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Abstract—Emotion recognition or detection is broadly utilized
in patient-doctor interactions for diseases such as schizophrenia
and autism and the most typical techniques are speech detection
and facial recognition. However, features extracted from these
behavior-based emotion recognitions are not reliable since hu-
mans can disguise their emotions. Recording voices or tracking
facial expressions for a long term is also not efficient. Therefore,
our aim is to find a reliable and efficient emotion recognition
scheme, which can be used for non-behavior-based emotion
recognition in real-time. This can be solved by implement-
ing a single-channel electrocardiogram (ECG) based emotion
recognition scheme in a lightweight embedded system. However,
existing schemes have relatively low accuracy. For instance, the
accuracy is about 82.78% by using a least squares support vector
machine (SVM). Therefore, we propose a reliable and efficient
emotion recognition scheme—exploitative and explorative grey
wolf optimizer based SVM (X-GWO-SVM) for ECG-based emo-
tion recognition. Two datasets, one raw self-collected iRealcare
dataset, and the widely-used benchmark WESAD dataset are
used in the X-GWO-SVM algorithm for emotion recognition.
Leave-single-subject-out cross-validation yields a mean accuracy
of 93.37% for the iRealcare dataset and a mean accuracy of
95.93% for the WESAD dataset. This work demonstrates that
the X-GWO-SVM algorithm can be used for emotion recognition
and the algorithm exhibits superior performance in reliability
compared to the use of other supervised machine learning
methods in earlier works. It can be implemented in a lightweight
embedded system, which is much more efficient than existing
solutions based on deep neural networks.

Index Terms—Emotion recognition, IoT, Smart health, ECG
signals, GWO, SVM.

I. INTRODUCTION

THE use of the Internet of Things (IoT) is growing steadily
over the years. It is expected that by 2025, there will

be approximately 27 billion connected IoT devices [1]. At
present, the IoT is one of the main promoters of technological
innovation and one of the areas with greater potential for social
and economic transformation [2]–[4]. Through a network of
sensors and actuators connected to a wireless network [5]–
[14], the operator has the power to remotely gather data.
Alternatively, actuators could be programmed to actuate au-
tomatically according to values reported by the sensor.

Emotion recognition or detection based on IoT wireless
sensing and networking has gained lots of attention since it
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can be broadly utilized in interfaces between humans and
computers and patient-doctor interactions for diseases such as
schizophrenia and autism. Most emotion detection methods
are based on behaviors such as speech detection and face
recognition [15], [16]. However, features extracted from the
abovementioned behavior-based emotion recognition are not
adequate for identifying emotions, because the behavior in-
duced by emotion can be disguised by artifacts of human
social masking [17]. For example, emotion recognition based
on facial expressions can be easily misled by a poker face.
Using physiological signals, such as electroencephalograms
(EEGs) [18]–[20], electromyograms (EMGs), and electrocar-
diograms (ECGs) [21], is an alternative to identify emotions
since physiological signals are one of the most notable means
to manifest the central nervous system in which emotions are
processed [22].

Using physiological cues for emotion identification has two
advantages over prior approaches to emotion recognition. The
first is that physiological signals generated from automatic
reactions are difficult to disguise. The second is that wearable
emotion monitoring can continually record physiological in-
formation. This differs from the instance of voice recognition
where data may only be recorded when individuals are speak-
ing. However, using multi-channel biosignals to recognize hu-
man emotions is not suitable for practical applications because
subjects may be hindered during daily life activities [23]. It
has been proved that ECG signals are a suitable physiological
channel with acceptable recognition abilities [17].

However, according to [24]–[27], the accuracy of emotion
detection based on a single ECG channel fluctuates a lot for
various datasets compared to that of other approaches such
as facial emotion recognition. On the one hand, recent efforts
in emotion recognition using ECG signals have largely relied
on relatively simple supervised learning techniques [28], such
as random forest (RF), support vector machine (SVM), K-
nearest neighbor (K-NN), etc. However, these methods have
relatively low accuracy (for instance, the accuracy is about
82.78% [17] by using least squares SVM). On the other
hand, the current maximum level of single ECG channel-
based emotion recognition accuracy reaches 96.9% [29] for
Wearable Stress and Affect Detection (WESAD) database
and 88.2% [29] for a dataset for multi-modal research of
affect, personality traits, and mood in individuals and groups
(AMIGOS) [27], which utilizes self-supervised convolutional
neural network (CNN) model. Facial emotion recognition
accuracy achieves 92.07% [30] for MMI Facial Expression
Database and 94.91% [30] for the Japanese Female Facial
Expression Database, which uses CNN embedded with re-
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current neural network (RNN) [26]. Nevertheless, these deep
neural network-based techniques, e.g., CNN, RNN, etc, tend to
achieve high accuracy but are complex with low computation
efficiency, which cannot be implemented in a lightweight
embedded system operating in real-time. Therefore, seeking
a simple supervised learning scheme to accurately, stably, and
efficiently recognize emotions based on a single ECG channel
in a lightweight embedded system is necessary.

Towards this objective, this paper aims to develop a novel
exploitative and explorative GWO-SVM (X-GWO-SVM) for
ECG-based emotion recognition. The goal is to achieve good
classification accuracy (as high as utilizing complex neural
networks) while simultaneously reducing computation so that
it can be implemented in a lightweight embedded system. The
idea is motivated from the fact that the SVM algorithm can
be used to solve single-channel ECG-based emotion recogni-
tion issue with lightweight embedded system implementation.
However, the existing SVM works do not offer a good classi-
fication accuracy performance for ECG-based recognition due
to difficulties in finding appropriate hyper-parameters while
preventing overfitting of the training data.

In general, the selection of hyperparameters is a non-convex
optimization issue. Therefore, many heuristic algorithms such
as genetic algorithm (GA), particle swarm optimization (PSO),
and grey wolf optimizer (GWO) [31]–[34] are introduced to
tackle it. Compared with PSO and a set of search algorithms,
GWO provides better performance in computation reduction
(e.g., in feature subset selection [35]). Moreover, the GWO
approach has been demonstrated to be more stable against
initialization than PSO and GA [35]. However, as discussed
in [36], conventional GWO-based SVM (GWO-SVM) tech-
niques are still easy to fall into local solutions.

In this work, an improved method, the X-GWO-SVM
method, is proposed. The proposed X-GWO-SVM method
is the first to apply GWO-SVM idea to solve ECG-based
recognition, and as shown in this paper, this method has
higher recognition accuracy than existing SVM and PSO-SVM
techniques for ECG emotion recognition use. It can effectively
avoid the algorithm falling into a local solution by increasing
the exploration ability, and speed up the convergence by
increasing the exploitation ability. In this paper, two datasets,
one raw self-collected iRealcare dataset, and the widely used
benchmark WESAD dataset are used in the X-GWO-SVM
algorithm for emotion recognition. Leave-single-subject-out
cross-validation yields a mean accuracy of 93.37% and an F1-
score of 93.38% for the iRealcare dataset and a mean accuracy
of 95.93% and an F1-score of 95.56% for the WESAD dataset.

The main contributions of this paper are summarized as
follows:

1) We use a self-built wearable IoT ECG patch with only
one ECG channel to collect four emotions, i.e., happi-
ness, tension, peacefulness and excitement, by playing
different videos.

2) We designed a novel X-GWO-SVM algorithm to inter-
nally learn hyperparameters on SVM. It can effectively
avoid the algorithm falling into a local solution by
increasing the exploration ability, and speed up the
convergence by increasing the exploitation ability.

3) This novel X-GWO-SVM algorithm can accurately and
efficiently recognize emotions for single-channel ECG-
based signals and be implemented in a lightweight
embedded system operating in real-time. It improves
accuracy compared to existing simple machine learning
methods and dramatically reduces complexity compared
to some novel deep neural networks. Thus, the efficiency
is also increased compared to other time-consuming
emotion recognition methods.

The outline of the rest of the paper is given below. Section II
introduces our database and an expanded dataset. Our model
formulation is described in Section III. In Sections IV and Sec-
tionV, we present results and discussions, respectively, before
concluding with a discussion of potential future directions in
Section VI.

II. DATASET

ECG signals are composed of the P wave, T wave, and
QRS complex, which represent the three phases of an ECG
pulse. In atrial systole, the P wave is the contraction pulse.
The QRS complex signifies ventricular depolarization. The
T wave represents ventricular re-polarization [37]. An ECG
device records the electrical changes caused by the activities
of the heart, which are collected by electrodes over the skin
for a period of time. It has been proved that ECG signals are
a suitable physiological channel with acceptable recognition
abilities [17] to identify emotions. Therefore, single-channel
ECG signals are used in this study. In order to verify the
general representation ability of X-GWO-SVM, two datasets
of ECG signals are used, one raw self-collected iRealcare
dataset with 5 subjects and the other widely-used benchmark
WESAD dataset with 15 subjects.

A. Description of iRealcare dataset

Data collection is one of the most important steps for
emotion detection. The definition of different emotions must
be explicit in this phase. If the definition is not clear, confusion
may occur among different emotions in the classification
phase and the classification performance will be influenced
negatively. However, emotions normally instantaneously occur
and hold for a short period. The longer the period is, the more
irrelevant data is included in ECG signals. Thus, it is hard to
properly label the corresponding emotion class.

To avoid the aforementioned issue, we self-collect a dataset
with high quality and a short period for each emotion, making
sure accurate data collection and labeling processes. The
ECG signals are recorded by a low-cost wearable IoT ECG
patch, called iRealcare [38]–[42] with 128 Hz sampling rates.
The data collected by the iRealcare IoT ECG sensor can be
transmitted to a smartphone application (APP) via Bluetooth
Low Energy (BLE) and then to a cloud. From the cloud, we
can acquire the raw ECG signals. Signals are recorded for
four emotions including happiness, tension, peacefulness, and
excitement. Except for peacefulness, each emotion is generated
based on an external environmental stimulus, which is similar
to the published datasets stimulating subjects through audio
or video [43]. The peacefulness describes the normal state,
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for which the ECG signals are recorded without any external
stimulus. Signals for happiness, tension, and excitement are
recorded when subjects watch comedies, watch thriller movies
and do exercises, respectively. Generally, the record duration
should be short as we discussed before. Therefore, the record
time is in a range of 3.22-6.16 minutes for each emotion.

It should be noticed that we only record the period that
subjects are actually in that emotion condition and ignore the
transition period. Clearly, the definition of different emotions
under this external stimulus setting is clear and subjects are
easy to get into a specific emotion. Taking into account
differences among different subjects, 5 subjects are involved
and each subject is recorded with four emotion types. For
each subject, there are 192-229 samples for peacefulness, 99-
141 samples for excitement, 156-236 samples for happiness
and 166-205 samples for tension. More information on the
iRealcare database is shown in Table I and segmentation
details are described in Section III-A2.

B. Description of WESAD dataset

The dataset, accessible in [43], is comprised of recordings
of 15 subjects (aged 24–35) watching video clips and doing
public speaking and mental arithmetic tasks. The dataset is
recorded with a wrist-based device (including the following
sensors: photoplethysmography, accelerometer, electrodermal
activity, and body temperature) and a chest-based device
(including the following sensors: ECG, accelerometer, elec-
tromyogram, respiration, and body temperature). This dataset
offers a fusion of physiological parameters to efficiently
identify human emotions, as these represent the body’s in-
stinctive reactions. However, it is not suitable for practical
applications, and it may hinder subjects during daily life
activities [23]. Therefore, in this paper, we only study single
ECG channel signals for this dataset. The ECG signal is
acquired from a RespiBAN Professional using a three-lead
configuration with 700Hz sampling rates. Three types of
emotions (baseline, stress and amusement) are annotated by
subjects [43]. Amusement condition signals are collected when
subjects watch funny video clips. Stress condition signals are
collected when subjects are asked to provide public speaking.
Baseline condition signals are collected when subjects sit/stand
at a table and read magazines. For each subject, there are 9
samples for amusement, 15-18 samples for stress, and 28-29
samples for baseline. The segmentation details are described
in Section III-A2.

III. METHOD

A. Preprocessing

Normally, ECG signals are non-linear with low signal am-
plitudes. The frequency range of ECG signals is from 0.05Hz
to 100Hz and the dynamic range is below 4mV [44]. Thus,
the collected ECG signals are susceptible to being disturbed by
external factors such as interference. To acquire ECG signals
with low interference, we conduct the pre-processing of the
raw ECG signals. During the data collection and transmission
stage, ECG signals are mainly affected by baseline drift, power
line interference, and electrode contact noise. The baseline

drift is caused by body movement and breathing. It can make
the entire ECG signal shift down or up at the horizontal
axis. The frequency of baseline drift is around 0.5Hz and
it will influence the analysis of ECG signals. The power-
line interference is characterized by 50 or 60Hz, which can
be caused by the electromagnetic field of nearby facilities
and electromagnetic interference of the power lines. Since the
iRealcare sensor used BLE instead of cables, the power-line
interference will not affect the collected ECG signals from the
sensor. The electrode contact noise is caused by the variance
of impedance when the skin is stretched. This frequency is
typically between 1 and 10Hz [45].

1) Filtering: The finite impulse response (FIR) filter is used
to filter the aforementioned noises. It is a reliable and simple
filter. Moreover, the output of a FIR filter is not distorted
because it is a linear filter [46]. FIR filters are created utilizing
window-based techniques, such as the Hamming window,
Rectangular window, Hanning window, and the Blackman
window. These different windows are used to design the low
pass filter and high pass filter with cut-off frequencies. For our
band-pass FIR filter, the cut-off frequencies are set to 3Hz and
100Hz, respectively.

2) Segmentation and splitting: For the iRealcare dataset,
the aforementioned 20 groups are denoised, non-overlapping
segmented with 200 data points (1.56s), and then split into
training and test sets. Non-overlapping is designated between
segments to avoid any potential data leakage between training
and test data. It should be noticed that the selection of the
window size (200 data points) is empirical. Prior research
employing these datasets utilized a broad variety of window
sizes. For instance, [43] has chosen 5-second windows for
WESAD whereas [47] has used 1-second windows for the
same dataset. Specifically, the training set consists of 16
groups, each of which has four emotions, whereas the test
set consists of 4 groups. Similar to the iRealcare dataset, the
WESAD dataset is also filtered by a FIR filter, non-overlapping
segmented with 14000 data points (20s), and then 12 subjects
are treated as a training set while the rest 3 subjects form a
test set.

Fig. 1 depicts four emotion segments with 200 randomly
chosen ECG signal data samples from the iRealcare dataset.
We can see that for the emotion of peacefulness, the subject’s
heart rate is comparatively sluggish. However, it is hard to
identify the other three emotions based on the original ECG
signals. As a result, the design of an efficient feature extraction
approach is necessitated.

3) Discrete cosine transform (DCT): In this paper, we use
the DCT methods to extract the main information of ECG
signals in the frequency domain [48]. It is computed for a
compressed version of input ECG signals containing signifi-
cant information, and only a small subset of the coefficients
is maintained as a feature vector. The main merit of the
DCT is its high computational speed which is suitable for
data compression [49]. To improve performance, the Z-score
normalization technique is invoked prior to recognition to
account for small perturbations in motion artifacts caused by
electrodes’ movement on the skin surface.

The DCT uses a sum of N cosine functions at different
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TABLE I
DATA INFORMATION OF IREALCARE DATABASE.

ID Peacefulness duration/min Excitement duration/min Happiness duration/min Tension duration/min Total duration/min
(Segment number) (Segment number) (Segment number) (Segment number) (Segment number)

1 5 ( 192 ) 3.22 ( 123 ) 6.16 ( 236 ) 4.33 ( 166 ) 18.71 ( 717 )
2 5.23 ( 200 ) 3.63 ( 139 ) 5.42 ( 208 ) 4.48 ( 172 ) 18.76 ( 719 )
3 5.37 ( 206 ) 3.69 ( 141 ) 4.91 ( 188 ) 5.35 ( 205 ) 19.32 ( 740 )
4 5.98 ( 229 ) 3.65 ( 140 ) 4.51 ( 173 ) 4.7 ( 180 ) 18.84 ( 722 )
5 5.06 ( 194 ) 2.59 ( 99 ) 4.07 ( 156 ) 4.66 ( 178 ) 16.39 ( 627 )

Sum 26.63 ( 1021 ) 16.78 ( 642 ) 25.08 ( 961 ) 23.52 ( 901 ) 92.01 ( 3525 )
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Fig. 1. The ECG segments with 200 points (1.56s) from four emotions

frequencies to express finite data samples. It converts temporal
signals into spectral signals. Eq. (1) defines the DCT formula
for a data sequence x(n), which is a Fourier transform without
the conjugate portion.

y(k) = w(k)
∑N
n=1 x(n) cos[ π2N (2n− 1)(k − 1)], (1)
k = 1, ..., N,

where

w(k) =


1√
N

, k = 1√
2
N , 2 ≤ k ≤ N

(2)

and N is the length of the data sequence [50].
During DCT, data samples from each ECG segment are

translated into the frequency domain, generating a series of
DCT coefficients with length N . Then, the generated DCT
coefficients are arranged in a decreasing order based on
their absolute values. DCT coefficients with larger absolute
values are treated as significant features which will be fed
into the proposed X-GWO-SVM scheme. Descending DCT
coefficients with dimension u (u ≤ N ) can be selected as

the extracted features. The determination of a proper dimen-
sion u of extracted features will be discussed in Section IV
by comparing classification performances at different values.
Fig. 2 shows corresponding extracted features with dimension
u = 95, i.e., coefficients with the largest 95 absolute values,
from the aforementioned ECG segments (plotted in Fig. 1).
It should be noticed that the first coefficient takes the highest
energy (highlighted with red color), which stores the most
significant features. To observe details on the rest coefficients,
we zoom in the rest of coefficients (the 2nd to 95th coef-
ficients) for each emotion. Compared to the original ECG
signals, the four emotions are clearly differentiated between
segments following feature extraction.
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Fig. 2. The extracted features from ECG segments with dimension of 95

B. Exploitative and explorative grey wolf optimizer based
support vector machine

For the first time, the X-GWO-SVM approach is pro-
posed for ECG emotion identification in this work. The
hyperparameter-free property of the proposed method provides
a new way for radial basis function-based SVM (RBF-SVM)
learning. In general, classifying the non-linearly separable
data with RBF-SVM requires two hyperparameter which are



5

𝑡 < 𝐿 ?

Yes

Yes

Update positions of 𝜉1, 𝜉2, and 

𝜉3 based on the fitness values

SVM
Input 

training set

Trained SVM 

model
Input 

test set

Output Fitness value

𝑖 = 𝑖 + 1

Update 𝜙(𝑡) =
𝟒

𝟏+𝒆𝒕−𝑳
− 𝟐

No

Update position of 

search agents 𝜂𝑗 based 

on 𝜉1, 𝜉2, and 𝜉3

Update 𝑏𝑗(𝑡)

and 𝑐𝑗(𝑡)

𝑗 ≤ 𝑛 ?

Initialize

1) Maximum iteration L and number of search agents n

2) Positions of search agents {𝜂1, 𝜂2, … , 𝜂𝑖 , … 𝜂𝑛}, where 

d-dimensional 𝜂𝑖 contains {𝐶𝑖 , 𝛾𝑖} when 𝑑 = 2. 

3) Positions of alpha 𝜉1, beta 𝜉2, and delta 𝜉3

NoOutput 𝜉1 = (𝐶𝑜, 𝛾𝑜) 

and trained model

Yes

No

𝑖 ≤ 𝑛 ?
𝑡 = 𝑡 + 1

𝑗 = 𝑗 + 1

Fig. 3. Flow chart of the X-GWO-SVM algorithm. Total number of
search agents (wolves) is represented by n. Co and γo are components
stored in the final fittest solution ξ1.

considered—a penalty coefficient C and a spacial parameter γ.
The objective function of RBF-SVM with C and γ introduced
is expressed in Eqs. (3) and (4):

min 1
2 ||w||

2 + C
∑P
i=1 εi, (3)

s.t. yi(w
TΨ(xi) + b)− 1 + εi ≥ 0

∀i = 1, 2, ..., P,

K(xi,xj) = e−γ‖xi−xj‖2 = Ψ(xi)
TΨ(xj), (4)

where P is the number of training samples; εi is a slack
variable which is added to relax the constraints of linear
SVM; wTΨ(xi) + b is the decision function; yi is the class
label; xi is the sample; C is the penalty parameter and it
controls the trade-off between the size of the margin and the
slack variable penalty; γ is a spacial parameter which controls
data distribution in a new feature space [51], [52]. Obviously,
hyperparameter (C and γ) tuning for RBF-SVM is necessary
but complex. Thus, the proposed method can internally learn
hyperparameters by emphasizing the importance of the α
wolf and non-linearly updating coefficient vectors used in
GWO. Moreover, this method has higher recognition accuracy
than the existing GWO-SVM and PSO-SVM techniques for
ECG emotion recognition use, and it can effectively avoid
the algorithm falling into a local solution by increasing the
exploration ability and speed up the convergence ability by
increasing the exploitation ability.

Fig. 3 demonstrates our X-GWO-SVM method, which is
inspired by the activity of grey wolves. There are 4 types

of grey wolves, named alpha (α), beta (β), delta (δ), and
omega (ω), simulating the leadership hierarchy. These wolves
continuously search for prey, the optimal solution in our case,
and hunting (optimization) is guided by the fittest solution,
second and third best solutions, α, β and δ, respectively.
The ω wolves follow these three wolves. A total number of
search agents (wolves) is represented by n. Co and γo are two
elements of the searched optimal solution ξ1. The X-GWO-
SVM method has 10 steps as described below.

1) The X-GWO-SVM related parameters are initialized,
i.e., maximum iteration L; the number of search agents
n; positions of α (ξ1), β (ξ2) and δ (ξ3); positions of
search agents (wolves) η1, η2, ..., ηi, ..., ηn. ηi ∈ Rd and
ξi ∈ Rd are d-dimensional vectors. In this case, d is
equal to 2, representing two optimal hyperparameters
(C and γ) required for search.

2) If the current iteration time t is less than the maximum
iteration L, go to the subsequent steps; otherwise, pro-
ceed directly to step 9).

3) For each agent, train RBF-SVM with current position
elements ηi = (Ci, γi).

4) Predict trained RBF-SVM with the test set for each agent
and output its loss as a fitness value based on Eq. (5):

loss(ηi) =
1

M

M∑
i=1

(yi − hi)2, (5)

where M is the number of test samples and hi represents
the predicted value for the ith test sample.

5) Sort all fitness values in ascending order and assign
positions which have the corresponding top three fitness
values as ξ1, ξ2 and ξ3, respectively. The mathematical
expressions are

ξ1(t) = arg max
ηi(t),i=1,...,n

loss(ηi(t)), (6)

ξ2(t) = arg max
ηi(t);ηi(t)6=ξ1(t)

loss(ηi(t)), (7)

ξ3(t) = arg max
ηi(t);ηi(t)6=ξ1(t),ξ2(t)

loss(ηi(t)). (8)

6) Update exploration-exploitation regulation function φ(t)
based on Eq. (9):

φ(t) = −2
t− L+ 1

−t+ L
. (9)

7) For each search agent, update its position ηi based on
following equations:

ηi(t+ 1) =
1

4
ξ1(t) +

1

4

3∑
i=1

[ξi(t) (10)

− bi(t)� |ci(t)� ξi(t)− ηi(t)|],
bi(t) = 2φ(t)ri(t)− φ(t)1, ci(t) = 2si(t),

(11)

where � and | · | represent Hadamard product operation
and element wise absolute value operations, respec-
tively; t is the iteration number; 1 ∈ R2 and its elements
are all ones; bi ∈ R2 and ci ∈ R2 are coefficient vectors.
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The coefficients ri ∈ R2 and si ∈ R2 are random
vectors, where elements are in the range 0 to 1.

8) Accumulate iterative time and go back to step 2).
9) Output the optimal parameters ξ1 = (Co, γo) and the

trained SVM model.
10) Calculate the classification accuracy of the model based

on the test set and end the X-GWO-SVM algorithm.

We demonstrate improvements of the proposed X-GWO-
SVM algorithm with respect to its exploration and exploitation
ability in following two subsections.

1) Exploration: Conventionally, components of φ(t) are
linearly decreased from 2 to 0 over the course of itera-
tions [53], which models wolves approaching the prey. In our
design, we set components of φ(t) non-linearly decrease from
2 to 0 with slower declining rate near 2 and faster declining
rate near 0 (referring to Eq. (9)). Fig. 4 (a) demonstrates
the components of φ(t) linearly (blue stars) and non-linearly
(black circles) decreased from 2 to 0 over the course of
iterations when the maximum iteration time L is set to 100.
Clearly, for the designed nonlinear decreasing method, we can
observe that there is slow declining at the left side of the black
dash line (iteration time = 94), aiming to explore a larger range
and increase exploration compared to the conventional linear
way.

As discussed in [53], bi(t) with random values greater
than 1 or less than -1 is used to oblige the search agent
to diverge from the prey, which emphasizes exploration and
allows the X-GWO-SVM algorithm to search globally. It
should be noticed that the fluctuation range of bi(t) is also
decreased under an effect of φ(t). Components of bi(t) are
random values in the interval [−φ(t), φ(t)], where components
of φ(t) are non-linearly decreased from 2 to 0 over the course
of iterations [53]. Fig. 4 (b) shows a variation of bi(t) when
linear and nonlinear φ(t) are applied. The blue and grey
shadows indicate variation trends for bi(t) when linear φ(t)
and nonlinear φ(t) are applied, respectively. Obviously, the
value of bi(t) (black circles) for nonlinear φ(t) applied has
a larger range compared with the value of bi(t) (blue stars)
for linear φ(t) at the left side of the black dash line, i.e.,
|bi(t)| > 1. In other words, the next search range for the
fittest position in the nonlinear case smoothly attenuates before
iteration reaches a threshold—94 in this figure, making sure a
large exploration range.

2) Exploitation (convergence): In [53], when updating the
positions, the weights for α, β, and δ wolves are all the
same. While for our proposed approach, when updating the
positions, we assign more weight to the α wolf (referring to
Eq. (10)), which emphasizes the importance of the α wolf.
Consequently, the fittest solution from the previous iteration
can be retained and continually influences the subsequent
updating step, ensuring a faster convergence.

We can observe from Fig. 4 (a) that, for the designed
nonlinear decreasing method, there is a much faster decay
at the right side of the black dash line. To clearly track
the convergence of φ(t), red-filled circles are utilized for the
nonlinear case after the 94th iteration. The convergence tends
to speed up as the iteration continuously increases, whereas,
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Fig. 4. (a) Components of φ(t) linearly (blue circles) and non-linearly
(black circles) decreased from 2 to 0 over the course of iterations. (b)
The corresponding variations for components of bi(t) based on the
components of φ(t) linearly (blue circles) and non-linearly (black circles)
decreased over the course of iterations. The maximum iteration time L is
set to 100 for both cases. The black dash line lies at the 94th iteration. The
red-filled circles aim to clearly indicate variations of φ(t) and bi(t) for the
nonlinear case after the 94th iteration.

for the conventional linear decreasing method, the components
of φ(t) just evenly decrease from 2 to 0.

As we discussed before, the value of bi(t) is influenced by
the value of φ(t). Therefore, a similar phenomenon can be
observed in Fig. 4 (b), where the value of bi(t) converges
much faster than the linear case at the right side of the black
dash line, i.e., |bi(t)| < 1. In other words, the next search
range for the fittest position in the nonlinear case dramatically
decreases after iteration time reaches 94.

To sum up, the proposed X-GWO-SVM algorithm does
not require hyperparameter tuning on SVM in order to get
good accuracy. Additionally, it improves the way of updating
position by involving the fittest position α, which emphasizes
the importance of the α wolf and keeps the effect of the fittest
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solution for the next iteration. We also enhance the ability of
exploitation by nonlinearly decreasing the value of φ(t). The
algorithm improves its global search ability by increasing the
exploration ability and speeds up the convergence ability by
increasing the exploitation ability.

C. Measurements

The classification performance of various methods can
be evaluated by standard statistical measurements: accuracy
(ACC) and F1-score (F1), defined as

ACC =
TP + TN

TP + FP + TN + FN
, (12)

F1 = 2
PRE× REC
PRE + REC

, (13)

REC =
TP

TP + FN
, PRE =

TP
TP + FP

, (14)

where TP (true positive) is the number of samples correctly
predicted as the current class; TN (true negative) means the
number of correctly predicted as other classes; FP (false
positive) indicates the number of samples incorrectly detected
as the current class; FN (false negative) denotes the number
of samples incorrectly detected as other classes. Accuracy is
the general measurement of the correctly predicted ratio of the
total testing samples for each dataset, indicating the method’s
capability to classify emotions correctly. The F1-score, on the
other hand, more accurately captures the ideal model for the
unbalanced class distribution. The goal is to maximize these
two measures as representations of effective models.

IV. RESULTS

A. Feature dimension selection

As aforementioned in Section III-A3, determination of a
proper number of extracted features is necessary. Therefore,
we perform feature importance selection in the range of 20
to 135 with step size 5 under the X-GWO-SVM method for
iRealcare dataset. Each simulation result is repeated 10 times
for random selection of training and test samples.

Fig. 7 illustrates the accuracy versus the dimension of the
feature under the X-GWO-SVM algorithm with 10-fold cross-
validation for the iRealcare dataset. Clearly, the recognition
accuracy displays the tendency to rise up at the beginning and
decline in late. The highest mean accuracy is 93.37% located at
the feature dimension equal to 95. Moreover, its corresponding
box plot (filled with orange color) has relatively low variance,
indicating the stability of this feature dimension. After getting
the most discriminative result with feature dimension 95, we
apply it to other comparison methods.

B. Exploration-exploitation regulation function selection

As we demonstrated the significance of exploration-
exploitation regulation function φ(t) in Section III-B, various
exploration-exploitation regulation functions are used in our
experiments here to demonstrate that our choice of φ(t) used
in the X-GWO-SVM algorithm is the best. Expressions on
them are shown in Eqs. (15) to (19) and these exploration-
exploitation regulation functions are plotted in Fig 6. It should
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Fig. 5. The accuracy versus the dimension of the feature under the X-
GWO-SVM algorithm with 10-cross validation for the iRealcare dataset.
The blue shadow indicates a trend for mean accuracy values of different
dimensions of features under the X-GWO-SVM algorithm with 10-cross
validation. Box plot is employed with the box top and bottom denoting the
75th and 25th percentiles respectively for the results of 10-cross validation;
The red straight line inside the box denotes the median value, while the red
dot denotes the mean value; The blue star denotes the outlier value. The most
discriminative result is filled with orange color.

be noticed that the conventional linear exploration-exploitation
regulation function, a benchmark, is expressed in Eq. (15).
Additionally, the one we proposed in the X-GWO-SVM in
Eq. (9) is rewritten as fφ4(t) in Eq. (18).

fφ1(t) = 2− 2t

L
, (15)

fφ2(t) =
4

1 + et−L
− 2, (16)

fφ3(t) =
−4

1 + e−t
+ 4, (17)

fφ4(t) = −2
t− L+ 1

−t+ L
= φ(t), (18)

fφ5(t) = 2 cos(
π

2tL
). (19)

Based on Fig. 6, we can observe that both fφ2 and fφ3
are deformed from the Sigmoid function, which dramatically
decrease from 2 to 0 at the beginning and the end of the
iteration, respectively. The function fφ4 and function fφ5
successively alleviate this decreasing trend on a basis of
function 1

x and cos, respectively.
To evaluate the effects of exploration-exploitation regulation

function, we apply 10-fold cross-validation to the proposed X-
GWO-SVM, varying exploration-exploitation regulation func-
tions based on the aforementioned five functions. The eval-
uated results on exploration-exploitation regulation functions
are shown in Table II for iRealcare dataset and Table III for
WESAD dataset. Clearly, for iRealcare dataset, X-GWO-SVM
combined with fφ4 has the highest accuracy (93.37%) and F1-
score (93.38%) among others. Moreover, the lowest variance
and pretty low training time indicate its stability with low
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Fig. 6. Variations of components of φ(t) for different exploration-
exploitation regulation functions.

computation time. A similar conclusion can be derived for
results on the WESAD dataset, where the highest accuracy
(95.93%) and F1-score (95.56%) are from the combination of
X-GWO-SVM with fφ4. To this end, we have determined the
optimal feature dimension—95, and exploration-exploitation
regulation function—fφ4. Therefore, later evaluations of the
proposed X-GWO-SVM are based on these two settings.

TABLE II
RESULTS OF X-GWO-SVM INVOLVED WITH FIVE

EXPLORATION-EXPLOITATION REGULATION FUNCTIONS ON IREALCARE
DATASET.

Exploration-exploitation regulation function Mean(ACC) Var(ACC) Mean(F1)/% Training time/s
fφ1 92.90 9.66E-05 92.91 429.98
fφ2 93.05 6.10E-05 93.08 402.80
fφ3 83.26 1.40E-02 83.50 509.66
fφ4 93.37 2.84E-05 93.38 380.16
fφ5 92.93 3.31E-05 92.94 368.14

TABLE III
RESULTS OF X-GWO-SVM INVOLVED WITH FIVE

EXPLORATION-EXPLOITATION REGULATION FUNCTIONS ON WESAD
DATASET.

Exploration-exploitation regulation function Mean(ACC) Var(ACC) Mean(F1)/% Training time/s
fφ1 95.29 1.62E-04 95.07 856.31
fφ2 95.79 7.48E-05 95.44 828.31
fφ3 95.29 1.62E-04 95.07 825.14
fφ4 95.93 5.61E-05 95.56 813.58
fφ5 95.79 7.48E-05 95.44 835.40

C. Classification Performance of Proposed Model

1) Classification Performance for of iRealcare dataset:
One may suspect that only one of the improvements on X-
GWO-SVM can achieve a considerable performance. Thus, we
investigate the other three methods: 1) using the GWO-SVM
method, where none of the improvement on GWO is applied;
2) using the nonlinear φ(t) based grey wolf optimizer (N-
GWO-SVM) method, where only the nonlinearly decreasing
value of φ(t) is used; 3) using PSO-SVM method, where

the conventional PSO algorithm is used for searching optimal
hyperparameters.

Tables IV to VII show the classification performance for the
hyperparameter optimizer-based techniques stated above. The
following metrics are reported: accuracy, F1-score, variation
of accuracy, and training duration of the schemes. All of them
are calculated from 10 repeated classification trials for each
scheme (rows in Tabs. IV to VII).

TABLE IV
THE MEAN ACC OF FOUR EMOTIONS WITH HYPERPARAMETER OPTIMIZER

BASED SCHEMES EVALUATED ON IREALCARE DATASET.

Scheme Peacefulness/% Excitement/% Happiness/% Tension/%
PSO-SVM 83.20 84.87 95.40 91.13

GWO-SVM 84.07 97.67 94.73 91.40
N-GWO-SVM 84.60 97.93 94.33 91.27
X-GWO-SVM 86.03 98.03 95.07 94.33

Table IV shows that GWO-SVM performs significantly
better than PSO-SVM for peacefulness (84.07% vs. 83.20%),
excitement (97.67% vs. 84.87%), and tension (94.73% vs.
91.13%), but N-GWO-SVM only slightly improved perfor-
mance on peacefulness (84.60%) and excitement (97.93%).
Except for a slightly lower performance on happiness com-
pared to the PSO-SVM scheme (95.07% vs 95.40%), the
proposed X-GWO-SVM scheme provides a significant per-
formance boost over others. It has the highest accuracy for
peacefulness, excitement, and tension of 86.03%, 98.03%, and
94.33%, respectively. Table V presents similar results for the
mean F1 score. The proposed X-GWO-SVM scheme provides
a significant performance boost over others.

TABLE V
THE MEAN F1 OF FOUR EMOTIONS WITH HYPERPARAMETER OPTIMIZER

BASED SCHEMES EVALUATED ON IREALCARE DATASET.

Scheme Peacefulness/% Excitement/% Happiness/% Tension/%
PSO-SVM 85.29 82.46 91.07 94.45

GWO-SVM 84.19 97.87 90.77 93.57
N-GWO-SVM 84.59 97.99 91.03 93.36
X-GWO-SVM 87.73 98.31 91.23 96.24

TABLE VI
THE MEAN VARIANCE OF ACC FOR FOUR EMOTIONS WITH

HYPERPARAMETER OPTIMIZER BASED SCHEMES EVALUATED ON
IREALCARE DATASET.

Scheme Peacefulness Excitement Happiness Tension
PSO-SVM 6.00E-04 7.17E-02 3.00E-04 3.00E-04

GWO-SVM 5.00E-04 2.00E-04 4.00E-04 1.10E-03
N-GWO-SVM 1.60E-03 2.00E-04 1.4E-04 3.00E-04
X-GWO-SVM 6.01E-04 6.04E-05 1.38E-04 7.65E-05

The variance result in Table VI suggests a similar con-
clusion. Compared to the conventional PSO-SVM scheme or
GWO-SVM scheme, except for the variance on peacefulness
(6.01E-04 vs 6.00E-04), our proposed method also shows
the lowest variance of accuracy on excitement (6.04E-05),
happiness (1.38E-04) and tension (7.65E-05), indicating its
stability.

Table VII shows the mean accuracy, the mean variance
and the mean training time of 10-fold cross-validation results.
Note that, the proposed X-GWO-SVM scheme has the highest
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TABLE VII
THE MEAN VALUES OF ACC, F1, VARIANCE AND TRAINING TIME FOR

FOUR EMOTIONS WITH HYPERPARAMETER OPTIMIZER BASED SCHEMES
EVALUATED ON IREALCARE DATASET.

Scheme Mean(ACC)/% Mean(F1)/% Mean(Var) Training time/s
PSO-SVM 88.65 88.32 1.82E-02 8824.80

GWO-SVM 91.97 91.60 5.50E-04 446.24
N-GWO-SVM 92.03 91.74 5.25E-04 446.42
X-GWO-SVM 93.37 93.38 2.19E-04 380.16

mean of class accuracy (93.37%), the highest mean of class
f1-score (93.38%), the lowest mean of class variance (2.19E-
04), and the shortest hyperparameter training time (380.16s).
The results demonstrated its high reliability, stability, and
efficiency.

TABLE VIII
THE MEAN ACC, MEAN F1 AND VARIANCE OF NONPARAMETRIC

CLASSIFICATION METHODS AND THE PROPOSED METHOD EVALUATED ON
IREALCARE DATASET.

Algorithm Mean(ACC)/% Mean(F1)/% Mean(Var)
RF 81.71 82.35 1.56E-04

K-NN 82.48 81.22 7.35E-04
X-GWO-SVM 93.37 93.38 2.19E-04

To demonstrate the the significance of our X-GWO-SVM
scheme, we also examine other nonparametric classification
methods using similar features on the iRealcare dataset, such
as RF and K-NN. The results are shown in Table VIII. All
of them are calculated from 10 repeated classification trials
for each scheme. It is apparent from the results that the X-
GWO-SVM scheme has the highest accuracy performance.
Actually, RF is more stable than the X-GWO-SVM, while
its accuracy and F1-score are much lower than the proposed
scheme (81.71% vs 93.37%, 82.35% vs 93.38%, respectively).
In addition, the X-GWO-SVM completely outperforms K-
NN in terms of reliability and stability. Overall, the proposed
X-GWO-SVM strategy is more stable and more effective at
achieving high mean accuracy on the iRealcare dataset than
the existing methods.

2) Classification Performance for WESAD dataset: To
demonstrate the reliability and stability of the proposed X-
GWO-SVM method, we further examine it on the WESAD
dataset in terms of accuracy and F1-score, compared with other
existing methods. By applying the feature dimension selection
in the range of 4000 to 10000 with step size 500 under the
X-GWO-SVM approach as we described in Section IV-B, the
best feature dimension is found to be 5000.

Fig. 7 illustrates the accuracy versus the dimension of
the feature under the X-GWO-SVM algorithm with 10-cross
validation for the WESAD dataset. Clearly, the recognition
accuracy has a similar pattern to Fig. 6, in which it increases
initially and decreases afterwards. The highest mean accuracy
is 95.93% located at the feature dimension equal to 5000. The
corresponding box plot has the highest accuracy—96.30%, the
lowest accuracy—94.44%, and the mean F1-score—95.56%.
Moreover, its corresponding box plot also has a relatively
low mean variance (5.49E-05), indicating the stability of this
feature dimension. The mean training time is 113.07s, in this
case.

Table IX presents a comparison between the proposed
classification scheme and the state-of-the-art methods pub-
lished for single channel ECG-based emotion recognition
methods on the WESAD dataset. The same testing dataset
ensures that the comparison is persuasive and feasible. It can
be observed from Table IX that the proposed classification
approach outperforms all simple machine learning methods,
such as RF, K-NN, linear discriminant analysis, and decision
tree. Though slightly inferior to that of self-supervised CNN,
the proposed X-GWO-SVM technique exhibits comparable
classification performance among deep neural networks. How-
ever, considering the computation complexity, the proposed
method is much simpler and more efficient than the self-
supervised CNN. Our algorithm has successfully been loaded
into a lightweight embedded system with a prediction time
of 2.659ms per 200-points iRealcare sample and 4.648ms
per 14000-points WESAD sample. Details on these results
will be discussed in Section V-C3. Overall, the proposed X-
GWO-SVM method achieves comparable accuracy and F1-
score (Fig. 7 and Table IX ) among neural network-based
deep learning classifiers on the WESAD dataset and has an
overwhelming performance on other existing techniques.
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Fig. 7. The accuracy versus the dimension of the feature under the X-
GWO-SVM-SVM algorithm with 10-cross validation on WESAD dataset.

TABLE IX
COMPARISON OF VARIOUS SINGLE CHANNEL ECG-BASED EMOTION

RECOGNITION METHODS ON WESAD DATASET

Reference Year Method ACC/% F1/%
RF 82.78 79.64

K-NN 79.19 75.39
Schmidt et al. [43] 2018 Linear discriminant analysis 85.44 81.31

AdaBoost Decision Tree 83.37 80.20
Decision Tree 80.17 77.01

Lin et al. [47] 2019 CNN 83.00 81.00
Sarkar et al. [29] 2020 Self-supervised CNN 96.90 96.30

Fully-supervised CNN 93.20 91.20
Proposed work —— X-GWO-SVM 95.93 95.56

V. DISCUSSION

The X-GWO-SVM algorithm, for the first time, is proposed
and also the first time used in single channel ECG-based
emotion recognition. By designing a suitable exploration-
exploitation regulation function and updating technique, we
are able to increase the exploration ability and exploitation
ability with the proposed approach. Two ECG datasets are
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used: one raw self-collected iRealcare dataset and one credible
WESAD dataset. The X-GWO-SVM technique effectively
avoids the algorithm from falling into a local solution; hence,
it has a greater recognition accuracy than the existing GWO-
SVM and PSO-SVM techniques for ECG emotion recognition.

The algorithm enables accurate, stable, and efficient emotion
recognition based on single-channel ECG-based signals, which
fills a gap for GWO-SVM research on ECG-based emotion
recognition and also has the potential for clinical use.

A. Evaluation of datasets

Despite the restricted number of subjects in the iRealcare
dataset, the number of samples for each subject is sufficient
since the time of data collection for each emotion is sufficient.
It is true that the WESAD dataset contains a larger number of
subjects; however, the sample length required for this dataset
to achieve high accuracy, which is 14000, drastically reduces
the actual number of samples, for example, 9 samples for
each subject on amusement, 15-18 samples for each subject
on stress, and 28-29 samples for each subject on the baseline.
On the contrary, the sample length required for the iRealcare
dataset to achieve high accuracy, which is only 200. Therefore,
the number of samples for the iRealcare dataset is much larger
than the one in the WESAD dataset.

The reason for the caused aforementioned situation might
come from the way of giving external stimulus and recording
data. For the iRealcare dataset, ECG signals for happiness,
tension, and excitement are recorded when subjects watch
comedies, watch thriller movies and do exercises, respectively.
It should be noticed that emotions normally instantaneously
occur and hold for a short period. Therefore, we only record
the period that subjects are actually in that emotion condition
and ignore the transition period. Clearly, the definition of
different emotions under this external stimulus setting is clear
and subjects are easy to get into a specific emotion. However,
for the WESAD dataset, amusement condition signals are col-
lected when subjects watch funny video clips; stress condition
signals are collected when subjects are asked to provide public
speaking and mental arithmetic tasks; baseline condition sig-
nals are collected when subjects sit/stand at a table and read
magazines. In fact, subjects tend to take some time to transfer
from one emotion condition to the other. However, such a
transition period is also recorded in the WESAD dataset. Thus,
the sample length need to be long enough to make sure not
just the transition period is included. The shorter the time,
the more probable it is that only transitional periods will be
included in the sample.

To sum up, in spite of the fact that the iRealcare dataset has
limited subjects, the actual number of samples is much larger
than the one in the WESAD dataset. Moreover, due to the
exclusive emotion transition period for the WESAD dataset,
the selection of sample length for the iRealcare dataset is more
flexible than the WESAD dataset. We use the widely-used
WESAD dataset as a benchmark for further comparison to
validate our proposed X-GWO-SVM algorithm.

B. Evaluation of exploration-exploitation regulation function
selection

We study the impact of exploration-exploitation regulation
functions on emotion recognition performance. For this study,
we select possible base functions that control the signifi-
cance of each exploration-exploitation regulation function as
listed in Eqs. (15) to (19). Table II and Table III show
the emotion recognition performance for five exploration-
exploitation regulation functions on the iRealcare dataset and
WESAD dataset, respectively. This analysis provides in-depth
insight into the effect of the exploration-exploitation regulation
functions associated with the emotion recognition outcome.
Furthermore, this analysis helps us narrow down the most
suitable exploration-exploitation regulation function in order
to achieve the best performance.

As we mentioned in Section III-B, the declining rate of the
exploration-exploitation regulation function at the beginning
and end with respect to the iteration time represents the
exploration and exploitation ability of the proposed X-GWO-
SVM. From Table II and Table III, we notice that for the
exploration-exploitation regulation function fφ3, where the
function is formed on a basis of the sigmoid function, the
model performance on emotion recognition is poor since it
is under-explored and under-exploited. However, for those
exploration-exploitation regulation functions lying above the
benchmark function fφ1, the model shows significantly bet-
ter performance. Interestingly, the performance drops when
exploration-exploitation regulation functions decline too fast
(fφ2) or too slow (fφ5). The function fφ4 gives the highest
performance for emotion recognition compared to others since
it has the most suitable diverging and converging performance
to the X-GWO-SVM algorithm. Moreover, the fact that fφ4
outperformed other functions for both datasets is also indica-
tive of its stability.

In summary, the analysis above shows that for all the
exploration-exploitation regulation functions, when the declin-
ing rate of the function at the beginning is too large or too
small, for example, fφ3 or fφ2, emotion recognition accuracy
drops due to the under-exploration or over-exploration. This
results in the X-GWO-SVM more easily falling into local solu-
tions. Similarly, when the declining rate of the function at the
end is too large or too small, fφ2 or fφ3, the performance also
drops due to the under-exploitation or over-exploitation in such
cases becomes too difficult for the algorithm to properly find
the global solution. Hence, we conclude that there is a trade-
off between exploration and exploitation for the exploration-
exploitation regulation functions associated with the proposed
X-GWO-SVM algorithm, for which the proper exploration-
exploitation regulation function fφ4 is applied resulting in
avoiding falling into local solutions.

C. Evaluation of reliability, stability and efficiency of X-GWO-
SVM

This section discusses the performance of X-GWO-SVM
for emotion recognition in terms of reliability, stability, and
efficiency.
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1) Reliability: In our work, when only fusing exploration-
exploitation regulation function fφ4 with GWO-SVM, i.e.,
N-GWO-SVM, the classification accuracy and F1-score get
improved (referring to Table IV, Table V and Table VII). This
improvement indicates that involving a nonlinear exploration-
exploitation regulation function can improve the recognition
performance. Similarly, the classification accuracy and F1-
score get further enhanced when the importance of the α wolf
is emphasized, i.e., X-GWO-SVM, which shows the equivalent
importance of the improvement on the X-GWO-SVM.

The classification performance of X-GWO-SVM is superior
to the classification performance of other hyperparameter
optimizer-based systems, such as PSO-SVM and GWO-SVM.
This indicates the high reliability of the proposed algo-
rithm over existing common hyperparameter optimizer-based
schemes. Furthermore, the X-GWO-SVM has the highest ac-
curacy and F1-score among simple machine learning methods,
such as RF, K-NN, decision tree, and linear discriminant
analysis (Table VIII and Table IX). Our analysis indicates
that the X-GWO-SVM is more effective than simple machine
learning approaches at avoiding local solutions. For the deep
learning neural networks, such as CNN, the X-GWO-SVM
can still outperform them except for a more complex single—
self-supervised CNN [29]. Though the accuracy and F1-score
of the X-GWO-SVM are slightly lower than the one from the
self-supervised CNN, considering the efficiency, which will be
discussed in Section V-C3, our algorithm is still competitive.

2) Stability: The variance of the proposed method and
existing works is computed to evaluate the stability of the
methods. All simulation results are applied with 10-fold cross-
validation. Similar to the discussion in Section V-C1, the
X-GWO-SVM is the most stable algorithm among existing
common hyperparameter optimizer-based schemes. Besides,
similar results on both the iRealcare dataset and the WESAD
dataset also indicate the stability of the proposed method.

3) Efficiency: Our works are implemented through both
MATLAB version R2021b and Python 3.7 for feature ex-
traction, model training, and prediction. For MATLAB, the
computation is performed on a laptop with 11th Gen Intel(R)
Core(TM) i7-11800H (2.2GHz and 32GB of RAM). The
computation time for classifying a 200-points (1.56s) iRealcare
sample and a 14000-points (20s) WESAD sample roughly
spends 0.355ms and 0.778ms, respectively, using our proposed
method. For Python, the computation is performed in JETSON
NANO with Quad-core ARM Cortex-A57 MPCore Processor
(1.43GHz and 4GB of RAM). The computation time for
classifying a 200-points (1.56s) iRealcare sample and a 14000-
points (20s) WESAD sample roughly spends 2.659ms and
4.648ms, respectively, using our proposed method.

Compared with the self-supervised CNN, a deep neural net-
work, the proposed X-GWO-SVM is much simpler. The two-
step self-supervised architecture involves deep convolutional
blocks and several fully connected layers in [29], which may
not be realized in lightweight embedded systems. Whereas,
our algorithm has successfully been loaded into JETSON
NANO, an embedded system-on-module and developer kit
with a prediction time of 2.659ms per 200-points iRealcare
sample and 4.648ms per 14000-points WESAD sample. This

provides a way to embed an ECG patch with the proposed
algorithm, achieving edge computing for emotion recognition
on ECG signals.

Moreover, the X-GWO-SVM is the most efficient algo-
rithm among existing common hyperparameter optimizer-
based schemes, which is evaluated by the training time. The
other interesting point that can be found in Table VII is that
all GWO-SVM-based techniques take shorter training time
than the PSO-SVM work, which is compatible with [35]’s
conclusion.

D. Limitations and future directions

The possible limitation of the current study would be that
we only investigate four exploration-exploitation regulation
functions, i.e., fφ2, fφ3, fφ4, and fφ5. Moreover, the dataset
we collected is still insufficient and other existing published
datasets, e.g., AMIGOS [27], Augsburg Biosignal Toolbox
(AuBT) [54], etc., have not been verified by the proposed
X-GWO-SVM algorithm. In future work, we will use other
exploration-exploitation regulation functions for the proposed
algorithm to explore their effectiveness in emotion recognition.
Additionally, more published datasets will be examined by our
method.

Besides, through the results and conclusions reported in
[29], we also observed that deep learning is competitive in
emotion recognition, which may further improve the perfor-
mance of our proposed strategy. Thus in our future work, we
will try to find an effective deep learning method and embed-
ded GWO methods to further improve emotion recognition
performance.

VI. CONCLUSION

In this paper, we presented an X-GWO-SVM technique that
improves the exploration and exploitation abilities of single
channel ECG-based emotion recognition. In order to classify
different emotions, this research used two reliable datasets:
one trustworthy WESAD dataset and one raw self-collected
iRealcare dataset. The single channel ECG signals could well
be employed in the X-GWO-SVM algorithm for emotion
recognition, according to 10-fold cross-validation results from
5 subjects for the iRealcare dataset and 15 subjects for the WE-
SAD dataset. The algorithm performed better than past efforts
that used various supervised machine learning techniques. It
also provides a way to implement in the lightweight embedded
system, which is much more efficient than existing solutions
of using deep neural networks. The method has the potential to
be used in clinical settings and also fills a gap in GWO-SVM
research on ECG-based emotion identification. In our future
work, we will apply radio sensing techniques, such as [42],
[55]–[58], instead of wearable devices for emotion recognition.
We will also develop privacy preservation algorithms [59]–[62]
to protect the users’ privacy.
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