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Abstract—Benefiting from the powerful data analysis and
prediction capabilities of artificial intelligence (AI), the data on
the edge is often transferred to the cloud center for centralized
training to obtain an accurate model. To resist the risk of privacy
leakage due to frequent data transmission between the edge
and the cloud, federated learning (FL) is engaged in the edge
paradigm, uploading the model updated on the edge server (ES)
to the central server for aggregation, instead of transferring data
directly. However, the adversarial ES can infer the update of
other ESs from the aggregated model and the update may still
expose some characteristics of data of other ESs. Besides, there is
a certain probability that the entire aggregation is disrupted by
the adversarial ESs through uploading a malicious update. In this
paper, a privacy-preserving FL scheme with robust aggregation
in edge computing is proposed, named FL-RAEC. First, the
hybrid privacy-preserving mechanism is constructed to preserve
the integrity and privacy of the data uploaded by the ESs. For
the robust model aggregation, a phased aggregation strategy is
proposed. Specifically, anomaly detection based on autoencoder
is performed while some ESs are selected for anonymous trust
verification at the beginning. In the next stage, via multiple
rounds of random verification, the trust score of each ES is
assessed to identify the malicious participants. Eventually, FL-
RAEC is evaluated in detail, depicting that FL-RAEC has strong
robustness and high accuracy under different attacks.

Index Terms—Federated learning, Privacy preservation, Secu-
rity, Edge computing

I. INTRODUCTION

The continuous evolution of the Internet of Things (IoT)
brings about an explosive data increase over mobile networks,
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which causes the data generation rate to far exceed the network
capacity, making it unwise to concentrate all data on the cloud
platform for processing [1], [2]. Therefore, most data need
to be analyzed and processed locally to relieve the pressure
of network transmission and the burden on the cloud data
center. The proposal of edge computing provides a practical
and flexible solution to local data processing. Compared with
the cloud platform, uploading data to edge servers (ESs)
drastically reduces the transmission delay and alleviates the
network load owing to its proximity to end-users. According to
the latest Cisco global cloud index, 850ZB data are generated
at the network edge while only 20.6ZB data center traffic
occurs in 2021, which indicates that the majority of data are
processed in the ESs [2].

For the analysis of a large amount of data and the acquisition
of valuable information, artificial intelligence (AI) is applied in
edge computing due to its extraordinary adeptness in predict-
ing future events [3]. As the most representative AI technology,
machine learning (ML) is adopted in multitudinous fields (e.g.
object detection, speech recognition, and natural language
processing) [4]. A key enabler in ML is to train prediction
models with massive data. With the assistance of abundant
data, a well-trained model conducts prediction operations
based on the input data, which has a high matching rate with
the real situation [5], [6]. Additionally, the accuracy of the
ML model is highly related to the size of datasets and the
granularity of each record. Diverse data significantly improve
the prediction effect of the model. Obviously, introducing ML
to edge computing alleviates large data traffic in the ES and
enhances the quality of services (QoS) of mobile network
operators.

The resource capability of the ES, however, is limited
and fails to meet the needs of complex AI models [7].
Mobile crowdsourcing is adopted for model training under
the cooperation of the ESs. In mobile crowdsourcing, the
resources and datasets of multiple ESs, as well as the model
trained in each ES, are shared for training a global model
synergistically. As the collaborative training requires data
sharing, security and privacy issues exist in the procedure
of ML in edge computing [8]. According to general data
protection regulation (GDPR), data sharing between entities is
forbidden without user permission, lessening the feasibility of
data aggregation practices [9], [10]. Consequently, it remains
challenging to realize the synergistic training of ML models in
edge computing and ensure the security of private user data.

Federated learning (FL) is efficient to settle the privacy
leakage problem for distributed datasets in edge computing
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[11]. Compared with conventional ML methods, when the
federated system is established, the data of each ES are
preserved locally instead of being transmitted to a centralized
node [12]. With FL, each ES exploits its own data to train a
model, which is optimized only based on the dataset of the
creator ES. For the sake of aggregating training results, the
federated system establishes a virtual global model through
parameter exchange under the encryption mechanism [13].
The virtual global model is distributed to the ESs for local
model modification, representing the completion of synergistic
training of AI models. Moreover, the inference effect of the
aggregated global model is nearly equivalent to the trained
model with conventional centralized ML methods. Benefiting
from the decentralized feature, the security and privacy preser-
vation for distributed datasets is improved while maintaining
the inference accuracy for AI applications.

Although FL employs local data processing, recent re-
searches reveal that security and privacy problems still take
place in FL, which are mainly occurred on the aggregator-
side and have close relationships to the model aggregation
step [14], [15]. When thousands of ESs participate in the
process of FL, malicious ESs can easily sneak into the training
without prior verification. Provided that the malicious ESs
intentionally change the model update(such as gradients) to be
uploaded, the inference performance of the aggregated global
model may sharply decline [16]. Currently, most of the ex-
isting security solutions focus on the aggregator-side anomaly
detection which sometimes is bypassed by malicious ESs with
confrontational means [17]. In addition, resource-constrained
ESs are vulnerable to attacks. If the ESs participating in FL are
invaded, they will deliberately steal model updates uploaded
by other ESs, causing privacy leakage in FL. Finally, the
compromised ESs restore the model from the stolen update
to infer the characteristics of the local datasets [18].

To contrapose the security and privacy issues of applying
FL in edge computing, we propose a privacy-preserving FL
scheme with robust aggregation in edge computing, named
FL-RAEC. In the upload stage, a hybrid privacy-preserving
mechanism is constructed to guarantee the integrity and pri-
vacy of data during data uploading. In the model aggregation
stage, a phased aggregation strategy with anomaly detection
and anonymous trust verification is proposed, where the
anomaly score of model weight is estimated by the result of
autoencoder-based anomaly detection before each aggregation.
During the training process, some parts of the ESs execute trust
verification at the same time. After multiple rounds of anony-
mous trust verification, the malicious ESs will be identified
through a trust score. Finally, we evaluate the performance of
FL-RAEC in the simulation experiment.

The main contributions of this paper are as follows.
• An improved FL scheme is proposed to guarantee privacy

and secure distributed training in edge computing which
consists of a hybrid privacy-preserving mechanism and a
phased aggregation strategy.

• The hybrid privacy-preserving mechanism is constructed
with asymmetric encryption and local differential privacy
(LDP) for data uploading. The mechanism avoids pa-
rameter tampering and privacy leakage of model updates

during the data uploading, preserving the integrity and
privacy of uploaded data.

• In the phased aggregation strategy, the autoencoder-based
anomaly detection is responsible for reducing the impact
of the malicious model update, while the trust estimation
of each ES is launched to identify malicious ESs after
multiple rounds of anonymous random verification.

• The performance of FL-RAEC is evaluated via various
experiments, which confirms that FL-RAEC guarantees
robust aggregation under different attacks while protect-
ing the privacy of ESs.

The framework of this paper is arranged as follows. Section
II poses an overview of the research status of privacy preser-
vation and security in FL. Section III illustrates the system
framework and problem formulation. Section IV describes a
hybrid privacy-preserving mechanism with LDP. Section V
proposes a phased model aggregation strategy with anomaly
detection and trust verification. Section VI presents the exper-
iment results and evaluation. Finally, Section VII discusses the
conclusion and future work of this paper.

II. RELATED WORK

Since ESs are with limited hardware resources and only
collect small datasets, model training on a single ES is
not efficient. Therefore, an ES usually needs to upload the
collected data to cloud centers for centralized or collaborative
training with other ESs. In this process, data exchange and
transmission are required, which leads to privacy leakage of
users and threats to data security. In such a case, federated
learning (FL) emerges as a new machine learning paradigm.
In FL, different machines work together to establish a virtual
model with the data not uploaded, thereby user’s privacy is
well protected. Additionally, FL is tightly bounded with edge
computing, which significantly reduces the computation load
during the AI training process.

A. Federated Learning

As the increasing redundant data is produced by privacy
protection in FL, the issue of resource shortage in the central
server cannot be solved by improving algorithms alone. To
break through the bottleneck, the edge-computing-assisted FL
model has been widely studied in fields including distributed
learning, computation resource allocation and wireless channel
partitioning. For distributed learning, Cui et al. [19] developed
a compressed algorithm of FL for content caching called
CREAT, in which the edge nodes used the local data for model
training. CREAT effectively dispersed the large datasets,
thereby relaxing the computing burden of the central server.
Luo et al. [20] focused on computation resource allocation and
the edge device association in FL. By optimizing the convex
resource allocation sub-problem, an edge association strategy
was achieved through iterative global cost. Yu et al. [21]
designed a two-timescale deep reinforcement learning method
composed of a fast-timescale and a low-timescale process to
allocate the computing resources effectively for the FL on
edge servers. To improve the utilization of wireless channels,
Amiri et al. [22] leveraged a digital stochastic gradient descent
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scheme to divide the shared channels of the distributed edge
servers for FL. According to the errors generated by the
historical iteration, the gradient descent function is established
to allocate the channel reasonably. Zhu et al. [23] combined
federated edge learning with broadband analog aggregation
technology to reduce communication latency during the data
offloading process in FL.

B. Privacy and Security Issues in FL

As one of the most dominant attributes of FL, privacy
protection has been deeply investigated in recent years. The
most basic privacy protection is to upload the parameters after
the operation and keep the original data locally. Wang et al.
[24] adopted an algorithm of data augmentation based on semi-
supervised learning and label guessing where the edge device
sent the processed data to the cloud for further processing.
To avoid the disclosure of the users’ personal information
through the analysis of client-uploaded parameters, Wei et al.
[25] proposed a noising-before-model-aggregation FL scheme
where artificial noise is added to the parameters at the clients’
side. The privacy levels and convergence performance were
jointly optimized based on the trade-off levels. In [26], Hao
et al. improved the data noise technology by proposing a
privacy-enhanced FL based on differential privacy (DP). By
leveraging the distributed Gaussian mechanism, they achieved
an example-level DP. Nevertheless, the process of encryp-
tion and decryption in privacy protection algorithms tends
to produce additional datasets. Consequently, the increased
computing burdens lead to inefficiency in FL. To tackle this
issue, Xu et al. [27] proposed a privacy-preserving federated
deep learning framework (PPFDL) with irregular users. With
the high integration of additive homomorphism and Yao’s
garbled circuits, the quality of data sources was improved on
the premise of user privacy, thus enhancing the efficiency of
FL.

Guaranteeing the training process by avoiding poisoning
attacks is another important goal of FL, and thus has received
wide attention. Depending on the timing of the poisoning
attacks, poisoning attacks can mainly be divided into two
categories. One is data poisoning attack exists in local data
collection. And another is the model poisoning attack, which
occurred in local model training. In [28], Khazbak et al. estab-
lished a system with poisoning attack mitigation called ML-
guard for distributed FL, which prevented malicious users from
poisoning training data. To reduce the risk of model poisoning
attacks, Short et al. [29] proposed a blockchain-based defense
scheme, where each model update was verified separately
without the information of the training data size. Singh et al.
[30] proposed an approach based on micro aggregation which
clusters the participants with similar attribute values and then
trains the federated learning model for each cluster, attempting
to achieve a balance between the fighting model poisoning
and the accommodating diversity. Additionally, to improve the
data security without sacrificing the efficiency of FL, Qu et al.
[31] proposed a novel blockchain-enabled FL scheme which
guaranteed both the safety and the efficiency of fog computing
which suffered from poisoning attacks. Specifically, in the

TABLE I
MAIN NOTATIONS

Notation Description

E The set of ESs, where E = {ES1, ES2, ..., ESP }
M The set of corresponding models, where M =

{M1,M2, ...,MP }
P The number of ESs
K The number of ESs participating in the aggregation
Di The dataset owned by Ei

Xi The inputs in dataset Di

Yi The labels in dataset Di

Ni The size of dataset Di

α The learning rate of each ES
t The aggregation round
T The maximum aggregation round
L(t) The loss function of the aggregated model at aggregation

round t
w(t) The weight of aggregated model at aggregation round t
ϵi The privacy budget of ESi

ϵr The maximum privacy budget of a single round
ϵtotal The maximum privacy budget

scheme, FL only required the swap of training updates, thus
achieving high efficiency.

Overall, most of the research on privacy and security is
designed for the entire FL framework, but they did not consider
the communication and computation efficiency for their imple-
mentation in edge computing. To reduce the overhead of pri-
vacy and security mechanisms for those resource-constrained
devices during FL, we designed a robust aggregation method
for FL in edge computing. Thereinto, most additional overhead
is undertaken by ESs, improving the extensibility of the
method to more devices with low computing power.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, firstly a communication framework with FL
is given out. Then, the local training model, the threat model,
and the aggregation model are described, respectively. Finally,
the problem is formulated. The main symbolic representations
of this paper are summarized in Table I.

A. Distributed Training with FL in Edge Computing

Owing to the powerful feature representation and self-
learning ability, deep learning has been adopted in many ap-
plications of edge computing, such as computation offloading
and content caching. Previously, the data of end devices (EDs)
collected by edge services (ESs) need uploading to the cloud
for model training, which poses a threat of privacy leakage
during the data transmission. Different from conventional
centralized learning on the cloud, in FL, the model is trained
on the ESs locally and ESs only need to upload the model
update to the cloud for aggregation.

As depicted in Fig.1, the communication framework consists
of the cloud server (CS), several ESs and EDs. Data are
generated by the EDs and collected by the ESs for local model
training. At the end of each training phase on the edge, the CS
will select parts of ESs for aggregation and the selected ESs
upload their weight update(model update) to the CS for model
aggregation and global model optimization. After that, the new
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Fig. 1. A communication framework with FL in edge computing

global model will be sent back to all ESs, which continue the
next training phase until the accuracy of the local model can
not improve further. Eventually, with the trained local model,
each ES can satisfy the service requirements of the EDs by
model inference. In the whole training process, the data of the
EDs are only accessed by the corresponding ES, preventing
the cloud or other ESs from approaching the privacy data.
Meanwhile, since the datasets collected by multiple ESs are
utilized in training, the performance of the local models will
be better than that trained by the dataset of a single ES.

B. Local Training Model

The essential purpose of the ESs is to improve the model
accuracy through iterative training on the local dataset. Denote
the set of ESs as E = {ES1, ES2, ..., ESP } and the set of
corresponding models as M = {M1,M2, ...,MP }, where P
represents the number of ESs. Each ESi has its own dataset
Di, with the the inputs and the labels denoted as Xi and Yi,
respectively. Mean squared error (MSE) is utilized as the loss
function of Mi on Di, which is defined as

Li(Di, wi(t)) =
1

2Ni
∥Mi (Xi;wi(t))− Yi∥2 , (1)

where wi(t) is the weight of Mi at aggregation round t and
Ni is the size of dataset Di. Hence, the update of weight on
Di is calculated by

∆wDi
i = −α∇Li(Di, wi), (2)

where α is the learning rate of each ES and α∇Li(Di, wi)
is the gradient of Mi. The aggregation round t is omitted for
simplicity, similarly hereinafter.

C. Threat Model

Through local model training and weight update sharing, FL
achieves the goal of training efficiency. However, privacy and
security problems exist during communication and training.
In this paper, we assume that the CS (i.e., the aggregator)
is honest-but-curious, but the ESs (i.e., the participants) are
untrusted, which means there may be malicious participants in
the whole training process. In the following, the threat model
of inference attacks and poisoning attacks is analyzed.

Although transmission of weight update avoids the risk of
privacy leakage compared with raw data transmission, the
weight update still reveals model characteristics, which brings

inference attacks. Specifically, the additional features of the
private dataset may be learned by the neural network, particu-
larly for those large networks with many hidden layers. These
features could be captured by adversaries if the communication
is tapped during model aggregation. Besides, the adversary can
infer the changing of the model by snapshotting the model
update and observing their differences at continuous time
periods.

Besides, as mentioned before, not all participants are def-
initely honest. Malicious participants can launch poisoning
attacks during the aggregation, which may hinder or even fail
the training process. One of the common ways of poisoning
attacks is the Byzantine attack. The malicious participants de-
liberately upload random weight updates to reduce the overall
aggregation performance of the model. Since model training
consumes computing resources, if those honest participants
can not get the corresponding incentive (e.g., the improvement
of model accuracy), their enthusiasm for participating in the
model aggregation will be greatly reduced. Therefore, the total
training process may fail due to the attack.

Considering the multiple threats to the training process, an
efficient privacy-preserving and secure scheme are necessary
for FL in edge computing. LDP is leveraged in this paper to
overcome the threats. To prevent inference attack, a noise is
added to the weight update to satisfy the requirement of LDP
before the uploading as

∆w̃Di
i = ∆wDi

i + ri, (3)

For privacy preservation, the uploaded date needs to meet
certain constraints. Di and D′

i are two datasets with hamming
distance of 1. The max-divergence of ∆w̃Di

i and ∆w̃
D′

i
i is

defined as

Ω∞(∆w̃Di
i ∥∆w̃

D′
i

i ) = max
w∈∆w̃

Di
i

ln
Pr[∆w̃Di

i = w]

Pr[∆w̃
D′

i
i = w]

. (4)

When the divergence is closer to 0, it is more difficult for
the adversary to distinguish from which dataset the weight
update comes. A privacy budget ϵi is introduced so that
Ω∞(∇w̃Di

i ∥∇w̃
D′

i
i ) is limited within

Ω∞(∆w̃Di
i ∥∆w̃

D′
i

i ) ≤ ϵi, (5)

which can be simplified as

Pr[∇w̃Di
i ∈ S] ≤ eϵi Pr[∇w̃D′

i
i ∈ S], (6)

where S is the set of output [32].

D. Aggregation Model

When the CS receives the weight update with noise from
the selected ESs, the global model update can be calculated
by model aggregation as

∆w̃ =

K∑
i=1

qi∆w̃Di
i , (7)

where K is the number of ESs which participate in the model
aggregation. Since there may be malicious participants and
the dataset size of ESs is different, the update of each model



IEEE INTERNET OF THINGS JOURNAL, VOL. **, NO. *, MARCH 2022 5

Mi is weighted by qi as the aggregation weight. Compared to
aggregating updates on average, the aggregator can reduce the
impact of those malicious participants on training effectiveness
by reducing their aggregation weights. The new global model
weight of this iteration can be calculated by

w(t+ 1) = w(t) + ∆w̃(t). (8)

The metric of aggregation quality in this iteration is the size
of the overall loss function, which is calculated by

L(t+ 1) =

P∑
i=1

Ni

N
Li(Di;w(t+ 1)), (9)

where N is the size of all datasets.

E. Problem Formulation

The final goal of our privacy-preserving FL scheme is to
maximize the model accuracy while protecting privacy. Hence,
the optimization problem can be formulated as

min
w(t),q(t)

L(t) ∀t ≤ T (10)

s.t. Pr[∆w̃Di
i ∈ S] ≤ eϵi Pr[∆w̃

D′
i

i ∈ S] ∀i ≤ K,

ϵi ≤ ϵr ∀i ≤ K,

Composition(ϵr, T ) ≤ ϵtotal,

(11)

where T is the maximum aggregation round, and ϵr is the max-
imum privacy budget of single round. Composition(ϵr, T )
represents the total privacy budget through T rounds compo-
sition and ϵtotal stands for the maximum privacy budget after
composition.

IV. A HYBRID PRIVACY-PRESERVING MECHANISM FOR
DATA UPLOADING IN FL

In the proposed scheme, to guarantee honesty and to
improve the efficiency of model aggregation, the ESs need
to upload other parameters (e.g., dataset size, model loss,
and verification result) for the formulation of the aggregation
weights and the trust verification. If these parameters are
tampered with during transmission, it will lead to an incredibly
negative impact on the model aggregation process. Therefore, a
hybrid privacy-preserving mechanism is proposed to guarantee
the privacy of weight updates and other parameters uploading.

As depicted in Fig.2, two different privacy-preserving strate-
gies are utilized for parameter and weight update uploading.
For parameter uploading, asymmetric encryption is employed
to avoid the uploaded parameter being tapped or modified.
First, the key generator of the CS selects a specific asymmetric
encryption algorithm (e.g., RSA, ECC, etc.) to generate public
and private keys. Then the public key is sent to the ES,
which encrypts the parameters with the public key and uploads
the parameters to the CS. Afterward, the CS deciphers the
encrypted parameters with the private key. Additionally, for
the uploading of weight updates, LDP is employed to disturb
the update before uploading it to CS for aggregation.

LDP is a novel privacy preservation technology based
on traditional centralized differential privacy (CDP) [33]. In
conventional DP [32], the data need uploading to the data

Encryption

public key

Key Generator

private key

Local Differential  

Privacy

Cloud ServerEdge Server

Decryption

disturbed update

parameters parameters

Participant Aggregator

encryped 

parameters

weight update

Fig. 2. A hybrid privacy-preserving mechanism for data uploading

center for privacy processing, and then the statistics that satisfy
differential privacy will be published to the data processing
unit. During data processing, a trusted third party is indis-
pensable. Compared to CDP, LDP transfers the data privacy
processing to each user, thereby guaranteeing the data privacy
during the phase of data collection and avoiding the privacy
leakage caused by the untrusted third party. In FL-RAEC, LDP
is employed for the uploading of weight updates during the
whole training process.

Considering that it is difficult to meet the strict definition
of ϵ-DP in the actual application scenario, a relaxed (ϵ, δ)-DP
is applied to the weight uploading process, which is defined
as

Pr[∆w̃Di
i ∈ S] ≤ eϵi Pr[∆w̃

D′
i

i ∈ S] + δ, (12)

where δ is a relaxation term which allows a violation of
strict ϵ-DP with probability δ. In order to make the weights
update uploaded by the ESs meet the above DP definition, the
sensitivity of the weight update needs to be calculated, which
determines the distribution of noise added to uploaded weight.
The sensitivity of ∆wDi

i is calculated as

S(∆wDi
i ) = max

Di,D′
i

∥∆wDi
i −∆w

D′
i

i ∥. (13)

To restrict the range of sensitivity S(∆wDi
i ), the weight

update needs to be clipped as

∆wDi
i ←

∆wDi
i

max
{
1,

∥∥∥∆wDi
i

∥∥∥C−1
} , (14)

where C is the hyperparameter which decides the clipping
extent, making ∥∆wDi

i ∥ ≤ C. Through the weight clipping,
the sensitivity of the weight update is limited within

S(∆wDi
i ) = max

Di,D′
i

∥∆wDi
i −∆w

D′
i

i ∥ ≤ 2C (15)

After calculating the sensitivity of ∆wDi
i , the ES adds

the corresponding noise according to the single-round privacy
budget and the data sensitivity to the weight before uploading.
The Gaussian mechanism [34] is applied to the added noise
and the uploaded weight, which is defined as

∆w̃Di
i = ∆wDi

i +N (0, σ2
i ), (16)
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where the noise satisfies the Gaussian distribution with an
expectation of 0 and a variance of σ2

i . The standard deviation
σi conforms to

σi > S(∆wDi
i )

√
2 ln(1.25/δi)

ϵi

≥ 2C

√
2 ln(1.25/δi)

ϵi

, (17)

where ϵi is the single-round privacy budget of ESi and δi ∈
(0, 1) is the relaxation term.

Since training data from the same batch of the dataset is
selected in the local training process, the uploaded weight
updates of the same ES at different rounds are not independent.
The privacy budget will accumulate after multiple rounds of
uploading. With the composability of differential privacy, the
overall privacy budget can be calculated by various composi-
tion theorems. To minimize privacy overhead while ensuring
the (ϵtotal, δtotal)-DP, we utilized the strong composition
theorem [35] as the privacy accountant, where the total privacy
budget is calculated as

ϵtotal = ϵr(
√

2T ln(1/δ′) + T (eϵ
r

− 1)), (18)

where δ′ is a new customized relaxation term. According to
the parallel composition theorem, ϵr = max ϵi is the privacy
budget of each round. The total relaxation term is calculated
as

δtotal = Tδr + δ′. (19)

V. MODEL AGGREGATION WITH ANOMALY DETECTION
AND ANONYMOUS TRUST VERIFICATION

Although the hybrid privacy-preserving mechanism secures
the integrity and privacy of data during uploading, the ma-
licious ESs can still upload a modified update to affect the
global model, thereby indirectly inferring data characteristics
of other ESs from the received change of the global model.
Moreover, the aggregation may be disrupted due to the in-
troduction of anomaly updates, causing the entire learning
process to fail to reach the predetermined goal. In this section,
a phased aggregation strategy is proposed, which consists
of anomaly detection and anonymous trust verification. The
overall process of the phased aggregation strategy is described
at the end.

A. Autoencoder-Based Anomaly Detection for Uploaded
Weight Update

Autoencoder is a neural network which is capable to learn
the main characteristics of high-dimensional data in low-
dimensional features through unsupervised learning. An au-
toencoder includes two components: an encoder and a decoder.
The extraction process of the efficient representation of the
input data is called coding, whose outputs’ dimension is
generally much smaller than that of the input data. Hence, the
autoencoder can be used for data dimensionality reduction.
The target of the decoder is to reconstruct the input data
with the learned effective representation. This process is called
decoding. Due to the robust feature expression and data

restoration ability of the autoencoder, it is adopted in various
applications, including anomaly detection [36].

For anomaly detection in model aggregation in FL, the input
of the autoencoder is the uploaded weight update. However,
due to the added noise and the uncertainty of weight changing,
it is difficult for the autoencoder to learn the efficient repre-
sentation of the weight update. Therefore, instead of encoding
the weight update, we treat the model weights as the input of
the encoder. As the model aggregation is given by (7) and (8),
which are equivalent to

w(t+ 1) =

K∑
i=1

qi(t)w̃
Di(t), (20)

where w̃Di(t) can be restored by the aggregator as

w̃Di(t) = w(t) + ∆w̃Di(t). (21)

Denote the training dataset of the autoencoder as T D =
{tw1, tw2, ..., twi}, and define the mapping relations of the
encoder and the decoder as

f : Ψ→ Λ, g : Λ→ Ψ, (22)

where Ψ is the input space, i.e., T D ∈ Ψ, and Λ is
the feature space. The goal of the encoder is to extract
the low-dimensional features of the model weights, and the
decoder’s goal is to reconstruct the input weights from the
low-dimensional features. Therefore, the final goal of the
autoencoder is presented as

f, g = argmin
f,g

1

|T D|

|T D|∑
i=1

ϕ(twi), (23)

where error ϕ(twi) is calculated as

ϕ(twi) = ∥twi − g(f(twi))∥, (24)

where f(twi) represents the low-dimensional features of the
input weights and g(f(twi)) represents the reconstructed
weights from the features. Through continues gradient descent,
the low-dimensional feature distribution of the input weights
can be finally learned by the autoencoder.

When the CS receives the distributed weights uploaded
by the ESs participating in the aggregation, the pre-trained
autoencoder will detect the uploaded weights anomaly to infer
the anomaly score. For complex deep neural networks with
multiple layers, the dimensionality of the uploaded weights
may be huge, which greatly improves the computational
complexity of the autoencoder. In view of the commonality,
we select the weights after the last hidden layer as the
input to perform dimensionality reduction. For each uploaded
weight, ϕ(w̃i) measures the degree of deviation between it
and the output of the autoencoder. The anomaly score of w̃i

is calculated as
Ai = eβ(1−ai), (25)

where β is the anomaly impact factor which determines the
impact of the anomaly score on the whole aggregation. And
ai is calculated as

ai =

{
1 ϕ(w̃i) ≤ µϕ + 3σϕ

ϕ(w̃i)
min
j≤K

ϕ(w̃j)
ϕ(w̃i) > µϕ + 3σϕ , (26)
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where µϕ is the mean of the top 50% minimum errors of the
uploaded weights, and σϕ is calculated as

σϕ = µϕ −min
j≤K

ϕ(w̃i). (27)

The threshold is based on the assumption that the proportion
of the attackers generally does not exceed 50% of the total
participants, and 3σϕ tolerates the errors caused by the added
noise. The calculated anomaly score and the trust score
introduced in the next subsection determine the aggregation
weight together.

B. Anonymous Trust Verification of ESs During Training

Autoencoder-based anomaly detection is usually effective
against random poisoning attacks which aim at reducing the
accuracy of the global model. Since this type of attack is
designed to disrupt the aggregation process, its model weights
distribution is very unconventional from other regular par-
ticipants, which can be easily captured by the autoencoder
with larger ϕ(w). However, for some model poisoning attacks
(such as sign-flip attacks [37]), the weight distributions of the
poisoned models are similar to the common models because
the features of the training data are unchanged. Moreover, al-
ternating minimization strategies such as parameter estimation
are utilized to evade detection, making the anomalous weights
difficult to be identified by the autoencoder.

Meanwhile, as an essential part of aggregation weight, the
loss on the local validation dataset also needs to be uploaded to
the aggregator. The malicious ESs tend to upload the unfaithful
loss to improve their influence in the aggregation phase.
Considering the above shortcomings, the reliable verification
of ESs is necessary to ensure the correctness of uploaded
loss. However, the aggregator does not hold the dataset, which
means the verification is executed by participants. Therefore,
the privacy of verified models needs to be considered during
verification as well.

Trainers

Verifiers

weight 
update

dataset 
size

loss

Cloud Sever

reshuffling

Models of unknown trainers 

Real result Real result Modified 
result

testing testing testing

verified loss

Database

difference 
value

weights of 

models

Fig. 3. The anonymous trust verification

As depicted in Fig.3, the CS randomly selects part of the
ESs as the trainers to perform local training at each round.
After local training, the selected trainers upload their weight
update, sizes of the dataset, and losses on the validation
dataset for aggregation. In the figure, the red ESs represent the
malicious participants who deliberately upload lower losses to

improve the aggregation weights of their models. Against this
dishonest behavior, the CS randomly selects other parts of the
ESs as the verifiers for trust verification. Technically, when
the CS receives the update from the trainers, it restores the
model weights of each trainer besides aggregating them. Then,
the CS will reshuffle these models and distribute them to the
selected verifiers in the next round. When trainers are training
their local models, the verifiers are testing the model of the last
round with their local dataset at the same time, but they do not
know from which ES the model comes. Owing to the model
reshuffling and random verification, it is almost impossible for
a single ES to track the model changes of other particular
ES through verification. After anonymous verification, the
verifiers will upload the verified loss on their dataset. To
interfere with the verification process, the malicious ES usually
uploads the enlarged loss for those models with lower loss,
which brings the instability of the trust score at an early stage.
After the CS collects all verified losses, it will calculate the
difference value according to the verification of this round
and record the result of each verified ES. With continuous
random verification, the CS can eventually calculate a stable
trust score.

At the u-th round of the verification for ESi, the difference
value is calculated as

diffi(u) =

∑Gi(u)
j=1 Vi,j(u)

∑K
i=1 Gi(u)∑K

i=1

∑Gi(u)
j=1 Vi,j(u)

, (28)

where Gi(u) is the number of verifiers participating in the
verification of Mi at verification round u. The verification
error Vi,j(u) is calculated as

Vi,j(u) = |lossvei,j − losstri |, (29)

where lossvei,j is the verified loss of ESj which verifies Mi,
and losstri is the loss uploaded by trainer ESi at the last round.

In (28),
∑Gi(u)

j=1 Vi,j(u) is the overall verification error of
ESi. Since the restored weight is added with noise and the
dataset of each ES is different, calculating the absolute value
directly may lead to large differences in the trust scores of
different ESs. Therefore, the average value of verification error∑K

i=1

∑Gi(u)

j=1 Vi,j(u)∑K
i=1 Gi(u)

is used to normalize it. For the honest
participant ESi, its difference value diffi will be equal to
or less than 1. In contrast, The malicious ESs’ will be greater
than 1.

After multiple rounds of verification, the mean different
value of Mi is calculated by

diffm
i =

∑Ui

u=1 diffi(u)∑Ui

u=1 Gi(u)
, (30)

where Ui is the total rounds in which Mi is verified. According
to diffm

i , the trust score of Mi is calculated as

Ri =


1 diffm

i ≤ 1

( 1
diffm

i
)
λ

diffm
i > 1

1/2
∑Ui

u=1 Gi(u) = 0

, (31)

where λ is calculated as

λ =

∑P
j=1 Hi∑P

j=1 diff
m
j Hi

, (32)
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where Hi is a binary variable, determined by

Hi =

{
1 diffm

i ≤ 1
0 diffm

i > 1
. (33)

When the ES has not been verified once, it has no mean
difference value. In this case, the diffm

i will be equal to 1/2
as compensation. In (31) and (32), λ measures the deviation
between 1 and the diffm

i of those honest ESs. When ESs are
all honest participants, diffm

i will be distributed around 1. In
the presence of malicious ESs, the diffm

i of honest ESs and
malicious ESs will show a trend of polarization, which leads
to a greater λ and lower trust score Ri for those malicious
ESs.

Algorithm 1: random trust verification
Input: The restored weights of trainers w̃i, and the

corresponding loss losstri
Output: The mean difference value of trainers diffm

i

1 for each restored weight w̃i, i ≤ K do
2 Select random Gi(u) ESs as the verifiers of model

Mi;
3 for each selected verifiers ESj , j ≤ Gi(u) do
4 Distribute the restored weight w̃i to ESj ;
5 Calculate and upload the verified loss lossvei,j ;
6 end
7 Calculate the overall verification error of ESi∑Gi(u)

j=1 Vi,j(u) ;
8 end
9 for each verified model Mi, i ≤ K do

10 Calculate the difference value diffi(u) at this
verification round according to (28);

11 Update the mean difference value diffm
i

according to (30);
12 end
13 return diffm

i ;

The process of trust verification is presented in Algorithm 1.
At the end of each training round, the aggregator selects parts
of the ES as the verifiers for each trainer (Line 3). Each verifier
tests the restored weight w̃i on the local dataset and uploads
the calculated verified loss (Lines 5-6). After all verified losses
of Mi are uploaded, the aggregator will compare the losstri
with lossvei,j and calculate the overall verification error as∑Gi(u)

j=1 Vi,j(u) (Line 7). According to the verification errors,
the difference value at this round is calculated for each trainer
(line 10). At the same time, the number of times which Mi has
been verified is accumulated and the mean difference value is
updated (line 11).

C. Score-based Model Aggregation Strategy in Phase

Considering the situation of aggregation and verification
in different phases, a phased model aggregation strategy is
designed. At the beginning phase of training, the global model
has lower accuracy, and thus needs cursory multi-round model
aggregations to improve accuracy fleetly. In this phase, the
aggregation process is mainly guaranteed by the autoencoder-
based anomaly detection. Those malicious updates which

greatly affect the speed and the efficiency of aggregation
will be detected and screened out. At the same time, due to
the interference of malicious participants on verification, the
previous trust score is in a relatively unstable state. Therefore,
in the first phase, the total score of each participating ESs at
aggregation round t is calculated as

scorei(t) = (1− lossti∑K
i=1 loss

t
i

)Ai, t < T trust, (34)

where T trust is the round that launch the trust score.
In the middle and later phases of training, with the progress

of random trust verification, the trust score will stabilize.
Those covert malicious ESs will show little credibility, which
is reflected by a lower trust score. At this phase, the total score
of each participating ES at aggregation round t is calculated
as

scorei(t) = (1− lossti∑K
i=1 loss

t
i

)AiRi, T trust ≤ t ≤ T. (35)

The aggregation weight of each ES is constituted by the
total scores and the size of its dataset, which is calculated by

qi(t) =
Niscorei(t)

N
∑K

i=1 scorei(t)
. (36)

Eventually, through the weight update from the ESs w̃i and
the corresponding aggregation weight qi at each aggregation
round, the weights of a final global model w(T ) can be
obtained.

The phased model aggregation is illustrated in Algorithm
2. At the beginning of each round, the aggregator randomly
selects K ESs as trainers to train the local model(Line 4).
After the training, the trainers upload the distributed weight
updates and the losses on the local dataset (Lines 5-9). For the
uploaded weight update, the aggregator will perform anomaly
detection and calculate the anomaly score before aggregation
(Lines 10-11). In the early aggregation rounds, the trust score
of each ES is fluctuant, so the score is only determined by
the anomaly score (Line 13). As the random trust verification
continues, the training enters the second stage, and the trust
score is adopted in the score evaluation (Lines 15-16). Based
on the score, the aggregation weights are determined and the
weight updates are aggregated with qi (Lines 18-19). Then,
the global model is updated and distributed to each ES (Lines
20-21). The new round of trust verification for these trainers
begins. (Line 22). After T rounds of aggregation, the weight
of the global model is obtained.

VI. EXPERIMENT EVALUATION AND RESULTS

In this section, we evaluate the proposed scheme FL-
RAEC with a standard MNIST dataset for handwritten digit
recognition. The MNIST dataset is a widely used dataset for
classification tasks, which is with 60000 train examples and
10000 test examples. Each example is a 28x28 size greyscale
image and belongs to a certain set of numbers from 0-9 [38].
Our model is a fully connected network with two hidden
layers. The numbers of hidden units in the two layers are
both 200. The prediction accuracy can reach above 98% after
100 rounds of concentrated training.
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Algorithm 2: Phased model aggregation
Input: Private dataset of ESs D = {D1, D2, ...Di},

Initial global model weight wo

Output: Final model weight w(T )
1 Initialize global model weight w(0) = wo;
2 Distribute initial model to all ESs;
3 for each aggregation round t ≤ T do
4 Select random K ESs as trainers;
5 for each trainer ESi, i ≤ K do
6 Perform local training and get weight update

∆wj ;
7 Add Gaussian noise according to (16);
8 Upload the disturbed update ∆w̃i and the loss

on local dataset losstri
9 end

10 Perform anomaly detection on ∆w̃i;
11 Calculate anomaly score Ai according to (25) and

(26);
12 if t < T trust then
13 Calculate scorei according to (34);
14 else
15 Calculate trust score Ri according to (31) and

(32);
16 Calculate scorei according to (35);
17 end
18 Calculate aggregation weight qi according to (36);
19 Aggregate weight updates according to (7);
20 Update global model weight w(t+ 1) according to

(8);
21 Distribute global model weight w(t+1) to all ESs;
22 Execute random trust verification for these trainers.
23 end
24 return w(T );

A. Experiment Environment and Settings

In the simulation experiment, we randomly distribute the
dataset to 100 ESs. In view of the communication overhead
of the ESs, we use FedAVG[39] which has fewer communi-
cation rounds through increasing local training rounds as our
benchmark scheme instead of FedSGD. At each aggregation,
the number of the participating ESs, i.e., K, is 10, and each ES
trains 5 rounds before uploading weight update, with learning
rate lr set to 0.01. The max aggregation round T is 100 and the
round launching trust score T trust is set to 40. Experiments
are implemented in python 3.6 and conducted on the server
with Intel i7-8700 CPU (3.2 GHz, 6 cores), 32 GB DRAM
and NVIDIA RTX 3090 GPU.

B. Impart on Privacy Budget

The employment of LDP protects the privacy of the local
dataset of the ESs to a certain extent. The degree of protection
depends on the overall privacy budget allocated. As Fig.4
shows, the uploading with no privacy has the best accuracy,
and the accuracy of the global aggregation model gradually
decreases as the standard deviation of added Gaussian noise
increases. Three standard deviations corresponding to the

privacy budgets ϵ = 1, ϵ = 0.5, ϵ = 0.25 with relaxation term
δ = 10−5 are utilized. In practice, the given privacy budgets
and relaxation term can provide effective privacy protection.
Under the relatively strict privacy constraint (ϵ = 0.25, δ =
10−5) which corresponds to σ = 0.2, the model accuracy
still reaches more than 94%. Considering privacy preservation
and global model accuracy, the schemes in the following
experiment ensure (0.5, 10−5)-DP.
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Fig. 4. The model accuracy with different privacy budget

C. Comparison of Different schemes under Two Attacks
To evaluate the robustness of FL-RAEC, two hostile attack

models in FL are selected in the test scenarios[39], [40]: extra-
noise attack and sign-flip attack. The malicious ESs following
the extra-noise attack model will add the noise to weight
update, far beyond the requirement of current privacy budgets.
And for the sign-flip attack model, the malicious ESs will flip
the sign of weight before adding noise and uploading weight
updates.

The compared schemes are as follows.
• FedAVG[39]: FedAVG calculates the average of all up-

loaded weight updates as the aggregated result, then up-
dates the weight of the global model with the aggregated
result.

• median-AG[41]: Median-AG selects the median of all
uploaded weight updates as the aggregated result to
update the weight of the global model.

• trmean-AG[42]: Trmean-AG clips the uploaded weight
update according to the threshold, which is calculated by
the assumed proportion of attackers. Afterward, trmean-
AG calculates the average of the clipped result as the
weight update of the global model.

Fig.5 depicts the comparison of different schemes in extra-
noise attack scenarios, where the malicious ESs account for
20% of the overall ESs. FL-RAEC has increased robustness
than other schemes and performed almost the same as the
benchmark without attacks on accuracy. In extra-noise attack
scenarios, the accuracy of trmean-AG increases steadily, while
the accuracy of the other two schemes shows a varying
degree of decline as the aggregation progresses. For trmean-
AG, due to the requirement to set a fixed threshold of
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attacker proportion, which is a priori knowledge for FL in
edge computing, trmean-AG cannot guarantee to filter out
all malicious updates. For FedAVG and median-AG, their
aggregation schemes are similar, which are taking the average
and the intermediate value as the aggregation result. Since
huge noise is constantly added to the weight update during
aggregation, the boundary of weight is amplified gradually.
Correspondingly, the error caused by the noise is multiplied as
well. Therefore, the superposition of errors makes the accuracy
of the two schemes continue to decline. And FedAVG, which
averages all weight updates, is undoubtedly more susceptible
to updates that deviate from the normal range.
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Fig. 5. The model accuracy of different schemes under extra-noise attack

Fig.6 depicts the comparison of different schemes in sign-
flip attack scenarios, where the malicious ESs account for 20%
of the overall ESs. Unlike extra-attack, the flipped weight
makes the model inference perform completely differently.
Once the update with the flipped sign is added to the aggre-
gated model, it will greatly break the original model construc-
tion, which explains why the results show great fluctuations.
Each steep decline is caused by excessive flipped weight
updates being introduced into the aggregation. Except for
trmean-AG, the accuracy of other schemes fluctuates greatly
in the early stage. Trmean-AG excludes abnormal updates by a
certain percentage before aggregation, so its accuracy is more
stable throughout the aggregation process than other schemes.
On the contrary, the accuracy of median-AG is at a low level
for most of the period. The flipped weights make the interme-
diate value of all data usually near 0, which greatly reduces
the effect of aggregation. Owing to the similar amplitude and
structure to normal weight, it is difficult for the autoencoder to
detect the anomaly, which leads the performance aggregation
round to be poor before the 40th round. After the 40th round,
which is the round of launching the trust score, the steady of
aggregation and accuracy of the global model improve greatly.

D. Performance under Different Proportions of Malicious ESs

1) Model Accuracy: In Fig.7, we discuss the influence
of malicious ES proportion on the performance under extra-
noise attacks. The three sub-figures illustrate the performance
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Fig. 6. The model accuracy of different schemes under sign-flip attack

of FL-RAEC when the malicious ES proportion is 10%,
20%, and 40%. With the continuous increase of malicious
ES proportion, the performance of FedAVG declines rapidly.
When the proportion of malicious ESs is greater or equal to
20%, the model is unable to converge, the accuracy decreasing
with the aggregation. And in the worst case, the accuracy
of FedAVG drops to about 50% at the end. Note that when
the proportion is equal to 40%, the accuracy of FL-RAEC
falls back at some early aggregation rounds. In this case,
the proportion of malicious participants selected as trainers
is nearly half and sometimes exceeds half due to the random
ES selection at each round. The µϕ of top 50% minimum
reconstruction losses given by the autoencoder will become
larger, causing the threshold to become loose. So the influence
of malicious updates cannot be completely eliminated by the
calculated anomaly score. After 40 rounds of aggregation, the
impact of malicious updates will be further reduced by the
launched trust score.

Fig.8 depicts the influence of the malicious ES proportion
in sign-flip attack scenarios. The malicious ES proportions of
the three sub-figures are the same as Fig.7. In the case of
different proportions of attackers, the accuracy of FL-RAEC
cannot maintain a steady increase in the early stage. That
means the anomaly detection based on autoencoder cannot
fully defend against sign flip attacks. In the later stage of
training, the accuracy of FL-RAEC is always stable. Although
FedAVG has more rounds of a sharp drop in accuracy with
an increase in the proportion of malicious ESs, FedAVG can
still aggregate to a relatively high accuracy rate when the
proportion is 10% and 20%. However, when the proportion
reaches 40%, the aggregation of FedAVG is unable to reach
the available accuracy. In contrast, FL-RAEC can still maintain
stable aggregation and reach high accuracy.

2) Mean Difference Values: To study the specific imple-
mentation of anonymous trust verification, the mean difference
values of ESs are presented in the form of a 10x10 matrix in
Fig. 9. Thereinto, each grid represents the mean difference
value of a single ES. According to (30), those ESs with
lower mean difference values have a higher probability of
being honest participants. For the situation of 10% malicious
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Fig. 7. The model accuracy under different proportions of malicious ESs in extra-noise attack
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Fig. 8. The model accuracy under different proportions of malicious ESs in sign-flip attack

ESs, the mean difference values of most ESs are much lower
than 1, and those malicious ESs have a higher level of
mean difference value (5∼8) which far exceeds the value
of honest ESs. With the increase of malicious ESs, the hot
grid gradually occupies the entire heat map. In contrast, the
discrepancy of mean difference values between honest ESs and
malicious ESs is decreasing. Due to numerous malicious ESs
joining training/verification, the mean verification errors will
increase, which reduces the difference value of verified ESs
after normalization at each round. But even if the proportion
of attackers reaches 40%, the mean difference value of those
malicious ESs is still between 2-5 which is much higher than
the normal value.

E. Performance with Different Anomaly Impact Factor

As a significant part of FL-RAEC, autoencoder-based
anomaly detection secures aggregation to a certain extent in the
early stage and guarantees the stable implementation of trust
verification in the later stage. Thereinto, the anomaly imparts
factor β determines the influence of the anomaly score on the
overall score.

Fig.10 illustrates the performance of FL-RAEC with differ-
ent β under two attacks. To adequately evaluate the impact
of β, the proportion of malicious ESs is set to 40%. When
β = 0, the anomaly detection is inactive in the aggregation
and the anomaly scores of all ESs are the same, which are
equal to 1. For the scenario under sign-flip attack, the change
of β has almost no effect on the aggregation due to the
weakness of the autoencoder on the anomaly detection of

the sign-flip attack. The accuracy of the model with different
β converged to the same level after 40 rounds. In another
aspect, whether the anomaly detection is activated has a great
impact on the aggregation under extra-noise attack. When β
is equal to 0, although the accuracy of the model slowly
rebounds due to the launch of the trust score in the later stage,
since the malicious updates were not screened in the early
stage, abundant noise is introduced into the global model,
which makes the subsequent improvement of the accuracy
slower. With the activation of anomaly detection (β > 0), the
aggregation tends to be stable with occasional sharp declines
and recovers, which is brought by the exceeded numbers of
malicious ESs. The increase of β reduces the influence of
those weights with higher reconstruction errors to aggregation,
expediting the recovery of accuracy from a low level. When
β ≥ 1, the accuracy of the model recovers fleetly after the
exceeded attack from malicious ESs.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a privacy-preserving FL scheme
with robust aggregation in edge computing, named FL-RAEC.
In the stage of data uploading, we construct a hybrid privacy-
preserving mechanism which consists of asymmetric encryp-
tion and LDP to guarantee the parameter integrity and the pri-
vacy of weight update. In the stage of model aggregation, we
propose a phased model aggregation strategy which is based
on anomaly detection and anonymous trust verification. The
autoencoder is utilized to execute anomaly detection and the
anomaly score is calculated according to the detection result.
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Fig. 9. The mean difference value matrix under different proportions of
malicious ESs

Meanwhile, each ES has a trust score through anonymous trust
verification, which gradually becomes stable and accurate with
the advance of the training. The aggregation is jointly affected
by anomaly and trust scores. Eventually, the performance of
the proposed scheme is evaluated and compared with other
schemes using a real dataset, which proves that FL-RAEC is
robust under different attacks, making the global model reach
high accuracy.

One of the future directions of the research is to implement
FL-RAEC on heterogeneous and highly mobile edge devices.
Considering the complex network environment and unreliabil-
ity of a single device, asynchronous FL may be more suitable
in this case.
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Fig. 10. Performance with different anomaly impact factor
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[16] J. So, B. Güler, A. S. Avestimehr, Byzantine-resilient secure federated
learning, IEEE Journal on Selected Areas in Communications (2020).

[17] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, V. Shmatikov, How to
backdoor federated learning, in: International Conference on Artificial
Intelligence and Statistics, PMLR, 2020, pp. 2938–2948.

[18] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, C. Miao, Federated learning in mobile edge networks:
A comprehensive survey, IEEE Communications Surveys & Tutorials
22 (3) (2020) 2031–2063.

[19] L. Cui, X. Su, Z. Ming, Z. Chen, S. Yang, Y. Zhou, W. Xiao, Creat:
Blockchain-assisted compression algorithm of federated learning for
content caching in edge computing, IEEE Internet of Things Journal
(2020).

[20] S. Luo, X. Chen, Q. Wu, Z. Zhou, S. Yu, Hfel: Joint edge association and
resource allocation for cost-efficient hierarchical federated edge learning,
IEEE Transactions on Wireless Communications 19 (10) (2020) 6535–
6548.

[21] S. Yu, X. Chen, Z. Zhou, X. Gong, D. Wu, When deep reinforcement
learning meets federated learning: Intelligent multi-timescale resource
management for multi-access edge computing in 5g ultra dense network,
IEEE Internet of Things Journal (2020).
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