
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 1

A Just-In-Time Networking Framework for
Minimizing Request-Response Latency of Wireless

Time-Sensitive Applications
Lihao Zhang, Soung Chang Liew, Fellow, IEEE, and He Chen, Member, IEEE

Abstract—This paper puts forth a networking paradigm,
referred to as just-in-time (JIT) communication, to support
client-server applications with stringent request-response latency
requirement. Of interest is not just the round-trip delay of the
network, but the actual request-response latency experienced by
the application. The JIT framework contains two salient features.
At the client side, the communication layer will “pull” a request
from the client just when there is an upcoming transmission
opportunity from the network. This ensures that the request
contains information that is as fresh as possible (e.g., a sensor
reading obtained just before the transmission opportunity). At
the server side, the network ascertains that the server, after
receiving and processing the request to generate a response
(e.g., a control command to be sent to the client), will have
a transmission opportunity at just this time. We realize the
JIT system, including the protocol stack, over a Time-Division-
Multiple-Access (TDMA) network implemented on a System-on-
Chip (SoC) platform. We prove that a TDMA network with a
power-of-2 time slots per superframe is optimal for realizing
the server-side JIT function. Our experimental results validate
that JIT networks can yield significantly lower request-response
latency than networks without JIT support can.

Index Terms—wireless time-sensitive networking, application-
to-application round trip time, just in time, TDMA

I. INTRODUCTION

THE emerging time-sensitive applications in automotive,
avionics, building management, and industrial automa-

tion [1]–[4] are revolutionizing the way we think about infor-
mation. These applications may consist of distributed devices
that communicate with each other to perform a task. In partic-
ular, they may send information to each other. It is essential
to keep the information fresh among them, because outdated
information can degrade performance and even compromise
human safety.

These applications can be made more flexible if their
distributed devices communicate using a wireless network
rather than a wired network [5]–[7]. Wireless networks obviate
the need for installation and maintenance of wires. With a
wireless network, the locations of the distributed devices can
be changed in a moment without rewiring. Furthermore, many
applications require the devices to be mobile and portable, and
this is only possible with wireless networking. An application

This work was supported in part by xxx. (Corresponding author: Soung
Chang Liew).

Lihao Zhang, Soung Chang Liew and He Chen are with Department
of Information Engineering, The Chinese University of Hong Kong, Hong
Kong SAR, China (email: zl018@ie.cuhk.edu.hk; soung@ie.cuhk.edu.hk;
he.chen@ie.cuhk.edu.hk).

scenario is that of a central controller coordinating the move-
ments of collaborating tetherless automatic guided vehicles
(AGV) [8] via a wireless network.

Many futuristic applications, such as industrial control ap-
plications, are time-sensitive in that they demand fast com-
munication with low delays [9]–[13]. Conventional wireless
networks do not cater well to the time-sensitive requirements
of these applications [14]. This work investigates a new
wireless networking framework to meet the time-sensitivity
requirements. We set the context of framework below.

Generally, for networking purposes, a collection of network-
ing services is used to support the communication between the
distributed devices. In this paper, we refer to the collection
of the networking services as the communication layer. The
applications sitting at the application layer make use of the
networking services of the communication layer to commu-
nicate with each other. The intricate interactions between
the applications at the application layer and the networking
services at the communication layer, and their ramifications
for meeting the time-sensitivity requirements, have not been
addressed in a deep and thorough manner in previous studies
(see discussion in Section II).

Client

Communication Layer Communication Layer

Sensor Actuator
Controller

Application Layer
Server

Application Layer

Camera

Wireless MediumClient Node Server Node

Wireless Time-Sensitive
Application

Fig. 1. An illustration of a wireless time-sensitive application.

This paper focuses on applications with a two-way closed-
loop communication pattern. For applications with this com-
munication pattern, a client communicates with a server in
a request-response manner. Fig. 1 depicts a typical use case
that involves the interactions of multiple client-server pairs
over a shared wireless medium. In Fig. 1, in the context of
a client-server application, the sensor and actuator are the
clients, and the controller is the server. To simplify exposition,
let us assume that the sensor and the actuator are co-located at
the same client, although in reality it does not have to be so.

ar
X

iv
:2

10
9.

03
03

2v
2

 [
cs

.N
I]

 2
6

Se
p

20
22

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 2

There is one single two-way communication session for each
client-server pair. The two-way interaction is as follows:
1) The client acquires some information (e.g., a measurement

acquired from a sensor or an image captured from a
camera) to generate a request message. It then forwards
the request to its communication layer for delivery to the
server. The delivery time should be as short as possible
once the measurement is made so that it remains fresh and
updated when it reaches the server.

2) Upon receiving the request, the server, acting as a con-
troller, formulates a response message based on the request.
It then forwards the response message to its communication
layer for delivery to the client, so that an actuator at the
client can perform a certain operation based on the com-
mand embedded in the response. The delivery time should
be as short as possible once the response is generated so
that the response is as fresh as possible when it reaches
the client.

This paper considers the “generate-at-will” model proposed
in [15], where the sensor can sample the information about
the observed phenomena at any time, and the request packet
(or the so-called update packet) hence can be generated at
any time of the user’s own choice. Such information update
systems are expected to receive fresh updates from IoT devices
in various Internet-of-Things (IoT) applications [16], [17]. For
example, the “generate-at-will” model fits well with distributed
control applications, where a sensor sends to a controller
certain measurements in a periodic manner, and the controller,
upon receiving each measurement, returns a control message.
The overall feedback loop delay should be as low as possible
for such control applications.

To ensure the controller receives the freshest measurements,
the sensor may orchestrate the periodic instants at which it
makes the measurements so that the measurement instants
match well with the instants at which transmission opportu-
nities are available to the sensor. Similarly, at the controller
side, if a transmission opportunity is available to the controller
very soon after it has generated the control message, then the
control message will remain fresh when it reaches the client.

With the above in mind, we ask two fundamental questions
that delve into the inner core of the time-sensitivity issue at
hand:
1) When should the client acquire the information and gener-

ate the request so that it can be delivered by the communi-
cation layer to the server with minimal delays, taking into
account the future instant when the communication layer
may have a transmission opportunity?

2) When should the communication layer offer a transmis-
sion opportunity to the server, subject to the networking
construct, so that the server’s response can be delivered to
the client with minimal delays?

We are interested in minimizing the request-response la-
tency at the application layer – the time from the initiation of
the request generation to the reception of the response at the
client. We hereafter refer to this request-response latency as the
application-to-application round trip time (RTT). We show via
analysis and experiments that, without a mechanism to realize

minimal round-trip delays between the client and server, no
matter how fast and reliable the communication layer is, the
application may still suffer from large and non-deterministic
delays. In particular, tight coordination between the communi-
cation layer and the application layer is required to minimize
the round-trip delay of the client-server interaction.

This paper puts forth two mechanisms to minimize the
application-to-application RTT. Our mechanisms apply the
following principles to address questions 1) and 2) above:
JIT Principle A: The client application should initiate the
generation of the request just before its communication layer
has a transmission opportunity, not too early and not too late.
JIT Principle B: The communication layer at the server
should offer a transmission opportunity to the application
layer just after the server has formulated and generated the
response, not too early and not too late.
We refer to the two principles as the Just-in-Time (JIT)

principles and to a networking system that realizes the two
principles as a JIT system. For concreteness, this paper as-
sumes a time-division-multiple-access (TDMA) wireless net-
work, in which time is divided into time slots and a message
is transmitted in a time slot [18]. Thus, the aforementioned
clients and servers make use of the time slots to communicate
with each other at the communication layer, and time slots
correspond to the aforementioned transmission opportunities.

The main reason for assuming TDMA is that the physical-
network latency can be made to be deterministic by preallo-
cating time slots to users. For this reason, TDMA networks
are often assumed to be used in time-critical networking [19]–
[21]. Although this work assumes the underlying network to
be a TDMA network, it does not mean JIT principles are not
viable if TDMA networks are not adopted. In Appendix C,
we discuss what if a Carrier Sense Multiple Access (CSMA)
network (e.g., Wi-Fi) is used instead. Essentially, we will need
to replace the deterministic JIT here with a probabilistic JIT
given that CSMA networks do not preallocate transmission
opportunities to the nodes.

To realize JIT principle A, we design a JIT-triggered packet
generation mechanism in which the client is informed by
a JIT middleware to generate a request slightly in advance
of the transmission opportunity. It takes a certain amount
of time for the client to execute a function to generate the
request. Informing the client too late will cause the request
to miss its transmission opportunity and informing the client
too early will cause the request to age (i.e., the information in
it becomes stale) while the request sits in the communication
layer waiting for its transmission opportunity. To do its job,
the JIT middleware, designed to sit in between the application
layer and the communication layer, needs to synchronize the
timings at the application layer and the communication layer
and informs the client at just the right time.

To realize JIT principle B, we design a JIT time-slot
allocation mechanism that allocates a time-slot pair to each
client-server pair: one time slot for the client request and one
time slot for the server response. It takes a certain amount of
time for the server to generate the response upon receiving a
request. Thus, the two time slots must be separated by just the
right interval. If the server time slot occurs too early after the

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 3

client time slot, the response at the server may arrive at its
communication layer after the server time slot has transpired.
On the other hand, if the server time slot is way past the
client time slot, the response may arrive at the communication
layer well before its transmission opportunity, inducing extra
waiting time at the communication layer. In particular, the
separation between the two time slots must be commensurate
with the server’s processing time.

Our JIT system is implemented over the Openwifi project
[22] on a System-on-Chip (SoC) evaluation kit. This real-time
implementation enables the overall end-to-end application-to-
application communication. All the wireless signal processing
and the communication between protocol stacks are executed
in real-time, not offline. Our JIT implementation can serve as a
useful experimental testbed for a whole host of wireless time-
sensitive applications. Also, although our JIT implementation
is over a special-purpose SoC evaluation kit, the JIT principles
as expounded in this paper can be implemented over other
platforms, including general-purpose computers.

Experimental results indicate that our JIT system: i) can
ensure information freshness of messages; ii) can achieve
minimum application-to-application RTT; iii) is robust against
factors — preemption delay in multitasking software and clock
asynchronization between the application layer and the com-
munication layer — that may compromise timing performance.

The rest of this paper is organized as follows. Section II
discusses related works. Section III presents the motivation for
our work. Section IV details the JIT system design. Section V
and VI present our implementation and experimental results,
and Section VII concludes this work.

II. RELATED WORK

A. Work Related to JIT principle A

Two related works are [23], [6]. The communication layer
of [23] attaches a timestamp to the head-of-line packet of a
queue within the communication layer just before sending it
out. The “just-in-time” timestamp facilitates the measurement
of the end-to-end latency incurred by the communication
layer. Unlike our work here, [23] does not have a mechanism
to prevent or minimize aging of packets. In particular, the
approach in [23] does not generate the packet in a just-in-time
manner. The packet is generated without regard to the trans-
mission opportunity at the communication layer and it sits in a
queue in the communication layer waiting for its transmission
opportunity. It is the time stamp added to the packet that is
“just-in-time”, in order that end-to-end communication delay
can be measured accurately. This communication delay is not
the actual delay as perceived by the application, because it
does not include the delay incurred by the packet while sitting
in the queue.

The work in [6] shares the same spirit as our JIT mecha-
nism in that a “packet” is prepared just before its scheduled
transmission. However, what are really prepared just before the
transmission in [6] are the baseband samples for the software-
defined radio (SDR) platform rather than data generated at
the application layer. In other words, the data may have been
generated at the application layer a while ago, waiting to be

converted to baseband samples for radio transmission. During
this waiting time, the data may continue to age. By contrast,
the mechanism propounded by our current paper enables
the preparation of the application-layer data (e.g., taking a
sensor reading) just before a transmission opportunity arises
at the lower layer, significantly reducing the aforementioned
waiting time. The challenge is that the just-in-time mechanism
necessitates tight and timely coupling between layers, and
to facilitate that, we implement our mechanism on the SoC
platform.

B. Work Related to JIT principle B

The time-slot allocation problem in this paper is a TDMA
scheduling problem of a single-hop network, where all nodes
are within each other’s communication range [24]–[26].

Unlike in [24]–[26], however, we consider a problem in
which nodes are grouped into client-server pairs. Two di-
rectional links associated with a client-server pair need to
be allocated a pair of time slots such that the time spacing
between the time slots are large enough to accommodate the
server processing delay and yet small enough as not to incur
excessive delay. Specifically, the time spacing from the client
transmission time slot to the server transmission time slot has
to be no less than the processing delay required by the server
to send a response back to the client upon a client’s request.
Any time spacing beyond the server processing delay will
cause additional unnecessary round-trip delay. The time slots
in between the two time slots of a client-server pair can be
allocated to other client-server pairs.

Existing works [24]–[26], on the other hand, did not take the
server’s processing delay into account and hence do not have
the minimum-spacing constraint in their problem formulations.
Therefore, their scheduling methods can only ensure that the
time slots of the two links are non-overlapping without regard
to the spacing between them.

In the context of graph theory, the time-slot allocation
problem in our JIT principle B can be regarded as a vertex
arrangement problem, where links are modeled as vertexes. A
client-server pair (the associated links) are modeled as adjacent
vertexes. And the goal is to find an arrangement such that
each pair of adjacent vertices satisfies a pre-defined minimum
separation requirement (see Section IV-2 for details). Two
related NP-complete problems have been previously studied:
the cycle-separation problem [27] and the directed separation
problem [28]. The critical difference between our problem and
the above two problems lies in the definition of the distance of
adjacent vertices. This difference fundamentally changes the
nature of our problem, and the solution to our problem cannot
be found by the approaches of [27] and [28]. We will further
elaborate the fundamental differences between our problem
and those of [27] and [28] in Section IV-2.

III. MOTIVATION FOR JIT: A QUANTITATIVE OVERVIEW

With respect to the use case depicted in Fig. 1, let us trace
through the delay components that contribute to the overall
the application-to-application RTT when the application is
deployed over a TDMA network. As illustrated in Fig. 2,

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 4

suppose that each TDMA round consists of N time slots.
Without loss of generality, in this example, time slot 0 of all
rounds is dedicated to the transmission of a request from the
client to the server, and a time slot n, n 6= 0 of all rounds is
dedicated to the transmission of a response from the server to
the client.

i-th round

0 1 n N-1N-2

(i+1)-th
round

(i+2)-th
 round

TDMA Network

ClientServer ServerClient

 0 1 n N-1N-2 0 1 n N-1N-2

Client Server

time

Fig. 2. A client-server application over a TDMA network.

To illustrate how a conventional networking system may not
do the best job in minimizing the application-to-application
RTT, let us consider the sequence of events in the feedback
loop. Fig. 2 shows a typical time diagram of a sensor-
controller-actuator feedback loop over the TDMA network:
1) With reference to Fig. 3, the client acquires the sensed

data from the sensor at time T0 and generates a request
Mc at time T1. Thus, Dc = T1 − T0 is the time required
to generate Mc. We refer to Dc as the client’s processing
delay.

2) The client waits until T2, the beginning of slot 0 of the next
upcoming TDMA round to transmit Mc to the server, in-
ducing an extra client’s waiting time of Wc = T2−T1. The
transmission of Mc takes a certain amount of transmission
time, inducing a client’s transmission delay. In Fig. 3, the
transmission time or delay is T4−T2, where T2 is the time
at which the client transmits the first bit of Mc and T4 is
the time at which of the client transmits the last bit of Mc.

3) In addition, there is a client’s propagation delay from the
client to the server. The server receives the first bit of Mc at
T3, and receives the last bit of Mc at T5. We have T5−T3 =
T4−T2, and the propagation delay is T3−T2 = T5−T4. We
note that the physical medium is occupied for a duration of
Tphy,c = T5−T2 after taking into account the propagation
delay.

4) Upon receiving Mc, the server takes some time to process
it and to produce the control command as the response Ms,
thus incurring a server’s processing delay. Suppose that the
controller generates Ms at T6. Then the server’s processing
delay is Ds = T6 − T5.

5) The server waits until T7, the beginning of the time slot
n of a TDMA round, to transmit Ms to the the client,
inducing an extra server’s waiting time of Ws = T7 − T6.

6) The first bit of response Ms arrives at the actuator at T8,
and the last bit of Ms arrives at the actuator at T10. Thus,
T9− T7 = T10− T8 is the server’s transmission delay and
T8−T7 = T10−T9 is the server’s propagation delay. The
physical medium occupied time is then Tphy,s = T10−T7.

Client with a
sensor and an

actuator

Server with a
controllertime

time

Request
Message

Response
Message

cW sWcD
sD

acquire
sensed

data generate
a request
message send the

request
message

receive and
process the

request
message

generate a
response
message

send the
response
message

receive the
response
message

5T3T

2T
1T

0T

7T

8T

9T

10T

,phy cT

4T

6T

,phy sT

Fig. 3. Time incurred by a sensor–controller–actuator feedback loop.

Thus, the overall application-to-application RTT is made up
of a number of delay components as written below:

RTT = T10−T0 = Dc+Wc+Tphy,c+Ds+Ws+Tphy,s. (1)

To reduce the application-to-application RTT, we need to
reduce the extra waiting times Wc and Ws. Let

W = Wc +Ws (2)

be the total extra waiting times. In the following, we argue
that Wc and Ws can be large in a conventional networking
system.

Let tk,i be the beginning of time slot k of round i. Recall
that time slot 0 of all rounds is dedicated to the client’s
transmission, and time slot n of all rounds is dedicated to
the server’s transmission. Let us first consider Wc. Suppose
that at time T0 < t0,i, the client acquires a sensed data. The
client then generates the corresponding request message Mc

that contains the sensed data at T1. Two cases are possible:
1) Suppose that T1 ≤ t0,i. Then the client uses its assigned

time slot in the round i to transmit Mc. Then T2 = t0,i,
and we have

Wc = t0,i − T1. (3)

2) Suppose that T1 > t0,i. Then the client misses its
assigned time slot in the round i. The client needs to
wait for time slot 0 in TDMA round i + 1 to transmit
Mc. Thus, T2 = t0,i+1, and we have

Wc = t0,i+1 − T1 = F + t0,i − T1, (4)

where F is the duration of one round. From (4), we can
see that a larger F will induce a larger Wc, leading to
a larger application-to-application RTT. The worst-case
maximum possible Wc is obtained when T1 = t0,i + ε
where ε > 0 is a tiny quantity. In this case, the waiting
time is effectively F :

Wc = F + t0,i − t0,i − ε ≈ F. (5)

Let us next consider the maximum possible value of the
total extra waiting time W in (2), denoted by W ∗. In this
case, we have case 2) in the above. Thus, the server receives
Mc at T5 in round i+1. It takes Ds amount of time to process
Mc to generate the response message Ms at T6. The server

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 5

then waits until the beginning of the next time slot n, T7, to
transmit Ms. As in the analysis of Wc, there are two possible
cases:
1) Suppose that T6 ≤ tn,i+1. Then the server uses time slot

n of round i + 1 to transmit Ms. Thus, T7 = tn,i+1, and
we have

Ws = tn,i+1 − T6. (6)

2) Suppose that T6 > tn,i+1. Then the server misses time slot
n of round i+1. Hence, the server needs to wait until time
slot n of round i+ 2 to transmit Ms (here we assume that
T5+Ds = T6 ≤ tn,i+2). Then T7 = tn,i+2, and we have

Ws = tn,i+2 − T6 = F + tn,i+1 − T6. (7)

The worst-case maximum possible Ws is obtained when
T6 = tn,i+1 + ε, where ε > 0 is a tiny quantity. In this
case, we have

Ws = F + tn,i+1 − tn,i+1 − ε ≈ F. (8)

From (3), (4), (6) and (7), we can see that in a conventional
network system, Wc and Ws are varying quantities, and
depending on the situation, the application-to-application RTT
could be large. From (5) and (8), when T1 = t0,i + ε and
T6 = tn,i+1 + ε, the system incurs the maximum total extra
waiting time W ∗ given by

W ∗ ≈ 2F. (9)

From (9), we can see that the conventional client-server ap-
plications can incur an extra delay of around 2F in the overall
application-to-application RTT in the worst case. Motivated by
the observation encapsulated in (1) and (9), we propose the
JIT system to reduce the total extra waiting time delay W ∗.
Our JIT system has two main features:
1) JIT-triggered packet generation: With this mechanism,

the client can acquire the sensed data and generate Mc

just slightly before the communication layer offers a
transmission opportunity at T2. For example, consider the
transmission opportunity at round i. Our JIT system notifies
the client to start sensing at time T0 = t0,i −Dc − ε such
that Mc can be generated at time T1 to satisfy

T1 = t0,i − ε, (10)

where ε is a small positive slack. This gives the minimum
possible value of

Wc = ε. (11)

2) JIT time-slot allocation: Once the server receives Mc

and then generates Ms, it can send out Ms immediately.
This feature requires our JIT system to know the server’s
processing delay Ds in advance of the time-slot allocation.
For example, suppose that in the round i, the controller
receives Mc at T5, generates Ms at T6, and waits until T7
to transmit Ms. Our system can assign a time slot to the
server so that we have

T6 = T7 − σ, (12)

where σ is the duration of one time slot in the worst case.
This gives

Ws = σ. (13)

From (11) and (13), we can then bound W to

W ′ = ε+ σ, (14)

which can be much smaller than the W ∗ ≈ 2F in (9).
Importantly, the W ′ in (14) is independent of the duration
of a TDMA round, F , which could be large for a TDMA
system supporting a large number of IoT devices with each
device taking up one slot of a round. Recall the JIT principle A
and the principle B in Section I. We emphasize that the JIT-
triggered packet generation and the JIT time-slot allocation
are the mechanisms that apply the JIT principle A and the
JIT principle B, respectively. In this way, our JIT system with
the above two features can be free of additional system delay,
achieving minimum application-to-application RTT for client-
server applications.

IV. SYSTEM DESIGN

This section presents our JIT system design. The JIT
system’s network protocol stack is shown in Fig. 4. The
network protocol stack is partitioned into two main parts
running on hardware and software, respectively. The com-
munication layer, consisting of the MAC layer and the PHY
layer, is implemented on hardware for high-speed processing
and accurate timing control. The JIT middleware and the
application layer are implemented in software. In particular,
the JIT middleware, residing in between the application layer
and the MAC layer, enables JIT-triggered packet generation
at the client. Section IV-A elaborates the JIT-triggered packet
generation. And the JIT time-slot allocation for client-server
applications is detailed in Section IV-B.

Application Layer

Hardware

Software

TDMA MAC Layer

PHY Layer

1

JIT

iU

1iP

1

MAC

iU

JIT
Middleware

1iP

Time
(MAC Clock)

1

Arr

iU

Communication
Layer

ˆ
in

JIT

iU

iP

iP

MAC

iUArr

iU

1iST

1 targetc iW ST ST targetc iW ST ST

cD
cD

Fig. 4. The architecture of the adaptive synchronization mechanism.

A. JIT-triggered packet generation

This subsection presents the design of JIT-triggered packet
generation at the client. A possible but naı̈ve design is as
follows: i) the MAC layer sends a pull signal to the JIT middle-
ware; 2) upon receiving the pull signal, the JIT middleware

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 6

relays the pull signal to the application layer, asking for a
packet; 3) upon receiving the pull signal, the application layer
starts to acquire sensed data and then generates the packet; 4)
after being generated, the packet is sent to the JIT middleware
immediately.

This naı̈ve design, however, has two limitations. First, the
MAC layer initiates the pull signal and the JIT middleware
relays the pull signal to the application layer. This relaying of
the signal may induce extra delay. Second, since it takes time
for the client’s application to generate a packet, the MAC layer
needs to know how much ahead of the assigned time slot it
should send the pull signal to the JIT middleware to achieve
accurate timing. Specifically, in this design, the MAC layer
needs to have explicit knowledge of relaying delay incurred
at the JIT middleware plus the client’s processing delay.

To circumvent the limitations, we devise a design for JIT-
triggered packet generation as follows:

(i) Only the JIT middleware initiates a pull signal to the
application layer to ask for a packet. The MAC layer
does not send a pull signal to the JIT middleware.

(ii) A separate synchronization mechanism is used to syn-
chronize the timing at the JIT middleware to the timing
at the TDMA MAC layer. With the synchronization
mechanism, the JIT middleware can initiate the pull
signal at an appropriate time without explicit knowledge
of the client’s processing delay, such that the application-
layer packet triggered by the pull signal can reach the
TDMA MAC layer just in time for it to be transmitted.

We elaborate above mechanisms (i) and (ii) in the following.
Before that, we emphasize that in a general set-up, the hard-
ware clock used for communication may be different from the
software clock used for computation. For example, in many
computing devices that run applications, the applications are
written in software and if they need to use timing functions
(e.g., the code needs to sleep for a certain amount of time),
they count on the operating system (OS) to provide these
timing functions. The OS itself, in turn, makes use of the clock
of the computing platform to offer the timing functions as
software. Meanwhile, for communication and networking pur-
poses, the communication platform (e.g., a Wi-Fi card attached
to the computing device) uses its own internal oscillator1 (e.g.,
a voltage-controlled, temperature compensated oscillator) to
provide the stable hardware clocking function for accurate
communication timing.

Our JIT system is designed to cater to this general set-
up. Specifically, we assume that the JIT middleware uses a
software clock that is different from the hardware clock used
by the TDMA MAC layer. We refer to the two clocks as
“JIT clock” and “MAC clock”, respectively. We note that the
JIT clock is the same clock as used by the client application
software. For clarity, unless stated otherwise, all the time
variables below are specified with reference to the MAC clock.
Let UMAC

i denote the time at which the TDMA MAC layer
is scheduled to begin to transmit the packet Pi. We have

UMAC
i = UMAC

0 + iF, i ≥ 0, (15)

1https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-
ebz/hardware/tuning#fn 1

where UMAC
0 is the time at which the TDMA MAC layer

begins to transmit the first packet P0 and F is the duration
of one TDMA round mentioned in Section III. Meanwhile, let
UJITi denote the time when the JIT middleware is scheduled
to pull packet Pi from the application layer. We have

UJITi = UJIT0 + iF ′, i ≥ 0, (16)

where UJIT0 is the time when the JIT middleware sends the
first pull signal to the application layer asking for the first
packet P0 and F ′ is the duration of one TDMA round at the
JIT middleware measured using the MAC clock.

Again, for exposition purposes, although the JIT middleware
operates on the JIT clock, the time variables here, including
UJITi and F ′, are expressed in terms of the MAC clock, so
that all variables use the same reference time. The reason that
F ′ and F may not be the same is as follows. Suppose that the
duration of one TDMA round is understood to be F seconds.
The MAC will implement the TDMA to have an exact duration
of F seconds according to its hardware clock. Meanwhile, the
JIT middleware uses the software clock and also assumes the
duration of one TDMA round is F seconds. However, since
the JIT layer uses the software clock for timing purposes, the
resulting TDMA round at the JIT middleware may have a
duration of F ′ that is different from F if F ′ is expressed in
terms of the MAC clock.

Note that we would like the differential UMAC
i − UJITi to

be not too small and not too large to allow sufficient time for
the application to generate packet Pi and then for Pi to reach
the TDMA MAC layer just in time for it to be transmitted by
the MAC layer.

So far, all time variables have been specified with reference
to the MAC clock. Now, since the operation at the JIT
middleware only has access to the JIT clock, when we describe
what the JIT middleware actually does in its operation, we
need to assume the JIT middleware uses time variables with
reference to the JIT clock. For clear notation, we put a “hat”
over all time variables specified in the JIT clock. For example,
for UJITi and F ′ specified in MAC clock, ÛJITi and F̂ are
their correspondences specified in the JIT clock. We further
note that F̂ = F because both the JIT middleware and the
MAC layer have a common understanding of the duration
of a TDMA round. Then, from the point of view of the JIT
middleware, (16) can also be written as

ÛJITi = ÛJIT0 + iF̂ i ≥ 1

=ÛJITi−1 + F.
(17)

To enable synchronized JIT-triggered packet generation, we
need to address two issues arising from (15), (16) and (17):

1) Clock Offset: The JIT clock and the MAC clock have a
relative clock offset that drifts with time because of the
different tick rates of the two clocks. Now, define oi to
be the offset between the above two clocks when the pull
signal for Pi is triggered. Specifically, we have

ÛJITi = UJITi + oi. (18)

The difference UMAC
i − UJITi = (UMAC

0 + iF) −
(ÛJIT0 + iF − oi) = (UMAC

0 − UJIT0) + (oi − o0) is

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 7

not a constant and it drifts with the term (oi − o0). Let
us further focus on (oi − o0).
From (18), we have

oi − o0
= (ÛJITi − ÛJIT0)− (UJITi − UJIT0)

=
∫ ÛJITi

ÛJIT0

dt̂−
∫ UJITi

UJIT0
dt

(19)

where t̂ and t are the continuous time units of the JIT
clock and the MAC clock, respectively.
Now suppose that we expressed the relationship between
t̂ and t by an increasing function t̂ = f(t). Then
continuing from the above, and by change of variables
in the first integral, we have

oi − o0
=
∫ f−1(ÛJITi)

f−1(ÛJIT0)

df(t)
dt dt−

∫ UJITi

UJIT0
dt

=
∫ UJITi

UJIT0

(
df(t)
dt − 1

)
dt

=
∫ UJITi

UJIT0

(
dt̂
dt − 1

)
dt

(20)

where f−1(ÛJITi) = UJITi and f−1(ÛJIT0) = UJIT0 ,
and we assume the derivative dt̂

dt is express in terms of
t as a function in the above. If the tick rate of the JIT
clock is faster than the tick rate of the MAC clock, then
dt̂
dt = df(t)

dt ≥ 1, and vice versa. Thus, we can see from
(20) that for an unsynchronized system where dt̂

dt 6= 1,
UMAC
i − UJITi may grow unbounded or may become

negative. For just-in-time operation, UMAC
i − UJITi for

all i must be kept within a tight range. To achieve this,
we need a synchronization mechanism. We will present
our synchronization mechanism shortly.

2) Timing Imprecision: Rather than having precise time
control as in hardware, the multitasking software archi-
tecture in the operating system (OS) may cause the JIT
middleware and the application layer to experience pre-
emptions from other tasks. In general, a modern computer
OS segregates virtual memory into user space and kernel
space. Kernel space is strictly reserved for running a
privileged operating system kernel, kernel extensions, and
most device drivers. In contrast, user space is the memory
area where application software and some drivers execute.
Processes in user space have low priorities and can be
preempted by processes in kernel space (e.g., system
calls, process scheduling, memory management and inter-
process communication).2 As a result, Dc could vary for
different packets. Let Dc,i denote the client’s processing
delay for packet Pi. In general, Dc,i in an actual system
includes not only the time for packet generation, but also
the preemption delay caused by other tasks preempting
our task plus the time for the packet to be delivered
from the application layer to the MAC layer. A larger
preemption delay induces a larger Dc,i. Note also that
Dc,i is unknown to the JIT system.

2https://en.wikipedia.org/wiki/User space

Packet Pi arrives at the MAC layer at time UArri = UJITi +
Dc,i. Let STi denote the slack time for packet Pi at the TDMA
MAC layer. Specifically,

UMAC
i = UArri + STi, i ≥ 0. (21)

In (21), STi is exactly the extra client’s waiting time Wc that
the JIT principle A aims to reduce, as discussed in Section
III. Thus, we have two requirements:

(i) We want to minimize the slack time STi as much as
possible to allow just-in-time packet transmission.

(ii) We would like to have STi ≥ 0, so that we can prevent
Pi from missing its desired transmission time at the MAC
layer UMAC

i .
1) Synchronization Mechanism: To meet the requirement

so that we have STi ≥ 0, but not too much larger than 0, we
devise an adaptive synchronization mechanism to synchronize
UJITi to UMAC

i . This adaptive synchronization mechanism
involves interaction between the JIT middleware and the MAC
layer.

In place of (17), the JIT middleware adjusts its transmission
time for the i-th packet ÛJITi as follows:

ÛJITi = ÛJITi−1 + F + n̂i, i ≥ 1, (22)

where n̂i is a timing offset adjustment for the JIT pull signal
for packet Pi computed based on feedback from the MAC
layer. Specifically, based on the transmission of Pi−1, we
determine n̂i as follows:

1) Obtain and feed back the slack time STi−1 of the
packet Pi−1: As illustrated in Fig. 4, the JIT middleware
sends a pull signal at time ÛJITi−1 (w.r.t. the JIT clock) to
the application layer. This triggers the generation of the
packet Pi. Upon receiving packet Pi from the application
layer, the MAC layer retrieves the packet’s scheduled
transmission time UMAC

i−1 (w.r.t. the MAC clock) and
obtains the slack time STi−1(w.r.t. the MAC clock):

STi−1 = UMAC
i−1 − UArri−1 , i ≥ 1, (23)

where UArri−1 = UJITi−1 + Dc,i−1 is the time when Pi−1
arrives at the MAC layer. Note that although the MAC
layer does not know UJITi−1 and Dc,i−1, it does know
UArri−1 since this is the time the packet arrives at the MAC
layer according to the MAC clock. The MAC layer then
feeds back STi−1 to the JIT middleware.

2) Set the target slack time ST target for all packets
at initialization: The JIT middleware aims to achieve
a target slack time ST target at the MAC layer for all
packets. As a conservative measure to avoid underflow at
the MAC layer, we would like to set ST target to the
maximum preemption delay that the packet-generation
process could encounter, explained as follows. We aim
for a set-up such that in the worst case, when the packet
Pi incurs the maximum preemption delay, it would still
arrive at the MAC layer at time UMAC

i , just in time for
it to be transmitted. Thus, if STj for different j hovers
around ST target, and if a particular packet Pi, i > j,
suddenly incurs a worst-case preemption delay, it would
still arrive at the MAC layer in time for its transmission,

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 8

even if all the prior packets Pj , j < i, incur the minimum
preemption delay.
Since Dc,i for different i fluctuates with their instanta-
neous preemption delays, the maximum preemption delay
is also the maximum time difference between the genera-
tions of two successive packets (other delay components
being constant and the preemption delay being the only
variable delay). To estimate the maximum preemption
delay, the JIT middleware generates Q packets during
initialization before real packet transmissions. For each
of the packet generated, we monitor its start time and the
end time, and calculate its processing delay. Since we
can only use the software clock to obtain the start time
of a software process, the processing delay we calculate
in this way is specified in terms of the JIT clock. Let
D̂c,q denote the calculated processing delay using the JIT
clock. We derive ŜT target by

ŜT target = max
1≤q≤Q,1≤r≤Q,and r 6=q

(D̂c,q − D̂c,r). (24)

In particular, ŜT target approaches the maximum preemp-
tion delay when Q is large.

3) Determine the timing offset n̂i for packet Pi: With
respect to the clock-offset issue, the JIT middleware needs
to ensure that in the near future, STi does not deviate
from ŜT target too much. This is achieved by adjusting
the timing offset n̂i for packet Pi. Specifically, we adjust
n̂i using the following exponential smoothing formula
acting as a low-pass filter to remove high-frequency jitters
in the measurements so that the system does not overreact
to short-term fluctuations:

n̂i = (1− α)n̂i−1 + α(STi−1 − ŜT target), i ≥ 1, (25)

where 0 < α ≤ 1 is a constant smoothing parameter. In
(25), the smoothed statistic n̂i is a weighted average of
the current observation STi−1−ŜT target and the previous
smoothed statistic n̂i−1. In general, if α is large, then
the bandwidth of the low-pass filter is large (i.e., less
smoothing), and if α is small, then the bandwidth of the
low-pass filter is small (i.e., more smoothing). The main
idea is that, by choosing an appropriate value for α, we
want to filter out short-term fluctuations while retaining
the long-term drift so that our synchronization mechanism
can react to the long-term drift. If α is too large, our
mechanism may overreact to short-term fluctuations due
to “measurement noise”; on the other hand, if α is too
small, our system may not be able to track the drift in a
timely manner for tight synchronization. For our system,
we set α = 0.6. This value is found from experimentation
to provide good tracking performance. For initialization,
the JIT middleware sets n̂0 = 0 for the packet P0.

After deriving n̂i, the JIT middleware calculates ÛJITi using
(22) and sends a pull signal at time ÛJITi to the application
layer, asking for the next packet Pi.

Note that in (25) ŜT target is specified in terms of the
JIT clock. However, STi in (24) is specified in terms of the
MAC clock. Ideally, we would like them to be expressed in
terms of the same clock, particularly when they are applied

in (25). We provide an analysis in Appendix A to show that,
despite having these two terms expressed in terms of different
clocks, our adaptive synchronization mechanism is still stable.
Furthermore,, the differential UMAC

i −UJITi can be bounded
as shown in Appendix B.

B. JIT time-slot allocation in TDMA networks

We next consider issues related to time-slot allocation in
a TDMA network when running the JIT system. Consider
a server paired with Nc clients in the TDMA network. As
related in Section III, each client sends a request to the server.
Upon receiving the request, the server sends back a response.
Let Cj be the j-th client and S be the server. For clarity,
we use another notation Sj to denote the server S when it
communicates with client Cj . Given a specific j, Cj and Sj
together represent the j-th communication pair.

Let ∆t be the duration of a time slot. We require that
∆t = maxj max(Tphy,cj , Tphy,sj), where Tphy,cj and Tphy,sj
are the j-th communication pair’s occupied airtime on the
physical wireless medium from the client to the server and
from the server to the client, respectively (see Section III).
For simplicity, we assume the request and response messages
are of the same size. We further assume that the differences
in the propagation delays of different communication pairs are
negligible. We could then write Tphy,cj = Tphy,sj = TPHY ,
where TPHY is constant for different communication pairs.
Thus, ∆t = TPHY . To simplify discussion in the following,
let us assume that all times are specified in terms of the time
unit of one time slot. Thus, ∆t = 1.

Let TS(Cj) ∈ {0, ..., N − 1} and TS(Sj) ∈ {0, ..., N − 1}
be the time slots in TDMA rounds assigned to Cj and Sj ,
where N is the number of time slots per TDMA round. At
issue is the following question: what should be the pair of
time slots {(TS(Sj), TS(Cj))}j=0,1,...,Nc−1 allocated to the
client-server pairs in order to minimize the response time
of the client-server applications? To aid the understanding
of the issue at hand, let us picture the progression of the
time slots in successive rounds as a clockwise movement
over a ring, as illustrated in Fig. 5 (a), where we assume
N = 10. For example, slot 1 follows slot 0; slot 0 follows
slot N − 1. Recall from Fig. 3 that the JIT principle B is to
minimize Ws = T7−T5 given the server processing delay Ds.
With {(TS(Sj), TS(Cj))}j , the goal is equivalent to moving
around the ring in a clockwise manner from TS(Cj) to
TS(Sj) such that the number of time slots that has transpired
is at least

βi = dDs,ie+ 1 mod N. (26)

For the distance constraint βi in (26), we may have to cycle
around the ring a number of times. For example, if dDs,ie+
1 ≥ N , then the time slot TS(Si) must occur in a round later
than the round in which time slot TS(Ci) occurs.

In the context of graph theory, our problem can be re-
garded as a vertex arrangement problem over indexes on
a ring. Specifically, we can construct an undirected graph
G(V,E) whereby the vertexes are the client requests and
the server responses. There is an undirected edge between
the two vertexes corresponding to the client request-server

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 9

response pair j, but there is no edge between vertices of
different client request-server response pairs. The time slot
assignment TS : V → {0, 1, ..., N − 1} is an injective
function from the vertexes to the indexes (if there are N/2
client-server pairs – i.e., N vertexes – then the function is
a bijective function). The distance between a client request-
server response pair under the injection is defined to be
Ej = [TS(Sj)−TS(Cj)] mod N . The objective of the vertex
arrangement problem is to minimize the sum distance

∑
j Ej .

The authors in [27] studied a cycle-separation problem.
As in our problem, the issue is arranging vertexes over a
ring (cycle). However, the definition of distance is Ej =
min(|TS(Sj)− TS(Cj)| , N−|TS(Sj)− TS(Cj)|). In other
words, there are two possible distances between the client and
the server on the ring: the clockwise distance and the counter-
clockwise distance between them. The investigation in [27]
defines the distance to be the smaller of the two. For our
problem, the distance is always the clockwise distance from
the client to the server. This makes our problem fundamentally
different from that of [27].

The authors in [28] studied a directed separation problem
where the arrangement of the vertexes is over a line rather
than a ring. The distance is defined to be Ej = TS(Sj) −
TS(Cj), TS(Sj) ≥ TS(Cj). Again, the different definition
of the distance makes this problem fundamentally different
from ours.

In short, our problem is to construct a structural graph
whereby the graph itself is already the multiple disjoint cycles
we want without the need of deriving these cycles. In this
way, our problem is not an NP-complete problem. Rather, it
is a problem of identifying when such a graph will fulfill the
distance-constraint requirement. For example, it is trivial to
see that if each of the cycles has an even number of vertexes,
then there is an optimal solution. By contrast, if each of
the cycles has an odd number of vertexes, then an optimal
solution is possible. As will be discussed in the following,
our work identifies the condition leading to the possibility
and impossibility of an optimal solution. We also provide
a general method to construct the graph (and therefore the
multiple cycles), and the complexity is of order O(N).

1) Optimal Packing - A Special Combinatorial Problem:
We next consider a combinatorial problem arising from our
system. We assume that N is even and that there are N/2
client-server pairs. For simplicity, we further assume that
βj = β for all j. We ask the following question: Under
what setting is it possible to have a bijection TS : V →
{0, 1, ..., N − 1} such that Ej = β,∀j ∈ {0, 1, ..., N − 1}?
Note that if this is possible, we have an optimal solution in
that the distance between each client-server pair j meets the
lower bound β exactly. We refer to such an optimal solution,
if possible, as optimal packing. In the following, let us use
the notation (c, s) to denote the pair of time slots allocated
to a client-server pair. For example, the following pairs give
an optimal packing for the case of β = 3 and N = 10:
{(0, 3), (6, 9), (2, 5), (8, 1), (4, 7)}.

2) Optimal Packing Construction: We first discuss when
optimal packing is possible. After that, we give a general
method to construct optimal packing when it is possible.

Slot 0

Slot 5

(a) Clockwise time-slot pro-
gression.

k=1

Slot 0 Slot 1 Slot 3 Slot 4 Slot 5 Slot 6Slot 2 Slot 7 Slot 8 Slot 9

k=2 k=3

k=4

k=5 k=6

k=7

k=8 k=9

k=10

(b) Only one induced subring when β = 3.

k=1

Slot 0 Slot 1 Slot 3 Slot 4 Slot 5 Slot 6Slot 2 Slot 7 Slot 8 Slot 9

k=5

k=2 k=3 k=4

(c) Induced subrings will not yield optimal packing
when β = 2.

k=2k=2

k=1
k=1

k=2

k=1

k=1
k=1

Slot 0 Slot 1 Slot 3 Slot 4 Slot 5 Slot 6Slot 2 Slot 7 Slot 8 Slot 9

k=2
k=2

(d) Five induced subrings when β = 5.

Fig. 5. Illustration of time-slot progression over a ring when N = 10. In
figures (b), (c), (d), we draw the ring as a line to avoide cluttering, with the
implicit understanding that slot 9 wraps back to slot 0.

Consider time slots indexed by 0, 1, ..., N − 1 on the ring,
where N is even. From any index l, 0 ≤ l ≤ N − 1 on the
ring, we can induce a subring by enumerating the indexes
l, (l+β) mod N, (l+2β) mod N,, (l+kβ) mod N.... Note
that somewhere in this sequence, the index l must repeat, since
there is only a finite number of indexes on the ring. Let k∗

be the smallest integer such that (l + k∗β) mod N = l. The
period of this subring is said to be k∗ and there are k∗ unique
indexes on the sequence.

Case 1: If the period k∗ = N , the subring is the full
ring and optimal packing is possible. Fig. 5 (b) illustrates
the full ring induced in the case of l = 0, β = 3 and
N = 10. Any l ∈ {0, ..., 9} will induce the same full
ring. With the full ring, we have found two possible optimal
packings: {[l, (l+β) mod N], [(l+2β) mod N, (l+3β) mod
N], ..., [(l+(k∗−2)β) mod N, (l+(k∗−1)β) mod N]} and
{[(l + (k∗ − 1)β) mod N, l], [(l + β) mod N, (l + 2β) mod
N], ..., [(l+(k∗−3)β) mod N, (l+(k∗−2)β) mod N]}. The
first packing is to have time slot l as a client time slot, and
the second packing is to have time slot l as a server time
slot. There is no other possible optimal packing. The reason
is simple. If we make time slot l a client time slot, then time
slot (l + β) mod N must be a server time slot. This means
time slot (l + 2β) mod N must be a client time slot, and so
on and so forth. By the same token, if we make time slot l
a server time slot, then time slot (l + β) mod N must be a
server time slot, and so on and so forth.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 10

Case 2: If the period k∗ < N and k∗ is odd, then optimal
packing is not possible. Without loss of generality, suppose
that we make time slot l a client time slot. Then time slot
(l + β) mod N must be a server time slot, time slot (l +
2β) mod N must be a client time slot, and so on and so forth.
We will reach a conclusion that time slot l must also be a
server time slot pairing with the client time slot N−β, leading
to a conflict. Fig. 5 (c) shows the case of β = 2, N = 10. The
subring induced by l = 0 is (0, 2, 4, 6, 8). If we make time
slot 0 a client time slot, then time slot 8 must be client time
slot, which implies that time slot 0 must also be a server time
slot, leading to a conflict.

Case 3: If the period k∗ < N and k∗ is even, then
optimal packing is possible. There must be an index v not
on the subring induced by index l. This index v can induce
another subring with k∗ indexes that are distinct from the k∗

indexes of the subring induced by index l. By isomorphism,
the period of the subring induced by v must exactly be the
same as the period of the subring induced by l (i.e., on the
ring there is no distinct difference between indexes as far as
the situation that they are facing is concerned). The reason that
these two subrings do not overlap is also obvious. If they have
any overlapping index, then these two subrings will merge
together to form a larger ring, contradicting the statement that
index v is not on the subring induced by index l.

In summary, optimal packing is possible if and only if k∗

is even as concluded in Proposition 1. As long as the current
subrings do not cover all the indexes 0, 1, ..., N − 1, we can
discover a new subring with k∗ indexes by inducing a subring
from an indexes not yet in the existing subrings. Thus, in
general, if k∗ < N , then there must be h subrings, each with
k∗ distinct indexes, where

hk∗ = N. (27)

Proposition 2 states that when optimal packing is possible,
the h subrings can be induced by indexes 0, 1, 2, ..., h− 1. To
construct an optimal packing, we first list all the h subrings.
Then, on each subring, there are two possible packings. We
can either let the subring-inducing index be a client time slot
or a server time slot. Fig. 5 (d) shows the five subrings for
the case of β = 5, N = 10. The five subrings are (0,5), (1,6),
(2,7), (3, 8), (4, 9). Together, they cover all the indexes in the
set 0, 1, ..., 9.

Proposition 1. Let 0 < k∗ ≤ N be the smallest integer such
that

k∗β mod N = 0. (28)

Optimal packing is possible if and only if k∗ is even.

Proof: Obvious from the description of the above con-
struction method. The k∗ here is basically the period of the
subring mentioned in the construction method.

Proposition 2. When optimal packing is possible, suppose that
for an N and a β, we have h distinct subrings, each with k∗

elements, hk∗ = N . The h distinct subrings can be found by
inducing on index 0, index 1, ..., and index h− 1.

Proof: Consider two subrings induced by two arbitrarily
chosen indexes e and f , e, f ∈ {0, 1, ..., h−1},e 6= f . If these

two subrings were the same subring, then there would be two
integers Ie and If , Ie, If ∈ {0, 1, ..., k∗ − 1}, such that

(e+ Ieβ) mod N = (f + Ifβ) mod N
⇒ τ + g1N = (Ie − If)β,

(29)

for some integer g1, where τ = f − e 6= 0. Furthermore,
substituting (27) into (28), we have

k∗β mod kh = 0
⇒ β = g2h,

(30)

for some integer g2. Substituting (27) and (30) into (29), we
then have

τ + g1kh = (Ie − If)g2h,
τ = ((Ie − If)g2 − g1k∗)h.

(31)

Given that 1 ≤ τ < h, it is not possible for (31) to hold.
3) What N for a TDMA system is the most flexible in terms

of optimal packing?: An interesting question arises from the
above discussion. Suppose that we want optimal packing to
be possible for all β < N . What N will allow this?

Corollary 1. If N is a power of 2 (i.e., N = 2n for some n),
then optimal packing is possible for all β < N . Conversely, if
N is not a power of 2, then optimal packing is not possible
for some β < N .

Proof: We first prove the “if” part. First, suppose that β is
odd. Then there is no common factor between β and N = 2n.
The smallest k∗ that can satisfy the condition in proposition 1
must be k∗ = N , which is even. Therefore, all odd β allows for
optimal packing. Next, suppose that β is even. We can write
β = α2g for some integer g < n and for some odd integer α.
Thus, the common factor between β and N is 2g . The smallest
k∗ such that (33) is satisfied must be k∗ = 2n−g . Since k∗ is
even, the condition in Proposition 1 is also satisfied.

We next prove the “only if” part (the converse). Since N is
even, if N is not a power of 2, we can express it as N = m2g ,
where m is an odd integer larger than 1, and g ≥ 1. Consider
β = 2g . In this case, the smallest k∗ that satisfies (33) is k∗ =
m, which is odd. Thus, by Proposition 1, optimal packing is
not possible with this β (note: in general, there could be other
β for which optimal packing is not possible; this is just an
example).

4) Discussion: If N is large and one client-server pair can
have only one pair of time slots within the very large TDMA
frame, that will be a serious limitation. In this case, we can
always allocate several time-slot pairs to a client-server pair.
For example, say N = 64 and β = 8. If a client wants to
interact with the server two times within a TDMA frame,
we could assign two client-server time-slot pairs to the same
client, say (0, 8) and (32, 40).

V. JIT SYSTEM IMPLEMENTATION

Our implementation3 is based on a modification of Openwifi
[22], a free open-source IEEE 802.11 (Wi-Fi) SDR imple-
mentation on SoC platforms. Openwifi works on the Xilinx
Zynq-7000 SoC that consists of a Field Programmable Gate
Array (FPGA) and an ARM processor. Openwifi implements

3https://github.com/Leo-Cheung-CUHK/openwifi-JIT

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 11

PHY and MAC functions with stringent latency requirements
on FPGA [22]. The Openwifi driver for accessing these
PHY and MAC functions, on the other hand, is implemented
in the embedded Linux running on the ARM processor.
The Openwifi driver sends packets to and receives packets
from the MAC layer using the Advanced eXtensible Inter-
face 4 (AXI-4), a parallel high-performance low-latency SoC
software-hardware communication interface. As with most Wi-
Fi software implementations, the Openwifi driver instantiates
Application Programming Interfaces (APIs) defined by the
Linux mac80211 subsystem. Thanks to the modular design
of Openwifi, researchers can study and modify this full-stack
Wi-Fi implementation easily. Our modifications of Openwifi
are described as follows

To realize the JIT-triggered packet generation, we imple-
mented the JIT middleware at the client into the Openwifi
driver in the ARM processor with four realized functionalities
as discussed in the following:

(i) Registering application: An application running in the
userspace first needs to register with the JIT middleware
so that the JIT middleware can send pull signals to
the application. Specifically, a client application should
register its unique process ID (PID) with the JIT middle-
ware. Since the JIT middleware is implemented within
the Openwifi driver running in the kernel, the client
application uses ioctl to register its PID with the JIT
middleware (see https://en.wikipedia.org/wiki/Ioctl for
details on ioctl).

(ii) Scheduling pull-signal events: The JIT middleware uses
a Linux’s high-resolution timer (hrtimer) with nanosec-
ond resolution to schedule pull-signal events. The JIT
system uses a reserved POSIX real-time signal as the
pull signal. The reserved POSIX real-time signals can
be the SIGRTMIN through SIGRTMAX signals intended
for use defined by the users. For each pull-signal event,
the JIT middleware sends a pull signal to the client’s
application using the SIGNAL Linux library.

(iii) Reacting to interrupt: The client’s application has
a handler function. This handler function allows the
client’s application to generate and send a new packet to
the TDMA MAC layer (see Fig. 4) using the Openwifi
driver API upon detecting the POSIX real-time signal.

(iv) Returning feedback information: Recall from the dis-
cussion in Section IV-A that the MAC layer needs to
return a calculated slack time to the JIT middleware.
Thanks to the transmission-interrupt mechanism imple-
mented by Openwifi in which the Openwifi driver always
receives an interrupt after the TDMA MAC layer finishes
a packet transmission. We use this interrupt mechanism
to send the calculated slack time to the JIT middleware.

Note that the server does not need JIT middleware since the
JIT-triggered packet generation mechanism is to reduce the
extra client’s waiting time (see Section III).

We implemented a time-slotted TDMA MAC protocol on
FPGA by overwriting the CSMA MAC protocol of Openwifi.
In addition, we implemented a three-way handshake scheme
based on precise time protocol (PTP) time to let each client-

server pair have a common sense of time4.

VI. EXPERIMENTAL RESULTS

As related in Section III, the JIT system minimizes the
application-to-application RTT for client-server applications.
This is done by minimizing: i) server’s extra waiting time
Ws using the JIT time-slot allocation; ii) the client’s extra
waiting time Wc using the JIT-triggered packet generation. In
the following, we perform experiments to evaluate our JIT
system. We detail the experiment set-up in Section VI-A,
present the JIT time allocation in Section VI-B, validate the
JIT-triggered packet generation in Section VI-C, and present
the application-to-application RTT results in Section VI-D.

A. Experiment set-up

As shown in Fig. 6, six ZYNQ boards (consisting of three
Xilinx ZC706 dev boards, one ADRV9361-Z7035 board and
two Xilinx zed boards [29]) were deployed as five client-server
pairs. For Xilinx ZC706 dev boards and Xilinx zed boards, the
AD-9361 RF evaluation boards of Analog Device Inc. were
used to support wireless communication. In our experiment,
Device 0 in Fig. 6 is the server, and the rest of the devices
are clients.

Device 0

Device 3

Device 1 Device 2

Device 4 Device 5

Fig. 6. The experimental set-up.

Several settings that apply to this experiments are as fol-
lows: i) the payload size of request and response are the same;
ii) the time duration of a time-slot is set to the same as that of
request and response; iii) the server and clients make use of
a non-real-time Linux OS. Other details related to the values
of the system parameters are given in Table I.

B. Deployment of JIT time-slot allocation mechanism

The time slots preallocated to the five client-server pairs are
determined as follows:

4The PTP algorithm of the scheme is the same as that of [6]. Time
synchronization error of our JIT system is in the order of inter IQ-sample
time.

5Before this experiment, we pre-estimated the maximum preemption delay
ST target on the client as discussed in Section IV-A, and we set STtarget =
30µs.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 12

TABLE I
PARAMETERS OF THE EXPERIMENT

Payload Size (of request and response) 126 Bytes
Packet Duration/ Time Duration of a Time Slot (∆t) 150µs

Maximum preemption delay (ST target)5 30µs
Time for request/response generation (Dc and Ds) 30µs
Number of Slots per TDMA Frame (N) 64
Time Duration of a TDMA Frame 9.6ms
Constant Smoothing Parameter α 0.9
Initial Smoothed Statistic n̂0 0µs
Number of Packets Used During Initialization Q 400

(i) Obtain server processing delay Ds: Given the above
time slot duration ∆t of our system, we find that our
platform is such that the server processing delay is within
one time slot, i.e., 0 < Ds < ∆t.

(ii) Derive inter time-slot parameter β: With 0 < Ds <
∆t, we derive that β = 2 from (26).

(iii) Allocate time slots: In this setup, we have β = 2 and
N = 64. According to (28) in Proposition 1, optimal
packing is possible if and only if k∗ = 32. Using
(27), we derive that there must be two subrings in this
optimal packing. According to Proposition 2, there are
32 possible time-slot pairs. And we used five out of them
for our experiment. That is, the time-slot pairs allocated
to the five client-server pairs are (0, 2), (1, 3), (4, 6),
(5, 7), and (8, 10).

C. Validation of JIT-triggered packet generation mechanism

This subsection investigates whether the JIT-triggered
packet generation can minimize Wc in the face of the clock
offset and timing imprecision. We benchmark our JIT system
against a baseline system without the JIT-triggered packet
generation mechanism. We describe the similarities and differ-
ences between the JIT system and the baseline system below:
Similarities
• The client’s TDMA MAC layer schedules one request

transmission per TDMA frame using the MAC clock.
• Upon receiving a request, the server generates a response.
• The server’s TDMA MAC layer schedules one response

transmission per TDMA frame using the MAC clock.
Differences
• In the JIT system, the client’s JIT middleware schedules

one pull-signal event per TDMA frame using the JIT
clock. A request is generated by the client’s application
if and only if the client’s application is interrupted by the
pull signal.

• In the baseline system, there is no pull signal. The client’s
application itself schedules one request generation per
TDMA frame using the JIT clock.

For a comprehensive investigation on the clock-offset issue,
we compare the JIT system and baseline system under three
different controlled settings on the clock tick rates: i) in setting
1, the JIT clock and the MAC clock have the same tick rate;
ii) in setting 2, the JIT clock ticks more slowly than the
MAC clock; iii) in setting 3, the JIT clock ticks faster than
the MAC clock. For setting 2 (setting 3), we assume that

the clock tick rate difference in the two clock systems is a
small constant value +0.0005% (−0.0005%). Most oscillators,
including low-cost oscillators, have frequency accuracy better
than this specification.

In practice, we cannot directly control the relative tick rates
of the JIT clock and MAC clock in a general framework (see
Section IV-A). However, our JIT system design is based on
the Openwifi design in which the same clock source is used
to drive the Linux OS and the communication layer, and there
will be no asynchrony between the two clocks6. Thus, for the
study of the general framework, we simulated the settings in
an artificial way. First, setting 1 requires no further effort since
the ZYNQ boards are SoC evaluation boards in which the JIT
clock and MAC clock share the same clock oscillator and tick
at the same rate. To simulate the clock tick rate differences
in both settings 2 and 3, we performed some adjustments as
follows: i) in the JIT system, the initial TDMA frame duration
of the client’s JIT middleware was adjusted to 9.6048ms and
9.5952ms to simulate −0.0005% and 0.0005% clock tick
rate differences in the two clock systems, respectively; ii)
in the baseline system, the TDMA frame duration of the
client’s application was adjusted to 9.6048ms and 9.5952ms
for settings 2 and 3, respectively.

We expect the JIT-triggered packet generation of the JIT
system can still make sure that, on average, the pull-signal
period is still 9.6ms for both settings 2 and 3. For clarity,
we use the notation JITa and the notation Baselinea to
denote the JIT system and the baseline system in the setting
a, respectively. Meanwhile, since a non-real-time OS was
deployed, both the JIT system and baseline system for all
three settings could experience preemptions from other tasks.
Hence, this experiment could also investigate the effect arising
from the timing-imprecision issue. Without loss of generality,
we use pair 1 with time-slot pair (0, 2) for the investigation.

In a general full-stack Wi-Fi system, a packet generated by
an upper layer will first be stored in a FIFO buffer at a lower
layer, waiting to be retrieved by a process at the lower layer for
transmission. For example, in the design of Openwifi, a packet
sent by the ARM first arrives at a transmission FIFO buffer
in the FPGA. This packet is later retrieved by the MAC layer
for RF transmission. Fig. 7 plots the number of packets in
the transmission FIFO buffer for the JIT system and baseline
system (the y-axes) when the time slot allocated to the client
comes along (the x-axes). To avoid cluttering, Fig. 7 only plots
the buffer occupancy once every 100 TDMA frames. We can
see from Fig. 7 that

(i) Both Baseline1 and JIT1 hold one packet in the trans-
mission FIFO buffer all the time.

(ii) In Baseline2, the number of packets in the transmission
FIFO buffer wraps from 0 to 1 repeatedly. The reason
of the wrapping is that the FIFO buffer may underflow
in Baseline2 once in a while: when the transmission

6If we deploy an embedded system design like Openwifi, we do not need
to address the clock-offset issue discussed in Section IV-A. However, we
still need the JIT middleware to address the time-imprecision issue due to
preemption delays described in Section IV-A. As we will see in Section
VI-C and Section VI-D, the system could still suffer from large extra client’s
waiting-times if the time-imprecision issue is not addressed.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 13

opportunity comes along at the TDMA MAC layer, there
is no packet in the FIFO buffer. In contrast, JIT2 holds
one packet all the time.

(iii) In Baseline3, the number of packets in the transmission
FIFO buffer keeps increasing. The FIFO buffer overflows
in Baseline3. However, JIT3 still holds one packet all
the time.

The Wc in Baseline3 will eventually go to infinity, leading
to an unbounded application-to-application RTT. In particular,
Baseline3 could crash due to the FIFO buffer overflow.
Therefore, we bypass the experimental results of Baseline3
going forward.

0.9

1

1.1

Fig. 7. The number of packets in the transmission FIFO buffer collected once
every 100 TDMA frames. Note that the points for JIT1, JIT2, JIT3, and
Baseline1 overlap – the buffer occupancy stays constant at 1 throughout.

We next show the Wc of the JIT system and baseline system
(except JIT3) in Fig. 8. In Fig. 8, we only plot the Wc once for
every 100 TDMA frames. From Fig. 8, we have the following
observations:

(i) The Wc of JIT1, JIT2 and JIT3 are stable and roughly
the same. Specifically, we can see that despite the fluc-
tuations of processing delays due to preemptions, the
Wc of the JIT system only fluctuates within a small
range around 30µs (the value of ST target). This result
is consistent with the discussion in Section IV-A. The
experimental results confirm that the JIT system is robust
against preemption jitters: it effectively addresses the
timing-imprecision issue and keeps Wc stable at the
target slack time ST target

(ii) The Wc of Baseline2 wraps from the minimum to the
maximum repeatedly. A packet may arrive at the FIFO
buffer just slightly after the last transmission opportunity.
In particular, the Wc in Baseline2 ranges from 0 to the
value of one TDMA frame duration.

(iii) Baseline1, without the clock-tick rate difference, has
a more stable Wc compared with that of Baseline2.
However, unlike the other systems, Baseline systems or
JIT systems, the Wc obtained in each experimental trial

of Baseline1 can be different and subject to random-
ness. For example, Fig. 8 shows the results of three
experiments for Baseline1. These observed results are
explained as follows. For Baseline1, the moment the ap-
plication layer generates a packet is not synchronized to
the moment of the next transmission opportunity. Within
the same experiment, the offset in packet-generation
time and transmission opportunity is constant throughout
since the application layer and the MAC layer use
the same clock. However, the offset itself is random
from experiment to experiment. Thus, depending on this
random offset, the Wc experienced is also random and
ranges from zero to one TDMA frame duration. Overall,
the average value of Baseline1’s Wc, which is half of
a TDMA frame duration, is much larger than the stable
Wc of JIT1.

This result convinces us that the JIT-triggered packet genera-
tion mechanism maintains good synchronization between the
JIT middleware and the TDMA MAC layer, addressing the
clock-offset issue and ensuring each packet can be transmitted
at the desired time.

26

27

28

29

30

Fig. 8. Plots of the client’s extra waiting time Wc collected once every 100
TDMA frames

D. Application-to-Application RTT Evaluation

This subsection first investigates how Wc affects the
application-to-application RTT of the JIT system and the
baseline system. To obtain the application-to-application RTT,
we logged two kinds of timestamps on the client’s Linux
system: the time when the client’s application starts to generate
a request packet, denoted by T start, and the time when
the client’s application receives the corresponding response
packet, denoted by T end. The application-to-application RTT
for a client-server application is RTT = T end − T start.

In this experiment, both the baseline system and JIT system
use JIT time-slot allocation. And we again use client-server
pair 1 assigned with the time-slot pair (0, 2) for the investi-

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 14

0.49

0.5

0.51

Fig. 9. RTT of the JIT system and the baseline system collected once every
100 TDMA frames.

gation. Fig. 9 plots the RTT once every 100 TDMA frames.
We have the following observations:

(i) Having a stable Wc, JIT1, JIT2 and JIT3 all have small
and stable RTT s.

(ii) The RTT of Baseline2 drifts with time due to the
varying Wc. In particular, the maximum value of the
RTT in Baseline2 could be more than one TDMA frame
duration.

(iii) Recall that the Wc of Baseline1 can change from ex-
periment to experiment. Thus, the RTT can also change
from experiment to experiment. In Fig. 9, we plot the
average RTT of Baseline1 among these experiments.
As shown, the average RTT of Baseline1 is much larger
than the stable RTT of JIT1.

Note that even with the use of JIT time-slot allocation here,
the RTT s of all the three baseline systems are still larger than
that of the JIT systems. If the baseline systems did not use
the JIT-time slot allocation, then their RTT s would be even
larger due to the effect of Ws. For example, if we assign the
time-slot pair (0, 32) rather than (0, 2) to the two baseline
systems, then their RTT will increase by the duration of
30 TDMA slots, which is 4.5ms in our system. If we are
unfortunate enough to assign the time-slot pair(0, 1) to the
two baseline systems, then their RTT will increase by 62
TDMA slots (around one TDMA frame) which is 9.3ms in
our system. This case corresponds to the case in which the
conventional networking system has the worst-case maximum
possible server’s waiting time Ws, as shown in (8) of Section
III. In short, the worst-case RTT of baseline systems depends
on the TDMA frame duration. The larger the TDMA frame
duration a baseline system has, the larger the worst-case RTT .
However, this situation does not happen in our JIT system.
That is, the RTT of our JIT system is independent of the
TDMA frame duration. As seen in Fig. 9, the RTT of the JIT
system is stable at around 510µs.

We further decompose this 510µs of RTT into several

components as listed in the following:
(i) 30µs for the client to generate a request packet, as given

in Table I.
(ii) 30µs of the target slack time ST target for each request

packet. Note that the value of ST target depends on
the maximum preemption delay that a system could
experience.

(iii) 450µs of the elapsed time between a request packet
transmitted by the client at the beginning of time slot
0 and the corresponding response packet received by the
client at around the end of time slot 2.

(iv) Some other minor time that the client took to return the
response back to the application.

The above discussions indicate that the JIT system as we
implemented has achieved the minimum possible RTT .

In summary, the JIT system enables synchronized JIT-
triggered packet generation with which a packet can be sent
shortly after being generated by the application. Together with
an optimal time-slot allocation derived from our JIT time-slot
allocation scheme, our JIT system pushes the application-to-
application RTT of a client-server application to the limit.

VII. CONCLUSION

Due to loose coordination between the communication
and application layers, client-server applications running on
conventional networking systems could suffer from large
request-response latency. This round-trip latency includes the
extra waiting time incurred by the request while it waits
for a transmission opportunity at the client side, and the
extra waiting incurred by the response while it waits for
a transmission opportunity at the server side. What is even
worse for the conventional networking systems is that, in a
TDMA system, these two extra waiting times depend on the
duration of the TDMA frame: the larger the TDMA frame, the
larger the worst-case request-response latency the client-server
application can suffer from.

To reduce request-response latency, we put forth a JIT
framework with two mechanisms to minimize the two extra
waiting times: i) a JIT-triggered packet generation at the
client side to inform the client application of an upcoming
transmission opportunity so that the client application can
generate a just-in-time request; ii) a JIT time-slot allocation
that caters to the delay in between the reception of the request
and the arrival of the response at the communication layer at
the server, so that when the response is generated by the server
application, there is a just-in-time transmission opportunity to
send out the response. Our mathematical analysis indicates
that: i) the total extra waiting times in conventional networking
systems can be as large as two times the duration of the TDMA
frame; ii) the JIT-triggered packet generation mechanism is
robust against the preemption delay in multitasking software
architecture and against the timing offset among different
system components; iii) a TDMA network with a power-of-
2 time slots per superframe is optimal for realizing the JIT
time-slot allocation.

We implemented our JIT system on the Xilinx SoC plat-
form. The experimental results validate our analysis, and show

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 15

that: i) the total extra waiting times in our JIT framework do
not depend on the duration of the TDMA frame and only
fluctuate within a small range; ii) the JIT system can achieve
the minimum achievable application-to-application RTT. We
believe that our JIT framework provides a useful paradigm for
many time-sensitive industrial network applications with very
stringent latency requirements for client-server interactions.

We remark that the JIT framework can potentially be incor-
porated into next-generation networks, e.g., the 5G network,
to support user applications that require low latency [30]–[32].
Regarding 5G, the JIT-triggered packet-generation mechanism
can be leveraged to decrease user application-layer latency. To
this end, once the PHY-layer resource allocation to a specific
user node is determined (e.g., after fixing the transmit time
interval (TTI) [33] of the 5G network [34]), the user node’s
MAC layer will return the packet waiting times (the calculated
slack times as discussed in Section V) at the MAC layer to the
JIT middleware recurrently. JIT middleware could then inform
the application to generate packets in a JIT manner so as to
reduce the MAC-layer waiting time.

Finally, although this paper focuses on the client-server
messaging model, the JIT system could also run in other
common messaging models. For example, in the publish-
subscribe model7, a group of sensors may send information
to a broker to be distributed to subscribers. If the sensors
make their measurements in a JIT manner (i.e., just before
their transmission opportunities arise) and send them to the
broker, then the broker can disseminate the freshest possible
measurement information to the subscribers.

APPENDIX A
PROOF OF CLOCK-TICK DIFFERENCE COMPENSATION AND

STABILITY

In the following, we show that the adaptive synchronization
mechanism in our JIT-triggered packet generation can compen-
sate for this clock-tick difference and is stable. We first modify
(22) to a more convenient form in (32) for later analytical
development. Specifically, substituting (18) into (22), we have

UJITi = UJITi−1 + (oi−1 − oi) + F + n̂i, i ≥ 1. (32)

From (21), we have

ST i = UMAC
i − (UJITi +Dc,i). (33)

Substituting (32) and (15) into (33), we have

ST i = (UMAC
i−1 − UJITi−1)− ((oi−1 − oi) + n̂i +Dc,i) (34)

= (STi−1 +Dc,i−1)− ((oi−1 − oi) + n̂i +Dc,i) (35)
= STi−1 + ∆oi − n̂i −∆Dc,i, i ≥ 1 (36)

where ∆oi = oi − oi−1 and ∆Dc,i = Dc,i − Dc,i−1. From
(25), we also have

n̂i =

α(STi−1 − ŜT target) n = 1

α(STi−1 − ŜT target)+

α(1− α)(STi−2 − ŜT target) + ...

+α(1− α)i−1(ST0 − ŜT target)

n > 1
.

(37)

7https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe pattern

Now, define the slack time deviation as S̃T i = ST i −
ŜT target. Substituting (37) into (36) and subtracting ŜT target

for both sides of (36), we have

S̃T i = ST i − ŜT target

= ST i−1 − ŜT target + ∆oi −∆Dc,i − n̂i

=

∆o1 −∆Dc,1 + (1− α)S̃T 0 n = 1

∆oi −∆Dc,i + (1− α)S̃T i−1
−α(1− α)S̃T i−2 − α(1− α)2S̃T i−3
...− α(1− α)i−1S̃T 0

n > 1
.

(38)
In general, we see that the deviation S̃T i fluctuates with the in-
stantaneous clock offset increment ∆oi and the instantaneous
preemption delay increment ∆Dc,i. We next show that the
system is stable.

First, define our system input as xi = ∆oi−∆Dc,i and our
system output as yi = S̃T i. Then we can rewrite (38) in the
form of difference equations as

yi=

x1 + (1− α)y0 i = 1

xi + (1− α)yi−1 − α
i−2∑
j=0

(1− α)
i−j−1

yj i > 1
.

(39)
where y0 = ST̃ = C < ∞ is the initial state of the system.
From (39) we can see that this system is a discrete-time linear
feedback system where the output is generated not only from
the input but also from the previous outputs. From (39), we
can write the z-transform of the system response as

H(z) = Y (z)
X(z) = 1

1−(1−α)z−1+α(1−α)z−2+α(1−α)2z−3+...

= 1

1−z−1+ αz
−1

1−(1−α)z
−1

= z2−(1−α)z
z2−2(1−α)z+(1−α)

.

(40)
From (40), we can derive the Z-plane’s poles r1 = (1− α) +
j
√
α(1− a) and r2 = (1 − α) − j

√
α(1− α). Since the

input signal of our system xi is a right-sided sequence and is
rational, the region of convergence (ROC) of our system is the
region in the z-plane outside the outermost pole. Also, since
|r1| = |r2| < 1, our system’s ROC includes the unit circle.
According to the stability sufficient condition, our system is
hence stable. Furthermore, if xi = ∆oi−∆Dc,i = ∆, where ∆
is a constant value, ST i will finally converge to ∆+ ŜT target.

APPENDIX B
PROOF OF BOUNDED DIFFERENTIAL UMAC

i − UJITi

In the following, we show that the adaptive synchronization
mechanism in our JIT-triggered packet generation can have
bounded differential UMAC

i −UJITi even if the JIT clock and
the MAC clock are not synchronized and can drift apart.

Recall that UJITi is the time when the system generates a
pull signal for requesting the information, UMAC

i is the time
when the system transmits the information. When the system
reaches convergence where ST i = ∆ + ŜT target, from (33)
we have UMAC

i − UJITi = ∆ + ŜT target + Dc,i = ∆oi +
Dc,i−1 + ŜT target. If ∆oi −∆Dc,i = ∆ is constant, we have
two particular extreme cases:

(i) If ∆Dc,i = 0 and ∆oi = ∆, the system has no jitter in
preemption delay and UMAC

i − UJITi is constant.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 16

(ii) If ∆Dc,i = −∆ and ∆oi = 0, UMAC
i − UJITi drifts

with Dc,i−1. In particular, when ∆Dc,i = −∆ ≥ 0,
UMAC
i − UJITi increases as the value of preemption

delay increases. In this case, UMAC
i − UJITi becomes

larger and larger even though ST i converges.

In general, if the preemptive delay is bounded, case (ii)
is only a hypothetical scenario. The discussion of case
(i) indicates that the system can have bounded differential
UMAC
i − UJITi even if the JIT clock and the MAC clock

can drift apart. That is, our system can deal with the clock
asynchronies between two different clock systems.

APPENDIX C
JIT IN CSMA NETWORKS

This appendix considers what if a CSMA network is used
instead of a TDMA network. Instead of a deterministic JIT
system, we can aim for a probabilistic JIT system, since
the underlying network does not guarantee communication
resources to the users. For CSMA networks such as Wi-Fi,
the MAC layer has a back-off counter to regulate when a
node gets a transmission opportunity. When the counter value
reaches zero, then the node gets to transmit. For JIT principle
A, when the counter reaches a value equivalent to the max
turn-around time for the application to generate a packet and
deliver it to the PHY layer, then the JIT middleware can
send a pull signal to the application layer. This maneuver is
probabilistic in that the counter may still get frozen because
the node senses another node transmitting before the counter
value reaches zero. In this case, the packet would have arrived
at the PHY layer too early. However, we remark that using
the probabilistic JIT pull is still better than not using it. If the
application layer just pushes data to the MAC layer regardless
of the counter value, and if a packet arrives at the MAC layer
with a large counter value, the chances for the counter to be
repeatedly frozen by a series of packets would be even higher,
resulting in an even higher wait time at the MAC layer.

For JIT principle B, a possibility is to set the counter value
at the server to correspond to the maximum turn-around time
for the server to process the request and generate a response
to be delivered to the MAC layer. That is, upon receiving a
response packet, the counter value is set to this value. Again,
this is a best-attempt probabilistic maneuver.

Yet another approach is to redesign the back-off mechanism
of the CSMA network (assuming it only supports one server
and multiple clients as in our use case here) so as to minimize
the delay experienced by the client and the delay experienced
by the server, taking into account the JIT mechanisms. This
line of work awaits future investigation.

In general, we believe that the JIT principles are applicable
to all networks in which (i) the MAC layer of a client has
a sense of when the next transmission opportunity may be
upcoming (for JIT principle A), and (ii) the MAC layer
of the server has a certain priority in scheduling the next
transmission opportunity for itself (for JIT principle B). For
example, a network that allocates resources based on polling
or reservation can also adopt the JIT principles.

REFERENCES

[1] C. Zhan, H. Hu, Z. Liu, Z. Wang, and S. Mao, “Multi-uav-enabled
mobile-edge computing for time-constrained iot applications,” IEEE
Internet of Things Journal, vol. 8, no. 20, pp. 15 553–15 567, 2021.

[2] Y. An, F. R. Yu, J. Li, J. Chen, and V. C. Leung, “Edge intelligence
(ei)-enabled http anomaly detection framework for the internet of things
(iot),” IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3554–3566,
2020.

[3] J. Zhang and D. Tao, “Empowering things with intelligence: a survey
of the progress, challenges, and opportunities in artificial intelligence of
things,” IEEE Internet of Things Journal, vol. 8, no. 10, pp. 7789–7817,
2020.

[4] K. Guan, D. He, B. Ai, D. W. Matolak, Q. Wang, Z. Zhong, and
T. Kürner, “5-ghz obstructed vehicle-to-vehicle channel characterization
for internet of intelligent vehicles,” IEEE Internet of Things Journal,
vol. 6, no. 1, pp. 100–110, 2018.

[5] V. K. Huang, Z. Pang, C.-J. A. Chen, and K. F. Tsang, “New trends
in the practical deployment of industrial wireless: From noncritical to
critical use cases,” IEEE Industrial Electronics Magazine, vol. 12, no. 2,
pp. 50–58, 2018.

[6] J. Liang, H. Chen, and S. C. Liew, “Design and implementation of time-
sensitive wireless iot networks on software-defined radio,” IEEE Internet
of Things Journal, 2021.

[7] H. Hellstrom, M. Luvisotto, R. Jansson, and Z. Pang, “Software-defined
wireless communication for industrial control: A realistic approach,”
IEEE Industrial Electronics Magazine, vol. 13, no. 4, pp. 31–37, 2019.

[8] W. Nakimuli, J. Garcia-Reinoso, J. E. Sierra-Garcia, P. Serrano, and I. Q.
Fernández, “Deployment and evaluation of an industry 4.0 use case over
5g,” IEEE Communications Magazine, vol. 59, no. 7, pp. 14–20, 2021.

[9] J. L. Messenger, “Time-sensitive networking: An introduction,” IEEE
Communications Standards Magazine, vol. 2, no. 2, pp. 29–33, 2018.

[10] M. Luvisotto, Z. Pang, and D. Dzung, “High-performance wireless
networks for industrial control applications: New targets and feasibility,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 1074–1093, 2019.

[11] J. Reill, C. S. Gonzales, V. Senft, and M. Pfau, “Real-time development
interface embedded in a compact motion controller,” in PCIM Europe
2018; International Exhibition and Conference for Power Electronics,
Intelligent Motion, Renewable Energy and Energy Management. VDE,
2018, pp. 1–8.

[12] L. Mathe, P. D. Burlacu, and R. Teodorescu, “Control of a modular
multilevel converter with reduced internal data exchange,” IEEE Trans-
actions on Industrial Informatics, vol. 13, no. 1, pp. 248–257, 2016.

[13] C. L. Toh and L. Norum, “A performance analysis of three potential con-
trol network for monitoring and control in power electronics converter,”
in 2012 IEEE International Conference on Industrial Technology. IEEE,
2012, pp. 224–229.

[14] M. Luvisotto, Z. Pang, and D. Dzung, “Ultra high performance wire-
less control for critical applications: Challenges and directions,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 3, pp. 1448–1459,
2016.

[15] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in 2015 IEEE International Symposium on Information Theory
(ISIT). IEEE, 2015, pp. 3008–3012.

[16] Y. Sun, I. Kadota, R. Talak, and E. Modiano, “Age of information: A new
metric for information freshness,” Synthesis Lectures on Communication
Networks, vol. 12, no. 2, pp. 1–224, 2019.

[17] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and
S. Ulukus, “Age of information: An introduction and survey,” IEEE
Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1183–
1210, 2021.

[18] I. Rubin, “Message delays in fdma and tdma communication channels,”
IEEE Transactions on Communications, vol. 27, no. 5, pp. 769–777,
1979.

[19] Y. Cheng, D. Yang, and H. Zhou, “Det-wifi: a multihop tdma mac imple-
mentation for industrial deterministic applications based on commodity
802.11 hardware,” Wireless Communications and Mobile Computing,
vol. 2017, 2017.

[20] Z. Fernández, I. Val, M. Mendicute, and E. Uhlemann, “Analysis and
evaluation of self-organizing tdma for industrial applications,” in 2019
15th IEEE International Workshop on Factory Communication Systems
(WFCS). IEEE, 2019, pp. 1–8.

[21] C.-L. Chang and K.-Y. Ho, “Slot assignment for tdma mac in industrial
wireless sensor network,” in 2016 IEEE/ACIS 15th international con-
ference on computer and information science (ICIS). IEEE, 2016, pp.
1–5.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 17

[22] X. Jiao, W. Liu, M. Mehari, M. Aslam, and I. Moerman, “openwifi: a
free and open-source ieee802. 11 sdr implementation on soc,” in 2020
IEEE 91st Vehicular Technology Conference (VTC2020-Spring). IEEE,
2020, pp. 1–2.

[23] F. Bartols, T. Steinbach, F. Korf, and T. C. Schmidt, “Per-
formance analysis of time-triggered ether-networks using off-the-
shelf-components,” in 2011 14th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops. IEEE, 2011, pp. 49–56.

[24] P. Djukic and S. Valaee, “Delay aware link scheduling for multi-
hop tdma wireless networks,” IEEE/ACM Transactions on networking,
vol. 17, no. 3, pp. 870–883, 2008.

[25] W. Shen, T. Zhang, F. Barac, and M. Gidlund, “Prioritymac: A priority-
enhanced mac protocol for critical traffic in industrial wireless sensor
and actuator networks,” IEEE Transactions on Industrial Informatics,
vol. 10, no. 1, pp. 824–835, 2013.

[26] K. Nakashima, T. Matsuda, M. Nagahara, and T. Takine, “Cross-layer
design of an lqg controller in multihop tdma-based wireless networked
control systems,” in 2017 IEEE 28th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC). IEEE,
2017, pp. 1–7.

[27] J. Y. Leung, O. Vornberger, and J. D. Witthoff, “On some variants of
the bandwidth minimization problem,” SIAM Journal on Computing,
vol. 13, no. 3, pp. 650–667, 1984.

[28] C.-C. Han and K.-J. Lin, “Scheduling real-time computations with
separation constraints,” Information Processing Letters, vol. 42, no. 2,
pp. 61–66, 1992.

[29] Xilinx Zynq Product Table. [Online]. Available: https://www.xilinx.com/
products/silicon-devices/soc/zynq-7000.html#productTable

[30] L. Hu and Q. Ni, “Iot-driven automated object detection algorithm for
urban surveillance systems in smart cities,” IEEE Internet of Things
Journal, vol. 5, no. 2, pp. 747–754, 2017.

[31] J. Liu, X. Du, J. Cui, M. Pan, and D. Wei, “Task-oriented intelligent
networking architecture for the space–air–ground–aqua integrated net-
work,” IEEE Internet of Things Journal, vol. 7, no. 6, pp. 5345–5358,
2020.

[32] D. Minoli, K. Sohraby, and B. Occhiogrosso, “Iot considerations, re-
quirements, and architectures for smart buildings—energy optimization
and next-generation building management systems,” IEEE Internet of
Things Journal, vol. 4, no. 1, pp. 269–283, 2017.

[33] P. Marsch, Ö. Bulakci, O. Queseth, and M. Boldi, 5G System Design.
Wiley Online Library, 2018.

[34] M. Elsayed and M. Erol-Kantarci, “Ai-enabled radio resource allocation
in 5g for urllc and embb users,” in 2019 IEEE 2nd 5G World Forum
(5GWF). IEEE, 2019, pp. 590–595.

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html#productTable
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html#productTable

	I Introduction
	II Related Work
	II-A Work Related to JIT principle A
	II-B Work Related to JIT principle B

	III Motivation for JIT: A Quantitative Overview
	IV System Design
	IV-A JIT-triggered packet generation
	IV-A1 Synchronization Mechanism

	IV-B JIT time-slot allocation in TDMA networks
	IV-B1 Optimal Packing - A Special Combinatorial Problem
	IV-B2 Optimal Packing Construction
	IV-B3 What N for a TDMA system is the most flexible in terms of optimal packing?
	IV-B4 Discussion

	V JIT System Implementation
	VI Experimental Results
	VI-A Experiment set-up
	VI-B Deployment of JIT time-slot allocation mechanism
	VI-C Validation of JIT-triggered packet generation mechanism
	VI-D Application-to-Application RTT Evaluation

	VII Conclusion
	Appendix A: Proof of clock-tick difference compensation and stability
	Appendix B: Proof of bounded differential UiMAC - UiJIT
	Appendix C: JIT in CSMA networks
	References

