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Abstract—In this paper, we consider a discrete-time
information-update system, where a service provider can proac-
tively retrieve information from the information source to update
its data and users query the data at the service provider. One
example is crowdsensing-based applications. In order to keep
users satisfied, the application desires to provide users with fresh
data, where the freshness is measured by the Age-of-Information
(AoI). However, maintaining fresh data requires the application
to update its database frequently, which incurs an update cost
(e.g., incentive payment). Hence, there exists a natural tradeoff
between the AoI and the update cost at the service provider
who needs to make update decisions. To capture this tradeoff,
we formulate an optimization problem with the objective of
minimizing the total cost, which is the sum of the staleness
cost (which is a function of the AoI) and the update cost.
Then, we provide two useful guidelines for the design of efficient
update policies. Following these guidelines and assuming that
the aggregated request arrival process is Bernoulli, we prove
that there exists a threshold-based policy that is optimal among
all online policies and thus focus on the class of threshold-based
policies. Furthermore, we derive the closed-form formula for
computing the long-term average cost under any threshold-based
policy and obtain the optimal threshold. Finally, we perform
extensive simulations using both synthetic data and real traces
to verify our theoretical results and demonstrate the superior
performance of the optimal threshold-based policy compared
with several baseline policies.

Index Terms—Data freshness, update cost, MDP, threshold-
based policy, Age-of-Information.

I. INTRODUCTION

With the remarkable development of communication net-
works and smart portable devices in recent years, we have
witnessed significant advances in crowdsensing-based appli-
cations (e.g., Google Waze [2] and GasBuddy [3]). These
applications provide services to users by resorting to the
community to sense and send back real-time information
(e.g., traffic conditions and gas prices) [4]. To satisfy the
diverse needs of users, such applications need to maintain

The work of Bo Ji and Zhongdong Liu was supported in part by the NSF
under Grants CNS-2112694 and CNS-2106427. The work of Zizhan Zheng
was supported in part by the NSF under Grant CNS-1816943. The work of
Y. T. Hou was supported in part by ONR MURI grant N00014-19-1-2621,
Virginia Commonwealth Cyber Initiative (CCI), and Virginia Tech Institute
for Critical Technology and Applied Science (ICTAS). A preliminary version
of this work was presented at ICCCN 2022 as an invited paper [1].

Zhongdong Liu (zhongdong@vt.edu) and Bo Ji (boji@vt.edu) are with
the Department of Computer Science, Virginia Tech, Blacksburg, VA.
Bin Li (binli@psu.edu) is with the Department of Electrical Engineer-
ing, the Pennsylvania State University, State College, PA. Zizhan Zheng
(zzheng3@tulane.edu) is with the Department of Computer Science, Tulane
University, New Orleans, LA. Y. Thomas Hou (thou@vt.edu) is with the
Bradley Department of Electrical and Computer Engineering, Virginia Tech,
Blacksburg, VA.

…

Users
Information Source

(e.g., points of interest)

Server

…

A2: retrieve

A3: update

Data
(e.g., gas prices)

Fig. 1: An illustration of our system model. Upon receiving
a request from the users, the server can either first update the
data and then reply (red path: A1-A4) or simply reply with
local data (blue path: B1-B2).

their knowledge of a set of distributed points of interest
(PoI). For example, GasBuddy monitors gasoline prices at a
large number of scattered gas stations in a certain area. In
order to quickly and accurately respond to users’ requests,
the applications need to keep their data fresh. However, given
the dynamic changes of the data, maintaining the freshness
of data introduces a natural tradeoff between data freshness
and update cost. On the one hand, users are unsatisfied if
the responses to their requests are outdated; on the other
hand, there is a cost for the applications to update their
data because updating data relies on user feedback and often
requires monetary payment to incentivize users [3], [4].

In fact, the tradeoff between data freshness and update cost
does not only exist in crowdsensing-based applications, but
also in a wide variety of time-sensitive data-driven appli-
cations that require timely information updates [5]–[9]. For
example, in stock analysis applications, the server keeps track
of the prices of a large number of stocks and generates
different versions of the analysis reports for the stocks at
certain times, and users send requests to query these analysis
reports [9]. To ensure that users receive the real-time analysis
of the stock they are trading with, the server needs to retrieve
timely information (e.g., various stock market indexes) from
the stock market, which incurs an update cost (e.g., band-
width resources). Similar applications also include news feeds,
weather updates, and flight aggregators.

The aforementioned applications have two notable charac-
teristics: First, the server can proactively retrieve information
from the information source to update its data, and users
need to query the server to obtain the data (i.e., the “Pull”
model [6], [10]); Second, the responses to users’ requests (e.g.,
gas prices) typically do not require significant processing, and
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the packet size is usually small, making the packet trans-
mission time negligible. However, retrieving the data from
the information source often requires certain resources and
introduces costs. These two characteristics not only distinguish
such applications from other ones whose update costs mainly
come from service and communication delays [11]–[13] but
also lead to the tradeoff between the data freshness and the
update cost.

To that end, in this work, we aim to optimize the tradeoff
between data freshness and update cost. Specifically, we
consider a discrete-time system in the setting where a ser-
vice provider can proactively retrieve information from the
information source and users obtain the data at the service
provider by sending requests (see Fig. 1). The freshness of
the data received by users is measured by a popular timeliness
metric called Age-of-Information (AoI) [5], which is defined
as the time elapsed since the most recent update occurred.
To represent the dissatisfaction of users receiving stale data,
we introduce the staleness cost, which is a non-decreasing
function of the AoI (see formal definition in Section III).
Clearly, one needs to account for both the update cost and
the staleness cost when designing an online update policy.

We summarize our main contributions as follows.
First, we study the tradeoff between the data freshness and

the update cost by formulating an optimization problem to
minimize the sum of the staleness cost (which is a function
of the AoI) and the update cost.

Second, we provide two useful guidelines for the design of
optimal update policies. These guidelines suggest that 1) the
service provider should update the data only at a point when it
receives a request, and 2) the server should perform an update
when the staleness cost is no smaller than the update cost.

Third, following these guidelines and assuming that the
request arrival process is Bernoulli, we reformulate our prob-
lem as a Markov decision process (MDP) and show that
there exists a threshold-based policy that is optimal among all
online policies, which motivates us to focus on the class of
threshold-based policies. Furthermore, we derive the closed-
form expression of the average cost under any threshold-based
policy and obtain the optimal threshold.

Finally, we perform extensive simulations using both syn-
thetic data and real traces to verify our theoretical results and
evaluate the performance of our proposed policy compared
with several baseline policies. Our simulation results show
that the threshold-based policy outperforms the baselines in
more general settings (e.g., when the request arrival process
is non-Bernoulli).

The remainder of this paper is organized as follows. We
first discuss related work in Section II. The system model is
described in Section III. Two guidelines for designing update
policies are provided in Section IV. Then, we prove that our
MDP formulation admits an optimal threshold-based policy
and derive the optimal threshold in Sections V and VI, respec-
tively. Finally, we present the numerical results in Section VII
and conclude our paper in Section VIII.

II. RELATED WORK

Ever since the concept of AoI was introduced in [5], the
study on the AoI has attracted a lot of research interest. There
is a large body of work that provides detailed analyses on the
AoI performance of information-update systems under differ-
ent queueing models (M/M/1, M/D/1, etc.) and scheduling
policies (FCFS, LCFS, etc.) [14], [15].

Another important line of research focuses on AoI mini-
mization. One specific type of optimization problem, which
is similar to our work, is the joint minimization of AoI and
certain costs [16]–[18]. In [16], the authors consider a discrete-
time system where an information source is monitored over a
communication channel with a transmission cost. They investi-
gate the optimal policy for minimizing the sum of transmission
cost and the inaccuracy of the state information at the monitor.
It turns out that the optimal policies also have a threshold-
based structure. Note that in their model, they assume that
the source is governed by a random walk process and there
are no users, which is different from ours. A similar source
monitoring problem is considered in [17], where the goal is
to minimize the sum of transmission costs and an unknown,
time-varying penalty function of the AoI. They consider
both single-source and multi-source scenarios and propose
online learning algorithms with provable regret. In [18], the
authors consider a source-monitor pair with stochastic arrival
of updates at the source. The source pays a transmission cost
to send the update, and its goal is to minimize the weighted
sum of AoI and transmission costs. Under the assumption that
the update arrival process is Poisson, they propose an optimal
threshold-based policy. Their work differs from ours in their
continuous-time setting and no user involvement.

Along this line, researchers have also considered AoI
minimization with constraints (see a survey in [19]). The
considered constraints can be viewed as a special type of
update cost. For example, in wireless networks, the update
of data consumes wireless channel resources. Therefore, the
number of packets that can be transmitted depends on the
interference model [20]. Similarly, for caching services, the
cache server can only update certain contents at a time due
to the capacity constraint [21]–[24]. Another example is the
energy constraint [25]–[28], which is common in energy-
constrained IoT systems. In these models, the update cost is
usually imposed as a constraint of the optimization problem.

While the tradeoff between AoI and costs has been studied,
most of them fall into the category where the costs primarily
come from service (e.g., CPU cycle and storage) and/or
communication (e.g., channel resources, delay, and energy
consumption). In [29], the authors consider a system where
multiple devices can sample and transmit (or retransmit) up-
dates to one receiver via unstable wireless channels, with each
sampling and transmission coming with a sampling cost and
a transmission cost, respectively. The objective is to minimize
the sum of the expected total sampling costs and transmission
costs under the expected AoI constraints. A similar problem
is also considered in [30], where the objective is to minimize



the expected AoI under the expected energy cost constraint,
which is the sum of sampling costs and transmission costs.
Slightly different from [30], the work of [31] studies the
problem of minimizing the sum of expected AoI and the
expected energy cost under the expected transmission cost
constraint. We note that those energy costs in [29]–[31] are
similar to the update cost in our work (especially regarding
their mathematical formulation), but the origins of costs are
slightly different. In the applications that we consider, the
responses to users’ requests (e.g., gas prices) are usually small
and have negligible processing time, but retrieving the data
from the information source often requires certain resources
(e.g., monetary payment) and introduces update costs. More
importantly, our work differs from those works in that we
emphasize users’ perspective and focus on user-perceived data
freshness. In our work, users can proactively query the server
to obtain the data (i.e., the “Pull” model [6], [10]), and our
primal concern is to optimize the data freshness perceived by
the users (which is a penalty function of AoI) rather than at
the server. The considered pull model and the concern of user-
perceived data freshness bring new challenges to the server:
upon users’ requests, how to balance the tradeoff between the
freshness of the data perceived by users and the update costs?

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a discrete-time information-update system that
consists of an information source, a service provider (or server
for short), and multiple users (see Fig. 1). The server can
communicate with the information source and update its data
with the latest information. The users need to query the server
to obtain the data.

We consider an aggregated arrival process1 formed by
the requests from all the users (which will be assumed as
Bernoulli process in Section V for further analysis). The
requests arrive at the beginning of the time-slot, and the server
replies to the requests with the most recently updated data at
the end of a time-slot. We use the metric Age-of-Information
(AoI) to measure the freshness of data, which is defined as
the time elapsed since the most recent update. For ease of
exhibition, we assume that the AoI drops to 0 after the update
at the end of a time-slot2. The evolution of ∆(t) is as follows:

∆(t) =

{
∆(t− 1) + 1, if u(t) = 0;
0, if u(t) = 1,

(1)

where u(t) indicates whether the server updates the data at
time-slot t. We assume that the time-slot is indexed from
1 and the initial AoI also equals 1, i.e., ∆(1) = 1. Let ui
denote the i-th update time. Then, an update policy π can be
denoted by the update times: π , {uπi }∞i=1. An illustration
of a typical AoI evolution is shown in Fig. 2. To reflect

1This is because in the applications we consider, the requested information
by each user is the same (e.g., in the Gasbuddy application, users who live
close by are often interested in the gas prices in the same area), so we can
aggregate their requests together.

2Some work also assumes that the AoI drops to 1 [17], [32]. We assume
that the AoI drops to 0 to make the discussion concise and clear.
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Fig. 2: An illustration of the AoI evolution at the server. There
are two updates (in time-slots u1 and u2) during the process
of serving three requests (in time-slots r1, r2, and r3).

the dissatisfaction level of the users when they receive stale
data, we also introduce a staleness cost for each response
of the server. Specifically, the staleness cost is defined as
a penalty function f(∆) of the AoI ∆, where the function
f : [0,∞) 7→ [0,∞) is assumed to be measurable, non-
negative, and non-decreasing. For simplicity, we let f(0) = 0.

At the beginning of each time-slot, the server can decide
whether to update the data or not. If it does, it needs to pay
a constant update cost p and receives the latest data from
the information source at the end of time-slot. To avoid the
staleness cost, the server can first update the data and then
reply to the request with the latest data. Let rj be the arrival
time of the j-th request. After the server receives the request
at rj , if the server chooses to update the data before replying
to the request, its AoI drops to 0 after the update and its
staleness cost becomes f(0) = 0. In such a case, the server
needs to pay an update cost p though. Otherwise, if the server
does not update and replies with the current local data, the
server needs to pay a staleness cost f(∆(rj)).

Assume that the number of updates during the process of
serving N requests under policy π is Uπ(N), i.e.,

Uπ(N) , max{i|uπi ≤ rN}. (2)

Then, the total cost of serving N requests, which is the sum
of update costs and the staleness costs, is defined as

Cπ(N) ,
N∑
j=1

f(∆(rj)) + pUπ(N). (3)

The objective is to find an update policy π that minimizes the
long-term average expected cost per request (or average cost
for short), which is defined as

C̄π , lim
N→∞

E[Cπ(N)]

N
, (4)

where the expectation is taken over the randomness in the
arrival process and the update policy. Here, we assume that
the limit of average cost under policy π exists. We focus on
the set of online policies, denoted by Π, under which the
information available at time t for making update decisions
includes the update history, the arrival times of requests that
arrive until t, and the update cost p. Then, we can formulate
the following optimization problem:

min
π∈Π

C̄π. (5)



IV. GUIDELINES FOR ALGORITHM DESIGN

In this section, we provide two useful guidelines for the
design of efficient update policies. Through a sample-path-
dominance argument, we show that policies following these
guidelines can achieve a lower total cost than those that do
not. Therefore, we can reduce the search space of problem (5)
to a certain class of online policies.

A. Reactive Policies
In this subsection, we present our first guideline for the

design of update policies. As described in Section III, the
server can update the data at any time. However, we show
that to achieve a lower total cost, it is sufficient for the
update policy to just consider updating the data immediately
upon receiving a new request. We call such policies Reactive
Policies as the server does not need to update the data when
there is no request. We use ΠR to denote the set of reactive
policies:

ΠR , {π ∈ Π | uπk ∈ {rj}∞j=1 for all k}. (6)

Next, we show that restricting to reactive policies does not
incur any performance loss.

Lemma 1. For any policy π ∈ Π, there exists a reactive policy
π′ ∈ ΠR that achieves an average cost no larger than that of
policy π, i.e., C̄π

′ ≤ C̄π .

We provide the detailed proof in Appendix A and explain
the key ideas as follows. Intuitively, postponing the update
until a request arrives does not increase the total cost because
the total number of updates remains the same, but doing this
achieves a lower staleness cost since the update time is closer
to the request arrival time. Therefore, reactive policies can
achieve a smaller total cost than those non-reactive policies.

Lemma 1 implies that the search space of Problem (5) can
be further reduced from the set of online policies Π to the set
of reactive policies ΠR. Now, consider any reactive policy π.
Upon receiving a request, the server needs to decide whether
to update the data or not before responding. Therefore, we use
Iπj to denote the decision made by the server upon receiving
the j-th request for the data at time rj :

Iπj ,

{
1, if the server updates the data at time rj ;
0, otherwise.

B. Capped Reactive Policies
In this subsection, we present the second guideline for the

design of update policies. In Section IV-A, we show that the
reactive policies achieve a smaller or equal average cost by
postponing the update until a request arrives. In fact, after the
server receives the request, if the staleness cost is no smaller
than the update cost, it is better for the server to update the
data to avoid a larger staleness cost. Doing so not only leads
to a smaller cost for this request but also benefits the next few
requests. We use ΠR+ to denote the set of reactive policies
that satisfy the above guideline:

ΠR+ , {π ∈ ΠR | Iπj = 1 for all j when f(∆(rj)) ≥ p}.

Π
Π

Π Π
π∗ 𝜋 𝜏∗

Fig. 3: The relationship between online policies Π, reactive
policies ΠR, capped reactive policies ΠR+, threshold-based
policies ΠT , an overall optimal policy π∗ (see Theorem 1),
and an optimal threshold-based policy π(τ∗) (see Corollary 1).
Note that policy π(τ∗) is also an overall optimal policy and
could be the same as policy π∗ in some cases.

That is, for any policy π ∈ ΠR+, it must update the data
when the staleness cost is no smaller than the update cost;
otherwise, it can choose to update the data or not. We call
such policies Capped Reactive Policies because the staleness
cost of such policies is capped by the update cost. Fig. 3
illustrates the relationship between ΠR and ΠR+. Note that
the condition f(∆(rj)) ≥ p can also be expressed as ∆(rj) ≥
∆∗, where ∆∗ is the smallest AoI such that the staleness cost
is no smaller than the update cost, i.e.,

∆∗ , min{∆|f(∆) ≥ p}. (7)

In the following, we show that restricting to capped reactive
policies does not incur any performance loss.

Lemma 2. For any policy π ∈ ΠR, there exists a capped
reactive policy π′ ∈ ΠR+ that achieves an average cost no
larger than that of policy π, i.e., C̄π

′ ≤ C̄π .

We provide the detailed proof in Appendix B and explain
the key ideas in the following. Upon receiving a request,
policy π′ performs an update if the staleness cost is no smaller
than the update cost. Compared to policy π that does not
make such an update, doing so incurs an update cost for
policy π′, but it avoids a larger staleness cost. Besides, it also
reduces the staleness cost for the requests that arrive thereafter.
Therefore, policy π′ can achieve a total cost no larger than
that of policy π.

By Lemma 2, we can further reduce the search space to the
class of capped reactive policies ΠR+. Therefore, Problem (5)
can be further reduced to the following:

min
π∈ΠR+

C̄π. (8)

Till this point, we do not make any assumption on the
request arrival process. The aforementioned guidelines can be
applied to general request arrival processes. In the following,
unless otherwise specified, we focus on the capped reactive
policies ΠR+. This capped property plays an important role
in characterizing the threshold-based structure of an optimal
policy for solving the MDP formulation in Section V.

V. MDP FORMULATION AND THRESHOLD STRUCTURE

Under a capped reactive policy, the server makes update
decisions upon receiving requests and pays a cost (an update



cost or a staleness cost) based on the decision. Naturally,
this sequential decision process can be modeled as an MDP.
In this section, we assume that the request arrival process
is Bernoulli3 with rate λ ∈ (0, 1), denoted by Bernoulli(λ),
i.e., the probability that a request arrives in a time-slot is λ.
Then, we reformulate Problem (8) as a discrete-time MDP
and show that there exists a stationary threshold-based policy
that solves the Bellman equation of the considered MDP and
is thus optimal among all online policies.

The MDP formulation has the following key components:
{N ,S,As, p(· | s, a), c(s, a) : n ∈ N , s ∈ S, a ∈ As}, where

1) N = {1, 2, · · · } is the set of decision epochs. Under a
capped reactive policy, the n-th decision epoch is the
time-slot when the n-th request arrives.

2) S = {0, 1, · · · } is the set of system states (which are
all possible values of the AoI). We use sn to denote the
AoI value when the n-th request arrives.

3) As is the set of actions when the system state is s. Let
a ∈ As denote the possible actions, where a = 1 means
updating the data and a = 0 means not. Under a capped
reactive policy, there are two sets of actions depending
on the state s: when the staleness cost f(s) is no smaller
than the update cost p, the only available action is to
update, i.e., A{s:f(s)≥p} = {1}; otherwise, the system
can either update or not, i.e., A{s:f(s)<p} = {0, 1}.

4) The transition probability can be calculated as

p(z | s, a) = (1− λ)z−1λ, if z ≥ 1 and a = 1;
(1− λ)z−s−1λ, if z > s, f(s) < p, and a = 0;
0, otherwise.

That is, when the system is in state s, if the server
updates the data, the system will enter state z (z ≥ 1)
with probability (1− λ)

z−1
λ because the request arrival

process follows Bernoulli(λ); otherwise, if the server
does not update, under a capped reactive policy, the
system will enter state z (z > s) with probability
(1− λ)

z−s−1
λ only when the staleness cost f(s) is

smaller than the update cost p.
5) The cost at each decision epoch can be expressed as

c(s, a) =

{
p, if a = 1;
f(s), if a = 0.

(9)

That is, when the system is in state s, updating the data
incurs an update cost of p; otherwise, there is a staleness
cost of f(s). Note that under a capped reactive policy,
we always have c(s, a) ≤ p.

3The motivation for this assumption is that the probabilistic analysis shows
that the arrivals in certain arrival-type processes (i.e., users’ arrival to a bank
in each second, and job arrivals to the server at each time slot) are independent
random variables, which can be modeled as independent Bernoulli trials [33],
[34]. In addition, the Bernoulli arrival process is actually a discrete-time
analog of the Poisson arrival process, which is widely used in modeling the
arrival process in real life [33]–[35]. Therefore, it also makes sense to model
the arrival process in the discrete-time system as a Bernoulli process. This
assumption is also widely adopted in recent AoI-related work [32], [36]–[38].

The objective of the MDP is to find a stationary capped
reactive stationary update policy that minimizes the long-term
average expected cost, i.e.,

min
π∈ΠR+

lim
N→∞

Eπ
[
N∑
n=1

c(sn, an)|s1 = s

]
N

, (10)

where Eπ[·] represents the conditional expectation, given that
policy π is employed; sn and an are the state and action
taken at decision epoch n, respectively; and s is the initial
state. We emphasize that, unlike traditional MDP formulations
that mainly focus on optimization over time (where the state
of the MDP should consist of two variables: one denotes
the AoI value in the slot and the other denotes whether
there is a request arriving in the slot or not. Obtaining the
simple solutions (e.g., threshold structure) for the MDPs
with multiple state variables is usually more challenging and
involves more sophisticated techniques.), by following our
proposed guidelines (especially the reactive guideline), we can
optimize our MDP over only users’ requests (so now our state
includes just one variable: the AoI value when the request
arrives). This allows us to reduce the state space and thus
facilitate the theoretical analysis. Note that the objective in
Problem (10) is the same as that in Problem (8) except that
we specify the initial state s in Problem (10). In other words,
an optimal policy for Problem (10) is also an optimal policy
for Problem (8). Next, we show that there exists an optimal
policy for Problem (10) that has a threshold-based structure,
which enables us to search for an optimal policy in the class of
threshold-based policies (see Section VI). We state this result
in Theorem 1.

Theorem 1. There exists an optimal stationary capped reactive
policy π∗ ∈ ΠR+ that has a threshold-based structure.

We provide the detailed proof in Appendix C and present
an outline of the proof in the following. First, we study
a discounted MDP and derive its optimal value function.
Second, based on the optimal value function, we derive the
Bellman equation of the expected total average cost and show
that the Bellman equation has a threshold-based structure.
Specifically, the server needs to update the data when the
current AoI value (i.e., the state) is no smaller than a certain
fixed threshold s∗ (see definition in Eq. (20)); otherwise, it
does not. Now consider a stationary capped reactive policy
π∗ ∈ ΠR+ that makes update decisions based on threshold
s∗. Apparently, policy π∗ minimizes the Bellman equation
for any state, thus it is an overall optimal policy [39, Chapter
V, Theorem 2.1]. The threshold structure of the optimal policy
π∗ indicates that among all threshold-based policies, there is
an overall optimal policy (see Fig. 3). This motivates us to
search for the optimal threshold-based policy in Section VI.

Remark 1: Our proposed guidelines (especially the capped
reactive policy) play an important role in characterizing the
threshold-based structure of an optimal policy. By following
our guidelines, we can restrict ourselves to the policies whose
cost at each decision epoch is no greater than the update



cost p. This additional property enables us to characterize the
monotonicity of the optimal value function of the discounted
MDP and the monotonicity of the Bellman equation, and
ultimately address the overall problem by finding a simple
threshold-based optimal policy.

VI. OPTIMAL THRESHOLD-BASED POLICY

Theorem 1 tells us that we can further reduce the search
space from the set of capped reactive policies to the set of
capped reactive threshold-based policies. In this section, we
formally define threshold-based policies and derive the closed-
form expression of the average cost of the threshold-based
policies. Using the closed-form expression, we can find the
optimal threshold-based policy. Furthermore, we show that
the optimal threshold-based policy is also an optimal policy
among all online policies.

We begin with the definition of threshold-based policies.

Definition 1 (Threshold-based Policies). A policy in ΠR is
called a threshold-based policy if it performs updates accord-
ing to the following rule with a predetermined positive integer
threshold τ : for the request arriving at time rj , we have

Ij =

{
1, ∆(rj) ≥ τ ;

0, ∆(rj) < τ.

That is, the server updates the data at rj before replying if
the AoI at rj is no smaller than threshold τ ; otherwise, the
server simply replies with the current local data.

We consider an integer threshold because the values of
the AoI are integers. Let π(τ) be the threshold-based policy
with threshold τ , and let ΠT be the set of all threshold-based
policies. Fig. 3 shows the relationship of ΠR, ΠR+, and ΠT .

Assume that the request arrival process is Bernoulli, we can
derive the closed-form expression of the average cost under
any threshold-based policy. We state this result in Theorem 2.

Theorem 2. Assume that the request arrival process is
Bernoulli(λ), the staleness cost function is f(∆), and the
update cost is p. Then, for any policy π(τ) ∈ ΠT with a
positive integer threshold τ , the average expected cost can be
computed as follows:

C̄π(τ) =

λ
τ−1∑
t=1

f(t) + p

λ(τ − 1) + 1
. (11)

We provide the detailed proof in Appendix F and present an
outline of the proof in the following. Since the request arrival
process is Bernoulli, under a threshold-based update policy,
the lengths of update intervals are independent and identically
distributed (i.i.d.). Thus, the update process is a renewal
process. Due to the ergodicity of the process, the expected av-
erage cost can be computed as C̄π(τ) = E[Ck]/E[Nk], where
E[Ck] and E[Nk] are the expected total cost and the expected
number of requests in the k-th update interval, respectively.
In addition, by exploiting the properties of Bernoulli arrival
process, we can further derive the closed-form expressions

of E[Ck] and E[Nk], which are shown in the numerator and
denominator of Eq. (11), respectively.

With the result in Theorem 2, we can also easily compute
the optimal threshold τ∗. In fact, this optimal threshold-based
policy π(τ∗) is also an overall optimal policy, which is shown
in Corollary 1.

Corollary 1. Assume that the request arrival process is
Bernoulli(λ). Then, the threshold of the optimal threshold-
based policy π(τ∗) ∈ ΠT is the following:

τ∗ =

{
arg min

τ∈{bτ ′c,dτ ′e}
C̄π(τ)

}
, (12)

where τ ′ is the real number that achieves the smallest expected
average cost (i.e., τ ′ = arg minτ>0 C̄

π(τ)). Furthermore, the
optimal threshold-based policy π(τ∗) ∈ ΠT is also an overall
optimal policy among all online policies.

Proof. Theorem 1 states that there exists an overall optimal
capped reactive threshold-based policy π∗ ∈ ΠR+ ∩ ΠT .
For the optimal threshold-based policy π(τ∗) ∈ ΠT , we
have C̄π(τ∗) ≤ C̄π

∗
. On the other hand, since policy π∗

is an overall optimal policy, we also have C̄π(τ∗) ≥ C̄π
∗
.

Therefore, we have C̄π(τ∗) = C̄π
∗
. This implies that the

optimal threshold-based policy π(τ∗) ∈ ΠT is also an overall
optimal policy among all online policies.

Here, the real number τ ′ in Eq. (12) can either be theo-
retically calculated if the expression of

∑τ−1
t=1 f(t) in C̄π(τ)

is known (see below for two examples) or be numerically
calculated otherwise. The optimal threshold τ∗ may not be
unique, depending on the staleness cost function f . Also,
policy π(τ∗) could be the same as policy π∗ in some cases.

In the following, we provide the average expected cost and
optimal threshold when the staleness cost is a linear function
and a square function of the AoI, respectively.

Example 1 (A linear staleness cost function). Assume that the
request arrival process is Bernoulli(λ), f(∆) = ∆, and the
update cost is p. Then, for any policy π(τ) ∈ ΠT with a
positive integer threshold τ , we have

C̄π(τ) =
λτ(τ − 1)/2 + p

λ(τ − 1) + 1
, (13)

and the optimal threshold τ∗ =
{

arg minτ∈{bτ ′c,dτ ′e}C̄
π(τ)

}
,

where τ ′ = (
√

2pλ− λ+ 1 + λ− 1)/λ.

Example 2 (A quadratic staleness cost function). Assume that
the request arrival process is Bernoulli(λ), f(∆) = ∆2, and
the update cost is p. Then, for any policy π(τ) ∈ ΠT with a
positive integer threshold τ , we have

C̄π(τ) =
λ
[
(τ − 1)

3
/3 + (τ − 1)

2
/2 + (τ − 1)/6

]
+ p

λ(τ − 1) + 1
,

(14)
and the optimal threshold τ∗ =

{
arg minτ∈{bτ ′c,dτ ′e}C̄

π(τ)
}

,
where τ ′ is the solution of

1− 6p− 6τ + 6τ2 + λ(4τ − 1)(τ − 1)2 = 0.



VII. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, we perform extensive simulations and
experiments to verify our theoretical results and compare
the performance of the optimal threshold-based policy with
several baseline policies using both synthetic data and real
traces. Throughout this section, we consider two types of
the staleness cost: a linear function (i.e., f(∆) = ∆) and
a quadratic function (i.e., f(∆) = ∆2).

We first evaluate the performance of threshold-based poli-
cies with different thresholds when the staleness cost is a
linear function of AoI in Fig. 4. The setting of the simula-
tions is as follows. The request arrival process is Bernoulli
with rate λ = 0.1, and the update cost is p = 100. The
simulation results are the average of 100 simulation runs,
where each run consists of N = 104 requests (which is
our default setting for the synthetic simulations). We also
include a breakdown of the results in terms of average
staleness cost ā ,

∑N
j=1 f(∆(rj))/N and average update

cost p̄ , pUπ(N)/N . We observe that the simulation results
of average total cost under threshold-based policies perfectly
match the theoretical results in Example 1. Clearly, as the
threshold increases, the update cost decreases, but the stal-
eness cost increases. This is as expected because a higher
threshold leads to less frequent updates, which results in a
smaller update cost but a larger staleness cost. As a result, the
average total cost, which is the sum of the two, first decreases
and then increases. The optimal cost Cπ(τ∗) ≈ 36.22 is
achieved at τ∗ = {arg min{bτ ′c,dτ ′e}C

π(τ)} = 37, where
τ ′ = (

√
2pλ− λ+ 1+λ−1)/λ ≈ 36.72. Similar observations

can also be made from Fig. 5, where the staleness cost is
a quadratic function of AoI. As expected, the staleness cost
increases remarkably with the threshold, since the staleness
cost function is quadratic.

Next, we compare the performance of the optimal threshold-
based policy with several baselines in Figs. 6 and 8, where
the staleness cost function is linear and quadratic, respectively.
We consider three baselines: (i) a naive policy, (ii) periodic
policies, and (iii) the optimal offline policy. The naive policy
is a capped reactive threshold-based policy with a threshold
being equal to ∆∗ = dpe when f(∆) = ∆ (or ∆∗ =

⌈√
p
⌉

when f(∆) = ∆2). That is, upon receiving a request, this
policy naively updates the data when the staleness cost is
no smaller than the update cost, otherwise it does not. A
periodic policy has a positive integer period d and updates
the data every d time-slots, i.e., ui = id for i = 1, 2, . . . .
Note that a periodic policy is not a reactive policy. Following
a similar argument in the proof of Theorem 2, we can show
that the average cost under a periodic policy with period d is
(p+λd(d−1)/2)/λd when f(∆) = ∆ (or (p+λ((d− 1)3/3+
(d− 1)2/2 + (d − 1)/6))/λd when f(∆) = ∆2). In the
comparisons, we only consider the optimal periodic policy
with d∗ =

⌈√
2p/λ

⌉
when f(∆) = ∆ (or d∗ being the

solution of 4λd3 − 3λd2 − 6p = 0 when f(∆) = ∆2).
The optimal offline policy has the exact knowledge of all the
request arrival times and is obtained based on the dynamic
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Fig. 4: Average cost under threshold-based policies with
different thresholds when f(∆) = ∆, where λ = 0.1 and
p = 100.

0 10 20 30 40 50

Threshold

0

20

40

60

80

100

A
ve

ra
g

e
co

st

Total Cost

Total Cost (Theory)

Optimal Point (Theory)

Update Cost

Staleness Cost

Fig. 5: Average cost under threshold-based policies with
different thresholds when f(∆) = ∆2, where λ = 0.1 and
p = 100.

programming approach. Hence, the average cost under an
optimal offline policy can be viewed as a lower bound of
all online policies.

Fig. 6a shows the results for the setting with a fixed
update cost p = 50 and a varying request arrival rate λ
when the staleness cost function is linear. We observe that
the optimal threshold-based policy outperforms all the other
online policies and is very close to the optimal offline policy.
When the request arrival rate is small, the optimal periodic
policy performs poorly. This is because Bernoulli process
with a small rate λ results in a larger mean (i.e., 1/λ) and
a larger variance (i.e., (1 − λ)/λ2) of the inter-arrival time
of the requests. Hence, the inter-arrival time of the requests
is usually larger and more random. In this case, a periodic
policy that updates the data at fixed time instants resulting in
a larger staleness cost. On the other hand, the interarrival time
of requests is large when the rate λ approaches 0, resulting
in a large AoI (and thus a high staleness cost) when the
requests arrive. All the capped reactive policies as well as
the offline optimal policy would make an update decision
for each request, making their average cost close to the
update cost p. This aligns well with our theoretical result
when we let λ = 0 in Eq. (13). When the request arrival
rate becomes larger, the performance of the optimal periodic
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Fig. 6: Performance comparisons of different policies with different request arrival
rate λ and different update cost p when f(∆) = ∆, respectively.
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Fig. 7: Performance comparisons of dif-
ferent policies using trace dataset, where
update cost p = 25, request arrival rate
λ = 0.4, and f(∆) = ∆.
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Fig. 8: Performance comparisons of different policies with different request arrival
rate λ and different update cost p when f(∆) = ∆2, respectively.
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Fig. 9: Performance comparisons of dif-
ferent policies using trace dataset, where
update cost p = 50, request arrival rate
λ = 0.4, and f(∆) = ∆2.

policy improves and is close to that of the optimal threshold-
based policy. This is because a large request arrival rate λ
leads to a small period d∗. In this case, the requests arrive
more frequently, and the updates also occur more frequently.
Hence, the staleness cost becomes small, and the update cost
becomes dominant. We also observe that the naive policy
performs poorly compared to the other policies when λ is
large. This is because the naive policy is agnostic about
the request arrival rate. The update period under a naive
policy is roughly equal to p regardless of the request arrival
rate. However, when λ becomes large, there could be many
more requests arriving during an update interval of length p,
which results in a large staleness cost. In addition, when the
request arrival rate λ approaches 1, the optimal threshold-
based policy and the optimal periodic policy have the same
optimal threshold/period (i.e., τ∗ = d∗ =

⌈√
2p
⌉
) as well as

the same average cost (i.e.,
√

2p− 1/2), and their knowledge
about the future request arrival process is almost the same
as the optimal offline policy (i.e., there is a request arriving
in every time-slot), so their performance is also very close.
Similar observations can also be made from Fig. 8a, where the
staleness cost function is quadratic. We omit the explanation
since they are almost identical.

Fig. 6b shows the results for the setting with a fixed request

arrival rate λ = 0.5 and a varying update cost p when
the staleness cost function is linear. We observe that the
optimal threshold-based policy again outperforms all the other
online policies and performs closely to the optimal offline
policy. The optimal periodic policy performs poorly because
it is not a reactive policy, it cannot update timely according
to the staleness cost of the requests, resulting in a large
total staleness cost. We also observe that as the update cost
increases, the naive policy performs much worse compared to
the other policies. This is because the average cost under a
naive policy increases at a rate of O(p), while the average
cost under the other policies increases at a rate of O(

√
p).

In Fig. 8b, we show the results under the same setting except
that the staleness cost function is quadratic. Again, the optimal
threshold-based policy outperforms all other online policies.
The optimal periodic policy performs poorly at all update
costs. This is because its staleness costs become much larger
due to the quadratic function and its inability to update timely
upon the arrival of requests. The average cost under the naive
policy has several jumps. The reason is that when the threshold
∆∗ is set to

⌈√
p
⌉
, the integral change of

⌈√
p
⌉

leads to a high
increase in the average cost. For example, when the update
cost p in the range of [26, 36], the threshold ∆∗ under the naive
policy is

⌈√
p
⌉

= 6 and the average cost increases linearly



with respect to p according to Eq. (14). However, when the
update cost is in the range of [37, 49], the threshold ∆∗ under
the naive policy becomes

⌈√
p
⌉

= 7, which results in a much
larger average cost compared to when ∆∗ = 6 according to
Eq. (14). This also explains the jumps in the optimal threshold-
based policy, but the jump is almost unnoticeably (e.g., when
p = 46) since it chooses the optimal thresholds and thus
mitigates the jumping effect.

In Fig. 7, we also compare the performance of different
policies using the real trace dataset [40] when the staleness
cost function is linear. The trace dataset collects around 700
billion user requests (each contains a timestamp, anonymized
key, operation, etc.; see details in [40]) from 54 Twemcache
clusters, which are the in-memory caching used by Twitter.
In order to simplify the analysis and presentation, we focus
on the user request arrival times at the cache of the 26th
Twemcache cluster, whose request arrival rate is about 0.4.
The request arrival process is no longer Bernoulli. In Fig. 7,
we assume that the update cost is p = 25 and show the
performances of different policies using the trace dataset in
the first 103 requests. For the optimal offline policy, we still
apply the dynamic programming to obtain the optimal update
times. For the naive policy, we simply let its threshold equal
the update cost of 25. For the threshold-based policy, we
obtain the optimal threshold τ∗ = 9 by plugging λ = 0.4
into Eq. (12). Similarly, we obtain the optimal period d∗ = 11
for the periodic policy. We observe that the optimal threshold-
based policy outperforms the other online policies even though
the request arrival process is now non-Bernoulli. In Fig. 9,
we change the setting to update cost p = 50 and a quadratic
staleness cost function. Clearly, the optimal threshold-based
policy still outperforms the other online policies.

VIII. CONCLUSION

In this paper, we considered a fundamental tradeoff between
the data freshness and the update cost in a time-sensitive
information-update system. We provided useful guidelines for
the design of update policies. Assuming Bernoulli request
arrival process, we also proposed a threshold-based update
policy and proved its optimality. Our simulations based on
both synthetic data and real traces corroborated the theoretical
results and showed that the optimal threshold-based policy
outperforms the baseline policies. For future work, one inter-
esting direction would be to consider more general settings
where users are interested in multiple contents.

APPENDIX

A. Proof of Lemma 1

Proof. For any given policy π ∈ Π, there are two cases: (i)
π ∈ ΠR and (ii) π ∈ Π \ΠR.

Case (i) is trivial as we can simply choose π′ = π. In Case
(ii), we construct a reactive policy π′ ∈ ΠR in the following
manner. Consider any sample path with N requests: 1) for
all the updates performed by policy π at some request arrival
times, policy π′ also has such updates; 2) for each update
performed by policy π that is not at any of the request arrival

𝒓𝒍 𝟏 𝒖𝒌 𝒓𝒍

Fig. 10: An illustration of the advantage of a constructed
reactive policy π′ ∈ ΠR over an arbitrary given non-reactive
policy π ∈ Π\ΠR, where the solid black curve and the dashed
red curve denote the AoI trajectories under policies π and π′,
respectively.

times, policy π′ postpones the update to the time instant when
the next request arrives. Clearly, policy π′ constructed in the
above manner is a valid reactive policy.

Next, we want to prove that in Case (ii), policy π′ achieves
a total cost smaller than that of policy π by induction. Note
that at time 1, the AoI under policy π′ is no larger than that of
policy π. (Although since the AoI at time 1 is equal under both
policies, we want to use “no larger than” instead of “equal”
here so that the argument can later be repeatedly applied.) Let
uk be the first time at which policy π updates the data when
no request arrives, let rl be the arrival time of the first request
that arrives after time uk. Fig. 10 provides an illustration of
such a scenario, where the solid black curve and the dashed
red curve denote the AoI trajectories under policies π and π′,
respectively. We want to show that policy π′ has a smaller
total cost than that of policy π during interval [1, rl].

We first compare the total cost during interval [1, uk)
under both policies. Note that under policy π, all the updates
performed before time uk are at request arrival times because
uk is the first time at which policy π updates the data when
no request arrives. Due to Step 1) of the above construction,
policy π′ must update the data in a way that is exactly the same
as policy π during interval [1, uk). Hence, the total update cost
during interval [1, uk) must be the same under both policies.
Also, the AoI under policy π′ must remain no larger than
that under policy π during interval [1, uk). Hence, policy π′

must have a total staleness cost no larger than that of policy π
during interval [1, uk). This implies that policy π′ has a total
cost (including both update cost and staleness cost) no larger
than that of policy π during interval [1, uk).

We now compare the total cost during the interval [uk, rl]
under both policies. Due to Step 2) of the construction of
policy π′, it does not update the data at time uk but postpones
the update to time rl. Then, under policy π′ the total cost
during interval [uk, rl] is equal to p because the only update
is performed at time rl at which the only request arrives. On
the other hand, policy π has a total cost strictly larger than p
because it performs one update at time uk and needs to pay
either a staleness cost at time rl or at least an additional update
cost during interval (uk, rl]. Hence, policy π′ has a total cost



𝒓𝒍 𝒖𝒌𝒓𝒍 𝟏

∗

Fig. 11: An illustration of the advantage of a constructed
capped reactive policy π′ ∈ ΠR+ over an arbitrary given non-
capped reactive policy π ∈ ΠR\ΠR+, where the solid black
curve and the dashed red curve denote the AoI trajectories
under policies π and π′, respectively.

smaller than that of policy π during interval [uk, rl].
With the above discussions, we show that policy π′ achieves

a total cost smaller than that of policy π during interval [1, rl].
Since the AoI under policy π′ becomes 1 at time rl+1,

the AoI under policy π′ is apparently no larger than that of
policy π at time rl+1. Then, we can view time rl+1 as a new
starting point and inductively apply the above argument. This
completes the proof.

B. Proof of Lemma 2

Proof. For any given policy π ∈ ΠR, there are two cases: (i)
π ∈ ΠR+ and (ii) π ∈ ΠR \ΠR+.

Case (i) is trivial as we can simply choose π′ = π. In Case
(ii), we construct a capped reactive policy π′ ∈ ΠR+ in the
following manner. Consider any sample path with N requests:
1) for all the updates performed by policy π, policy π′ also
has such updates; 2) for every request rj such that ∆(rj) ≥ s∗
(see definition of s∗ in Eq. (7)), policy π′ updates the data
at rj regardless of policy π’s update decision at rj . Clearly,
policy π′ constructed in the above manner is a valid capped
reactive policy.

Next, we want to show that in Case (ii), policy π′ achieves
a total cost smaller than that of policy π by induction. Recall
that the system starts with ∆(1) = 1. Let rl be the first
request arrival time at which ∆(rj) ≥ s∗ but policy π does
not update the data. Then, the AoI trajectories before time rl
are exactly the same under policies π′ and π. Due to Step 2)
of the above construction, policy π′ must update the data at
rl because ∆(rj) ≥ s∗. Let uk be the first update performed
after rl under policy π. Then, policy π′ must also update the
data at time uk due to Step 1) of the above construction.
Fig. 11 provides an illustration of such a scenario, where the
solid black curve and the dashed red curve denote the AoI
trajectories under policies π and π′, respectively. It is easy to
see that policy π′ has a smaller AoI than that under policy π
during interval (rl, uk).

We now compare the total cost during interval [1, uk] under
both policies. First, note that the AoI trajectories before time
rl are exactly the same under policies π′ and π, i.e., both
policies have the same cost during interval [1, rl). Then, it is

easy to see that at time rl, policy π′ has an update cost p but
no staleness cost, and policy π has a staleness cost ∆(rj) but
no update cost. Hence, policy π′ achieves a smaller total cost
than that of policy π at time rl because ∆(rj) ≥ s∗. Also, note
that policy π′ has a smaller AoI than that of policy π during
interval (rl, uk) and that there is no update under both policies
during interval (rl, uk). Hence, policy π′ achieves a smaller
total cost than that of policy π during interval (rl, uk). At
time uk, both policies have an update cost p but no staleness
cost since neither of them updates the data. Combining the
above discussions, we show that policy π′ achieves a smaller
total cost than that of policy π during interval [1, uk].

Since ∆(uk) drops to 0 at time uk under both policies, we
can view time (uk+1) as a new starting point and repeatedly
apply the above argument. This completes the proof.

C. Proof of Theorem 1

Proof. Our proof includes two steps: 1) We study a discounted
MDP and show that the optimal value function of the dis-
counted MDP is non-decreasing in the initial state s; 2) Based
on the optimal value function of the discounted MDP, we
derive the Bellman equation of the average expected cost
and show that it has a threshold-based structure, where the
threshold is based on the AoI. This implies that there exists
an optimal threshold-based stationary capped reactive policy
for the average expected cost.

Step 1): In general, the derivation and properties of the
Bellman equation of the average expected cost are not easy
to obtain, and we usually rely on the study of the discounted
MDP to get some insights towards the design of an optimal
policy [39].

The expected total α-discounted cost of a capped reactive
policy π ∈ ΠR+ is defined as

Cπα(s) , Eπ

[ ∞∑
n=1

αn−1c(sn, an)|s1 = s

]
, (15)

where 0 ≤ α < 1 is the discount factor. Here, Cπα(s) is well
defined, given that for any n, we have Eπ[c(sn, an)|s1 = s] ≤
p under a capped reactive policy π, and thus, we have

Cπα(s) ≤
∞∑
n=1

αn−1p =
p

1− α
. (16)

Let Cα (s) , min
π
Cπα(s) be the optimal value function.

Then, we can obtain the Bellman equation of the α-discounted
MDP with Cα(s) [39], which is

Cα(s) = min
a∈As

{
c(s, a) + α

∑
z∈S

p(z | s, a)Cα(z)

}
. (17)

The Bellman equation Eq. (17) states that the value of the
initial state s (i.e., Cα(s)) equals the expected return of the
best action, which is the discounted expected value of the
next state (i.e., α

∑
z∈S p(z | s, a)Cα(z)), plus the immediate

cost along the way (i.e., c(s, a)). In the following, we show
that Cα(s) is non-decreasing in s. This property enables us
to show that the Bellman equation of the average cost (i.e.,
Lemma 4) has a threshold-based structure.



Lemma 3. The optimal value function Cα(s) is non-
decreasing in the initial state s.

We provide the proof of Lemma 3 in Appendix D and
explain the key ideas in the following. The goal is to construct
a sequence {Cα,n (s)} that is non-decreasing in s for any n,
where Cα,n(s) is the minimal expected discounted cost in an
n-stages problem. Then, we show that Cα(s) = lim

n→∞
Cα,n(s),

which implies that Cα(s) is also non-decreasing in s.
Step 2): With the optimal value function of the α-

discounted MDP (i.e., Cα(s)), we can derive the Bellman
equation of the average cost as follows.
Lemma 4. Let h(s) , lim

α→1
[Cα(s)−Cα(1)] and g , lim

α→1
(1−

α)Cα(1). Then, the Bellman equation of the average cost is
given by the following:

h(s) + g =

p+
∞∑
z=1

(1− λ)
z−1

λh(z), if s ≥ ∆∗;

min

{
p+

∞∑
z=1

(1− λ)
z−1

λh(z),

f(s) +
∞∑

z=s+1
(1− λ)

z−s−1
λh(z)

}
, if s < ∆∗.

(18)
We provide the proof of Lemma 4 in Appendix E and

explain the key ideas in the following. First, given the defi-
nitions of h(s) and g, we show that Eq. (18) does hold. To
this end, we define hα(s) , Cα(s) − Cα(1) and substitute
hα(s) into the Bellman equation of the α-discounted MDP
Eq. (17). Then, we prove that we can find a sequence
{αm} → 1 such that lim

m→∞
hαm

(s) = h(s) for any s and
lim
m→∞

(1−αm)Cαm
(1) = g. Taking the limit m→∞ on both

sides of the Bellman equation of hα(s), we obtain Eq. (18).
Second, we show that Eq. (18) is the Bellman equation for
the average expected cost. This can be done by applying the
same techniques used in [39, Chapter V, Theorem 2.1].

Next, we show that the Bellman equation Eq. (18) has
a threshold structure, which guides us to find the optimal
threshold-based stationary capped reactive policy.

Assume that the current state is s. Based on the Bellman
equation Eq. (18), it is optimal to update when s ≥ ∆∗; and
when s < ∆∗, it is optimal to update if

f(s) + α

∞∑
z=s+1

(1− λ)
z−s−1

λh(z) ≥

p+ α

∞∑
z=1

(1− λ)
z−1

λh(z),

(19)

where the right hand side is a constant. It is easy to check
that h(s) is non-decreasing in s given that Cα (s) is non-
decreasing in s. Hence, we can find s∗ as follows:

s∗, min

{
s : f(s) + α

∞∑
z=s+1

(1− λ)
z−s−1

λh(z) ≥

p+ α

∞∑
z=1

(1− λ)
z−1

λh(z)

}
.

(20)

Set s∗ = ∆∗ when s∗ ≥ ∆∗. Now consider a capped reactive
policy π∗ ∈ ΠR+: upon receiving a request, policy π∗ updates
the data if the current state is no smaller than s∗; otherwise,
it does not update the data and replies with the current local
data. Clearly, policy π∗ is a stationary threshold-based policy.
Besides, policy π∗ selects the action that minimizes the right
hand side of the Bellman equation Eq. (18) for any state. Thus,
it is an optimal policy [39, Chapter V, Theorem 2.1].

D. Proof of Lemma 3

Proof. Our proof idea is to construct a sequence {Cα,n (s)}
that is non-decreasing in s for any n, where Cα,n(s) is the
minimal expected discounted cost in an n-stages problem.
Then, we show that Cα(s) = lim

n→∞
Cα,n(s), which implies

that Cα(s) is also non-decreasing in s.
First, we show how to construct the sequence {Cα,n (s)}.

Consider an n-stage problem of our α-discounted MDP.
Denote the minimal expected discounted cost of this n-stage
problem by

Cα,n(s) , min
a∈As

{
c(s, a) + α

∑
z∈S

p(z | s, a)Cα,n−1(z)

}

=



p+ α
∞∑
z=1

(1− λ)
z−1

λCα,n−1(z), if s ≥ ∆∗;

min

{
p+ α

∞∑
z=1

(1− λ)
z−1

λCα,n−1(z),

f(s) + α
∞∑

z=s+1
(1− λ)

z−s−1
λCα,n−1(z)

}
, if s < ∆∗,

where the terminal cost is Cα,1 (s) , min{p, f(s)}.
Then, we prove by induction that our constructed sequence

{Cα,n (s)} is non-decreasing in s for any n. Obviously,
Cα,1(s) is non-decreasing in s. We assume that Cα,n−1(s)
is non-decreasing in s. Next, we show that Cα,n(s) is non-
decreasing in s. When s ≥ ∆∗, Cα,n(s) is a constant and is
independent of s. On the other hand, when s < ∆∗, to better
present our discussion, we denote

c , p+ α

∞∑
z=1

(1− λ)
z−1

λCα,n−1(z)

and

C ′α,n−1(s) ,f(s) + α

∞∑
z=s+1

(1− λ)
z−s−1

λCα,n−1(z)

=f(s) + α

∞∑
k=1

(1− λ)
k−1

λCα,n−1(s+ k),

where the last step follows by setting k = z − s. We want
to show that C ′α,n−1(s) is non-decreasing in s. To see this,
consider two states: j ≥ i > 0. Then, we have

C ′α,n(j)− C ′α,n(i)

= f(j)− f(i)

+ α

∞∑
k=1

(1− λ)
k−1

λ(Cα,n−1(j + k)− Cα,n−1(i+ k)).

Since f(s) is non-decreasing in s, we have f(j) ≥ f(i). By
inductive hypothesis that Cα,n−1(s) is non-decreasing in s, we



have Cα,n−1(j+k) ≥ Cα,n−1(i+k) for any k > 0. Therefore,
C ′α,n(j) − C ′α,n(i) ≥ 0, i.e., Cα,n(s) is non-decreasing in s.
This, along with c being a constant, implies that Cα,n(s) =
min{c, C ′α,n−1(s)} is also non-decreasing in s when s < ∆∗.
Till this point, we have shown that Cα,n(s) is non-decreasing
in s when s < ∆∗ and when s ≥ ∆∗, respectively. In addition,
since Cα,n(s) achieves a smaller value when s < ∆∗ (i.e.,
min

{
c, C ′α,n−1(s)

}
) compared to the case of s ≥ ∆∗ (i.e.,

c), this implies that Cα,n (s) is non-decreasing in s for any n.
Finally, given any non-negative integer s, by the definition

of Cα,n(s) and the fact that the cost in each stage is non-
negative, we know that Cα,n(s) is non-descreasing in n. In
addition, Cα,n(s) is bounded. Indeed, the cost in each stage is
bounded by the update cost p under our considered policy. As
such, Cα,n(s) ≤

∑n
i=1 α

i−1p = (1− αn)p/(1− α) ≤p/(1−
α). Therefore, by monotone convergence theorem, we have

lim
n→∞

Cα,n (s) = Cα (s) , (21)

holding for any state s = 0, 1, 2, . . . . It still remains to
prove that Cα (s) is non-decreasing in s. We prove this by
contradiction. Suppose that Cα (s) is decreasing in s, i.e.,
there exists i, j ∈ S such that i < j and Cα (i) > Cα (j).
Let

r = Cα (i)− Cα (j) > 0. (22)

Note that Cα,n (s) converges to Cα (s) pointwise for any s,
there exists positive integers N1 and N2 such that for any
n > max{N1, N2},

|Cα(i)− Cα,n(i)| < r

3
(23)

and |Cα(j)− Cα,n(j)| < r

3
, (24)

which are equivalent to

− r

3
< Cα(i)− Cα,n(i) <

r

3
(25)

and − r

3
< Cα(j)− Cα,n(j) <

r

3
. (26)

By subtracting Eq. (25) from Eq. (26), we have

− 2r

3
< (Cα(j)−Cα,n(j))− (Cα(i)−Cα,n(i)) <

2r

3
, (27)

Note that

(Cα(j)− Cα,n(j))− (Cα(i)− Cα,n(i))

= (Cα,n(i)− Cα,n(j))− (Cα(i)− Cα(j))

= (Cα,n(i)− Cα,n(j))− r.
(28)

Then, we have

Cα,n(i)− Cα,n(j) >
r

3
> 0, (29)

which contradicts the fact that Cα,n (s) is non-decreasing in s
for any n. Therefore, Cα (s) must be non-decreasing in s.

E. Proof of Lemma 4

Proof. The proof consists two steps: 1) given the definitions
of h(s) and g, we show that Eq. (18) dose hold; 2) we show
that Eq. (18) is the Bellman equation for the average cost.

Step 1): As we can see that the Bellman equation Eq. (18)
consists of two cases: s ≥ ∆∗ and s < ∆∗. In this proof, we
only prove the case of s < ∆∗, and a similar proof can also
be applied to the case of s ≥ ∆∗.

Define
hα(s) , Cα(s)− Cα(1), (30)

and substituting Cα(s) into the Bellman equation of the α-
discounted MDP Eq. (17) gives

hα(s) + (1− α)Cα(1)

= min

{
p+ α

∞∑
z=1

(1− λ)
z−1

λhα(z),

s+ α
∞∑

z=s+1
(1− λ)

z−s−1
λhα(z)

}
.

(31)

Our idea is to find a sequence {αm} → 1 (where 0 ≤
αm < 1 for any m) such that lim

m→∞
hαm

(s) = h(s) for any s
and lim

m→∞
(1− αm)Cαm(1) = g.

From Eq. (17), we know that

hα(s) = Cα(s)− Cα(1)

≤ p+ α

∞∑
z=1

(1− λ)
z−1

λCα(z)− Cα(1)

= p+ α

∞∑
z=2

(1− λ)
z−1

λCα(z) + (αλ− 1)Cα(1)

≤ p+ α

∞∑
z=2

(1− λ)
z−1

λCα(z),

where the last quantity is a constant and we denote it as
M , p+α

∑∞
z=2 (1− λ)

z−1
λCα(z). This immediately gives

|hα(s)| ≤ M because Cα (s) is non-decreasing in s and
thus hα(s) ≥ 0, which also implies that hα(s) is uniformly
bounded for all s and α. Because every bounded sequence
contains a convergent subsequence [41, Bolzano–Weierstrass
Theorem], we can find a sequence {α(1)

m } with lim
m→∞

α
(1)
m = 1

such that lim
m→∞

h
α

(1)
m

(1) , h(1) exists. Furthermore, be-
cause h

α
(1)
m

(2) is also bounded, we can find a subsequence

{α(2)
m } ⊆ {α(1)

m } such that lim
m→∞

h
α

(2)
m

(2) , h(2) exists.
Similarly, we can continue this argument for h(3) and so on.
Finally, let {αm} = {α(m)

m }, and when m → ∞, it follows
that lim

m→∞
hαm(1) = h(1), lim

m→∞
hαm(2) = h(2), and so on.

Therefore, lim
m→∞

hαm(s) = h(s) for any s.
Under a capped reactive policy π, we have

Eπ[c(sn, an)|s1 = s] ≤ p. Then, for any αm, we obtain

Cαm
(1) = Eπ

[ ∞∑
n=1

αn−1
m c(sn, Yn)|s1 = 1

]

≤
∞∑
n=1

αn−1
m p =

p

1− αm
,

(32)



which indicates Cαm
(1) is bounded. This also implies that

both of Cαm(1) and (1−αm)Cαm(1) are uniformly bounded
for all αm. Hence, there exists a subsequence {αm̄} ⊆ {αm}
such that lim

m̄→∞
(1 − αm̄)Cαm̄

(1) , g exists. Note that
lim
m̄→∞

hαm̄(s) = h(s) also hold for any s.
Plug αm̄ into the Bellman equation Eq. (31), we have

hαm̄
(s) + (1− αm̄)Cαm̄

(1) =

min

{
p+ 1 + αm̄

∞∑
j=1

(1− λ)
j−1

λhαm̄(j),

s+ 1 + αm̄
∞∑

j=s+1

(1− λ)
j−s−1

λhαm̄
(j)

}
.

(33)

By the Lebesgue’s Bounded Convergence Theorem [41] and
the boundedness of hαm̄

(s), it follows that

lim
m̄→∞

∞∑
j=k

(1− λ)
j−1

λhαm̄(j) =

∞∑
j=k

(1− λ)
j−1

λh(j) (34)

for any k. Finally, Eq. (18) holds by taking limit as m̄→∞
at both sides of Eq. (33).

Step 2): To prove that Eq. (18) is the Bellman equation for
the average expected cost, we apply the same techniques used
in [39, Chapter V, Theorem 2.1]. For the ease of expression,
we rewrite Eq. (18) as a compact form, i.e.,

h(s) + g = min
a∈As

{
c(s, a) +

∑
z∈S

p(z | s, a)h(z)

}
. (35)

First of all, we claim that g is the optimal average expected
cost, i.e.,

g = min
π∈ΠR+

lim
N→∞

Eπ

[
N∑
n=1

c(sn, an)|s1 = s

]
/N. (36)

To see this, let Hn , (s1, a1, . . . , sn, an) denote the history
of the process up to the decision epoch n. By the iterated
expectation, for any decision epoch i under policy π, we have

Eπ[h(si)] = Eπ[Eπ[h(si)|Hi−1]], (37)

which gives

Eπ

[
N∑
i=1

[h(si)− Eπ[h(si)|Hi−1]]

]
= 0. (38)

Based on the definition of Eπ[h(si)|Hi−1], we have

Eπ[h(si)|Hi−1]

=
∑
z∈S

p(z|si−1, ai−1)h(z)

= c(si−1, ai−1) +
∑
z∈S

p(z|si−1, ai−1)h(z)− c(si−1, ai−1)

(a)

≥ min
a∈As

[
c(si−1, a) +

∑
z∈S

p(z|si−1, a)h(z)

]
− c(si−1, ai−1)

(b)
= g + h(si−1)− c(si−1, ai−1),

(39)

where (a) becomes equation under the optimal policy π∗, and
(b) holds because of Eq. (35).

Taking Eq. (39) into Eq. (38), we obtain

0 ≤ Eπ

[
N∑
i=1

[h(si)− g − h(si−1) + c(si−1, ai−1)]

]
, (40)

which can be rewritten as

g ≤ Eπ[h(sn)]

N
− Eπ[h(s1)]

N
+

Eπ
[
N∑
i=1

c(si−1, ai−1)

]
N

, (41)

where the inequality becomes equality under the optimal
policy π∗. Taking the limit as N → ∞ and using the fact
that h(s) is bounded for any s, we have

g ≤ lim
N→∞

Eπ

[
N∑
n=1

c(sn, an)|s1 = s

]
/N, (42)

with equality for the optimal policy π∗ and any initial value
s1. That is, g is the optimal average expected cost. This also
implies that Eq. (18) is the Optimality Equation since any
h(s) and g satisfying Eq. (18) result in the optimal average
expected cost g. This completes the proof.

F. Proof of Theorem 2
Proof. We start with some additional notations. For the k-th
update interval [uπk−1 + 1, uπk ], we use Nk and Ck to denote
the number of requests that arrive in [uπk−1 + 1, uπk ] and the
total cost serving these Nk requests, respectively.

Since the request arrival process is Bernoulli, under a
threshold-based update policy, the lengths of update intervals
are i.i.d., so the update process is a renewal process. By the
ergodicity of the process, the average cost can be rewritten as

C̄π(τ) = E[Ck]/E[Nk]. (43)

To calculate E[Nk], we consider the requests that arrive
in [uπk−1 + 1, uπk ]. Apparently, there is only one request
in [uπk−1 + τ, uπk ], which arrives exactly at uπk because of
the threshold-based policy. Besides, the expected number of
requests arriving in [uπk−1 + 1, uπk−1 + τ − 1] is λ(τ − 1)
according to the Bernoulli process. Therefore, we have

E[Nk] = λ(τ − 1) + 1. (44)

The total cost in an update interval is composed of an update
cost and some staleness costs, i.e.,

Ck = p+

Nk∑
n=1

f(∆(rn))1{Nk>0}, (45)

where 1{·} is the indicator function. Here, we slightly abuse
the notation of n and use it to denote the index of requests
arriving in [uπk−1 + 1, uπk ] (i.e., rn is the arrival time of the
n-th request in [uπk−1 + 1, uπk ]). The staleness costs can be
rewritten as
Nk∑
n=1

f(∆(rn))1{Nk>0} =

∞∑
n=1

f(∆(rn))1{n≤Nk}

=

∞∑
n=1

f(∆(rn))1{∆(rn)≤τ−1}.

(46)



For the expected staleness cost of the n-th arrival of the
requests, we have

E[f(∆(rn))1{∆(rn)≤τ−1}] =

τ−1∑
t=1

f(∆(t))pn(t), (47)

where by slightly abusing the notation, we let t denote the
index of time-slot after uπk−1, and let pn(t) be the probability
mass function that the n-th request arrives at time-slot t. Here
pn(t) follows the negative binomial distribution [42], i.e.,

pn(t) =

{ (
t−1
n−1

)
λn(1− λ)

t−n
, t = n, n+ 1, · · · ;

0, otherwise.
(48)

Plugging Eq. (48) into Eq. (47), we obtain

E[f(∆(rn))1{∆(rn)≤τ−1}]

=

τ−1∑
t=1

f(∆(t))

(
t− 1

n− 1

)
λn(1− λ)

t−n
,

(49)

where the item in the summation equals 0 when t < n.
We rewrite the expected total cost in an update interval as

E[Ck] = p+

Nk∑
n=1

E[f(∆(rn))1{Nk>0}]

= p+

∞∑
n=1

τ−1∑
t=1

f(∆(t))

(
t− 1

n− 1

)
λn(1− λ)

t−n

(a)
= p+

τ−1∑
t=1

∞∑
n=1

f(∆(t))

(
t− 1

n− 1

)
λn(1− λ)

t−n

(b)
= p+

τ−1∑
t=1

t∑
n=1

f(∆(t))

(
t− 1

n− 1

)
λn(1− λ)

t−n

= p+

τ−1∑
t=1

f(∆(t))λ

t∑
n=1

(
t− 1

n− 1

)
λn−1(1− λ)

t−n

(c)
= p+

τ−1∑
t=1

f(∆(t))λ(λ+ (1− λ))
t−1

= p+

τ−1∑
t=1

f(∆(t))λ

(d)
= p+

τ−1∑
t=1

f(t)λ,

(50)
where we interchange the order of summation in (a) because
the sum is finite, (b) is because the maximal number of
requests cannot exceed the length of the update interval, (c)
comes from the binomial theorem, and (d) is due to the
definition of the AoI. Finally, plugging Eqs. (44) and (50)
into Eq. (43) gives Eq. (11).
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