6=k

pri tr (ΦkF) + ρkσ2
k + δ2

k

)
ln 2

(pi − pri )
∆
= h̄k(pi)

ub
,∀k, (51)

K∑
k=1

log2

(
K∑
i=1

ρkpitr (ΦkF) +ρkσ
2
k + δ2

k

)
− log2

ρk∑
i 6=k

pitr (ΦkF) + ρkσ
2
k + δ2

k

 =

K∑
k=1

(
f (ρk)− f̄ (ρk)

)
,∀k.

(53)

the problem P4 as follows

P4: max
F

K∑
k=1

(
gk (F)− ḡk(F)

ub
)
− `
(

tr (F)− (‖F‖2)
lb
)
,

s.t. tr
(
Φ̃kF

)
− ck ≥

√
2σe,k ‖F‖ erf−1 (1− 2ζk) ,∀k,

(49a)

tr
(_
ΦkF

)
− ϕk ≥

√
2βe,k ‖F‖ erf−1 (1− 2εk) ,∀k,

(49b)
Fn,n ≤ 1,∀n, (49c)
F � 0. (49d)

After the analysis, when the probability of the user’s infor-
mation and energy outage is less than 0.5, the coefficients
on the right side of the inequalities of Eq. (49a) and Eq.
(49b) about the matrix F are positive. In general, the outage
probability is not greater than 0.5. The subsequent simulation
in this paper is set to 0.1, which can satisfy this condition. If
the outage probability is set to be greater than 0.5, SCA can
be further used to linearize the right-hand-side (RHS) of the
inequalities of Eq. (49a) and Eq. (49b) to solve the problem.
Therefore, this problem is a semidefinite programming (SDP)
problem, which can be efficiently solved by utilizing the CVX
toolbox to obtain the RMS transmissive coefficient.

C. Transmit Power Allocation Optimization

In this subsection, the RMS transmissive coefficient F and
power splitting ratio ρ are given, and we optimize the transmit
power allocation p. The objective function can be denoted
by Eq. (50). It can be seen that the objective function is the
difference of two concave functions w.r.t pi. Thus, it is a non-
concave function. It can be linearized by SCA, i.e., we perform
a first-order Taylor expansion on the second term and the Eq.
(51) can be obtained, where pri represents the value at the
r-th SCA iteration. Hence, the problem P1 is transformed as

follows

P5: max
p

K∑
k=1

(
hk (pi)− h̄k(pi)

ub
)
,

s.t. pk ≥ 0,∀k, (52a)
K∑
k=1

pk ≤ Pmax, (52b)

tr
(
Φ̃kF

)
− ck ≥

√
2σe,k ‖F‖ erf−1 (1− 2ζk) ,∀k,

(52c)

tr
(_
ΦkF

)
− ϕk ≥

√
2βe,k ‖F‖ erf−1 (1− 2εk) ,∀k.

(52d)

Since the problem is a standard convex optimization problem,
we can use CVX toolbox to solve it and obtain the transmit
power allocation p.

D. Power Splitting Ratio Optimization

In this subsection, the power splitting ratio ρ for each user is
optimized when the remaining two sets of variables are fixed.
Herein, the objective function can be given by the Eq. (53).
Similarly, by using the SCA to linearize the second term in
Eq. (53), we can obtain the Eq. (54) on the top of the next
page.

Therefore, the problem P1 can be transformed into the
problem P6, which can be given by

P6: max
ρ

K∑
k=1

(
f (ρk)− f̄(ρk)

ub
)
,

s.t. 0 ≤ ρk ≤ 1,∀k, (55a)

tr
(
Φ̃kF

)
− ck ≥

√
2σe,k ‖F‖ erf−1 (1− 2ζk) ,∀k,

(55b)

tr
(_
ΦkF

)
− ϕk ≥

√
2βe,k ‖F‖ erf−1 (1− 2εk) ,∀k.

(55c)
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f̄ (ρk) ≤ f̄ (ρrk) +

∑
i6=k

pitr (ΦkF) + σ2
k(

ρrk
∑
i6=k

pitr (ΦkF) + ρrkσ
2
k + δ2

k

)
ln 2

(ρk − ρrk) , f̄(ρk)
ub
,∀k. (54)

We can see that this problem is a standard convex optimization
problem and can be efficiently solved by utilizing the CVX
toolbox.

E. The Overall Robust Joint Optimization Algorithm in Trans-
missive RMS-enabled SWIPT Networks

In this subsection, we propose the overall joint RMS
transmissive coefficient, transmit power allocation, and power
splitting ratio optimization algorithm and summarize it in
Algorithm 1. First, when the transmit power allocation and
power splitting ratio are given, the RMS transmissive coef-
ficient are determined by solving the problem P4. We can
respectively solve the problem P5 and P6 to obtain the transmit
power allocation and power splitting ratio. At last, the three
sub-problems are optimized alternately until the entire problem
converges.

Algorithm 1 Robust Joint Optimization Algorithm in Trans-
missive RMS-enabled SWIPT Networks

1: Input: F0, p0, ρ0, threshold ε and iteration index r = 0.
2: repeat
3: Solve the problem P4 to obtain RMS transmissive

coefficient F∗.
4: Solve the problem P5 to obtain transmit power allo-

cation p∗.
5: Solve the problem P6 to obtain power splitting ratio

ρ∗.
6: Update iteration index r = r + 1.
7: until The whole problem satisfies the convergence thresh-

old requirement.
8: return RMS transmissive coefficient, transmit power al-

location, power splitting ratio.

F. Computational Complexity and Convergence Analysis

1) Computational complexity analysis: In each iteration,
the computational complexity of the proposed robust joint
optimization algorithm is divided into three parts. The first
is to solve the SDP problem P4 with complexity O

(
M3.5

)
through the interior point method [40]. In addition, the com-
plexity of calculating the subgradient through singular value
decomposition is O

(
M3
)
. Accordingly, the computational

complexity of the first part is at mostO
(
M3.5

)
. Then, both the

second part and the third part solve problems P5 and P6 with
computational complexity O

(
K3.5

)
, respectively. Herein, let

r be the number of iterations required for the proposed
robust joint optimization algorithm to reach convergence, the
computational complexity of Algorithm 1 can be expressed
as O

(
r
(
K3.5 +M3.5

))
.

2) Convergence analysis: The convergence of the proposed
robust joint optimization Algorithm 1 in transmissive RMS-
enabled SWIPT networks can be proved as as shown later.

Let Fr, pr and ρr denote the r-th iteration solution to
the problem P4, P5 and P6. The objective function can be
expressed as R (Fr,pr,ρr). In the step 3 of Algorithm 1, the
RMS transmissive coefficient F∗ can be obtained for given pr

and ρr. Hence, we have

R (Fr,pr,ρr) ≤ R
(
Fr+1,pr,ρr

)
. (56)

In the step 4 of Algorithm 1, the transmit power allocation
p∗ can be obtained when Fr and ρr are given. Herein, we
also have

R
(
Fr+1,pr,ρr

)
≤ R

(
Fr+1,pr+1,ρr

)
. (57)

Similarly, in the step 5 of Algorithm 1, the power splitting
ratio ρ∗ can also be obtained when Fr and pr are given. Thus,
we have

R
(
Fr+1,pr+1,ρr

)
≤ R

(
Fr+1,pr+1,ρr+1

)
. (58)

Based on the above, we can obtain

R (Fr,pr,ρr) ≤ R
(
Fr+1,pr+1,ρr+1

)
. (59)

The above inequality proves that the value of the objective
function is monotonic non-decreasing after each iteration of
Algorithm 1. In addition, there is an upper bound on the
objective function value for the problem P1. The above two
aspects ensure the convergence performance of Algorithm 1.

IV. NUMERICAL RESULTS

In this section, we demonstrate the effectiveness of the
proposed robust joint optimization algorithm in transmis-
sive RMS-enabled SWIPT networks through numerical sim-
ulations. In the simulation setting, we consider a three-
dimensional communication network scenario, where the po-
sition of RMS transmitter is (0m, 0m, 15m), and K = 4 users
are randomly distributed in a circle whose center coordinates
is (0m, 0m, 0m) with a radius of 50m. RMS is equipped
with N = 16 elements. The antenna spacing is set to half
the wavelength of the carrier. Meanwhile, we assume that the
parameters of all users are the same, i.e., ak = 150, bk =
0.024 and ξk = 24mW [41]. Herein, we set σ2 = −50dBm,
γth = −30dB and Eth = −40dB in the simulations. The path
loss exponent is set as α = 3. We set the path loss β to -20dB
when the reference distance is 1m and set the Rician factor
κ to 3dB. The threshold for algorithm convergence is set as
10−3.

First, the convergence of the proposed algorithm is verified
in transmissive RMS-enabled SWIPT networks. Fig. 2 shows
the change of system sum-rate with algorithm iterations. It
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Fig. 2. Convergence behavior of the proposed robust joint optimization
algorithm.

obvious that the sum-rate increases as the number of iterations
increases, which verifies our proposed algorithm has good
convergence. In addition, we compare the effect of different
RMS transmissive element counts on system performance.
Considering that the array of RMS is distributed in a UPA with
the same number of elements in the horizontal and vertical
directions, the number of RMS element is a perfect square.
Specifically, we compare the system sum-rate of the proposed
algorithm when the number of RMS transmissive elements are
9, 16, and 36. It can be concluded that the larger the number
of RMS elements, the upper the system sum-rate.

In this section, We verify the good performance of the
proposed robust joint optimization algorithm in transmissive
RMS-enabled SWIPT networks compared with other bench-
mark algorithms. (1) benchmark 1 (RMS-random-phase): In
this case, we adopt a random RMS coefficient to deploy RMS
and don’t optimize its coefficient, i.e., the problems P4 and
P6 are optimized alternately. (2) benchmark 2 (fixed-transmit-
power): In this case, the transmit power is allocated equally to
each user, while the RMS transmissive coefficient and power
splitting ratio optimization still use the solution of problems P4
and P6. (3) benchmark 3 (fixed-power-splitting-ratio): In this
case, the power splitting ratio is regarded as a constant, i.e.,
ρk = 0.5,∀k, and we optimize problems P4 and P5 jointly.

Next, we investigate the relationship between the sys-
tem sum-rate and the maximum transmit power of RMS
transceiver. As shown in Fig. 3, the system sum-rate increases
as the increase of the maximum transmit power of RMS
transceiver, and the performance of our proposed algorithm
outperforms all benchmarks, which reflects the advantage of
jointly optimizing the RMS transmissive coefficient, transmit
power allocation and power splitting ratio. The performance
of benchmark 2 is the worst because it equally allocates the
transmit power to each user and does not take advantage of the
channel differences of different users. The performance of the
system can be improved by allocating more resources to users
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Fig. 3. System sum-rate versus maximum transmit power.

whose channel quality is better. Compared with benchmark
3, the proposed scheme has similar performance when the
transmit power is high, because when the power is high,
the constraints of the user’s SINR and energy harvested are
easier to meet, and the system performance mainly depends on
the transmissive RMS coefficient design and transmit power
allocation.

Fig. 4 shows the system sum-rate verus the number of RMS
transmissive elements. It can be seen that the system sum-
rate increases as the number of transmissive RMS element
increases for all benchmark algorithms, which is mainly be-
cause when the number of transmissive elements increases, the
number of reconstructed channels increases, and the channel
gain of the receiver increases. This also reflects the perfor-
mance advantage of the RMS as a low-cost passive component,
which improves spatial diversity by increasing the number of
RMS elements without requiring additional signal processing.
It has a wide range of application in IoT networks. Moreover,
the proposed algorithm has obvious performance advantages
in different numbers of RMS elements, which reflecting the
advantage of the robust joint optimization algorithm.

Then, the system sum-rate versus the number of users
is dipicted in Fig. 5. It is obvious that the system sum-
rate decreases as the increase of the number of users. This
is mainly because we keep the maximum transmit power
unchanged. When the number of users increases and the SINR
constraints of each user must be satisfied, each user needs
to obtain a certain amount of energy, which leads to mutual
interference increases and users with better channels have
difficulty obtaining more power. Furthermore, our proposed
algorithm still outperforms other benchmarks with the same
number of users, which indicates our proposed algorithm can
better deal with mutual interference.

Fig. 6 shows the system sum-rate versus energy harvested
threshold. It is obvious that when the user’s energy harvested
threshold increases, the system sum-rate decreases. Owing to
when the threshold increases, the user needs to obtain a larger
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Fig. 4. System sum-rate versus the number of RMS transmissive elements.
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Fig. 5. System sum-rate versus the number of users.

power allocation or decrease the power splitting ratio to meet
the constraints of energy harvested, and the achievable rate of
each user decreases with the decrease of the power splitting
ratio. Therefore, system sum-rate also decreases. While the
performance of the benchmark 3 remains almost unchanged,
this is because we satisfy the constraints by initially setting
a reasonable splitting ratio, and the power splitting ratio will
not change in the subsequent alternate optimization process.

Fig. 7 depicts the system sum-rate versus the noise power
spectral density. It can be seen that the performance is greatly
affected by noise due to the large interference between users
in the model considered in this paper. As the noise power
spectral density increases, the system sum-rate decreases.
Compared with other benchmarks, our proposed algorithm has
the best performance, and the advantage is more obvious in the
environment with larger noise, which shows that our proposed
optimization of joint RMS transmissive coefficient, transmit
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Fig. 6. System sum-rate versus the energy harvested threshold.
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Fig. 7. System sum-rate versus the noise power spectral density.

power allocation and power splitting ratio can be used well in
all environments.

Fig. 8 illustrates the variation of our proposed robust joint
optimization algorithm and other benchmark algorithms versus
different spectral norm of channel error matrix. The abscissa
of Fig. 8 is logarithmic. The increase of channel estimation
error will lead to the degradation of system performance. This
is mainly because a larger channel estimation error matrix
will make the constraints (22d) and (22e) tighter, which will
degrade performance of the system in terms of sum-rate. It’s
obvious that when the spectral norm of channel error matrix
is large, the performance of benchmark 3 decreases sharply.
This is because a small power splitting ratio is set to meet the
requirements of constraint (22e) initially, and power splitting
ratio cannot be updated during the alternate optimization
process, and the objective function is significantly affected by
power splitting ratio at this time. In fact, perfect CSI cannot



12

10-19 10-18 10-17 10-16 10-15

Spectral norm of the error matrix

1.48

1.49

1.5

1.51

1.52

1.53

1.54

1.55

1.56

Sy
st

em
 s

um
-r

at
e 

(b
ps

/H
z)

Proposed algorithm
Benchmark 1
Benchmark 2
Benchmark 3

Fig. 8. System sum-rate versus spectral norm of channel error matrix.

be obtained at the transmitter in the practical system, a certain
channel estimation error is considered in our model, which
is more robust and more conducive for deployment in actual
communication networks.

V. CONCLUSIONS

In this paper, we investigate the system sum-rate maximiza-
tion problem for transmissive RMS-enabled SWIPT networks.
Specifically, RMS transmissive coefficient, transmit power
allocation and power splitting ratio are jointly designed under
the requirements of SINR and energy harvested based on
outage probability criterion. First, the problem containing
outage probability constraints is transformed into a tractable
optimization problem. Owing to non-convexity of the trans-
formed problem, AO algorithm based on SCA, DC and penalty
function method is implemented to to handle non-convexity
and solve the problem. Besides, we analyze the complexity
of the proposed algorithm and prove its convergence per-
formance. From the numerical results, it can be concluded
that our proposed algorithm outperforms other algorithms in
terms of system sum-rate, which demonstrate transmissive
RMS transceiver is a potential multi-antenna technology in
the design of future wireless communication networks.
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