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Abstract—Empowered by deep neural networks (DNNs), Wi-
Fi fingerprinting has recently achieved astonishing localization
performance to facilitate many security-critical applications in
wireless networks, but it is inevitably exposed to adversarial
attacks, where subtle perturbations can mislead DNNs to wrong
predictions. Such vulnerability provides new security breaches to
malicious devices for hampering wireless network security, such
as malfunctioning geofencing or asset management. The prior
adversarial attack on localization DNNs uses additive perturba-
tions on channel state information (CSI) measurements, which is
impractical in Wi-Fi transmissions. To transcend this limitation,
this paper presents FooLoc, which fools Wi-Fi CSI fingerprinting
DNNs over the realistic wireless channel between the attacker and
the victim access point (AP). We observe that though uplink CSIs
are unknown to the attacker, the accessible downlink CSIs could
be their reasonable substitutes at the same spot. We thoroughly
investigate the multiplicative and repetitive properties of over-the-
air perturbations and devise an efficient optimization problem to
generate imperceptible yet robust adversarial perturbations. We
implement FooLoc using commercial Wi-Fi APs and Wireless
Open-Access Research Platform (WARP) v3 boards in offline
and online experiments, respectively. The experimental results
show that FooLoc achieves overall attack success rates of about
70% in targeted attacks and of above 90% in untargeted attacks
with small perturbation-to-signal ratios of about -18 dB.

Index Terms—Adversarial attack, indoor localization, deep
learning

I. Introduction

In wireless networks, accurate device location information
is increasingly desired to support many security-critical appli-
cations, such as device authentication and access control [1],
[2]. To achieve this, Wi-Fi fingerprint based indoor localization
recently has gained astonishing performance via benefiting
from the advances in deep neural networks (DNNs) [3], [4],
[5], [6], which, however, are shown to be susceptible to
adversarial attacks [7], [8], [9]. In such attacks, minimal
perturbations on genuine input samples can steer DNNs
catastrophically away from true predictions. By exploiting
these vulnerabilities, malicious devices have the potential to
manipulate their localization results and cause the breakdown
of wireless geofencing [10], [11], asset management, and so
on. Thus, it is of great importance to investigate the extent
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to which DNN powered indoor localization is vulnerable to
adversarial attacks in the real world.

Despite the great importance, no existing study explores
over-the-air adversarial attacks on indoor localization DNNs in
the physical world. The prior work [12] investigates adversarial
attacks on indoor localization DNNs and simply adds perturba-
tion signals to original signals likewise generating adversarial
images in the computer vision domain. However, additive
perturbations can not characterize the impact of Wi-Fi training
signals on CSI measurements, thus rendering them infeasible
in over-the-air attacks. Moreover, these approaches [13], [14]
trigger attacks by directly converting genuine CSI fingerprints
into targeted ones, which are suitable for attacking single-
antenna APs. Yet, they are physically unrealizable in widely-
used multi-antenna Wi-Fi systems due to the one-to-many
relationship between transmitting and receiving signals. In
addition, this study [15] proposes a CSI randomization approach
to distort device location information. Though this approach
can trigger untargeted adversarial attacks, it lacks the capability
of misleading location predictions close to chosen spots, i.e.,
targeted attacks. In addition, the random perturbations are not
smooth and will cause significant disturbance in the original
signals, rendering them easy to be detected. Thus, no existing
work is suitable for launching adversarial attacks on Wi-Fi
fingerprinting DNNs in the real world.

In this paper, we investigate a new type of adversarial attack
that deceives indoor localization DNNs over realistic wireless
channels. In particular, our attack model includes a Wi-Fi AP
and an attacker. The AP holds a well-trained DNN for indoor
localization using uplink CSI signatures as inputs. The attacker,
i.e., a malicious client device, manipulates its Wi-Fi training
signals and transmits them to the AP over the air, with the
purpose of fooling the localization DNN. In this way, the
AP receives the falsified signals from the attacker, generates
perturbed uplink CSI signatures, and feeds them into the DNN
for device localization. As demonstrated in Fig. 1, over-the-air
attacks can rise severe security issues in wireless networks. An
outside attacker can be empowered to break the geofencing of a
Wi-Fi AP by camouflaging itself within authorized areas to gain
wireless connectivity. Moreover, an attacker can bypass Sybil
attack detection to deplete valuable bandwidth by pretending
multiple fake clients at the same location [16], [17].

We argue that the major obstacle to realizing such over-the-
air adversarial attacks is that the uplink CSI estimated at the
victim AP is unknown to the attacker and thus effective channel
perturbations cannot be generated before each attack. To tackle
this problem, we observe that the similarity between uplink
and downlink CSIs can be exploited for launching adversarial
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Fig. 1. Attack cases with over-the-air adversarial attacks.

attacks over the air. In Wi-Fi networks, downlink CSIs can be
easily obtained from the AP’s broadcasting packets, such as
beacon frames. When one attacker stays at one spot, its uplink
and downlink transmissions would experience similar multipath
propagations and thus have similar CSI fingerprints [18]. Hence,
the attacker can take benefits of accessible and informative
downlink CSIs to generate adversarial perturbations locally
without knowing the exact uplink CSIs that are fed into
localization DNNs by the AP.

Toward this end, we present FooLoc, a novel system that
fools localization DNNs by launching over-the-air adversar-
ial attacks. Specifically, before each attack, FooLoc takes
obtainable downlink CSIs as a reasonable substitute of the
corresponding uplink ones and trains an adversarial perturbation
locally. Then, it applies the well-trained perturbation on its
own transmitted signals for manipulating the corresponding
uplink CSI signatures received by the AP. In this way, FooLoc
is capable of deceiving the localization DNN to output desired
yet wrong location estimates over real wireless channels.

To realize the above idea, we address the following two
challenges.

1) How to design realizable adversarial perturbations
that are suitable for Wi-Fi transmissions? Most adversarial
attacks are based on additive perturbations and require the
ability to individually alter each element of an input sample,
which, however, is physically unrealizable for over-the-air
perturbations. Specifically, in Wi-Fi communications, a physical
layer training symbol has a multiplicative relationship with a
channel response in the frequency domain [18], thus rendering
additive perturbations on Wi-Fi CSIs infeasible. Moreover, for
a multi-antenna receiver, one training symbol of each subcarrier
corresponds to multiple received symbols during channel
estimation, implying a one-to-many relationship between the
elements of one perturbation and one CSI measurement. Based
on the discovered multiplicative and repetitive properties, we
formulate the novel over-the-air perturbations on uplink CSIs
and further derive the adversarial perturbations for targeted
and untargeted attacks on indoor localization DNNs.

2) How to efficiently craft imperceptible yet robust adver-
sarial perturbations under environmental noise? Due to the
random nature of environmental noise, two CSI measurements
from the same spot are unlikely to be exactly the same.
Consequently, one perturbation that is generated for one
specific CSI may not generalize well to another one. To
tackle this challenge, we propose a generalized objective
function integrating both targeted and untargeted attacks and
reasonably formulate the adversarial perturbation generation as

a box-constrained optimization problem. In this optimization
problem, we ensure the robustness of adversarial perturbations
by seeking a universal perturbation that works well on all
CSI measurements from the same spot and guarantee their
imperceptibility by maximizing the perturbation smoothness
and limiting the perturbation strength at the same time.
Moreover, to ease the difficulty of problem optimization, we
further transform the constrained problem into an equivalent
unconstrained one.

Summary of Results. We implement FooLoc using com-
mercial Wi-Fi APs for offline experiments and Wireless
Open-Access Research Platform (WARP) v3 boards [19] for
online experiments. In offline experiments, FooLoc obtains
attack success rates (ASRs) of 73.0% and 93.4% for targeted
and untargeted attacks, respectively, on average. In online
experiments, FooLoc achieves mean ASRs of 71.6% and 99.5%
for targeted and untargeted attacks, respectively. Moreover,
FooLoc has small perturbation-to-signal ratios (PSRs) of about
-18 dB in two settings.

Contributions. The main contributions of this work are
summarized as follows.
• We propose FooLoc, which exploits the similarity be-

tween uplink and downlink CSIs to launch over-the-air
adversarial attacks on Wi-Fi localization DNNs.

• We discover the multiplicative and repetitive impacts of
over-the-air perturbations on CSI fingerprints in Wi-Fi
localization systems.

• We propose an efficient algorithm to generate impercepti-
ble and robust adversarial perturbations against localization
DNNs over realistic Wi-Fi channels.

• We implement FooLoc on both commercial Wi-Fi APs and
WARP wireless platforms, respectively, to demonstrate its
effectiveness in different environments.

II. AttackModel andWi-Fi CSI Signatures

A. Adversarial Attacks on Indoor Localization

In this paper, we consider a general Wi-Fi network, where
one fixed AP with multiple antennas provides wireless connec-
tivity for many single-antenna clients, such as smartphones and
vacuum robots. The AP has the capability of device localization
for delivering location based services, such as user monitoring
and access control. Moreover, we focus on deep learning (DL)
based indoor localization systems, which exploit accessible and
fine-grained Wi-Fi CSIs as location fingerprints. Considering
the randomness of CSI phases, most fingerprinting systems
rely on CSI amplitudes [3], [20]. Hence, such DL models are
assumed to accept CSI amplitudes as input features and output
2D continuous-valued location estimations.

To fool such localization systems in reality, we consider the
over-the-air adversarial attacks by exploiting the vulnerabilities
of DNNs [7]. In this scenario, a malicious attacker, as a client
device, can not directly manipulate the input values of DL
models used by the AP. Instead, it can attack a DL model
only via modifying its own transmitted Wi-Fi signals. In this
paper, we mainly consider white-box DL models, of which
the attacker knows their exact structures as well as trained
parameters. For black-box models that are unknown to the
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Fig. 2. Uplink and downlink CSI measurements at different spots. The distances
of 1st spot to 2nd and 3rd spots are 0.3 m and 1.2 m, respectively.

attacker, we will discuss the feasibility of triggering adversarial
attacks on them in our offline experiment. Furthermore, the
attacker has no access to uplink CSI measurements that are used
for model training and testing. Yet, it has the ability to move
in the targeted area and collects corresponding downlink CSI
measurements. For example, the attacker could be a vacuum
robot, which moves between different spots to automatically
collect Wi-Fi CSI fingerprints [21], [22].

In addition, we assume that the attacker knows its own
location information when launching adversarial attacks for
misleading location based services provided by the AP. More-
over, we consider targeted and untargeted adversarial attacks
on localization DNNs. Specifically, in targeted attacks, the
attacker aims to force the localization model to output a location
estimate that is as close as possible to a chosen spot. When
comes to untargeted attacks, it only wants to be localized far
away from its true location.

Such over-the-air adversarial attacks can be exploited to
deceive localization DNNs [3], [20] for hampering security of
wireless networks. The example attack scenarios include 1)
breaking geofencing: a Wi-Fi AP holds a device localization
model and provides wireless connectivity only to clients that
are within a certain area. In this scenario, an attacker stays
outside of the area and can trigger over-the-air adversarial
attacks to camouflage itself inside authorized areas for gaining
wireless connectivity; 2) bypassing Sybil attacker detection: a
Wi-Fi AP uses a localization model to detect potential Sybil
attackers based on their locations. Using over-the-air adversarial
attacks, an attacker can masquerade many fictitious clients that
are seemingly from different locations to deplete valuable
bandwidth at a low cost.

B. Wi-Fi CSI Fingerprints

Basically, channel state information characterizes the signal
propagation among a pair of Wi-Fi transceivers in a certain
environment. The IEEE 802.11n/ac/ax Wi-Fi protocols divide
a Wi-Fi channel into K orthogonal subcarriers and assign K
pre-defined long training field signals (LTFs) for them. For
the k-th subcarrier, the transmitter sends a training signal sk,
and accordingly the receiver obtains a signal yk. With the
knowledge of sk, the receiver can estimate the current channel

response hk between them as

hk = yk/sk. (1)

Due to multipath effects, each channel response hk can be
further modeled as the composition of one direct path and
multiple reflected ones [18], which can be formulated as

hk = α0e j2πτ0 fk +
∑

l

αle j2πτl fk + nk, (2)

where nk is the complex Gaussian noise. Moreover, α0 and
τ0 represent the signal propagation attenuation and time delay
of the direct path, respectively, and αl and τl are those of
the l-th reflected path. From the above equation, we can
see that Wi-Fi CSI measurements are highly dependent on
transceiver locations as well as environmental reflectors. For
a fixed-position AP-client pair, uplink and downlink signals
would travel through the alike line-of-sight distances as well
as similar incident-reflecting paths. The above geometric
properties together contribute to nearly-identical path loss and
time delay, thus resulting in similar channel responses. Such
similarity enables an adversary to replace unknown uplink
CSIs with the corresponding downlink ones for generating
adversarial perturbations.

We conduct some preliminary studies to verify the similarity
between paired uplink and downlink CSI fingerprints. To
do this, we use two off-the-shelf Wi-Fi APs with Atheros
CSI Tool [23] to record CSI measurements of 56 subcarriers.
In our experiments, we fix one AP at a certain location
and place the other at three different spots. As plotted in
Fig. 2, we can observe that similar change patterns are shared
in uplink and downlink measurements corresponding to the
same spot. This is because when the locations of two APs
are fixed, the uplink and downlink signals would experience
similar multipath propagations as indicated in Eq. (2). It is
worth noting that the occurrence of multiple clusters of CSI
measurements in each subfigure is caused by automatic gain
control on the receiver side for maintaining a suitable power
level. In addition, it also can be found that the similarity
in CSI measurements increases as the distance between two
spots decreases. The above observations verify that uplink and
downlink CSI measurements are highly similar, providing an
exciting opportunity to launch over-the-air adversarial attacks
on DL indoor localization systems.

III. Over-The-Air Adversarial Attacks

A. Overview of FooLoc

FooLoc is a novel system that fools Wi-Fi CSI fingerprinting
localization DNNs via launching over-the-air adversarial attacks.
As depicted in Fig. 3, FooLoc runs on the attacker and helps it to
spoof the localization DNN used by the AP. Specifically, before
each attack, the attacker first stays at one spot and receives
downlink packets, such as beacon and acknowledgment (ACK)
frames [24], from the targeted AP. Then, FooLoc generates a
set of well-crafted adversarial weights based on its knowledge
of the victim model. After that, it multiplies the adversarial
weights with genuine LTFs and sends their product results to
the AP over the air. Once receiving these signals, the AP feeds
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Fig. 3. Workflow of FooLoc for launching over-the-air adversarial attacks on
DL indoor localization.

the perturbed CSI signatures to its DL localization model,
which will consequently output a wrong estimation that is
desired by the attacker. The main advantages of FooLoc are
that it has small perturbations with respect to original signals
and remains unharmful to message demodulation at the AP.

As shown in Fig. 3, the core components of FooLoc include
Over-The-Air Perturbation Design and Adversarial Weight
Optimization.
• Over-The-Air Perturbation Design. First, we investigate

the multiplicative and repetitive properties of over-the-air
perturbations and formalize their impacts on uplink CSI
measurements. Then, we define the notions of adversarial
examples as well as targeted and untargeted adversarial
attacks on wireless localization. Additionally, we prove
that our adversarial perturbation remains unharmful to the
payload decoding at the AP.

• Adversarial Weight Optimization. First, we detail our
attack strategy and propose a generalized objective func-
tion that integrates both targeted and untargeted attacks.
Then, adversarial attacks on DL localization models are
formulated as a box-constrained problem that minimizes
the objective function while satisfying the constraints of
robustness, imperceptibility as well as efficiency. Moreover,
we carefully transform the above constrained problem into
an equivalent unconstrained one for easing the difficulty
of problem optimization.

B. Over-The-Air Perturbation Design

In this subsection, we first investigate the unique multiplica-
tive and repetitive properties of over-the-air perturbations and
define adversarial examples in indoor localization.

Multiplicative Property. Most of the prior studies on
wireless adversarial attacks synthesize an adversarial example
xad for each genuine sample x using an additive perturbation r
likewise generating adversarial images in the computer vision
domain as xad = x+r. However, it is inapplicable for performing
over-the-air attacks in real-world wireless channels. In over-
the-air attacks, the attacker can change model inputs only via
multiplicative perturbations. The reason stems from the fact
that a received signal is the product of a channel response and
a transmitted signal in the frequency domain [18]. Hence, one
uplink CSI measurement has a proportional relationship with
the perturbed training signals as indicated in Eq. (1).
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Specifically, as depicted in Fig. 4, when attempting to
launch over-the-air attacks, FooLoc first generates a real-valued
multiplicative perturbation set γ = [γ1, · · · , γk, · · · , γK] ∈ R1×K

for its K-element training sequence s = [s1, · · · , sk, · · · , sK] ∈
C1×K , which is known by the AP. Then, the scaled sequence
st ∈ C

1×K can be obtained as

st = γ � s = [γ1s1, · · · , γk sk, · · · , γK sK], (3)

where � is the Hadamard product for element-wise production.
Then, FooLoc transmits st to the victim AP over realistic
wireless channels. When hearing the signal, the AP with N
antennas receives a measurement Ŷ ∈ CN×K and estimates their
uplink channel Ĥ ∈ CN×K using Eq. (1). Therein, each entry of
Ĥ can be denoted as ĥn,k, representing the perturbed channel
response between the client and the n-th AP antenna at the k-th
subcarrier. Let us assume that the corresponding true channel
estimation is H ∈ CN×K with each entry denoted as hn,k. From
Eq. (1), we can have

ĥn,k =
ŷn,k

sk
=

hn,kγk sk

sk
= γkhn,k. (4)

According to Eq. (4), we can see that hn,k, as the original
channel response, is proportionally perturbed by γk, suggesting
that over-the-air perturbations have a multiplicative effect on
uplink CSI measurements.

Using such multiplicative weights, FooLoc can easily manip-
ulate uplink CSI measurements through the standard channel
estimation process as depicted in Fig. 4, which lays the
foundation for further over-the-air attacks.

Repetitive Property. Given the multiplicative perturbation,
we proceed to investigate the unique pattern of our perturbation
weights received by the AP. Existing studies on adversarial
attacks create different perturbation weights for different input
elements. Yet, this is not the case for adversarial attacks over
wireless channels.

As illustrated in Fig. 4, the uplink transmission from
the attacker to the AP can be modeled as a single-input-
multiple-output (SIMO) channel, which suggests a one-to-many
relationship between the elements of one perturbation γ and
the perturbed CSI measurement Ĥ. Mathematically, given the
perturbation weight γk, the k-th column of Ĥ represents all
estimated channel responses for the k-th subcarrier and can be
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further written as

ĥk =


ĥ1,k
...

ĥN,k

 =


γkh1,k
...

γkhN,k

 = γk


h1,k
...

hN,k

 . (5)

The above equation shows that all receiving antennas share
the same perturbation weight with respect to each subcarrier.
Hence, the overall received perturbation weights Γ ∈ RN×K on
Ĥ have a repetitive pattern as

Γ = JN×1 ⊗ γ =


γ1 · · · γK
...

...
...

γ1 · · · γK

 , (6)

where JN×1 is the all-ones matrix with a size of N × 1 and ⊗
denotes the Kronecker product that helps γ expanding in the
vertical dimension in Eq. (6).

With the observations of multiplicative weights and repetitive
patterns, we can finally formulate the impact of FooLoc’s
perturbations on uplink CSIs as

Ĥ = JN×1 ⊗ γ �H. (7)

Adversarial Perturbations. Next, we define the notion of
over-the-air adversarial examples in the context of indoor
localization. Let P ∈ R2 be the 2D area, where the AP
provides wireless connectivity. We denote fθ(·) : X → P as the
localization DNN used by the AP, where θ stands for the already
trained parameters using uplink CSI fingerprints Xu

A
that are

collected at a set of reference spots A ⊂ P. Therein, each input
sample Xu ∈ RN×K represents the amplitudes of one uplink CSI.
Moreover, we assume that our attacker locates at a location
p ∈ P, i.e., the genuine spot, and manipulates its uplink channel
using a perturbation γp. Considering that amplitude features
are essentially the absolute values of complex-valued channel
responses, the real-valued perturbation weights in Eq. (7) will
have the same linear scaling effect on corresponding CSI
amplitudes. Using this property, we can derive our adversarial
example X̂u

p as

X̂u
p = JN×1 ⊗ γp � Xu

p, (8)

where Xu
p represents the true uplink CSI amplitudes.

Based on the above notion of adversarial examples, we
further define the adversarial perturbations for targeted and
untargeted attacks, respectively, on indoor localization DNNs.
In the targeted case, one successful perturbation γp would
mislead a location estimate fθ(X̂u

p) to a targeted spot q ∈ P as
close as possible, where q , p. That is, we seek a perturbation
γp such that

D
(

fθ
(
JN×1 ⊗ γp � Xu

p

)
,q

)
≤ dmax, (9)

where D(·, ·) is the euclidean distance and dmax represents the
acceptable maximal distance error. Whereas, in the untargeted
case, one adversarial perturbation γp would make fθ(X̂u

p) away
from the genuine location p as far as possible. Similarly,
given the acceptable minimal distance error dmin, we expect a
perturbation γp satisfying

D
(

fθ
(
JN×1 ⊗ γp � Xu

p

)
,p

)
≥ dmin. (10)

We will specify the configurations of two acceptable distance er-
rors dmin and dmax and verify the validity of such configurations
in our experiments.

Impact on Message Demodulation. One of the major
benefits of our multiplicative perturbation γ defined in Eq. (7)
is that it has no impact on message demodulation at the AP.
Specifically, in each packet transmission, FooLoc not only
applies the multiplicative perturbations on pre-defined LTF
symbols s, but also uses them accordingly on the subsequent
payload signal u = [u1, · · · , uk, · · · , uK] ∈ C1×K . After that, the
perturbed payload will go through the same real channel as
the perturbed training sequence. In this way, although the AP
obtains a fake CSI response, the original message is perturbed
in the same way. Thus, based on the perturbed response
ĥn,k in Eq. (4), the payload signal uk still can be correctly
decoded from the received signals hn,kγkuk. This process can
be mathematically expressed as

hn,kγkuk

ĥn,k
=

hn,kγkuk

γkhn,k
= uk. (11)

Hence, our adversarial perturbations remain unharmful to the
message transmission from the attacker to the AP. The only
impact of such perturbations is that the AP feeds falsified CSIs
to its localization DNN.

C. Adversarial Weight Optimization

In this subsection, we first detail our attack strategy
and formulate adversarial perturbation generation as a box-
constrained optimization problem. Then, we transform it into
an unconstrained one.

Attack Strategy. Since uplink CSI measurements are un-
known to the attacker, one possible attack strategy is to
blindly manipulate its LTF symbols in a brute-force manner.
However, such an approach is prohibitively inefficient and
time-consuming. Instead of blindly searching, FooLoc exploits
the accessible and informative downlink CSI measurements,
which can be easily obtained from the AP’s beacon or ACK
packets in Wi-Fi networks [24]. Concretely, when our attacker
stays at the genuine spot p, it first collects some downlink
CSI measurements and obtains a set of amplitude features
Xd

p, where Xd
p ∈ R

N×K . Then, FooLoc simulates the over-
the-air attacks using Eq. (8) and optimizes the perturbation
weights based on Xd

p. After that, it multiplies the optimized
weights γp with the pre-defined training sequence s and sends
their product results to the AP for attacking its localization
model fθ(·). Because uplink and downlink channel responses
are similar as aforementioned, the perturbation weights learned
from downlink CSI measurements are expected to generalize
well to uplink ones.

Problem Formulation. With the above attack strategy,
we first integrate both targeted attacks (9) and untargeted
attacks (10) in wireless localization into one objective function
J

(
γp, fθ

)
as

J
(
γp, fθ

)
,(1 − ω)EXd

p

[
D

(
fθ

(
JN×1 ⊗ γp � Xd

p

)
,q

)
− dmax

]+

+ ωEXd
p

[
dmin −D

(
fθ

(
JN×1 ⊗ γp � Xd

p

)
,p

)]+
.

(12)
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Therein, ω indicates the attack type and takes values in the set
{0, 1}, where ω = 0 stands for targeted attacks and ω = 1 is for
untargeted attacks. EXd

p
[·] is the expectation over the dataset

Xd
p and [a]+ = max(a, 0) denotes the positive part of a.
Using this objective function, we formulate the problem of

adversarial attacks on the localization model fθ(·) as

minimize
γp

J
(
γp, fθ

)
+ β ‖∆γp‖2, (13)

subject to ‖γp − J1×K‖∞ < δmax < 1. (14)

Therein, ∆γp =
[
γp,i − γp,i−1

]
i=2,··· ,K

is the difference vector
of γp and β denotes a hyperparameter. In addition, ‖a‖2 is
the l2 norm and ‖a‖∞ = max (|a1|, · · · , |an|) is the l∞ norm. In
the following, we explain the design rationale of the above
box-constrained problem.

Robustness. When ω = 0 in the objective function J (·), we
minimize the average error between the distance D

(
fθ(X̂d

p),q
)

and the threshold dmax over the entire downlink CSI dataset
Xd

p. This is because due to the random nature of environmental
noise in Wi-Fi CSI signatures, two CSI instances from one
spot are unlikely to be exactly the same. As a consequence, the
perturbation that is crafted for a specific CSI sample may have
little effect on another one with a high probability. To boost
the robustness of our adversarial perturbations, FooLoc seeks
a universal perturbation that causes all the samples in Xd

p to
be estimated at a neighboring area of the targeted location q.
The same reason holds for the untargeted attacks when ω = 1.

Imperceptibility. The second term in Eq. (13) and the
constraint in Eq. (14) together guarantee the imperceptibility
of our adversarial perturbations. Specifically, ‖∆γp‖2 quantifies
the smoothness of one perturbation γp by measuring the
difference between its consecutive weights. The smaller the
difference, the smoother the perturbation. In the extreme case
‖∆γp‖2 = 0, γp shall be a constant. In this condition, γp
has the same linear scaling effect on each element of one
CSI measurement and can not manipulate its changing trends.
Moreover, the constraint (14) limits the perturbation strength
and makes sure that FooLoc always searches a perturbation
γp within the l∞ norm ball with a radius δmax centering at
J1×K during optimization process. The choose of l∞ norm in
Eq. (14) makes each adversarial weight γp,k in γp satisfying
1−δmax < γp,k < 1+δmax. The above two designs can guarantee
a minimally-perturbed signal X̂d

p that is seemingly alike to the
original signal Xd

p when received by the AP.
Efficiency. At each optimization step, not all samples are

necessary for updating perturbation weights. Without loss
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Fig. 6. Illustration of weight transformation in problem optimization. For
simplicity, we take one element of γp for illustration.

of generality, we take ω = 0, i.e., the targeted attacks, for
explaining. Let Rmax , {X : D ( fθ (X) ,q) < dmax} be the set
of amplitude features, whose location estimates are within
Bdmax (q) ⊂ P, i.e., the ball with a radius of dmax centering
at the targeted spot q in the Euclidean space. After some
optimization steps, a part of perturbed CSI samples may have
already been mapped in Bdmax (q) by fθ(·), i.e., the green circles
in the Euclidean space in Fig. 5. In this condition, these samples
are unnecessary for optimizing new perturbation weights in the
next step. Based on this observation, we devise an attention
scheme to enhance the efficiency of our optimization problem.
In particular, FooLoc uses the operator [·]+ in J

(
γp, fθ

)
to

discriminate whether location estimates are inside or outside of
Bdmax (q). Then, it strategically pays attention to outside samples
and ignores inside ones. This operation will generally decrease
the number of needed samples at each optimization step and
thus lead to a lower overall computational overhead.

Problem Optimization. With the optimization problem (13),
we proceed to design a dedicated optimization scheme for gen-
erating our adversarial perturbations. Because our perturbations
are multiplicative rather than additive, traditional perturbation
generation algorithms, such as the well-known fast gradient
sign method (FGSM) [8], are inapplicable for our optimization
problem. Thus, we need to directly solve the problem (13)
using other general gradient based optimization methods, such
as stochastic gradient descent (SGD) and adaptive moment
estimation (Adam). However, the constraint term (14) restricts
the domain of the objective function J (·) in the space
(1 − δmax, 1 + δmax)1×K and makes the optimization problem
as a box-constrained one, which is not naively supported by
such gradient-based optimization methods.

To deal with this issue, we transform the box-constrained
problem (13) into an equivalent unconstrained one for easing its
optimization difficulty. To do this, we first make γp satisfying
the constraint (14) via the transformation as

γp = tanh (ξ) · δmax + J1×K , (15)

where ξ ∈ R1×K . Moreover, tanh (x) = ex−e−x

ex+e−x is the hyperbolic
tangent function with the range (−1, 1). As illustrated in Fig. 6,
each element γp,k in γp is naturally confined to the interval
(1 − δmax, 1 + δmax) using the above transformation, which is
equivalent to the constraint ‖γp − J1×K‖∞ < δmax. Then, we
substitute γp with Eq. (15) in the original problem (13), which
will convert the domain of J (·) into the space R1×K . In this way,
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Algorithm 1 Over-the-air adversarial attacks on DL localization
models.

Input: Downlink CSI samples Xd
p, the DL localization model

fθ(·), the genuine and targeted spots {p,q}, the acceptable
distance errors {dmin, dmax} and the attack type ω

ξ ← random(1,K) ∈ R1×K I initialization
for the number of training iterations do

Sample a mini-batch of training data
{
Xd

p,i

}M

i=1
from Xd

p
Generate adversarial examples

γp ← tanh (ξ) · δmax + J1×K

X̂d
p,i ← JN×1 ⊗ γp � Xd

p,i
Update parameters ξ:
if ω = 0 then

ξ ← ξ − η∇ξ

[∑M
i

[
D

(
fθ
(
X̂d

p,i

)
,q

)
−dmax

]+
M + β ‖∆γp‖2

]
end if
if ω = 1 then

ξ ← ξ − η∇ξ

[∑M
i

[
dmin−D

(
fθ
(
X̂d

p,i

)
,p

)]+
M + β ‖∆γp‖2

]
end if

end for
Generate and transmit perturbed LTFs and payload signals

st ← (tanh (ξ) · δmax + J1×K) � s
ut ← (tanh (ξ) · δmax + J1×K) � u

we obtain an equivalent unconstrained problem of adversarial
perturbation generation as

minimize
ξ∈R1×K

J
(
γp, fθ

)
+ β‖∆γp‖2, (16)

where γp = tanh (ξ) · δmax + J1×K . (17)

In this condition, we can leverage traditional gradient-based
methods to solve the optimization problem (16).

At last, FooLoc can apply the well-trained adversarial
weights on pre-defined LTF symbols as well as payload signals
and transmit their product results over wireless channels to fool
the localization DNN fθ(·) at the AP. The way to launch our
over-the-air adversarial attacks is summarized in Algorithm 1.
In our experiments, we empirically set δmax = 0.15 and use
the SGD optimizer for searching optimal perturbation weights.

IV. Evaluation

A. Victim DNNs and Evaluation Metrics

Victim DNNs. To evaluate FooLoc, we build two victim
localization models, i.e., DNNA and DNNB, using mainstream
neural network architectures. In particular, both DNNA and
DNNB are set as regression models, which take raw multi-
dimensional CSI samples as inputs and output a continuous-
valued location estimate. The structures and parameters of two
DNNs are present in Table I. As the table shows, DNNA is
a fully connected neural network (FCNN). It first normalizes
each sample element into the interval [0, 1] along the antenna
dimension for effective inference [25] and flattens a normalized
sample into a one-dimensional tensor. Then, DNNA leverages
six fully connected (fc) layers to extract hidden features
and predicts the corresponding device location. DNNB is a
convolutional neural network (CNN) and consists of three

TABLE I
The structures and Parameters of Victim DNNs Used in Our Experiments.

DNNA DNNB
Pre-processing Normalize&Flatten Normalize

Layers

#1 fc1024, Linear conv256@1×1, ReLu
#2 fc512, ReLu conv128@1×1, ReLu
#3 fc1024, Linear conv128@1×1, ReLu
#4 fc512, ReLu fc512, ReLu
#5 fc1024, Linear fc256, ReLu
#6 fc2, Sigmoid fc2, Sigmoid

convolutional (conv) layers and three fully connected layers. It
also performs data normalization before feeding CSI samples
into its convolutional layers. In addition, we build DNNA and
DNNB on the PyTorch framework.

Evaluation Metrics. We use the following metrics to
measure FooLoc’s performance.
• Localization Error (LE). Given a localization model fθ(·)

and an input sample Xu
g from the ground-truth spot g, the

LE to g is computed as

D
(

fθ(Xu
g), g

)
= ‖ fθ(Xu

g) − g‖2.

• Attack Success Rate (ASR). Given a set of perturbed
uplink CSIs X̂u

p =
{
X̂u

p,m

}
m=1:M

pertaining to the attacker’s
true spot p and an adversarial perturbation γp, the ASR
of targeted attacks with a targeted spot q is∑

m

1

(
D

(
fθ

(
X̂u

p,m

)
,q

)
− dmax ≤ 0

)
/M,

where 1(·) denotes the indication function and dmax is
the acceptable maximal distance error. It represents the
probability that a perturbed location estimation fθ

(
X̂u

p,m

)
is inside the ball centering at the targeted spot q with a
radius of dmax. Similarly, the ASR of untargeted attacks
is given as∑

m

1

(
D

(
fθ

(
X̂u

p,m

)
,p

)
− dmin ≥ 0

)
/M,

where dmin is the acceptable minimal distance error.
It indicates the probability that a perturbed location
estimation fθ

(
X̂u

p,m

)
is at the outside of the ball centering

at the true spot p with a radius of dmin.
• Perturbation-To-Signal Ratio (PSR). Given the per-

turbed uplink CSI X̂u
p and corresponding original one

Xu
p at the genuine spot p, the PSR is computed as

PSR = 20 log10

‖X̂u
p − Xu

p‖2

‖Xu
p‖2

.

B. Offline Experiments

In this subsection, we conduct our offline experiments, in
which both uplink and downlink CSI measurements are first
collected in real-world environments. In this setting, the attacker
optimizes adversarial perturbations using downlink CSIs and
then applies the learned perturbations directly on the collected
uplink ones based on Eq. (8) to spoof localization DNNs.

Implementation. In offline experiments, we implement
FooLoc using two TL-WDR4310 Wi-Fi routers and one Lenovo
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in offline experiments.
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Fig. 8. Illustration of our attack methodology adopted in offline experiments.

laptop. Specifically, one router with two antennas is fixed at
one spot to act as an AP, and the left one is equipped with one
antenna to work as a mobile client to communicate with the
AP from different spots. Moreover, we connect the laptop with
two routers via Ethernet cables and run Atheros CSI Tool [23].
Using this tool, each router is set to work at the 2.4 GHz Wi-Fi
band and record channel responses of 56 subcarriers. Hence,
one CSI sample has a size of 1 × 2 × 56.

Data Collection. We collect CSI measurements in a 12 ×
18 m2 meeting room as shown in Fig. 7. The AP is placed at
one end of the room to avoid isotropy for better localization
performance [3], [20]. We move the client among 40 selected
locations with a spacing distance of 1.5 m, i.e., A spots in Fig. 7,
to collect uplink CSI measurements at the AP. Accordingly,
we choose 40 locations around A spots, i.e., B spots in Fig. 7,
to record uplink and downlink CSI measurements, respectively.
At each spot, 250 CSI samples are recorded during data
collection. Thus, we can obtain three datasets DA, DB and
DC . In particular, DA includes 10K uplink CSI samples from
A spots and is used for training localization DNNs at the AP.
DB consists of 10K downlink samples from B spots and is
used by the attacker to generate adversarial perturbations. DC

has 10K uplink samples from B spots and is responsible for
testing FooLoc.

Attack Methodology. We independently train DNNA and
DNNB on DA, and optimize adversarial perturbations using
the samples in DB according to Algorithm 1. Then, we apply
the optimized perturbations on DC and feed the perturbed
samples into DNNA and DNNB, respectively, to perform both
targeted and untargeted attacks. As depicted in Fig. 8, for each
B spot p in targeted attacks, we choose the nearest B points
that are outside a certain ball centering at p as targeted spots.
In particular, the ball radius equals to the sum of the 90th

TABLE II
Performance of FooLoc in Offline Experiments.

Targeted attacks
Before After

DNNA DNNB DNNA DNNB
LE to p

(Genuine spots)
50th 0.60 m 0.54 m 1.48 m 1.28 m
90th 1.85 m 1.93 m 2.61 m 2.51 m

LE to q
(Targeted spots)

50th 1.59 m 1.56 m 0.53 m 0.55 m
90th 3.08 m 2.93 m 1.42 m 1.38 m

ASR 0.1% 0.1% 74.1% 71.8%
PSR - - -19.6 dB -18.9 dB

Untargeted attacks
Before After

DNNA DNNB DNNA DNNB

LE to p 50th 0.60 m 0.54 m 3.30 m 3.45 m
90th 1.85 m 1.93 m 5.55 m 5.41 m

ASR 0.1% 0.0% 94.4% 92.4%
PSR - - -19.0 dB -19.5 dB

percentile LE of localization models and half of the spacing
distance, i.e, 0.75 m. In this way, we can have multiple targeted
spots for one genuine spot p and finally obtain 119 and 116
genuine-targeted spot pairs for DNNA and DNNB, respectively.
In addition, we configure dmax = 0.75 m in targeted attacks.
When performing untargeted attacks on p, we set dmin to be
the sum of 90th percentile LE at p of localization models and
half of the spacing distance.

Experimental Results. We first show the overall attack
performance of FooLoc on DNNA and DNNB. For this purpose,
we report all evaluation metrics in Table II. Before attacks,
DNNA and DNNB obtain 50th LEs of 0.60 m and 0.54 m,
respectively, which are comparable to other localization DNNs.
We can also observe that FooLoc has better performance in
untargeted attacks in terms of LEs and ASRs. The reason is that
FooLoc can search all directions pointing away from genuine
spots in untargeted attacks, while having much fewer directions
and more strict distance constraints to launch targeted attacks
as shown in Fig. 8. Despite that, in targeted attacks, DNNA’s
90th percentile LE to genuine spots arises from 1.85 m to
2.61 m, while its 90th percentile LE to targeted spots decreases
from 3.08 m to 1.42 m. Similar results can be found in DNNB.
Moreover, FooLoc achieves ASRs of 74.1% and 71.8% on
DNNA and DNNB, respectively. The above observations suggest
that FooLoc can effectively render victim models’ predictions
close to targeted spots. In untargeted attacks, FooLoc makes
the 50th and 90th percentile LE of both models increase by
over five and two times, respectively, implying that the two
models’ predictions are easily misled away from genuine spots.
In addition, FooLoc obtains high ASRs of 94.4% and 92.4%,
respectively, on DNNA and DNNB in untargeted attacks. It
is worth noting that due to random noise and environmental
dynamics, some collected Wi-Fi CSI samples may have already
been predicted in targeted areas before adversarial attacks.
However, such samples are only a very small portion of total
testing samples, i.e., about 0.1% as shown in Table II, which
indicates the validity of targeted spot selection and acceptable
distance error settings in our attack methodology. Furthermore,
we also find that FooLoc has low PSRs of about -19 dB in both
targeted and untargeted attacks. The result means that only
small perturbations are introduced in original signals, which
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Fig. 9. Illustration of original and perturbed signals under targeted and
untargeted attacks in offline experiments.

suggests the imperceptibility of our adversarial attacks. To sum
up, the above results verify the effectiveness of FooLoc to
deceive DL localization models.

Next, we illustrate perturbed signals under targeted and un-
targeted attacks. Since FooLoc has similar attack performance
on DNNA and DNNB, we take perturbed signals of DNNA for
illustration in Fig. 9, where each subfigure depicts 50 CSI
samples. As shown in Fig. 9, we observe that under the same
attack, the perturbed signals of two antennas share the same
changing trends with respect to original ones. It is due to that
our adversarial perturbations have multiplicative and repetitive
impacts on original signals. Moreover, although the perturbed
signals under two attacks are predicted to be far away from
the genuine spot with high probabilities, they look very similar
to original ones, which shows the usefulness of maximizing
smoothness and limiting strength of adversarial weights in
perturbation optimization. Furthermore, we can observe that
targeted perturbed CSIs have more sudden changes and are
less smoother when compared with untargeted perturbed CSIs.
This is due to the fact that more changes are needed when
FooLoc renders one sample to be estimated to come from a
specified spot. Interestingly, we also find that targeted attacks
have smaller perturbations on original signals. Though targeted
perturbed signals show a very low similarity with original
signals at the targeted spot, the corresponding predictions are
less than 0.75 m from the targeted spot with a probability of
99.6%. These observations suggest that localization DNNs are
very vulnerable to our adversarial perturbations.

Then, we showcase FooLoc’s targeted and untargeted attacks
on DNNA at two B spots in the offline environment. To do
this, we plot location predictions at two spots with and without
adversarial attacks in the corresponding 2D Euclidean space in
Fig. 10. In targeted attacks, the majority of CSI samples can
be successfully perturbed into the neighboring area of targeted
spots within a distance dmax = 0.75 m, even if these spots
locate in different directions with respect to corresponding
genuine spots. This observation verifies FooLoc’s ability to
render location predictions close to given targeted spots. In
untargeted attacks, adversarial perturbations can make model
predictions far away from genuine locations with a distance of
more than dmin. In addition, we can find that location predictions
under untargeted attacks basically have a larger distance from
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Fig. 10. Illustration of adversarial attacks at two spots in the offline
environment. The red dots are location predictions without perturbations.
The gray dots are location predictions under untargeted attacks.
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Fig. 11. Performance of untargeted attacks under different conditions in offline
experiments.

genuine spots than that under targeted attacks. The above results
illustrate the effectiveness of FooLoc to launch targeted and
untargeted attacks on localization DNNs.

Furthermore, we show the feasibility of fooling black-box
DL models over the air. In this case, the localization model used
by the AP is unknown to the attacker. To simulate this situation,
we first assume that DNNA is used by the AP. Then, we train
DNNA using uplink CSI samples in the dataset DA as a victim
model and optimize DNNB using the dataset DB as a substitute
model. Next, we use the substitute model to generate untargeted
adversarial perturbations with DB according to Algorithm 1. In
this way, we can apply locally-generated perturbations on uplink
CSI samples in DC to deceive unknown DNNA. Similarly, we
can attack DNNB if it is used by the AP using DNNA in a black-
box manner. In this scenario, we also set three baseline models
that leverage multiplicative perturbation weights randomly
sampled from the interval (1 − δmax, 1 + δmax). The baseline
models, i.e., Baseline 1, Baseline 2 and Baseline 3, have
different perturbation constraints δmax of 0.15, 0.3 and 0.45,
respectively. During testing, we run each of them ten times
and average all ASRs, 50th percentile LEs and PSRs as their
final performance results.

As Fig. 11 shows, FooLoc suffers performance degradation
from white-box scenarios to black-box ones. These results are
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expected because the substitute models for perturbation gener-
ation in black-box attacks are different from targeted victim
models, resulting in different adversarial weights. Moreover,
when compared to other baseline models, Baseline 3 obtains the
best performance in terms of ASRs and 50th LEs, while also
having the highest PSRs. In addition, compared with Baseline
3, the black-box version of FooLoc achieves better performance
on DNNA and comparable performance on DNNB with regard
to ASRs and 50th LEs. However, it has much smaller PSRs
on both two DNNs, suggesting that our adversarial attacks are
more effective and stealthy than random perturbations. The
above results indicate that FooLoc is capable of learning some
shared adversarial weights that work well on different models
due to the transferability of adversarial attacks [7], [8], showing
the possibility of exploiting FooLoc to perform over-the-air
adversarial attacks on black-box localization models.

C. Online Experiments

In this subsection, we further examine the performance of
FooLoc in online experiments. In this setting, we multiply
adversarial weights with LTF signals, transmit perturbed signals
to the AP over real wireless channels and record corresponding
falsified uplink CSIs to attack localization models.

Implementation. In online experiments, we implement
FooLoc using the WARP wireless experimental platform [19]
as shown in Fig. 12. In particular, two WARP v3 boards are
controlled by a Lenovo laptop via Ethernet cables to transfer
control signals as well as their CSI measurements. One of the
two boards is fixed at a certain location to act as an AP with
two antennas, and the left board with one antenna works as
a mobile client that communicates with the AP at the 5 GHz
Wi-Fi band. Since WARP boards can provide channel estimates
of 52 subcarriers, one CSI sample in online experiments has a
size of 1 × 2 × 52.

Data Collection. We collect CSI measurements in a corridor
environment as depicted in Fig. 12. Specifically, we place the
client at ten A spots and ten B spots in turn to record CSI
measurements. First, we move the client among A spots, with
a spacing distance of 0.6 m, and receive 1K uplink CSIs at
each spot. In this way, we obtain a dataset DE containing 10K
samples for training localization DNNs used by the AP. Then,
by locating the client at B spots, we collect 1K downlink CSI
samples at each location and have a dataset DF to generate
adversarial perturbations. Note that there are stairs at one
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Fig. 13. Attack performance of FooLoc in online experiments.

end of the corridor and people go downstairs and upstairs
frequently. Thus, the collected CSI measurements are impacted
by environmental noise and changes.

Attack Methodology. The attack strategy adopted in online
experiments is similar to that in offline settings, but the only
difference is that the attacker needs to send perturbed LTF
signals over the air to deceive the victim AP. Specifically, we
train DNNA and DNNB, respectively, on the dataset DE and
learn adversarial perturbations using DF . Then, we multiply
the locally-optimized perturbations on Wi-Fi LTF signals and
transmit the perturbed signals from the client to the AP over
the air. After the AP receives perturbed CSI measurements, we
immediately feed them into DNNA and DNNB, respectively, to
perform location estimation. Moreover, we set dmax = 0.3 m,
i.e., the half of the spacing distance, and configure dmin to be
the sum of the 90th percentile LE and dmax. For a given B
spot, the corresponding targeted spot is selected as a location
that has a distance of 1.8 m from it.

Experimental Results. We first report FooLoc’s ASRs and
PSRs in our online experiments. Since FooLoc’s adversarial
perturbations are learned from downlink CSI measurements,
they would generally be affected by random environmental
noise in uplink transmissions, resulting in performance degra-
dation in terms of ASRs at the testing phase. As shown in
Fig. 13, FooLoc achieves targeted ASRs of 65.7% and 77.5%
on DNNA and DNNB, respectively, which are comparable to
that of FooLoc in offline experiments. In untargeted attacks,
FooLoc obtains ASRs of above 99.0% on two victim models,
suggesting that FooLoc is still effective in this online setting.
Moreover, our adversarial attacks have small perturbations on
original signals and obtain mean PSRs of less than -17.5 dB in
both targeted and untargeted scenarios. The above observations
indicate that FooLoc is robust to environmental noise and has
comparable performance in online experiments.

Furthermore, different AP locations will impact FooLoc’s
performance. In general, the displacement of AP locations
will produce different training sets of CSI fingerprints, which
correspondingly changes the parameters of the localization
model, thus resulting in different attack performance of our
system. Roughly speaking, the higher localization accuracy
the model achieves, the lower ASR FooLoc obtains. In our
experiments, FooLoc achieves a targeted ASR of about 73%
and an untargeted ASR of about 93% in the offline experiment,
while obtaining a targeted ASR of about 71% and an untargeted
ASR of about 99% in the online experiment. The above results
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Fig. 14. Illustration of original and perturbed signals under targeted and
untargeted attacks in online experiments.

show that FooLoc has similar attack performance in two
different experimental settings.

Next, we take a further step to show the imperceptibility of
our adversarial perturbations. For this purpose, we record uplink
CSI measurements at the AP with and without perturbations and
depict corresponding signals for attacking DNNA in Fig. 14.
As the figure shows, all perturbed CSI measurements look
like original ones, i.e., keeping the main changing trends of
original signals with slight differences. In addition, FooLoc can
successfully generate adversarial signals with high ASRs and
low PSRs. Although targeted perturbed CSIs are very different
from original signals at the targeted spot, their predictions are
less than 0.3 m from the targeted spot with a probability of
100%. To sum up, our adversarial perturbations can effectively
spoof DL localization models over realistic wireless channels.

Then, we present location prediction results with and without
adversarial attacks at two B spots in the online environment. To
do this, we depict location predictions under adversarial attacks
in the 2D Euclidean space in Fig. 15. At the first spot, FooLoc
can successfully render all location predictions in untargeted
attacks far away from it with a distance of more than dmin. At
the same time, FooLoc makes location predictions in targeted
attacks close to the targeted spot within a distance of 0.3 m
with a high probability of 92.2%. Similar observations can
be also found in the second spot. The above results show the
effectiveness of FooLoc to perform over-the-air targeted and
untargeted adversarial attacks.

V. RelatedWork

Indoor Localization. Recent years have witnessed the
emerging needs of person or device locations in indoor
environments, such as homes and office buildings [26], [27],
[28]. Generally, indoor localization can be realized by exploit-
ing various sensing modalities, among which Wi-Fi signals
are one of the most promising ones thanks to their high
ubiquity in indoor scenarios. Moreover, due to the huge success
in the computer vision domain, various DNNs have been
recently exploited for accurate Wi-Fi indoor localization [29],
[30]. The stacked restricted Boltzmann machines [20], deep
autoencoder [31] as well as residual networks [6] are proposed
for indoor positioning, distance estimation, and so on. With
the increasing usage of DNNs in indoor localization, it is
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Fig. 15. Illustration of adversarial attacks in the online environment.

thus of great importance to investigate the robustness of DL
localization models to adversarial attacks.

Adversarial Attacks. Although deep neural networks have
proven their success in many real-world applications, they are
shown to be susceptible to minimal perturbations [7], [8]. After
that, various adversarial attacks are introduced in face recogni-
tion [32], person detection [33], optical flow estimation [34],
and so on. Recently, adversarial attacks are proposed on DNN
based applications in wireless communications, such as radio
signal classification [35], waveform jamming and synthesis [36].
Moreover, the work [12] exposes the threats of adversarial
attacks on indoor localization and floor classification. However,
this work uses additive perturbations, which can not tamper
CSI measurements over realistic Wi-Fi channels. In our work,
we propose multiplicative adversarial perturbations that can
be exploited by adversary transceivers to perform adversarial
attacks on localization DNNs over the air.

Wireless Channel Manipulation. Perturbations on wireless
channels have also been investigated in the tasks of device au-
thentication and device localization. Recently, researchers [15]
propose a CSI randomization approach to distort location
specific signatures for dealing with users’ privacy concerns
about locations. However, this approach lacks the capability
of misleading location predictions close to specified spots, i.e.,
targeted attacks. In addition, the proposed random perturbations
are not smooth, which will produce significant differences
between perturbed CSI measurements and original ones,
rendering them easy to be detected. However, FooLoc enables
the attacker to launch both targeted and untargeted attacks,
and our adversarial perturbations are smooth and minimal,
making perturbed CSI signatures similar to the original ones.
Moreover, the authors in [13] propose analog man-in-the-
middle attacks to mimic legitimate channel responses against
link based device identification. The work [14] fools location
distinction systems via creating virtual multipath signatures.
These approaches trigger attacks via directly transforming
genuine Wi-Fi CSI fingerprints to targeted ones, which is
suitable for attacking single-antenna APs, which, however,
are physically unrealizable in widely-used multi-antenna Wi-
Fi systems due to the one-to-many relationship between the
elements of one perturbation and one CSI measurement. In
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contrast, our attack takes this relationship into consideration
and generates adversarial perturbations with a repetitive pattern,
which characterizes the impact of over-the-air attacks on multi-
antenna APs.

VI. Conclusion

This paper presents FooLoc, a novel system that launches
over-the-air adversarial attacks on indoor localization DNNs.
We observe that though the uplink CSI is unknown to FooLoc,
its corresponding downlink one is obtainable and could be
a reasonable substitute. Instead of using traditional additive
perturbations, FooLoc exploits multiplicative perturbations with
repetitive patterns, which are suitable for adversarial attacks
over realistic wireless channels. FooLoc can efficiently craft
imperceptible yet robust perturbations for triggering targeted
and untargeted attacks against DL localization models. We
implement our system using both commercial Wi-Fi APs and
WARP v3 boards and extensively evaluate it in different indoor
environments. The experimental results show that FooLoc
achieves overall ASRs of about 70% in targeted attacks and
of above 90% in untargeted attacks with small PSRs of about
-18 dB. In addition, this paper reveals the bind spots of indoor
localization DNNs using over-the-air adversarial attacks to call
attention to appropriate countermeasures.
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